
Krätzig, Markus

Working Paper

A software framework for data based analysis

SFB 649 Discussion Paper, No. 2005,044

Provided in Cooperation with:
Collaborative Research Center 649: Economic Risk, Humboldt University Berlin

Suggested Citation: Krätzig, Markus (2005) : A software framework for data based analysis, SFB 649
Discussion Paper, No. 2005,044, Humboldt University of Berlin, Collaborative Research Center 649 -
Economic Risk, Berlin

This Version is available at:
https://hdl.handle.net/10419/25063

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/25063
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

SFB 649 Discussion Paper 2005-044

A Software Framework
for Data Based Analysis

Markus Krätzig*

* Institute for Statistics and Econometrics,
Humboldt-Universität zu Berlin, Germany

This research was supported by the Deutsche
Forschungsgemeinschaft through the SFB 649 "Economic Risk".

http://sfb649.wiwi.hu-berlin.de

ISSN 1860-5664

SFB 649, Humboldt-Universität zu Berlin
Spandauer Straße 1, D-10178 Berlin

S
FB

6

 4
 9

E

 C
 O

 N
 O

 M
 I

C

 R

 I
S

 K

 B

 E
 R

 L
 I

N

A Software Framework for Data Based

Analysis 1

Markus Krätzig

Humboldt-Universität zu Berlin, Institute for Statistics and Econometrics

Current version: 29 August 2005

Abstract

This paper presents the software framework JStatCom which is geared towards
the development of rich GUI clients for numerical procedures. 1 The concept is to
solve all recurring tasks with the help of reusable Java components. Optionally, one
can delegate the execution of special numerical algorithms to external programs, for
example Gauss or Matlab. This way it is possible to reuse an already existing code
base for numerical routines written in different programming languages and to link
them with the Java world. A reference application for JStatCom is the econometric
software package JMulTi, which will shortly be introduced. 2

Key words:
Java, Object-Oriented Programming, Econometrics, Software Engineering

1 Introduction

Modern econometrics relies heavily on the use of computer software to analyse
empirical data, as well as to run simulations to investigate the properties of
tests and estimators. Complex mathematical algorithms need to be applied to
data that is either randomly sampled or that has been observed as the realiza-
tion of some stochastic process and that is stored in a file or in some database.
This observation is equally valid in other fields were numerical algorithms are
applied. However, in econometrics users also need a high level of user interac-
tion with the software to insert a priori information to the statistical models
under investigation.

1 This research was supported by the Deutsche Forschungsgemeinschaft through
the SFB 649 ’Economic Risk’. Markus Krätzig: Humboldt-Universität zu Berlin,
Department of Economics, Spandauer Str. 1, 10178 Berlin, Germany, email:
mk@mk-home.de.
1 GUI means Graphical User Interface.
2 The URLs are www.jstatcom.com and www.jmulti.com respectively. Both projects
are Open-Source.

Researchers who want to perform a certain type of analysis with up-to-date
methods basically have two options. By employing standard software packages
for econometric analysis, like Eviews or the Oxmetrics family, they could use
a wide range of methods very effectively. The other option would be to take
some programming language for statistics, for example Gauss, Ox, Matlab,
SPSS, Stata, or R, and to write or reuse programs that can do the analysis.

The pros and cons of both approaches are quite obvious. If a standard software
is used, there is typically well developed graphical user interface support, and
the implemented methods are ready to use. However, if some method is missing
that is not provided by the respective vendor, extra programming is needed.
Although most standard packages also provide a programming interface, it is
then usually more effective to apply one of the well established languages for
statistics, because often there is already code available which can be reused.
Thus, standard software lacks flexibility and the possibility to program ex-
tensions easily. However, some software products allow to design user defined
modules, even with GUI support. One of the most advanced examples for this
is the Oxmetrics family. Still, it will be shown that the presented approach
with JStatCom can be considered as a generalization of that solution.

By using a programming language for statistics, one has a lot more flexibil-
ity to program algorithms. But this approach requires familiarity with the
respective language and the resulting programs are usually script-based. This
means that it is less convenient and more troublesome to use these algorithms
compared to a software with a GUI for interactive modelling. Often even the
programmer herself has problems getting a script running that she has not
touched for a while. Furthermore, model building in econometrics is typically
a multi-step procedure with a number of different algorithms involved. With
a script-based approach combining these procedures can become quite a com-
plex undertaking. It always requires text editing of sometimes lengthy source
code. Furthermore, documentation is often quite sloppy, which requires to in-
vestigate the algorithms themselves to know exactly how parameters need to
be prepared and what the contents of the results are. Another problem is that
the authors of these algorithms usually see themselves rather as Scientists in-
stead of Programmers and they often do not reflect very much about software
engineering techniques. The result is that software reuse is often limited to
reusing single procedures written in some script language for statistics. More
complex interactions or object-oriented design is only applied by experienced
developers and can still not be considered a mainstream technique in that
area.

One of the central contributions of the proposed software architecture JStat-
Com is that it can be used to increase software reuse, because it provides
configurable standard components for recurring tasks as well as mechanisms
to use code that has been written already in special languages for statistics.

2

By applying that approach one can develop reliable, feature-rich applications
with relatively little effort. More generally, this was one of the major goals of
object-oriented programming, but it needs domain specific application frame-
works to bring this idea to live. JStatCom is such a framework for data based
analysis, especially time series econometrics.

To summarize, the big disadvantage of using special purpose languages to pro-
gram algorithms for statistics and econometrics is that it often requires special
knowledge to reuse them. It is not a solution that can be applied by empirical
researchers easily because it often involves time consuming programming or
at least adjustments in the source code. This leads to a situation where meth-
ods are not being used because they are not part of a standard software and
programming is not an option due to resource or knowledge constraints. How-
ever, these methods may have been programmed and might already be part of
some software library. It would therefore be good to improve the usability of
these algorithms by providing a relatively simple way to create user-friendly
interfaces for them. This is where JStatCom steps in.

The paper is organized as follows. The next section describes the problem
domain and mentions existing solutions. Section 3 gives an overview about
the general structure of JStatCom. Section 4 introduces JMulTi, a reference
application based on the framework. Section 5 concludes.

2 Problem Domain, Requirements, and Alternatives

An observation that can be made in areas that heavily depend on the use
of complex mathematical algorithms is that large and powerful libraries for
math, statistics, and graphics are created in different programming languages,
but that there is a lack of an integrating framework that can serve as a me-
diator between different procedure calls. Such a framework has to solve a
number of problems that typically appear in this problem context. Therefore
it seems worthwhile to try to develop reusable components that can help to
make development more efficient. So far there are only isolated solutions for
certain problems or languages, as for example described in Ashworth et al.
(2003), but no attempt has been made to standardize the creation of GUIs
for mathematical applications in a more general context. One exception is the
web based approach MMM (Günther et al., 1997) which was developed as
an architecture to share algorithms and computing resources via the Internet.
User interaction was done via a browser interface. However, this solution was
still not convenient enough for users and was therefore not widely used for
empirical analysis.

3

The presented software framework JStatCom attempts to fill this gap by defin-
ing classes that are especially designed to link between existing math libraries
and a graphical user interface. It is not focused on new algorithms for math
and statistics, but concentrates on convenient user interface components, an
efficient variable bookkeeping system, and on a powerful and extendable data
model. A special feature of JStatCom is that existing code from popular ma-
trix oriented languages can easily be reused without even changing it. The
software makes every attempt to be both, developer- and user-friendly. This is
mainly achieved by conceptual simplicity in the class design and by providing
standardized ways to document and test applications based on it.

A very general description of the problems that occur when developing soft-
ware for scientific computing is given by Morven Gentleman in Boisvert and
Tang (2001, preface). The author mentions that often very complex software
systems are created by scientists rather than software engineers. This can lead
to the common situation that best practices in software engineering are ig-
nored or not recognized, and that projects can suffer from this deficiency. For
example, object-oriented programming techniques are still not in widespread
use for the development of econometric routines, although the additional effort
to adopt these techniques would pay off quickly (Doornik, 2002). The reason
might be that it requires a higher effort to lay out the structure of an object-
oriented program, thus thinking more about the software itself instead of the
problem.

