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Abstract

We propose marginal integration estimation and testing methods for the coefficients

of varying coefficient multivariate regression model. Asymptotic distribution theory is

developed for the estimation method which enjoys the same rate of convergence as

univariate function estimation. For the test statistic, asymptotic normal theory is es-

tablished. These theoretical results are derived under the fairly general conditions of

absolute regularity (β-mixing). Application of the test procedure to the West Ger-

man real GNP data reveals that a partially linear varying coefficient model is best

parsimonious in fitting the data dynamics, a fact that is also confirmed with residual

diagnostics.

KEY WORDS: Equivalent kernels; German real GNP; Local polynomial; Marginal

integration; Rate of convergence
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1 INTRODUCTION

Parametric regression analysis usually assumes that the response variable Y depends linearly

on a vector X of predictor variables. More flexible non- and semi- parametric regression

models allow the dependence to be of more general nonlinear forms. On the other hand, the

appeal of simplicity and interpretation still motivates search for models that are nonpara-

metric in nature but have special features that are appropriate for the data involved. Such

are additive models (Chen and Tsay 1993a, Linton and Nielsen 1995, Masry and Tjøstheim

1995, 1997, Mammen, Linton and Nielsen 1999, Sperlich, Tjøstheim and Yang 2002), gener-

alized additive models (Linton and Härdle 1996), partially linear models (Härdle, Liang and

Gao 2000), etc.

In this paper, we consider a form of flexible nonparametric regression model proposed

by Hastie and Tibshirani (1993). The following model

Yi = m(Xi,Ti) + σ(Xi,Ti)εi, i = 1, ..., n (1)

where {εi}i≥1 are i.i.d. white noise, each εi independent of (Xi,Ti) where

Xi = (Xi1, ..., Xid)
T ,Ti = (Ti1, ..., Tid)

T , (2)

is called a varying-coefficient model if

m(Xi,Ti) =
d∑

s=1

fs(Xis)Tis. (Model I)

In Model I, all the variables {Xs}ds=1 are different from each other. The model with all

the variables {Xs}ds=1 being the same, i.e., m(Xi,Ti) =
∑d

s=1 fs(Xi)Tis, is the functional

coefficient model of Chen and Tsay (1993b) with univariate coefficient functions. The latter

is different from Model I and was fully discussed by Cai, Fan and Li (2000) and Cai, Fan

and Yao (2000). Indeed, Hastie and Tibshirani (1993) fitted real data examples exclusively

with the functional coefficient model. Although the name varying-coefficient model was used

by Cai, Fan and Li (2000), the model they studied was the same model proposed by Chen

and Tsay (1993b), except with the additional feature of a possibly non-trivial link function.

Cai, Fan and Li (2000) used local maximum likelihood estimation for all coefficient functions

{fs}ds=1, whose computing was no more than a univariate estimation, due to the fact that all

these univariate functions depend on the same variable X. The estimation method proposed

for the functional coefficient model does not apply for Model I.
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For Model I, the only existing estimation method was the backfitting method of Hastie

and Tibshirani (1993), which has not been theoretically justified. Intuitively, inference about

model (1) is no more complex than that of univariate models. In this paper, we develop a

marginal integration type estimator for each varying coefficient {fs}ds=1 in the case when

each varying coefficient can have a different variable. Our method achieves the optimal rate

of convergence for univariate function estimation, and has a simple asymptotic theory for

the estimators.

As an illustration of the effectiveness of Model I, we consider a real time series data

{Yt}nt=1 onWest German GNP in Section 5. After taking first difference and de-seasonalization,

the data is considered strictly stationary, as shown by the dotted curve in Figure 4. The vary-

ing coefficient models Yt = f1 (Yt−1)Yt−2 + f2 (Yt−3)Yt−4 + (noise) and Yt = f1 (Yt−3)Yt−2 +

f2 (Yt−1)Yt−4 + (noise) are fitted and the estimates of the functions f1 and f2 are plotted in

Figure 2. These varying coefficient AR models have 2.81 and 2.46 times, respectively, more

prediction power than the simple linear AR model. See Table 3 to find 0.00059/0.00021 =

2.81 and 0.00059/0.00024 = 2.46. More details about the data and the modelling procedures

are found in Section 5.

Model I may be viewed as a special case of a functional coefficient model with mul-

tivariate coefficient functions m(Xi,Ti) =
∑d

s=1 gs(Xi)Tis, where gs(Xi) = fs(Xis) for

s = 1, . . . , d. In this respect, it would be of interest to compare Model I with some related

FAR (functional coefficient autoregressive) models. For example, for the varying coefficient

model Yt = f1(Yt−3)Yt−1 +f2(Yt−4)Yt−2 +(noise), one may consider the following FAR model

for a comparison: Yt = f1(Yt−3, Yt−4)Yt−1 + f2(Yt−3, Yt−4)Yt−2 + (noise). In a simulation

study that is presented in Section 4, we find that the mean average squared residuals and

the mean average squared prediction errors of the FAR model are larger than those of the

varying coefficient model. More details on the simulation results are found in Section 4.2.

Of another special practical interests is the model that allows some of the Xs’s to be the

same. For this we consider the following generalization of Model I:

m(Xi,Ti) =

d0∑

s=1

rs∑

u=1

fsu(Xis)Tisu, (Model II)

where now the coefficient functions fs1, . . . , fsrs
depends on the same variable Xs. In Model

II the dimension of X is d0 which is less than d =
∑d0

s=1 rs, the dimension of T, and all the

variables {Xs}d0

s=1 are different from each other. An advantage of Model II is that it alleviates

the dimensionality problem that the marginal integration method may have in fitting Model

I. Furthermore, the functional coefficient model of Chen and Tsay (1993b) is a special case
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of Model II where d0 = 1. As an example of Model II, one may have

Yt = c+ a1(rt)Mt + a2(rt)M
2
t + a3(rt)M

2
t I{Mt<0} + b1(t)τt + b2(t)τ

2
t + εt, t = 1, ..., n

in which Yt denotes the implied volatility, rt the interest rate, Mt the moneyness, and τt the

maturity at time t.