However, the procedural, function-based programming style is often a suffi-
ciently powerful way to solve computational problems occurring in economet-
rics. But it fails clearly when it comes to creating graphical user interfaces
and when various different algorithms should be used together. The idea of
JStatCom is to let scientists program in their preferred style, but to use object-
oriented techniques to integrate existing algorithms. This way, domain-specific
procedures can be reused and enhanced with a user interface.

The following subsections discuss the requirements aspects of the framework
that have led to the major architectural decisions. One should note that most
of the described requirements must be met for any GUI that should be used
for interactive numerical calculations. Therefore the mentioned problems are
solved in different ways in existing software packages. But JStatCom is the
first framework that generalizes these solutions and makes them available as
reusable classes. It should also be mentioned that JStatCom evolved from the
experiences gained when developing the software JMulTi. Only in a second
step, the framework was separated from the application. But the requirements
were by then obvious from the development experiences and user requests.

4

2.1 Operational Context

JStatCom is expected to be used in a wide range of data based analysis appli-
cations. Therefore it must be flexible enough to be extended or customized to
adopt to different environments. It must not make strong assumptions about
the structure of the scientific models to be used, about domain-specific data
types, the format of import files, or how numerical algorithms are imple-
mented. A strong emphasis is put on GUI creation. JStatCom should provide a
variety of components that can be plugged together with the support of visual
programming tools. The data model must interact with the GUI components
in a standardized fashion. Data processing must support collection and spec-
ification of input data, preliminary transformations and validity checking, as
well as convenient output representation and formatting.

2.2 Key Data Management Features

In order to support a wide range of different data types, JStatCom should rely
on a metadata model. Core attributes are standardized for all data types. Each
data type may define additional attributes. New types can be dynamically
added to the system.

To facilitate GUI design, components within a certain scope must have access
to a common shared data repository. This would decouple the modules be-
longing to one scientific model by reducing the number of direct dependencies
among them. On the other hand, access to the shared data must be confined
to the components within a distinct modelling context. For example, panels
for estimation, residual analysis and structural analysis in a VAR modelling
context share common data from the model specification via a shared data
repository. 3 Components from other models, say from an STR model, do not
have access to that repository, instead they use their own data pool. 4 This
requires the concept of defining scopes for different data repositories.

Furthermore, the data model must interact with the GUI components via
events to notify interested listeners about changes in the underlying value.
These changes might trigger various actions, for example updating a display
or enabling/disabling some element of the user interface.

Another desirable feature would be to represent the state of all shared data
repositories in a graphical component. This could be used to inspect inter-
mediate results or to export some variable to a file. It can also help with

3 Vector Autoregressive Models (Lütkepohl, 1991)
4 Smooth Transition Regression (Teräsvirta, 1998)

5

debugging. Such a data control system must work automatically without any
additional programming effort.

2.3 Key User Interface Features

The user interface components must support key tasks involved in specifying,
estimating, and evaluating statistical models. Special requirements are input
validation against range bounds, adequate rendering and editing of the used
types, as well as efficient representation of potentially large data arrays. All
components must be highly configurable and must support the use of visual
programming tools. For this reason a component model must be adopted,
which is JavaBeans for Java components. There must be sufficient default
functionality provided to set up a new application quickly. However, it must
also be possible to change existing default behaviour according to specific
needs.

Another requirement is the availability of domain-specific user components
for a certain class of models. JStatCom provides a distinct variable selection
mechanism for time series models. However, usage of these components is not
required, instead, custom components can be applied.

A general mechanism for project management, as well as data import from
files is required and must be supported by the user interface. This mechanism
must be flexible, because applications might require different file formats and
will store a different set of project settings.

Because algorithms for data based analysis may fail if the input has special
features, errors resulting from a computation are not unlikely. Therefore a
powerful automated error handling and logging scheme must be provided to
give detailed feedback about potential causes of failure. Furthermore, numer-
ical calculations might take a long time. It is desirable that the GUI stays
reactive even during intense computations, and that it possibly offers a way
to cancel a running calculation. This makes thread-safety a requirement for
all classes that might be used from the GUI thread and the thread in which
the calculations run. Thus adequate synchronization is necessary.

2.4 Key Interoperability Features

Because scientific algorithms may be programmed in various ways, JStatCom
must operate with many different software products to enable scientists to in-
tegrate a rich set of features without the need to rewrite complex algorithms.
In order to keep programming with JStatCom simple enough, a generalized

6

interface to call procedures from different sources must be implemented. This
interface should hide purely technical aspects of the respective calling mecha-
nism from users of the framework. 5

Furthermore, input and results of procedure calls must conform to the internal
data model, without the need to transform data to engine-specific types.

Applications based on JStatCom should be portable to a number of differ-
ent operating systems. This is achieved by using Java as the programming
language, but it must as well be supported by the engine communications
schemes. Especially in scientific environments, the Linux and Unix family of
operating systems is quite popular. Therefore those systems should be sup-
ported in addition to Windows.

2.5 Key Design Features

2.5.1 Conceptional Simplicity

The framework should also be adopted by scientists, rather than pure soft-
ware engineers. Therefore conceptual simplicity is required when programming
with it. This can be achieved by providing not only the needed functionality,
but also a reusable design, which can be adopted by any application in the
problem domain. This is the essential benefit of using a framework. It re-
lieves developers from the complex task of setting up a new class model for
every application. Instead, distinct design guidelines can be followed, which
are standardized ways to proceed when setting up a new application. If the
guidelines are used, then all applications based on the framework will have a
similar structure, thus reducing the conceptional burden to understand and
maintain them.

JStatCom design guidelines should help developers especially with the follow-
ing tasks:

• representing scientific models with potentially many variables
• creating well structured, maintainable, feature-rich GUI components
• programming calls to external computational engines
• creating and integrating help documents for scientific models

5 Users of the framework are developers who program a new GUI or application
with the classes from JStatCom.

7

2.5.2 Testability

Programming errors are not the exception, they occur all the time. Modern
programming environments make it extremely easy to find and correct syntac-
tical and semantic errors. However, logical errors are often hard to detect. In
current software engineering practice, a widely used strategy to guard against
programming errors is to use unit tests, see Beck (1999) for a motivating
and very informal introduction. Except in trivial cases, tests cannot prove the
absence of errors, as Dijkstra (1969) pointed out. They nevertheless help to
discover errors very quickly, especially if they are run automatically after every
change in the software. This so-called regression testing is extremely helpful
to find errors that have been introduced by a refactoring or after new features
have been added. The strategy leads to a path, where code can be changed
and extended without breaking existing features. A feature is defined here as
functionality that is tested according to a given specification which must be
agreed on before.

The design of a framework for numerical calculations has to support the task
of executing unit tests. Although a number of solutions exist to run automated
tests for GUI components by simulating user behaviour, it is inherently te-
dious to set up these tests. Therefore, most GUI components are still tested
manually, which is always time consuming and error-prone. This is a reason to
separate the code for scientific algorithms and graphical user interfaces. The
algorithms can only be tested automatically in a reasonably efficient way if
they can be called independently.

The scientific procedures in applications based on JStatCom must be auto-
matically testable, because complex algorithms have to be checked against
a number of different inputs. Algorithms are often changed to meet certain
criteria. Due to the inherent complexity this is a constant source of errors.
Automated unit testing can greatly help to discover errors that break existing
functionality, although it cannot prove procedures to be correct. However, a
reasonable choice of test cases, made up by someone who has a deep domain
specific knowledge, is often an excellent guard against programming errors.

2.6 Existing Solutions for GUI Building

The idea to create user interfaces for scientific procedures is of course not
new and there exist a number of approaches for that task. Most of them use
special features of the respective language to set up predefined, customizable
user interface components that are called from within the control flow of the
program. This concept is used for example by Matlab and Xplore. Although it
is very easy to create simple graphical applications with this strategy, it tends

8

to clutter GUI related code and algorithm code as the application is growing.
Apart from that, the lack of data encapsulation increases interdependencies
between different parts of the created software, such that it is getting harder to
maintain and extend. There are many examples where Matlab has successfully
been used to create stand-alone applications with a GUI, for example Uhlig
(1999). But due to the growing complexity, those projects are limited in size
and lifetime.