Although our models consist of additive bivariate functions, they are linear in the vari-

ables Ts(Tsu). One interesting question one may ask is: are some of the coefficient functions

fs(fsu) constant? If the answer is yes for some but not all, then the model is partially linear

in some variables Ts(Tsu); if the answer is yes to all, then the model is the classical linear

regression model. Any constant fs(fsu) can then be estimated at 1/
√
n-rate of convergence.

A formal testing procedure is proposed in Section 3 for determining the constancy of co-

efficient functions fs(fsu). For the German GNP data, it is found that f1 can be set to a

constant, while f2 can not.

We organize the paper as the follows. In Section 2, we describe marginal estimation

methods for Models I and II, and derive asymptotic distribution theory of the estimators.

In Section 3, a test procedure is proposed to test the hypothesis that fs(fsu) is a constant.

In Section 4 we illustrate the finite sample properties of our proposals in the estimation and

testing problems. In Section 5, we apply our estimation and testing methods to the West

German real GNP data. All technical assumptions and proofs are in the Appendix.

2 ESTIMATION OF VARYING COEFFICIENTS

2.1 Model I

In this section we formulate local polynomial integration estimators of the coefficient func-

tions {fs}ds=1 in Model I. For general background on the local polynomial method, see Stone

(1977), Katkovnik (1979), Ruppert and Wand (1994), Wand and Jones (1995) and Fan and

Gijbels (1996).

We assume that each εi is independent of the vectors {(Xj,Tj)}j=1,...,i for each i =

1, ..., n. This is sufficient for obtaining our main results on distribution theory as we assume

{(Xj,Tj)}j=1,...,n to be strictly stationary and geometrically β-mixing in assumption A2 (see

appendix.), but weaker than the usual assumption that each εi is independent of the vectors

{(Xj,Tj)}j=1,...,n.

Note that if there exists nontrivial linear dependence among the variables Ts with corre-

sponding functions of Xs as coefficients, then functions fs are unidentifiable. To be precise,
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suppose that
d∑

s=1

rs(Xis)Tis = 0, a.s.

for some nonzero measurable functions rs, then the regression function m in Model I equals

d∑

s=1

{fs(Xis) + rs(Xis)}Tis

as well. Hence for identifiability, we assume that

d∑

s=1

rs(Xis)Tis = 0 a.s. =⇒ rs(x) ≡ 0, s = 1, ..., d. (3)

The condition (3) may be considered as an analogue of linear independence between

covariates in linear models. It is a sufficient condition of avoiding concurvity as termed by

Hastie and Tibshirani (1990). The term concurvity in addtive models is understood as an

analogue of collinearity in linear models. The condition is closely related to the invertibility

of the matrix ZT
s Ws(X−s)Zs to be defined below, see Subsection A.2 of the Appendix for

more details.

Now Let x =(x1, ..., xd)
T ∈IRd be a point where we want to estimate the functions

{fs}ds=1. We denote by (X,T) = (X1, ..., Xd, T1, ..., Td) a generic random vector having

the same distribution as (Xi,Ti) = (Xi1, ..., Xid, Ti1, ..., Tid), and define X−s and T−s, as

obtained from X and T by removing the s-th components, by

X−s = (X1, .., Xs−1, Xs+1..., Xd)
T , s = 1, ..., d,

T−s = (T1, .., Ts−1, Ts+1..., Td)
T , s = 1, ..., d.

For a kernel functionK we writeKh(u) = K(u/h)/h. We fit p-th order local polynomials

to estimate the varying coefficients. Write Y = (Yi)1≤i≤n and denote p(u) = (1, u, . . . , up)T .

Define Zs be the n× (p+ d) matrix which has
(
p {(Xis − xs)/h}T Tis,T

T
i,−s

)
as its i-th row.

Let Ws(x−s) ≡Ws(xs,x−s) be the n× n diagonal matrix defined by

Ws(x−s) = diag {Kh(Xjs − xs)Lg(Xj,−s − x−s)/n}1≤j≤n

where Lg(u) = (g1 · · · gs−1gs+1 · · · gd)−1L(g−1
1 u1, . . . , g

−1
s−1us−1, g

−1
s+1us+1, . . . , g

−1
d ud), L is a

(d − 1)-variate kernel, and g1, . . . , gs−1, gs+1, . . . , gd are bandwidths that are allowed to be

different from each other. Then the first component of the minimizer β̂ of the weighted sum

of squares

n∑

j=1

{
Yj −

p∑

l=0

βsl(Xjs − xs)
lTjs −

∑

k 6=s

βkTjk

}2

Kh(Xjs − xs)Lg(Xj,−s − x−s)
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is given by

β̂s0 ≡ β̂s0(x−s) = eT0
(
ZT

s Ws(x−s)Zs

)−1
ZT

s Ws(x−s)Y

where el is the (p+d)-dimensional vector whose entries are zero except the (l+1)-th element

which equals 1.

The integration estimator of fs(xs) is a weighted average of βs0(Xi,−s)’s, i.e.

f̂s(xs) =
n∑

i=1

w−s(Xi,−s)β̂s0(Xi,−s)/
n∑

i=1

w−s(Xi,−s), (4)

where the weight function w−s(·) has a compact support with nonempty interior, and is

introduced here to avoid some technical difficulty that may arise when the density of Xi,−s’s

has an unbounded support. Based on (4), one can predict Y given any realization (x, t) of

(X,T) by the predictor

m̂(x, t) =
d∑

s=1

f̂s(xs)ts. (5)

In the estimation procedure for fs for a given s, we fit local constants for the other

varying coefficients fs′ , s
′ 6= s. One could fit higher order local polynomials for those varying

coefficients, too. The theoretical performance of the resulting estimator would be the same

as the present one, however. The smoothing bias of the present estimator due to the local

averaging for fs′ , s
′ 6= s can be made negligible by choosing the bandwidth vector g of smaller

order than h and using a higher-order kernel L. See the conditions for the bandwidths and

the kernel L given in the Appendix. In fact, the approach of taking a smaller bandwidth

g and a higher order kernel L for the directions not of interest was also adopted by Fan,

Härdle and Mammen (1998). One may sacrifice some rate of convergence in order to use a

lower order kernel.