A different solution is provided by the Ox programming language with the
extension OxPack (Doornik and Ooms, 2001). It is part of the Oxmetrics family
of econometric software tools. Together with GiveWin, a graphical front-end
that provides general functionality for all GUI modules, it can be used to create
graphical interfaces to a model. The difference to the previously mentioned
approach is that here an object-oriented design is provided to access GUI
functionality. It is necessary to subclass the ModelBase class which is then used
by OxPack to set up the display of the user interface for the created model.
Figure 1 shows the relationship of the relevant classes for a hypothetical STR
modelling class in a UML diagram. For clarity, the representation of those
classes is simplified, not all public methods are shown.

STRModelBase

OxPack

ModelBase

+ IsCrossSection
+ ReceiveModel
+ Estimate

<<use>>

Fig. 1. Class diagram for an interactive Ox program

OxPack can take the inherited class STRModelBase as an argument to set up
the user interface according to the definitions laid out in that class. These
definitions describe what kinds of user interface components are used, which
estimation routines are possible, the name of the model and various other
settings. Once understood, this approach can be used to create user interfaces
to different models in a fairly standardized way. It even provides the option
to define HTML helpsets, a feature that is also implemented for JStatCom
modules.

By applying this method of creating user interfaces for econometric models, it
is easy to separate algorithms and GUI related code, because the ModelBase

class is only used to define which algorithms are called according to the user

9

specification. The actual code for the econometric procedures should be de-
fined in different classes that are independent of the interface definition and
that could even be used by other user-defined models.

There is only one problem with this approach. Between ModelBase and its
subclasses must exist a is-a relationship. This means that every new model
must be a special case of the general model allowed for in ModelBase. The
ModelBase class is therefore designed to be a generalization of all potential
models used in econometrics. Nevertheless, this restricts the applicability of
the design to compatible modelling situations only. Models that require an
extended set of features or that belong to a different problem domain would
not fit into that framework. Apart from that, the behavior of the user inter-
faces that can be created is pretty much predetermined by the OxPack class.
Following the definition in Gamma et al. (1995) the used design pattern is a
Template Method. A consequence of using this pattern is that the sequence of
calls cannot be altered, but only the behavior of the single steps. This means,
that the flexibility of this approach to create interactive GUIs for various
different models is somewhat limited.

The more general problem behind this is discussed in Bloch (2001, item 15).
Inheritance is a powerful concept, but it creates static relationships between
classes and should be used only, when a true is-a relationship exists between
the superclass and its subclasses. An alternative concept that can often re-
place inheritance constructs is Composition. Composition means that a class
is not an ancestor of another class, but that it keeps just a reference to in-
stances of that class to get access to the needed functionality. Applied to the
design used by Ox, this means that limitations stem from the fact that not
every model can be derived from the ModelBase class, or that it might require
special solutions that are not supported in a straightforward manner. An al-
ternative would be to use a composition approach, where different classes or
components provide the necessary functionality to create a GUI. This scheme
could be used by arbitrary model implementations. In fact, this is exactly what
JStatCom does. There is much more freedom to design model interfaces, but
there is also less predefined structure. However, this lack of static structure is
compensated by providing design guidelines that should help the developer to
apply standardized solutions to heterogeneous models.

Compared to Ox with OxPack, JStatCom provides more flexibility to design
applications based on it. It is not limited to a specific model setup anymore,
not even a specific problem-domain, like econometrics. However, this comes of
course at a price. Programming with JStatCom requires some knowledge in
Java. Luckily, the Java programming language is increasingly popular and also
more and more adopted by the science community, see for example Boisvert
et al. (2001). There is an enormously rich documentation available and there
is excellent tool support. In the following, selected implementation details of

10

JStatCom are presented and how the framework could be used. This text
should motivate developers to give it a try. It might also help to decide when
existing solutions are sufficiently powerful and when it will pay off to learn
and use the presented approach.

3 JStatCom System Overview

This section aims at giving a quick overview of the main features and the basic
workings of the framework. It is by no means a complete documentation or
specification. For a deeper understanding, the API documentation in javadoc
format as well as the architecture documentation is required (Krätzig, 2004).

JStatCom is a software framework, which is defined as a set of reusable classes
that make up a reusable design for a class of software (Johnson and Foote,
1988; Deutsch, 1989). This means that it already provides a structure as well
as key functionality for applications in a certain problem domain. The de-
signer of an application can reuse not only classes, but the whole design of the
framework and concentrate on specific aspects of his implementation. Some of
the solutions presented in this section have already been sketched in Benkwitz
(2002), where the first prototype of the system was described.

Figure 2 shows the context of the framework together with the roles that
potential users can have. Typically there is someone with domain specific
knowledge, who is called Scientist, and somebody who develops the Java GUI
with JStatCom, called the GUI Developer. Only the latter person must inter-
act with the framework. The scientist needs to communicate closely with the
developer to lay out the requirements and to setup a test for the software.
The GUI developer can focus on the Java side, taking the algorithms as given.
JStatCom serves as an architectural layer that handles all tasks that are com-
mon to applications in the given problem domain, which is econometrics for
the current example.

The collaboration of components that make up an arbitrary runnable appli-
cation is shown in Figure 3. The application, for example JMulTi, uses the
framework, which itself manages the communication to an external execution
engine. 6 Algorithm implementations have to be provided as resources for the
respective computational engine.

The top level elements of the system are given in Table 1. Each element
corresponds to a subsystem with coherent functionality that can be separately
looked at. Developers use the components to lay out the user interface, the

6 JMulTi is the reference application for JStatCom. The URL is www.jmulti.de.

11

GUI Developer

Scientist

JStatCom

Implement automated
unit tests for procedures

Integrate helpsystem

Implement calls
to algorithms

Create deployable
release

Create GUI for
science model

documentation
Define requirements
and tests

implementations

<< communicate >>

1..*

1..*

Fig. 2. Use cases for JStatCom

JStatCom Engine

JMulTi Procedures

 << Framework >>

 << File >> << Application >>

<< Executable >>

<< Communicate >>

<< Use >> << Call >><< Access >>

JAVA classes and
native libraries for
general tasks

external program or
library, e.g. GAUSS,
Ox, Matlab

files containing
methods to be
executed by engineanalysis

specific classes for
multiple timeseries

Fig. 3. Components of JStatCom

data model to represent variables of the model, and the Engine System to
communicate to the respective engine to invoke algorithms. All elements can
be further decomposed into classes or other subsystems. However, for the sake
of clarity, only the Data Model and the Engine system are described in greater
detail.

12

Element Name Element Responsibility

Data Model Contains the Type System to define domain-specific
data types and the Data Event System to inform lis-
teners about changes in a data object. The Symbol
Management is used to share data objects across dif-
ferent components and the Symbol Event System can
be used to notify listeners about value changes in a sym-
bol. The Symbol Control provides graphical compo-
nents to access the state of the symbol manager.

Input/Output Contains classes to support file handling and the Data
Import System. It also provides a logging facility.

Project Manages storing and retrieving data and the state of
analysis modules to and from XML project files.

Time Series This module collects all classes that are especially de-
signed for time series analysis. There are types to repre-
sent dates, date ranges and series. It contains the subsys-
tems List, Selection, Table and Calculator for spe-
cific tasks.

Components This module provides the GUI components that can be
used to display and edit data objects as well as to gather
user information. The Data Table subsystem contains
configurable tables for number arrays and string arrays.
The top level application frame is provided in the Ap-
plication subsystem, and the Equation system is used
to display GUI objects for models in matrix notation.

Engine Contains the abstract engine communications system
that hides engine specific implementation details from
clients. Subsystems implement the abstract scheme for
concrete engines: Gauss, GRTE, MatLab, Stub and
Ox. It also has the PCall system for procedure calls.

Table 1: Elements of JStatCom

13

3.1 Data Model

JStatCom needs to represent data internally, because it maintains inputs and
results of numerical computations. Furthermore, it must be easy to let data
objects interact with GUI components that display or change the underlying
values. The data objects that are used within JStatCom on the Java side must
conform to the types that are used by a specific engine. The idea is to have
a consistent data management system within the framework that can contain
various different types to adjust to any potential modelling situation. When
external procedures are called, those types must be converted to and from the
respective types of the engine. This mechanism is hidden from the developer
and managed automatically by the engine implementations.

3.1.1 Tpye System

The framework uses a metadata model to achieve the desired flexibility. Core
attributes are standardized for all data types by defining a very general in-
terface JSCData, which all specific types must implement. This interface does
only specify methods that are common to all potential types. Any specialized
functions to access or modify the contents of data objects are defined in im-
plementations of the interface. Type related code and interfaces are therefore
strictly separated. An alternative would have been to use one general VALUE
class that can take on different states, depending on what type of data is
stored. This has the advantage that VALUE instances could always be treated
uniformly, but it tends to create a monolithic class with many unrelated func-
tions for different data types. The presented approach still offers the possibility
to treat JSCData instances uniformly, but only with respect to their interface,
which is quite general. However, the benefits clearly outweigh this drawback,
especially because this approach allows to have an arbitrarily rich type system.

Figure 4 shows the complete interface and all types that are currently imple-
mented. For the sake of clarity, only very few methods of the actual data classes
are given, a complete documentation can be found in the API documentation.
It should be noted that the implemented types are responsible to facilitate
interaction with GUI components and to operate as storage units, instead of
carrying out computations on them directly. For example, the JSCNArray class
is a basic matrix class for JStatCom, but it does not try to compete with exist-
ing Java matrix implementations for linear algebra calculations. The benefit
is that the interfaces of all types are kept quite simple. However, data can
easily be moved from JSCData types to instances of specialized math classes.
But typically sophisticated linear algebra calculations are done with the com-
putational engine, which is especially suited and optimized for that purpose.

14

JSCData
<< interface >>

+name():String
+type():JSCTypes
+clear():void
+isEmpty():boolean
+copy():JSCData
+isEqual(o:JSCData):boolean
+addJSCDataListener(evtListener:JSCDataListener,evtType:JSCDataEventTypes):void
+setJSCProperty(type:JSCPropertyTypes,val:Object):void
+getJSCProperty(type:JSCPropertyTypes):Object

JSCInt

+intVal():int
+setVal(a:int):void

JSCNumber

+doubleVal():double
+setVal(a:double):void

JSCNArray

+doubleArray():double[][]
+rows():int
+cols():int
+setVal(a:double[][]):void

JSCString

+string():
+setVal(a:String):void

JSCSArray

+stringArray():String[][]
+rows():int
+cols():int
+setVal(a:String[][]):void

JSCVoid

+setVal(a:Object):void

JSCDate

+setVal(a:TSDate):void
+getTSDate():TSDate

JSCDRange

+setVal(a:TSDateRange):void
+getTSDateRange():TSDateRange

Fig. 4. Type System

The following small code example demonstrates how instances of different
types can be created in Java. A special feature is that every object must have a
name. This convention was chosen, because it helps to identify variables during
runtime. Especially when error messages are created, it is often extremely
useful to have the name of the variable that was involved. Each instance of
JSCData should be viewed as a named storage container. The code also shows,
how different types can be treated uniformly as a JSCData array. This can
greatly simplify method signatures. However, if the type-specific functionality
is needed, then a cast to the respective implementation class is necessary. A
save way to do this is to check the type before.

// data instances of various types are created
JSCNArray y = new JSCNArray("yData",

new double[]{2.3, 1.9, 3.3, 5.5, 3.4});
JSCDate start = new JSCDate("start", new TSDate(1960, 1, 4));
JSCInt index = new JSCInt("i", 3);

// all data can be treated uniformly as JSCData
JSCData[] args = new JSCData[]{y, start, index};

15

// if the concrete implementation is needed, casting is necessary
// the type can be checked before
JSCTypes type = args[0].type();
if (type == JSCTypes.NARRAY){

JSCNArray yRef = (JSCNArray) args[0];
System.out.println(yRef.doubleAt(0,0));

}

The system can be extended with arbitrary new types in a very straight-
forward manner without interfering with existing types by just creating new
realizations of JSCData. However, defining a new type for the core framework
is not a trivial task, because the new class should be thread-save, it should in-
form listeners about changes in the data, it should be XML serializable and it
should be well-documented and tested. If necessary, there should also be GUI
components to access and modify the contents of a type. Future enhancements
of JStatCom could include types of complex numbers and arrays, or types for
arbitrary precision numbers and big integers. Even multi-dimensional arrays
could be considered.

3.1.2 Symbol Management

The Type System introduces various ways to store and manipulate data of
different kind. However, a common problem when designing applications for
complex models is that various classes and GUI components need to share data
stored in instances of JSCData. For example, when a VAR model is analyzed,
then there are variables that define the state of the model, like lags, subset
restrictions, data for endogenous, exogenous and deterministic variables, and
so on. The number of shared variables can become quite large. In JMulTi there
are 37 shared symbols for representing all information for a VAR system. For
more complex models this number increases.

The user interface typically consists of several components that handle differ-
ent modelling steps, like specification, estimation, diagnostics and forecasting.
All these components need to have access to the model state. It would certainly
not be a good idea to exchange data directly between these components, be-
cause this would create unnecessary dependencies among them. Another anti
pattern is of course to rely on global data, because this would break data
encapsulation, one of the principles of object-oriented programming.

Gamma et al. (1995) suggest the State pattern in this case. A State could
be implemented as a class that represents a model, say VARState. This state
object could then be shared among all participating components. On a first
glance this would be the solution that resembles best the spirit of object-
oriented programming. However, the drawback of this approach is that the
developer would need to create a VARState state class first and she would then

16

have to find a mechanism to publish it to all components that need access to
it. The hypothetical VARState class would become quite large soon, because
it would have to store also the names of variables, the estimation method
and various other settings. Apart from the effort of creating and maintaining
such a class, this procedure does not generate a standard way of creating
GUIs for an arbitrary model, because it would most likely lead to different
solutions for each model that is implemented. The quality, extendability and
maintainability of model implementations would differ largely. Therefore it
would be desirable to have a straightforward way to represent and share the
state of just any possible model without the need to think about how to create
state classes and how to share them. This would also be a good example not
only of class reuse, but of design reuse, which is one of the major benefits of
programming with a framework.

Figure 5 gives a simplified overview of the Symbol Management system which
is the JStatCom solution to address the raised issues. It consists of a class
SymbolTable which is an aggregation of an arbitrary number of Symbol in-
stances. Each symbol object represents exactly one instance of JSCData. Sym-
bol objects are identified via their name in the symbol table, which operates as
a shared data repository. Via the symbol table it is possible to access the sym-
bol elements and finally the actual data values. Symbols can be understood
as pointers to variables. The referenced values, instances of JSCData, can be
changed efficiently during runtime, but not the type. For example, if a symbol
was initialized to point to a JSCInt, then a runtime exception would be gen-
erated when trying to set it to a JSCString. The SymbolTable can represent
the state of arbitrary models as an aggregation of symbols of different types.
It is therefore much more general, but also less specific than the previously
mentioned VARState class. All shared global data should reside in a symbol
table, which is then accessed by the components of a model.

<< interface >>
SymbolScope

+ global ():SymbolTable
+ upper ():SymbolTable
+ local ():SymbolTable

SymbolTable

+set(a:JSCData):void
+get(a:JSCTypeDef):JSCData

Symbol

+ type :JSCTypes

+ getJSCData():JSCData
+ setJSCData(a:JSCData):void

<< interface >>
JSCData *

1

 *

1

0..1

Fig. 5. Accessing shared data repositories

17

One might ask, whether this is not just another way of introducing global data.
In a way it is, but there is another part of the Symbol Management system
which allows for fine-grained definition of access scopes. The question is, which
components can use a certain symbol table? JStatCom offers a way to limit
the visibility of symbol tables to only components that belong to one model.
Furthermore, it is possible to share data on different levels, which is some-
what similar to global and local variables. For this, the interface SymbolScope
is provided. Implementations of this interface have access to symbol tables
on three different levels: global, upper and local. Every symbol table keeps
a reference to the next higher symbol table in the hierarchy defined by im-
plementations of SymbolScope. The top level symbol table has only a null

reference instead.