Let ϕ, ϕ−s and ϕs denote the densities of X, X−s and Xs, respectively. Define

bs(xs) =
f

(p+1)
s (xs)

∫
up+1E {w−s(X−s)TsK

∗
s (u;T, xs,X−s)} du

(p+ 1)!E{w−s(X−s)}
,

σ2
s(xs) = E

[
w2
−s(X−s)

ϕ2(X)
ϕ2
−s(X−s)σ

2(X,T)

∫
K∗2

s (u;T,X) du

∣∣∣∣∣Xs = xs

]
ϕs(xs)

E2{w−s(X−s)}
,

where K∗
s is an equivalent kernel defined at (A.7).

Theorem 1 Under the assumptions A1-A7 given in the appendix, we have, for any s =

1, ..., d, as n→∞,

√
nh
{
f̂s(xs)− fs(xs)− hp+1bs(xs)

}
L−→ N

{
0, σ2

s(xs)
}
. (6)
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The estimator m̂(x, t) of the prediction function m(x, t) enjoys the same rate of con-

vergence as that of a single varying coefficient, and its asymptotic parameters are easily

calculated from those of the f̂s(xs)’s and the value of t, as in the following theorem

Theorem 2 Under the assumptions A1-A7 given in the appendix, we have, for any s 6= s′,

cov
[√

nh
{
f̂s(xs)− fs(xs)

}
,
√
nh
{
f̂s′(xs′)− fs′(xs′)

}]
−→ 0, (7)

as n→∞, and hence

√
nh
{
m̂(x, t)−m(x, t)− hp+1bm(x, t)

} L−→ N
{
0, σ2

m(x, t)
}

(8)

where bm(x, t) =
∑d

s=1 bs(xs)ts and σ2
m(x, t) =

∑d
s=1 σ

2
s(xs)t

2
s.

We comment here that Theorems 1 and 2 hold only for local polynomial estimators of

odd degree p, while similar results hold for p even as well. In particular, p = 0 corresponds

to integrating the well-known Nadaraya-Watson type estimator. When an even p is used

instead, the variance formula remains the same while the bias formula contains extra terms

involving the derivatives of the design density.

For selecting the bandwidths, following the idea of Ruppert, Sheather and Wand (1995)

in local least squares regression, several plug-in type bandwidth selectors may be developed

based on the asymptotic formulas given in the above theorems. Also, the modified multifold

cross-validation criterion considered by Cai, Fan and Yao (2000) may be adapted for the

above estimation. Theoretical development for these bandwidth selectors is beyond the

scope of the paper. Below we describe a simple plug-in selection procedure for h and g,

which is employed in our numerical study in Sections 4 and 5.

The optimal bandwidth hopt which minimizes the asymptotic mean integrated squared

error of f̂s is given by

hopt =

{ ∫
σ2
s (xs) dxs

2n(p+ 1)
∫
b2s (xs) dxs

}1/(2p+3)

.
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Now,
∫
b2s (xs) dxs and

∫
σ2
s (xs) dxs can be approximated respectively by

[
(p+ 1)!n−1

n∑

i=1

w−s(Xi,−s)

]−2 ∫ [
f (p+1)
s (xs)

∫
up+1n−1

n∑

i=1

{
w−s (Xi,−s)

×TisK
∗
s (u,Ti, xs,Xi,−s)

}
du

]2

dxs,

[
n−1

n∑

i=1

w−s(Xi,−s)

]−2

n−1

n∑

i=1

w2
−s (Xi,−s)ϕ

−2 (Xi)ϕ
2
−s (Xi,−s) σ

2 (Xi,Ti)

×
∫
K∗2

s (u,Ti,Xi) du.

The unknown functions f
(p+1)
s (xs) , σ

2(x, t), ϕ(x), ϕ(x−s) and K∗
s may be substituted with

their estimators as follows.

The (p+1)th derivative function f
(p+1)
s (xs) is estimated by fitting a polynomial regres-

sion model of degree (p+ 2):

m(X,T) =
d∑

s=1

p+2∑

k=0

as,kX
k
s Ts.

This leads to an estimator f̂
(p+1)
s (xs) = (p+ 1)! âs,p+1 + (p+ 2)! âs,p+2 xs. As a by-product,

the mean squared residual is used as an estimator of σ2(x, t). The density functions ϕ(x)

and ϕ(x−s) are estimated by

ϕ̂(x) =
1

n

n∑

i=1

d∏

s=1

1

h (X, d)
φ

(
Xis − xs

h (X, d)

)
,

ϕ̂−s(x−s) =
1

n

n∑

i=1

d∏

s′ 6=s

1

h (X−s, d− 1)
φ

(
Xis′ − xs′

h (X−s, d2 − 1)

)

with the standard normal density φ and the rule-of-the-thumb bandwidth

h(X,m) =
√

v̂ar (X) {4/(m+ 2)}1/(m+4) n−1/(m+4).

According to its definition given at (A.7), the dependence of the function K∗
s (u, t,x) on u

and t is completely known. The only unknown term E
(
TTT |X = x

)
contained in S−1

s (x)

is estimated by fitting a matrix polynomial regression

E
(
TTT |X = x

)
= c +

d∑

s=1

p∑

k=1

cs,kx
k
s

in which the coefficients c and cs,k are d× d matrices.

8



For the bandwidth vector g, we note that the choice g1 = · · · = gs−1 = gs+1 = · · · = gd =

(log n)−1h(p+1)/q with h asymptotic to n−1/(2p+3) satisfies the condition (A7) for Theorem 1 if

q, the order of the kernel L, is greater than (d−1)/2. Thus one may take gj ≡ (log n)−1h
(p+1)/q
opt

for j = 1, . . . , s−1, s+1, . . . , d, where hopt is the optimal bandwidth obtained from the above

procedure.

2.2 Model II

In this section we describe local polynomial integration estimators of the coefficient functions

{fsu, 1 ≤ u ≤ rs, 1 ≤ s ≤ d0} in Model II. For the identifiability of the functions fsu, we

assume that

d0∑

s=1

rs∑

u=1

rsu(Xis)Tisu = 0 a.s. =⇒ rsu(x) ≡ 0, u = 1, . . . , rs, s = 1, . . . , d0.