To be more specific, Figure 6 shows, how the SymbolScope interface is im-
plemented by components of the model. Every model should be implemented
with a ModelFrame as the top level component. This can be the starting point
for any application based on JStatCom. A ModelFrame is typically a compo-
sition of a number of ModelPanel components. Both classes provide access to
the Symbol Management system and can use it to set and retrieve variables.
The SymbolScope interface imposes a hierarchical ordering of symbol tables.
The ModelFrame and ModelPanel implementations of this interface use the
component hierarchy for this. Symbol tables are assigned as follows:

SymbolScope

<< interface >>

ModelFrameModelPanel

*

Fig. 6. SymbolScope inheritance

• ModelFrame - top level component, global, local and upper are equivalent
and return the top level symbol table

• ModelPanel

· local - returns the symbol table created by this panel
· upper - searches the component hierarchy upwards until an instance of
SymbolScope is found and returns the result of a call to local on the com-
ponent found; if no parent instance of SymbolScope exists, this.local is
used

· global - searches the component hierarchy upwards until an instance of
SymbolScope is found and returns the result of a call to global on the

18

component found(if this instance is a ModelPanel, it will search itself for
the next higher component, and so on, typically the global table defined
in ModelFrame is reached); if no parent instance of SymbolScope exists,
this.local is used

This process is done automatically and developers only need to understand
that ModelPanel instances can be used to define access scopes. One could also
think of other possible implementations of SymbolScope, reflecting different
hierarchical schemes. However, for the purpose of GUI building this solution
has proven to be very fruitful.

One might be tempted to compare ModelFrame to the ModelBase class in Ox
that was introduced in Section 2.6. The only similarity is that both classes
should be subclassed to create a new model. ModelFrame does not provide any
model specific functionality, except the access methods to the symbol table.
No specific structure for components, behaviour, or model types is imposed.
But, theoretically, one could implement the functionality of ModelBase in a
specific ModelFrame implementation to provide further standardization for a
distinct problem domain. Therefore JStatCom can be considered as a more
general approach which could nest more specialized solutions similar to the
one provided by Ox.

Figure 7 sketches how classes for a VAR model interface could be laid out
with ModelFrame and ModelPanel. The top level component for the model is
VARFrame, which is composed of a panel for model specification and a panel
for residual analysis. The latter is itself composed of a panel for diagnostic
tests. Each panel can access the Symbol Management system easily, because
it inherits the access methods local, upper, and global from SymbolScope.

A snapshot of the object structure at runtime is presented in Figure 8. The
entities of the diagram are now objects instead of classes. It can be seen that
the instance frame of the class VARFrame has a link to a symbol table global.
This is usually the place to store variables that should be shared by all panels
that a certain model frame is composed of. It cannot be accessed by panels
from other model frames, at least not by default. In a VAR context, the global
symbol table should contain the selected data and lags, estimated coefficients,
standard deviations, names of variables, etc.. Model panels, like panel1 for
specification and panel2 for residual analysis, have access to the global symbol
table via their global method. However, a further refinement is that data can
also be shared on lower levels. For example, it might be that some data is
shared by panels belonging to the residual analysis only, which are children
of ResAnPanel. Therefore the respective symbol table local2 can be accessed
via the upper method by panel21, the object to hold the diagnostic tests
interface. But panels might also use a symbol table to store variables that
are not used by other components, for example test statistics and p-values of

19

VARFrame

VARSpecPanel

ModeFrame

ModelPanel
ResAnPanel

DiagTestsPanel

SymbolScope
1

1

1
1

1

1

Fig. 7. Class structure of a hypothetical VAR frame

frame :VARFrame

global :SymbolTable

panel1 :VARSpecPanel local1 :SymbolTable

panel2 :ResAnPanel local2 :SymbolTable

panel21 :DiagTestsPanel local21 :SymbolTable

Fig. 8. Snapshot of model objects and shared data with different scopes

diagnostic tests might go to local21. This data need not to be shared, but it
might still be reasonable to put it in a local symbol table. However, the local
symbol table of a panel is the upper symbol table of child components, thus
local2 can be accessed by panel21.

20

Fig. 9. Screenshot of symbol frame with selected NARRAY

Storing data in symbol tables is not only meaningful when variables should
be shared, but it can also be used to publish the results in the Symbol Con-
trol system, which is another subsystem of JStatCom that provides access to
variables that are currently used. Figure 9 presents a screenshot of the graph-
ical component. A description is omitted here, but it presents a tree view of
the symbol table hierarchy and it has components to display and export all
symbols that have been put in one of the symbol tables.

The following small Java code example should demonstrate the workings of
the Symbol Management system. It corresponds to the class diagram in Fig-
ure 7, but only sketches the contents of the concrete implementations. The
VARFrame binds all panels together and should provide a mechanism to navi-
gate between them. VARSpecPanel should contain a mechanism to select series
and to specify lags. JStatCom provides several special components for that
purpose, but they are not described here. As a placeholder for this, only a
JSCString with the estimation method is stored globally. The ResAnPanel

sets the names of the residual series locally in its setResidNames method.
Thus, they can be accessed by child panels, like DiagTestsPanel. The method
DiagTestsPanel.executeTests invokes the test procedures. The respective
input parameters can easily be retrieved by their names from the global and
upper symbol tables. The actual tests would typically be invoked via the En-
gine system, which is described in the next section.

21

// top level class, contains various panels
public class VARFrame extends ModelFrame {

private ResAnPanel resAnPanel;
private VARSpecPanel vARSpecPanel;
...
// constructor
public VARFrame(){
super("VARFrame");
// add menubar or tabbed pane
// add panels
...

}
} // end VARFrame

// panel for model specification
public class VARSpecPanel extends ModelPanel {
...
// sets estimation method as JSCString to global table
private void setEstimationSettings(){
global().set(new JSCString("EstimationMethod", "OLS"));
... // more variables to set, omitted for clarity

}
} // end VARSpecPanel

// panel for residual analysis
public class ResAnPanel extends ModelPanel {

public DiagTestsPanel diagTestsPanel;
...
// constructor
public ResAnPanel(){
super();
setResidNames();
// add child panels, maybe with a tabbed pane

}
// set the names of the residuals in local table
// local table is upper table for child ModelPanels
private void setResidNames(){
local().set(new JSCSArray("ResNames",

new String[]{"u1", "u2", "u3"}));
}

} // end ResAnPanel

// ModelPanel to carry out diagnostic tests
public class DiagTestsPanel extends ModelPanel {
...
// gets estimation method from global table
// and residual names from upper table

22

private void executeTests(){
JSCString estMeth = global().get("EstimationMethod")

.getJSCString();
JSCSArray resNames = upper().get("ResNames").getJSCSArray();
... // more variables to be retrieved, omitted for clarity
... // invoke procedure via Engine system

}
} // end DiagTestsPanel

This code should only give an idea of how the Symbol Management system
could be used. It has the advantage that there are fewer direct connections
between components. DiagTestsPanel, for example, does not know anything
about VARSpecPanel, although it uses variables that were set by this panel.
The code sketch here uses plain strings to define variables. This is suitable
only for small applications, because one might easily mix up names, especially
if there are many variables. A much better way is to create a separate class
with the definitions of all shared variables in a certain scope. The framework
supports this with the class JSCTypeDef, which can be used to define variables
with their name, the type, and an optional description that is also displayed
in the Symbol Control. Using this way of defining shared data helps greatly
to manage even large GUI systems with many variables.

3.2 Engine System

This section introduces the system for communicating to different execution
engines. Typically these engines rely on external resources, which means that
extra software packages or libraries must be installed. For example, for the
Ox engine the installation of Ox console is required together with the ex-
tra packages that are used. There are other software vendors who provide
redistributable stand-alone versions of their computational engine, for exam-
ple Aptech with the Gauss Runtime Engine. The advantage is that users do
not need any extra packages to be installed on their computer. The software
JMulTi uses that engine for all computing tasks.

The framework tries to provide access to different engine implementations via
a unified interface. Figure 10 presents the complete interface Engine and all
implementations currently available. Clients should use the engine only via its
abstract implementation, thus making similar calls for every implementation.
According to Gamma et al. the used pattern is a Facade. However, this is a
big challenge and experience has shown that it is not fully achievable, because
engines differ significantly in terms of calling semantics. For example, the Ox
engine allows to create objects from classes, which is not supported by the
Gauss engine. Although not impossible, it would not seem reasonable to try
to generalize all potential action types in a unified interface. For this reason,

23

<< interface >>
Engine

+ call (procName :String ,args :JSCData[],rtn :JSCData[]):void
+ isValid (type :JSCTypes):boolean
+ shutdown ():void
+ stop ():void
+ load (module :String ,loadType :LoadTypes ,args :JSCData[]):void

OxEngine GaussEngine MLabEngine StubEngine GRTEngine

Fig. 10. Engine interface and available implementations

EngineTypes

+OX:EngineTypes
+GRTE:EngineTypes

+getEngine():Engine

OxEngineType

GRTEngineType

<< interface >>
Engine

OxEngine

GRTEngine

LoadTypes

OxLoadTypes

+OXO:OxLoadTypes
+CLASS:OxLoadTypes
+VIEWER:OxLoadTypes

GRTELoadTypes

+GLOBAL:GRTELoadTypes
+GCG:GRTELoadTypes

Client

Fig. 11. Client using the Engine system

the engine interface provides the parametrized function load to address these
issues. The method takes a parameter of type LoadTypes that defines the
specific action to carry out.

Figure 11 gives a class diagram for an arbitrary client class that uses the Engine
system. For clarity, only two concrete engine implementations are displayed.
The graphic shows that clients use the abstract class EngineTypes and the
interface Engine without knowing anything about the implementing classes in
the background. But clients must also use the load types that are especially

24

designed for the used engine to call the load method, thus implementation
differences leak through the interface. However, this is not a severe compli-
cation, given the amount of flexibility that is achieved. Any other differences
between engines are completely hidden from clients.

The solution found manages to integrate engines with very different charac-
teristics and calling conventions. Therefore it is likely that the system will also
allow to add communications interfaces to many software packages that might
be used for mathematical computations. Planned extensions are the integra-
tion of R and Mathematica. There exist Java interfaces for both tools already,
the task of creating engine implementations is therefore merely to manage
the type conversion between JStatCom data types and engine specific types,
as well as to handle configuration settings. This undertaking is supported by
the fact that most tool vendors supply programming interfaces to control the
respective software from an external application, examples are the Ox C-API,
the Gauss Runtime Engine, or the J/Link package for Mathematica, to name
just a few.

3.2.1 Introductory Example

A small code example demonstrates a typical call to the Ox engine via the
Engine interface. It is assumed that the used modules exist in the OxEngine

resource directory jox. Resources contain the algorithm implementations for
an engine, and there are special directories where JStatCom looks for them. By
convention, this is a subdirectory which starts with a j followed by the name
of the engine, thus jox, jgrte, jgauss, jstub, and jmlab. The Ox engine also
needs to know the location of the dynamic link library that contains the func-
tions used by the Ox C-API. On Windows this library is named oxwin.dll.
The Engine system has an elaborate configuration management, which is used
to gather environment settings from a configuration file, and, if something is
missing or wrong, from the user directly. The required settings vary from en-
gine to engine. But all engines store information in a file engine config.xml

in the respective resource directory.

For this introductory example, a very simple Ox class is assumed. It should
be defined in jox/mymodule.ox, relative to the JStatCom installation folder.

#include <oxstd.h>

class MyClass{
decl a, x;
MyClass(const arg);
setX(const x);
getX();

}

25

MyClass::MyClass(const arg){
a = arg;

}
MyClass:setX(const x){
this.x = x;

}
MyClass:getX(){
return x;

}

The Java code might then be:

// EngineTypes stores all available engine types
// ox is an instance of OxEngine, but the client
// does not use this information
Engine ox = EngineTypes.OX.getEngine();

// parametrized call to load with OxLoadTypes referenced,
// puts mymodule.ox(o) in Ox workspace, no arguments
ox.load("mymodule", OxLoadTypes.OXO, null);

// another load call, equivalent to decl x = new MyClass(3);
// MyClass must be defined in mymodule.ox(o)
// x is the object from which member functions can be called
ox.load("MyClass", OxLoadTypes.CLASS,

new JSCData[]{new JSCInt("arg", 3)});

// call to member function: x.setX(3.4)
ox.call("setX", new JSCData[]{new JSCNumber("x", 3.4)}, null);

// initialize result with an empty number object
JSCNumber result = new JSCNumber("result");

// call to member function: x.getX()
ox.call("getX", null, new JSCData[]{result});

// result.doubleVal() == 3.4 now

This code snippet has not created any user interface components, but demon-
strates how the Type System together with the Engine system could be used
to make a call to Ox. The Symbol Management is not involved here, because
no data is shared. It is straightforward to replace the example Ox class with
a real world counterpart that does some computation not easily done in Java.
Similar examples for different engines can be found in Krätzig (2004).

26

4 A short Introduction to JMulTi

Fig. 12. Running instance of JMulTi

The framework JStatCom was developed from the experiences gained while
creating the software JMulTi. Originally, that software was designed as a
convenient GUI to complex and difficult to use econometric procedures written
in Gauss that were not available in other packages. Because this concept has
proved to be quite fruitful, JMulTi has evolved to a comprehensive modelling
environment for multiple time series analysis.

It should be mentioned that JMulTi has meanwhile become a software that
is actively used for empirical research and teaching. Due to response by users
it was possible to improve the program over time and to fix various errors. In
May 2004 the project went Open-Source and user feedback has significantly
increased since then. It is also hoped that interested developers for econometric
routines will join.

4.1 General Setup

Figure 12 shows the main window of JMulTi with the project explorer and
the various analysis modules. The general usage of program is pretty much
predetermined by the layout of the framework JStatCom. Functionality that
belongs together is summarized in modules. Each module appears in its own

27

internal frame and can be used separately. One can identify two levels of
interaction:

• General functions - Those tasks are implemented on the framework level and
are shared by all modules. They include data import, project management,
a time series calculator, the symbol control system, a logging facility, and
access to the help system.

• Module specific functions - Each module provides a GUI to a certain set
of procedures that follow a common theme. The modules make use of the
services provided by the framework, for example, they use the data that has
been imported. Modules are otherwise largely independent of each other.

JMulTi uses the GRTE or the Gauss engine. The Gauss engine is only used for
development and debugging purposes. It is possible to switch between those
two engines via a command line option.

Table 2 presents all modules that have been implemented so far. The user
of JMulTi is expected to start a time series analysis by applying the module
Initial Analysis to investigate basic properties of the data and to decide on
stationarity of the single series, as well as to test possible cointegration rela-
tions. Afterwards, the user might choose one of the other analysis modules to
specify and estimate certain models.

Analysis Module Description

Initial Entry point for time series modelling. Provides a
workbench panel with descriptive statistics, spec-
trum, autocorrelation, and kernel density analysis.
Offers a range of unit root and cointegration tests.

VAR Specification and estimation of full and subset
VAR models with impulse response analysis, di-
agnostic checks, forecasting, and more. Also offers
the possibility to estimate SVAR models.

VEC Specification and estimation of VEC models with
impulse response analysis, diagnostic checks, fore-
casting, and more. Also offers the possibility to
estimate SVEC models.

ARCH Allows to estimate univariate volatility processes
with different error distribution assumptions and
ARCH, GARCH or TGARCH specifications. Mul-
tivariate MGARCH estimation is possible as well.

28

STR Specification and estimation of STR models, as
well as nonlinearity tests. All parts of the esti-
mated STR model can be plotted.

Nonparametric Allows to specify, estimate, and analyze univari-
ate nonparametric time series models for the con-
ditional mean and the conditional volatility of a
stochastic process. Forecasting is possible as well.

Table 2: Modules of JMulTi

It would always be possible to add newly defined modules without interfering
with the existing ones. In the remaining parts of this section, only the Initial
Analysis and the VAR module are described in some detail. It is hoped that
also readers who are not in any way familiar with econometrics understand
broadly how the software works and that the concept might well be translated
to other problem domains.