Define X−s and x−s as in Section 2.1. Let β̂su0(x−s) be the first component of the

minimizer β̂ of the following weighted sum of squares:

n∑

j=1

{
Yj −

rs∑

u=1

p∑

l=0

βsul(Xjs − xs)
lTjsu −

d0∑

s′ 6=s

rs′∑

u′=1

βs′u′Tjs′u′

}2

Kh(Xjs − xs)Lg(Xj,−s − x−s).

The integration estimator of fsu(xs) is given by a weighted average of βsu0(Xi,−s)’s, i.e.

f̂su(xs) =
n∑

i=1

w−s(Xi,−s)β̂su0(Xi,−s)/
n∑

i=1

w−s(Xi,−s).

As in Model I, one may predict Y given any realization (x, t) of (X,T) by the predictor

m̂(x, t) =

d0∑

s=1

rs∑

u=1

f̂su(xs)tsu. (9)

We have the following theorem which is an analogue of Theorem 1.

Theorem 3 Under the assumptions A1-A2, A3′, A4′, A5-A6 and A7′ given in the appendix,

we have, for any u = 1, . . . , rs and s = 1, . . . , d0,

√
nh
{
f̂su(xs)− fsu(xs)− hp+1bsu(xs)

}
L→ N

{
0, σ2

su(xs)
}

(10)

as n → ∞, where bsu(xs) = κsu(xs)/ηs and σ2
su(xs) = τ 2

su(xs)/η
2
s . The definition of κsu and

τ 2
su are given at (A.19) and (A.20)

9



Each pair of the entries f̂su and f̂s′u′ for 1 ≤ s, s′ ≤ d0 and 1 ≤ u, u′ ≤ rs has a negligible

asymptotic covariance when s 6= s′. However, it has the same magnitude as the variance of

each entry when s = s′. The following theorem is an analogue of Theorem 2.

Theorem 4 Under the assumptions of Theorem 3, we have as n→∞

(i) when s′ 6= s

cov
[√

nh
{
f̂su(xs)− fsu(xs)

}
,
√
nh
{
f̂s′u′(xs′)− fs′u′(xs′)

}]
→ 0;

(ii) when s′ = s

cov
[√

nh
{
f̂su(xs)− fsu(xs)

}
,
√
nh
{
f̂su′(xs)− fsu′(xs)

}]
→ τsuu′(xs)/η

2
s

where τsuu′ is defined at (A.23). Hence

√
nh
{
m̂(x, t)−m(x, t)− hp+1b̃m(x, t)

}
L→ N

{
0, σ̃2

m(x, t)
}

where b̃m(x, t) =
∑d0

s=1

∑rs

u=1 bsu(xs)tsu, σ̃
2
m(x, t) =

∑d0

s=1

∑rs

u=1

∑rs

u′=1 σsuu′(xs)tsutsu′ and

σsuu′(xs) = τsuu′(xs)/η
2
s .

3 TESTING FOR VARYING COEFFICIENTS

Suppose we are interested in testing the hypothesis

H0 : fs(xs) ≡ constant (11)

for a specific s in Model I. Testing the hypothesis (11) is a very important first step in model

building procedure. If this hypothesis is true, one would get minαE{fs(Xs)−α}2ws(Xs) = 0

where ws is an arbitrary positive weight function with a compact support. This leads us to

propose the following test statistic:

Vns = n−1minα

n∑

i=1

{f̂s(Xis)− α}2ws(Xis)

= n−1

n∑

i=1

f̂s(Xis)
2ws(Xis)− n−1{

n∑

i=1

ws(Xis)}−1{
n∑

i=1

f̂s(Xis)ws(Xis)}2, (12)

where the obvious solution of the least squares problem is given by

α̂s = {
n∑

i=1

ws(Xis)}−1{
n∑

i=1

f̂s(Xis)ws(Xis)}. (13)

The next theorem describes the asymptotic distribution of the test statistic (12) under

the null hypothesis (11).
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Theorem 5 Under the null hypothesis (11) and the assumptions A1-A7 given in the ap-

pendix, we have, for any s = 1, ..., d,

nh1/2(Vns − n−1h−1vs)
L→ N

{
0, γ2

s

}
(14)

as n→∞, where vs and γs are as given in (A.17) and (A.16).

For the practical implementation of the test, we suggest to use a bootstrap procedure

instead of the asymptotic normal distribution theory in Theorem 5. The reason is that

for a test statistic based on kernel type of smoothing, the normal approximation to the

distribution of the test statistic is very poor, as shown in Härdle and Mammen (1993) and,

more recently, confirmed by Sperlich, Tjøstheim and Yang (2002). Another reason is that

the normal approximation given in Theorem 5 involves too complicated expressions, which

makes the task of obtaining asymptotic critical values out of reach.

It is well-known that the ordinary method of resampling residuals fails to work when the

error variances are allowed to be different. See Wu (1986), Liu (1988), and Mammen (1992).

Härdle and Mammen (1993) also pointed out that it breaks down even for homoscedastic er-

rors in the case of the goodness-of-fit test statistic for testing a parametric hypothesis against

the nonparametric alternative. As an alternative, we suggest to use the wild bootstrap pro-

cedure which was first introduced by Wu (1986) and implemented in various settings by Liu

(1988), Härdle and Mammen (1993), and Sperlich, Tjøstheim and Yang (2002) among oth-

ers. Basically, this approach attempts to mimic the conditional distribution of each response

given covariate using the corresponding single residual, in such a way that the first three

moments of the bootstrap population equal to those of the single residual.

To describe the procedure in our setting, let m̃(x, t) = α̂sts +
∑d

k 6=s f̂k(xk)tk be the

regression estimator under the hypothesis (11), where α̂s is an estimate of the constant

f̂s(xs) given by (13) while f̂k(xk) (k 6= s) is the marginally integrated estimate of fk(xk) in

(4). The wild bootstrap procedure to estimate the sampling distribution of Vns under the

null hypothesis then consists of the following steps:

(i) Find the residuals ε̃i = Yi − m̃(Xi,Ti) for i = 1, . . . , n.

(ii) Generate i.i.d. random variables ZW
i such that E(ZW

i ) = 0, E(ZW
i )2 = 1 and

E(ZW
i )3 = 1. Put Y ∗i = m̃(Xi,Ti) + ε̃iZ

W
i .