4.2 Initial Analysis

The Initial Analysis consists of tasks that are typical for the beginning of
any time series analysis. First, the user should get an idea of the data to be
analyzed. This can be done via checking plots, descriptive statistics, autocorre-
lation functions, spectrum, and kernel density estimates. Direct dependencies
between two series could be investigated with crossplots. Figure 13 shows the
textual output of the computation of the AC and PAC functions for a selected
series.

Another important part of the analysis should be to check the stationarity
properties of the series used for a model. This can be done via the unit root
test panel, which is shown in Figure 14. There is a range of test procedures
that can be applied, and a selection box allows to switch between panels for
different tests.

When there is actually instationarity being discovered, cointegration tests
might help to determine, whether a stable long run relationship exists be-
tween the series. The number of those relations can be determined as well.
The outcome of this test can help to decide which model to use for the further
analysis. Figure 15 has a screenshot of one of the implemented cointegration
tests.

29

Fig. 13. Screenshot of workbench with autocorrelation panel

Fig. 14. Screenshot of ADF unit root test panel

4.3 VAR Analysis

Finite order VAR models can be specified, estimated, analyzed and used for
forecasting in JMulTi. The module allows to analyse VAR models of the form

yt = A1yt−1 + · · ·+ Apyt−p + B0xt + · · ·+ Bqxt−q + CDt + ut, (1)

30

Fig. 15. Screenshot of Johansen cointegration test panel

Fig. 16. Screenshot of specification panel for the VAR analysis

where yt = (y1t, . . . , yKt)
′ is a vector of K observable endogenous variables,

xt = (x1t, . . . , xMt)
′ is a vector of M observable exogenous or unmodelled

variables, Dt contains all deterministic variables, and ut is a K-dimensional
unobservable zero mean white noise process. Deterministic variables may con-
tain a constant, a linear trend, seasonal dummy variables, as well as user
specified dummy variables. All basic properties of the model, like variables,
sample range, lags, can be selected in the specification panel, see Figure 16.

31

Fig. 17. Screenshot of estimation panel for the VAR analysis

Fig. 18. Screenshot of manual/automatic subset specification for the VAR analysis

The Ai, Bj and C are parameter matrices of which the elements are estimated.
JMulTi presents the estimation output in an intuitive form via a matrix display
that resembles the mathematical notation given in Equation (1), see Figure
17.

To help to determine the lag order p of the VAR model, model selection crite-
ria can be applied. They are also available via the specification panel (Figure
16). Furthermore, various restrictions can be imposed on the parameter ma-
trices. In particular, zero restrictions can be set via the Subset Specification
panel in JMulTi, which is presented in Figure 18. It is possible to set sub-
set restrictions manually via mouse clicks over the respective elements of the
parameter matrices, but there is also the option to apply a range of model
reduction strategies to find zero restrictions automatically according to a se-
lected criterion (Brüggemann and Lütkepohl (2001)).

It should be noted that the general VAR model in Equation (1) nests the
univariate AR model with just a single endogenous variable. Thus the VAR
analysis module can also be used for AR models.

The VAR module provides GUI panels for all modelling steps that can be
accessed via the menubar of the module frame, as can be seen at the top

32

of Figure 16. The general idea of the underlying methodology is that model
building is a stepwise process that can partly be automated, but that is steered
by the experienced user. Therefore, JMulTi supports the user in choosing the
appropriate model by offering information criteria for the choice of the optimal
lag lengths, as well as more sophisticated subset search procedures, which
automatically find zero restrictions in a model. Figure 18 presents the panel
for applying model reduction strategies.

Once the model is estimated, see Figure 17, further analysis steps can be taken.
But first, the model should be checked against various possible misspecifica-
tions with the help of the residual and the stability analysis panels. Also, the
presence of ARCH effects can be analysed. The structural analysis can then
be employed to convey an impulse response analysis, as well as a forecast error
variance decomposition and causality tests. To identify and trace structural
shocks, the SVAR analysis is available. Finally, forecasting of the levels and
the undifferenced series is provided as an option to the user.

In a similar way also the remaining modules of JMulTi are implemented.
Because they represent different theoretical models, the underlying procedures
and GUI components differ. However, the general structure is always very
similar. There are several GUI components that access a common shared data
repository with the data for the model and with results from previous analysis
steps. Algorithms are executed via the computational engine that is employed.

5 Conclusion

It has been argued that JStatCom provides standard solutions to recurring
tasks. This can be a big advantage over other approaches for GUI creation,
because it allows to implement a wide range of models with similar program-
ming techniques and with a similar design. Developers can therefore focus
more on the algorithms, on the quality of the presented GUI solutions, and on
documentation, instead of inventing new solutions for data import, selection,
help system integration, and data representation for every model they want
to supply with a graphical user interface.

The chosen approach has successfully been used for the implementation of
several analysis modules with quite different behaviour. From these examples
one can see that it is general enough to be used for any other model in time
series analysis. Furthermore, the framework can also be used in other problem
domains where similar tasks have to be solved. The extension mechanisms
provided by JStatCom might be used to develop the required adjustments.
For example, it might be necessary to develop new types to represent data
specific to some field in engineering or physics.

33

It is therefore hoped that the software framework JStatCom will be used to
implement various tools to support empirical analysis by making up-to-date
methods available to the practitioner and to other researchers.

References

Ashworth, M., Allan, R., Müller, C., van Dam, H., Smith, W., Hanlon, D.,
Searly, B. and Sunderland, A. (2003). Graphical user environments for sci-
entific computing, Technical report, Computational Science and Engineering
Department, CCLRC Daresbury Laboratory, Warrington.
URL: http://www.ukhec.ac.uk/publications/reports/guienv.pdf

Beck, K. (1999). Extreme Programming Explained: Embrace Change, 1st edn,
Addison-Wesley.

Benkwitz, A. (2002). The Software JMulTi: Concept, Development and Ap-
plication in VAR Analysis, Dissertation, Humboldt-Universität zu Berlin.

Bloch, J. (2001). Effective Java, Addison-Wesley.
Boisvert, R. F., Moreira, J., Philippsen, M. and Pozo, R. (2001). Numerical

Computing in Java, Computing in Science and Engineering 3(2): 18–24.
URL: http://citeseer.ist.psu.edu/409642.html

Boisvert, R. F. and Tang, P. T. P. (eds) (2001). The Architecture of Scientific
Software, IFIP TC2/WG2.5 Working Conference on the Architecture of
Scientific Software, October 2-4, 2000, Ottawa, Canada, Vol. 188 of IFIP
Conference Proceedings, Kluwer.

Brüggemann, R. and Lütkepohl, H. (2001). Lag selection in subset VAR
models with an application to a U.S. monetary system, in R. Friedmann,
L. Knüppel and H. Lütkepohl (eds), Econometric Studies: A Festschrift in
Honour of Joachim Frohn, LIT Verlag, Münster, pp. 107–128.

Deutsch, L. P. (1989). Design reuse and frameworks in the Smalltalk-80 sys-
tem, in T. J. Biggerstaff and A. J. Perlis (eds), Software Reusability, Volume
II: Applications and Experience, Addison-Wesley, Reading, MA, pp. 57–71.

Dijkstra, E. W. (1969). Structured programming. circulated privately.
URL: http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD268.PDF

Doornik, J. (2002). Object-oriented Programming in Econometrics and Statis-
tics using Ox: A Comparison with C++, Java and C#, in S. Nielsen (ed.),
Programming Languages and Systems in Computational Economics and Fi-
nance, Dordrecht: Kluwer Academic Publishers, pp. 115–147.

Doornik, J. and Ooms, M. (2001). Introduction to Ox, Timberlake Consultants
Press, London.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995). Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, Reading,
MA.