(iii) Compute the bootstrap test statistic V ∗ns using the wild bootstrap sample {(Y ∗i ,Xi,Ti)}ni=1.

11



(iv) Repeat the steps (ii) and (iii) M times, obtaining V ∗ns,1, . . . , V
∗
ns,M . Estimate the null

distribution of Vns by the empirical distribution of V ∗ns,1, . . . , V
∗
ns,M .

For examples of ZW
i satisfying the moment conditions, see Mammen (1992). For the

empirical example in the next section, we used a two-point distribution : ZW
i = (1−

√
5)/2

with probability (5 +
√
5)/10, and ZW

i = (1 +
√
5)/2 with probability (5 −

√
5)/10, with

M = 200.

For Model II, we consider the following hypothesis:

fsu(xs) ≡ constant. (15)

The corresponding test statistic for the hypothesis (15) is given by

Vnsu = n−1

n∑

i=1

f̂su(Xis)
2ws(Xis)− n−1{

n∑

i=1

ws(Xis)}−1{
n∑

i=1

f̂su(Xis)ws(Xis)}2.

The next theorem describes the asymptotic distribution of the test statistic Vnsu under the

null hypothesis (15).

Theorem 6 Under the null hypothesis (15) and the assumptions of Theorem 3, we have,

for any u = 1, . . . , rs and s = 1, ..., d0,

nh1/2(Vnsu − n−1h−1vsu)
L→ N

{
0, γ2

su

}

as n→∞, where vsu and γsu are as given in (A.22) and (A.21).

For testing the hypothesis (15), let m̄(x, t) = α̂sutsu +
∑d0

s′ 6=s

∑rs′

u′=1 f̂s′u′(xs′)ts′u′ where

α̂su = {
n∑

i=1

ws(Xis)}−1{
n∑

i=1

f̂su(Xis)ws(Xis)}.

A wild bootstrap procedure may be obtained by simply replacing m̃, Vns and V
∗
ns by m̄, Vnsu

and V ∗nsu, respectively, in the four steps described above for testing (11).

Some related work on this testing problem includes Chen and Liu (2001), and Cai,

Fan and Yao (2000). The former paper treated testing, in the FAR model, whether all the

coefficient functions are constant, i.e., whether the underlying process is simply a linear AR

model. The latter proposed a testing procedure for the hypothesis that all the coefficient

functions have known parametric forms. We think testing for a parametric form in our

models is also an interesting topic for future research.
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4 SIMULATION STUDY

In this section we investigate the finite sample properties of the estimation and testing

methods through two simulated examples. One is the case where (Xi,Ti) are independent

and identically distributed (i.i.d.), and the other is the case where they are endogenous

and are lagged observations of the response Y . We employed local linear smoothing (p =

1) in all cases. Both of the kernels K and L were the quartic kernel K(x) = L(x) =

0.9375 (1− x2)
2
I(−1,1)(x), while the bandwidths were chosen as described Section 2.1.

4.1 The i.i.d. case

In this case we generated the data from the following varying coefficient model:

Y = f1(X1) + f2(X2)T1 + f3(X3)T2 + δ(X,T)ε,

where f1(X1) = 1 + exp (2X1 − 1), f2(X2) = cos (2πX2), f3(X3) = 2. The heteroscedastic

conditional standard deviation was set to be

δ(X,T) = 0.5 +
T 2

1 + T 2
2

1 + T 2
1 + T 2

2

exp (−2 + (X1 +X2)/2) .

The particular form of δ(X,T) was considered to ensure the variance to be bounded. The

vector X = (X1, X2, X3)
T was generated from the uniform distribution over the unit cube

[0, 1]3, and T =(T1, T2)
T was generated from the bivariate normal with mean zero and covari-

ance matrix

(
1 0.5

0.5 1

)
. The vectors X and T were generated independently. Finally, the

error term ε was generated from the standard normal distribution independently of (X,T).

A total of 100 independent data sets with sizes n = 50, 100 and 250 were generated. The

estimated functions of fs, s = 1, 2, 3 were evaluated on a grid of 91 equally-spaced points

xj, j = 1, ..., 91 with x1 = 0.05, x91 = 0.95. To assess the performance of f̂s for s = 1, 2, 3,

we calculated the mean integrated squared error (MISE) of f̂s which is defined by

MISE(f̂s) =
1

R

R∑

r=1

ISE(f̂r,s) =
1

R

R∑

r=1

1

g

g∑

j=1

{
f̂r,s(xj)− fs(xj)

}2

.

Here f̂r,s(xj) denotes the estimated value of fs at xj for the rth data set, R = 100 and g = 91

are the numbers of data sets and grid points, respectively. Table 1 summarizes the MISE

values of the function estimators. This simulation study numerically supports our theoretical

results for the estimation method as given in Section 2.
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(Insert Table 1 about here)

To see how the marginal integration improves the three dimensional function estimators,

we also computed the mean average squared errors for the case where n = 50. Consider β̂s0, as

defined in Section 2.1, evaluated at the observed Xi1, Xi2, Xi3. Write them β̂s0(Xi1, Xi2, Xi3).

These are the estimates before the marginal integration. We computed the mean average

squared error

MASE1 =
1

R

R∑

r=1

1

n

n∑

i=1

{
β̂r,10(Xi1, Xi2, Xi3) + β̂r,20(Xi1, Xi2, Xi3)Ti1

+β̂r,30(Xi1, Xi2, Xi3)Ti2 − f1(Xi1)− f2(Xi2)Ti1 − f3(Xi3)Ti2

}2

,

and also for the marginal integration estimate

MASE2 =
1

R

R∑

r=1

1

n

n∑

i=1

{
f̂r,1(Xi1) + f̂r,2(Xi2)Ti1 + f̂r,3(Xi3)Ti2

−f1(Xi1)− f2(Xi2)Ti1 − f3(Xi3)Ti2}2 ,

where β̂r,s0(Xi1, Xi2, Xi3) and f̂r,s(Xis) are the estimates for the rth dataset. We found

MASE1 = 0.3164 and MASE2 = 0.2761.

Next, we give some numerical results for the testing method. For each of the simulated

data sets above, we applied the proposed wild bootstrap method with M = 500 to test

the null hypothesis Hs0 : fs = cs for some constants cs. Table 2 provides for each s the

proportion of the cases where the null hypothesis Hs0 was rejected at the significance level

α = 0.05 among the 100 replications.

(Insert Table 2 about here)

4.2 The time series case

In this simulation, R = 200 time series were generated. Each time, 1000 observations were

generated from the following varying coefficient AR (VCAR) model, among which only the

last 250 observations were used:

Yt = f1(Yt−3)Yt−1 + f2(Yt−4)Yt−2 + 0.2εt (16)

where f1(Yt−3) = 0.4+ (0.1+Yt−3) exp(−3Y 2
t−3), f2(Yt−4) = −0.2− (0.6+Yt−4) exp(−3Y 2

t−4),

and εt are i.i.d. standard normal random variates. Again, the performance of the estimators

of f1 and f2 were assessed by MISE. We obtained MISE(f̂1) = 0.0137 and MISE(f̂2) = 0.0151.
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We found that the Monte Carlo average over 200 time series of
√∑250

t=1(Yt − Ȳ )2/250 equals

0.6374 with the standard error 0.0026, where Ȳ =
∑250

t=1 Yt/250. The obtained values of

MISEs are much smaller than the variation of Y , which means that the fitted model with f̂1

and f̂2 is useful to explain the variation of Y .

Similarly as in the i.i.d. case, we report here a numerical result for testing H10 : f1 =

constant and H20 : f2 = constant. For each of the simulated time series we applied the wild

bootstrap method with M = 500 and used the significant level 0.05. We found that the

proportion of the cases where the null hypothesis was rejected among the 200 replications

was 0.57 for H10 and 0.943 for H20.

It is also of interest to examine the effectiveness of the varying coefficient model (16) in

comparison with some related FAR models, discussed in Cai, Fan and Li (2000) and Cai,

Fan and Yao (2000), where all the coefficient functions depend on the same variable(s). For

this purpose, we considered the following three FAR models:

Yt = g1(Yt−3)Yt−1 + g2(Yt−3)Yt−2 + 0.2εt, (17)

Yt = g1(Yt−4)Yt−1 + g2(Yt−4)Yt−2 + 0.2εt, (18)

Yt = g1(Yt−3, Yt−4)Yt−1 + g2(Yt−3, Yt−4)Yt−2 + 0.2εt. (19)

We fitted the three FAR models with the same series generated by (16). For comparison we

computed the mean average squared residuals (MASR) defined by

MASR =
200∑

r=1

250∑

t=1

(yr,t − ŷr,t)
2 /(200× 250),

where yr,t denotes the tth observation in the rth replication, and ŷr,t is the corresponding

fitted value based on the underlying model. We note that average squared residuals (ASR), as

a statistic that can be computed from any data, real or simulated, is a very useful measure of

goodness-of-fit. This is illustrated in the next section where ASR is used to select an optimal

forecasting model. Thus, MASR is a sensible criterion to compare different models. Although

it varies with the bandwidth, an incorrect model would have an MASR asymptotically greater

than that of a correct model by a positive constant, which is of larger magnitude than any

variation caused by bandwidth tuning. The three FAR models (17), (18) and (19) gave the

MASR values 1.020, 0.343 and 0.081, respectively, whereas the VCAR model (16) gave a

much smaller 0.075.

We also compared the mean average squared prediction errors (MASPE) of these models.

For this, we generated additional 50 observations for each of the 200 times series of size 250
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and computed

MASPE =
200∑

r=1

300∑

t=251

(yr,t − ŷr,t)
2 /(200× 50),

where ŷr,t is the predicted value of yr,t based on the estimated model from the first 250

observations. The three FAR models (17), (18) and (19) gave the MASPE values 0.075,

0.071 and 0.062, respectively, while the VCAR model (16) gave 0.059.

5 AN EMPIRICAL EXAMPLE

We illustrate our estimation and testing methods with an analysis of the quarterly (seasonally

non-adjusted) West German real GNP data collected from 1960:1 to 1990:4. The data

Gt, 1 ≤ t ≤ n = 124, which was compiled by Wolters (1992, p. 424, note 4), is plotted in

Figure 1(a). One sees clearly a linear trend and a seasonal pattern. Based on the seasonal

unit root test of Franses (1996), we took the first differences of the logs, and obtained a

time series data, Dt, 1 ≤ t ≤ n = 124, which is plotted in Figure 1(b). This time series

no longer reveals any linear or higher order trends, but is obviously seasonal. Following

the de-seasonalization procedure of Yang and Tschernig (2002), the sample means of the

four seasons −0.065116, 0.038595, 0.051829 and 0.008944, respectively, were calculated and

subtracted from Dt so that the de-seasonalized Yt, 1 ≤ t ≤ n = 124, became the growth rates

with respect to the spring season. As such, it is reasonable to assume that the Yt’s satisfy

our strict stationarity and mixing conditions. In Figure 4, the data Yt, 1 ≤ t ≤ n = 124, is

plotted as the dotted curve.

(Insert Figure 1 and Table 3 about here)

According to the semiparametric lag selection performed in Yang and Tschernig (2002),

the significant variables for the prediction of Yt are Yt−4 and Yt−2. Calculation of the au-

tocorrelation functions indicated that Yt is more correlated with Yt−1 and Yt−3 than other

lagged values. Hence we fitted all the twelve VCAR models of Model I type, consisting of

the lagged variables Yt−1, Yt−2, Yt−3 and Yt−4. According to the definition (4) of the marginal

integration estimator, we estimated all VCAR models using the first 114 observations and

made out-of-sample predictions for the last 10 observations. Their average squared residuals

(ASR) and average squared prediction errors (ASPE) are reported in Table 3. One may

expect the ASRs should be smaller than the ASPEs. But we found in the residual plots

that there were some very large residual terms that made all the ASRs larger than their
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corresponding ASPEs. The model with the smallest ASR is

Yt = f1 (Yt−1)Yt−2 + f2 (Yt−3)Yt−4 + (noise), (20)

while the model with the smallest ASPE is

Yt = f1 (Yt−3)Yt−2 + f2 (Yt−1)Yt−4 + (noise). (21)