Günther, O., Müller, R., Schmidt, P., Bhargava, H. and Krishnan, R. (1997).
MMM: A WWW-based approach for sharing statistical software modules,

34

IEEE Internet Computing 1(3): 59–68.
Johnson, R. E. and Foote, B. (1988). Designing reusable classes, Journal of

Object-Oriented Programming 1(2): 22–35.
Krätzig, M. (2004). A Software Framework for Data Based Analysis, Disser-

tation, Humboldt-Universität zu Berlin.
URL: http://edoc.hu-berlin.de/dissertationen/kraetzig-markus-2005-02-
04/PDF/Kraetzig.pdf

Lütkepohl, H. (1991). Introduction to multiple time series analysis, Springer
Verlag, Berlin.

Lütkepohl, H. and Krätzig, M. (eds) (2004). Applied Time Series Economet-
rics, Cambridge University Press, Cambridge.

Teräsvirta, T. (1998). Modeling economic relationships with smooth transti-
tion regressions, in A. Ullah and D. Giles (eds), Handbook of Applied Eco-
nomic Statistics, Dekker, New York, pp. 229–246.

Uhlig, H. (1999). A Toolkit for Analysing Dynamic Stochastic Models easily,
in R. Marimom and A. Scott (eds), Computational Methods for Study of
Dynamic Economies, Oxford University Press, chapter 3.

35

SFB 649 Discussion Paper Series

For a complete list of Discussion Papers published by the SFB 649,
please visit http://sfb649.wiwi.hu-berlin.de.

001 "Nonparametric Risk Management with Generalized
Hyperbolic Distributions" by Ying Chen, Wolfgang Härdle and
Seok-Oh Jeong, January 2005.

002 "Selecting Comparables for the Valuation of the European
Firms" by Ingolf Dittmann and Christian Weiner, February
2005.

003 "Competitive Risk Sharing Contracts with One-sided
Commitment" by Dirk Krueger and Harald Uhlig, February
2005.

004 "Value-at-Risk Calculations with Time Varying Copulae" by
Enzo Giacomini and Wolfgang Härdle, February 2005.

005 "An Optimal Stopping Problem in a Diffusion-type Model with
Delay" by Pavel V. Gapeev and Markus Reiß, February 2005.

006 "Conditional and Dynamic Convex Risk Measures" by Kai
Detlefsen and Giacomo Scandolo, February 2005.

007 "Implied Trinomial Trees" by Pavel Čížek and Karel
Komorád, February 2005.

008 "Stable Distributions" by Szymon Borak, Wolfgang Härdle
and Rafal Weron, February 2005.

009 "Predicting Bankruptcy with Support Vector Machines" by
Wolfgang Härdle, Rouslan A. Moro and Dorothea Schäfer,
February 2005.

010 "Working with the XQC" by Wolfgang Härdle and Heiko
Lehmann, February 2005.

011 "FFT Based Option Pricing" by Szymon Borak, Kai Detlefsen
and Wolfgang Härdle, February 2005.

012 "Common Functional Implied Volatility Analysis" by Michal
Benko and Wolfgang Härdle, February 2005.

013 "Nonparametric Productivity Analysis" by Wolfgang Härdle
and Seok-Oh Jeong, March 2005.

014 "Are Eastern European Countries Catching Up? Time Series
Evidence for Czech Republic, Hungary, and Poland" by Ralf
Brüggemann and Carsten Trenkler, March 2005.

015 "Robust Estimation of Dimension Reduction Space" by Pavel
Čížek and Wolfgang Härdle, March 2005.

016 "Common Functional Component Modelling" by Alois Kneip
and Michal Benko, March 2005.

017 "A Two State Model for Noise-induced Resonance in Bistable
Systems with Delay" by Markus Fischer and Peter Imkeller,
March 2005.

SFB 649, Spandauer Straße 1, D-10178 Berlin

http://sfb649.wiwi.hu-berlin.de

This research was supported by the Deutsche
Forschungsgemeinschaft through the SFB 649 "Economic Risk".

018 "Yxilon – a Modular Open-source Statistical Programming
Language" by Sigbert Klinke, Uwe Ziegenhagen and Yuval
Guri, March 2005.

019 "Arbitrage-free Smoothing of the Implied Volatility Surface"
by Matthias R. Fengler, March 2005.

020 "A Dynamic Semiparametric Factor Model for Implied
Volatility String Dynamics" by Matthias R. Fengler, Wolfgang
Härdle and Enno Mammen, March 2005.

021 "Dynamics of State Price Densities" by Wolfgang Härdle and
Zdeněk Hlávka, March 2005.

022 "DSFM fitting of Implied Volatility Surfaces" by Szymon
Borak, Matthias R. Fengler and Wolfgang Härdle, March
2005.

023 "Towards a Monthly Business Cycle Chronology for the Euro
Area" by Emanuel Mönch and Harald Uhlig, April 2005.

024 "Modeling the FIBOR/EURIBOR Swap Term Structure: An
Empirical Approach" by Oliver Blaskowitz, Helmut Herwartz
and Gonzalo de Cadenas Santiago, April 2005.

025 "Duality Theory for Optimal Investments under Model
Uncertainty" by Alexander Schied and Ching-Tang Wu, April
2005.

026 "Projection Pursuit For Exploratory Supervised Classification"
by Eun-Kyung Lee, Dianne Cook, Sigbert Klinke and Thomas
Lumley, May 2005.

027 "Money Demand and Macroeconomic Stability Revisited" by
Andreas Schabert and Christian Stoltenberg, May 2005.

028 "A Market Basket Analysis Conducted with a Multivariate
Logit Model" by Yasemin Boztuğ and Lutz Hildebrandt, May
2005.

029 "Utility Duality under Additional Information: Conditional
Measures versus Filtration Enlargements" by Stefan
Ankirchner, May 2005.

030 "The Shannon Information of Filtrations and the Additional
Logarithmic Utility of Insiders" by Stefan Ankirchner, Steffen
Dereich and Peter Imkeller, May 2005.

031 "Does Temporary Agency Work Provide a Stepping Stone to
Regular Employment?" by Michael Kvasnicka, May 2005.

032 "Working Time as an Investment? – The Effects of Unpaid
Overtime on Wages, Promotions and Layoffs" by Silke
Anger, June 2005.

033 "Notes on an Endogenous Growth Model with two Capital
Stocks II: The Stochastic Case" by Dirk Bethmann, June
2005.

034 "Skill Mismatch in Equilibrium Unemployment" by Ronald
Bachmann, June 2005.

SFB 649, Spandauer Straße 1, D-10178 Berlin
http://sfb649.wiwi.hu-berlin.de

This research was supported by the Deutsche

Forschungsgemeinschaft through the SFB 649 "Economic Risk".

035 "Uncovered Interest Rate Parity and the Expectations
Hypothesis of the Term Structure: Empirical Results for the
U.S. and Europe" by Ralf Brüggemann and Helmut
Lütkepohl, April 2005.

036 "Getting Used to Risks: Reference Dependence and Risk
Inclusion" by Astrid Matthey, May 2005.

037 "New Evidence on the Puzzles. Results from Agnostic
Identification on Monetary Policy and Exchange Rates." by
Almuth Scholl and Harald Uhlig, July 2005.

038 "Discretisation of Stochastic Control Problems for Continuous
Time Dynamics with Delay" by Markus Fischer and Markus
Reiss, August 2005.

039 "What are the Effects of Fiscal Policy Shocks?" by Andrew
Mountford and Harald Uhlig, July 2005.

040 "Optimal Sticky Prices under Rational Inattention" by
Bartosz Maćkowiak and Mirko Wiederholt, July 2005.

041 "Fixed-Prize Tournaments versus First-Price Auctions in
Innovation Contests" by Anja Schöttner, August 2005.

042 "Bank finance versus bond finance: what explains the
differences between US and Europe?" by Fiorella De Fiore
and Harald Uhlig, August 2005.

043 "On Local Times of Ranked Continuous Semimartingales;
Application to Portfolio Generating Functions" by Raouf
Ghomrasni, June 2005.

044 "A Software Framework for Data Based Analysis" by Markus
Krätzig, August 2005.

SFB 649, Spandauer Straße 1, D-10178 Berlin
http://sfb649.wiwi.hu-berlin.de

This research was supported by the Deutsche

Forschungsgemeinschaft through the SFB 649 "Economic Risk".

	Frontpage 44.pdf
	oll.pdf
	Endpage 44.pdf