Both of the above models include as special case the following linear AR(2) model:

Yt = c1Yt−2 + c2Yt−4 + (noise). (22)

In Table 3, the ASR and ASPE of the linear AR model (22) are also included. Both the

optimal VCAR models (20) and (21) have much smaller ASR and ASPE than the linear AR

model. These two VCAR models have similar values of ASR and ASPE. Figure 2 depicts the

estimates of the functions f1 and f2 for each model. To test if these functions are significantly

different from a constant, we carried out the wild bootstrap procedures. For the model (20),

the p-values were 0.80 for f1 and 0.01 for f2, while for the model (21) they were 0.22 and

0.48, respectively. This means that for the model (20) the function f1 is not significantly

different from a constant but there is a strong evidence in the data for that f2 is not a

constant. Thus one may conclude that a parsimonious model is the partially linear model:

Yt = f1Yt−2 + f2 (Yt−3)Yt−4 + (noise).

We further computed the ASR and ASPE of this semiparametric partially linear model,

which are 0.00032 and 0.00024 respectively, as seen in Table 3. In terms of these estimation

and forecasting errors, the semiparametric model is much inferior to its nonparametric parent

model (20). Thus the simpler semiparametric model is preferred only for its parsimony while

the nonparametric model (20) should be used if optimal forecasting is the goal. The testing

for coefficient functions, therefore, works in a similar fashion as BIC works for linear AR

time series where ASR is similar to AIC. For linear AR time series, it is well known that

AIC is optimal for forecasting while BIC is consistent in identifying a correct AR model. It

should be noted also that ASR can be compared across models not necessarily nested within

each other, while the testing procedure selects the most parsimonious model from a nested

hierarchy of models.

To further verify the validity of the models (20) and (21), we examined the residuals ε̂t to

check the independence of the error terms as it is another way of assessing goodness-of-fit for

the models. At a practical level, such independence can be checked using the autocorrelation
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functions (ACF) of powers of |ε̂t|. Figure 3 shows the ACFs of both |ε̂t| and ε̂2
t for the models

(20) and (21). As can be seen from the plots, within the confidence levels of ±2 × n−1/2

lie more than 95% of all the sample ACFs, and hence we can conclude that both |ε̂t| and
ε̂2
t have no autocorrelation. The ACF plots for |ε̂t|3, ε̂4

t , etc., led to the same conclusion.

Thus, the models (20) and (21) fit well the structure of the data Yt. As a further evidence,

Figure 4 shows the overlay of Yt together with the predicted series Ŷt obtained from fitting

the models (20) and (21). The predicted series follows the actual series very closely.

(Insert Figures 2, 3 and 4 about here)

APPENDIX: PROOFS

A longer version of the paper with proofs of greater detail may be found at http:

ace.snu.ac.kr/ theostat/papers/jasa-ypxh.pdf.

A.1 Preliminaries

We shall need the following technical assumptions on the kernels.

A1: The kernelsK and L are symmetric, Lipschitz continuous with
∫
K (u) du =

∫
L (u) du =

1, and have compact supports with nonempty interiors. While K is nonnegative, the

kernel L is of order q.

When estimating the function fs for a particular s, a multiplicative kernel is used con-

sisting of K for the s-th variable and L for all other variables. To accommodate dependent

data, such as those from varying-coefficient autoregression models, we assume that

A2: The vector process {(Xi,Ti)}ni=1 is strictly stationary and β-mixing with mixing coef-

ficients β(k) ≤ C2ρ
k, 0 < ρ < 1. Here

β(n) = sup
k
E sup

{∣∣P (A|Fk
−∞)− P (A)

∣∣ : A ∈ F∞n+k

}

where F t′

t is the σ-algebra generated by (Xt,Tt) , (Xt+1,Tt+1) , ..., (Xt′ ,Tt′) for t < t′.

The following assumptions are on the smoothness of the functions involved in the esti-

mation and testing, and on the moments of the process for the proofs of Theorems 1, 2 and

5.

18



A3: The functions fs’s have bounded continuous (p+ 1)-th derivatives for all 1 ≤ s ≤ d,

and p ≥ q − 1

A4: The distribution of (X,T) has a density ψ and X has a marginal density ϕ. On the

supports of weight functions w−s and ws, the densities ϕ−s of X−s and ϕs of Xs,

respectively, are uniformly bounded away from zero and infinity. The marginal density

ϕ and E (TsTs′ |X = ·) for 1 ≤ s, s′ ≤ d are Lipschitz continuous. Also, σ2(·, t) and

ψ(·, t) are equicontinuous.

A5: The weight functions w−s and ws are nonnegative, have compact supports with nonempty

interiors, and are continuous on their supports.

A6: The error term εt satisfies E|εt|4+δ <∞ for some δ > 0. For j < k < l < m there exists

a joint probability density function ψj,k,l,m of (Xj,Tj;Xk,Tk;Xl,Tl;Xm,Tm). Let X =

{x : xs ∈ supp(ws), x−s ∈ supp(w−s)}, and for ε > 0 define Xε = {x : there exists z ∈
X such that ‖z − x‖ ≤ ε}. There exist ε > 0, σ̃(t) and ϕ̃j,k,l,m(tj, tk, tl, tm) such that

σ(x, t) ≤ σ̃(t) for all x ∈ Xε, ψj,k,l,m(xj, tj;xk, tk;xl, tl;xm, tm) ≤ ϕ̃j,k,l,m(tj, tk, tl, tm)

for all xj,xk,xl,xm in Xε, and
∫
(‖tj‖‖tk‖‖tl‖‖tm‖)2+c|σ̃(tj)σ̃(tk)σ̃(tl)σ̃(tm)|2+cϕ̃j,k,l,m

(tj, tk, tl, tm) dtjdtkdtldtm ≤ C <∞ for some c > 0 and C > 0.

Also, we assume that the bandwidths, g for the kernel L and h for the kernel K, satisfy

A7: (lnn) (nhgprod)
−1/2 = O (n−a) for some a > 0 and (nh lnn)1/2gqmax → 0 as n → ∞

where gprod = g1 · · · gs−1gs+1 · · · gd and gmax = max(g1, . . . , gs−1, gs+1, . . . , gd), and h is

asymptotic to n−1/(2p+3).

For Theorems 3, 4 and 6, we need to modify the assumptions A3, A4 and A7 slightly as

follows:

A3′: The functions fsu’s have bounded continuous (p+ 1)-th derivatives for all 1 ≤ s ≤ d0,

1 ≤ u ≤ rs and p ≥ q − 1.

A4′: It is the same as A4 except that now we require E (TsuTs′u′ |X = ·) for 1 ≤ s, s′ ≤ d0

and 1 ≤ u, u′ ≤ rs are Lipschitz continuous.

A7′: It is also the same as A7 except that d is replaced by d0.
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One should note here that for existence of the bandwidth vector g satisfying the as-

sumption A7 and A7′ it is necessary that q, the order of the kernel L, should be larger than

(d− 1)/2 and (d0 − 1)/2, respectively.

To prove many of our results, we make use of some inequalities about U -statistic and von

Mises statistic of dependent variables derived from Yoshihara (1976). Let ξi, 1 ≤ i ≤ n be a

strictly stationary sequence of random variables with values in Rd and β-mixing coefficients

β(k), k = 1, 2, ..., and r a fixed positive integer. Let {θn (F )} denote the functionals of the

distribution function F of ξi

θn (F ) =

∫
gn (x1, ..., xm) dF (x1) · · · dF (xm)

where {gn} are measurable functions symmetric in their m arguments such that

∫
|gn (x1, ..., xm)|2+δ dF (x1) · · · dF (xm) ≤Mn < +∞,

sup
(i1,....,im)∈Sc

∫
|gn (x1, ..., xm)|2+δ dFξi1

,...,ξim
(x1, ..., xm) ≤Mn,c < +∞, c = 0, ...,m− 1

for some δ > 0, where Sc = {(i1, ...., im)|#r(i1, ...., im) = c} , c = 0, ...,m − 1 and for every

(i1, ...., im), 1 ≤ i1 ≤ · · · ≤ im ≤ n, #r(i1, ...., im) = the number of j = 1, ...,m− 1 satisfying

ij+1 − ij ≤ r. Clearly, the cardinality of each set Sc is less than n
m−c.

The von Mises’ differentiable statistic and the U -statistic

θn (Fn) =

∫
gn (x1, ..., xm) dFn(x1) · · · dFn(xm)

=
1

nm

n∑

i1=1

· · ·
n∑

im=1

gn (ξi1 , ..., ξim)

Un =
1(
n
m

)
∑

1≤i1<···<im≤n

gn (ξi1 , ..., ξim) ,

allow decompositions as

θn (Fn) = θn (F ) +
m∑

c=1

(
m

c

)
V (c)
n ,

Un = θn (F ) +
m∑

c=1

(
m

c

)
U (c)

n .

Here, gn,c are the projections of gn defined by

gn,c (x1, ..., xc) =

∫
gn (x1, ..., xm) dF (xc+1) · · · dF (xm), c = 0, 1, ...,m
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so that gn,0 = θn(F ), gn = gn,m, and

V (c)
n =

∫
gn,c (x1, ..., xc)

c∏

j=1

[dFn(xj)− dF (xj)] ,

U (c)
n =

(n− c)!

n!

∑

1≤i1<···<ic≤n

∫
gn,c (xi1 , ..., xic)

c∏

j=1

[
dIRd

+
(xj − ξij)− dF (xj)

]

where IRd
+
is the indicator function of Rd

+ =
{
(y1, ..., yd) ∈ Rd | yj ≥ 0, j = 1, ..., d

}
.

Lemma A.1 If β(k) ≤ C1k
−(2+δ′)/δ′ for δ > δ′ > 0, then

EV (c)2
n + EU (c)2

n (A.1)

≤ C (m, δ, r)n−c

{
M2/(2+δ)

n

n∑

k=r+1

kβδ/(2+δ)(k) +
m−1∑

c′=0

n−c′M
′2/(2+δ)
n,c′

r∑

k=1

kβδ/(2+δ)(k)

}

for some constant C (m, δ, r) > 0. In particular, if one has β(k) ≤ C2ρ
k for 0 < ρ < 1, then

EV (c)2
n + EU (c)2

n ≤ C (m, δ, r)C2C(ρ)n−c

{
M2/(2+δ)

n +
m−1∑

c′=0

n−c′M
′2/(2+δ)
n,c′

}
. (A.2)

Proof. The proof essentially is the same as Lemma 2 in Yoshihara (1976), which dealt

with the special case of gn ≡ g, r = 1,Mn = M ′
n and yielded (A.1). The inequalities in the

proof of this lemma do not require all gn’s to be the same for n = 1, 2, ..., and terms in

U
(c)
n where exactly c′ pairs of neighboring indices differ by at most r form a subset of terms

with cardinality of order nc−c′ . Elementary arguments then establish (A.2) under geometric

mixing conditions.

A.2 Proofs of Theorems 1, 2 and 5

Define the following square matrix of dimension (p+ d)

Ss(x) =

[ ∫
p(u)pT (u)K(u)duE(T 2

s |X = x)
∫

p(u)K(u)duE(TsT
T
−s|X = x)

E(TsT−s|X = x)
∫

pT (u)K(u)du E(T−sT
T
−s|X = x)

]
.

The identifiability condition given at (3) is closely related to the invertibility of the matrix

Ss(X). To see this, we note that for vectors λ1 and λ2 of dimensions p + 1 and d − 1,

respectively,

(λT
1 , λ

T
2 )Ss(x)(λ

T
1 , λ

T
2 )

T =

∫
E
[{
λT

1 p(u)Ts + λT
2 T−s

}2 ∣∣X = x
]
K(u) du.
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Thus, if
[
λ1(Xs)

T , λ2(X−s)
T
]
Ss(X)

[
λ1(Xs)

T , λ2(X−s)
T
]T

= 0, a.s., then λ1(Xs)
Tp(u)Ts +

λ2(X−s)
TT−s = 0, a.s. (X,T) and u ∈ supp(K). Since K has a nonempty interior, the

identifiability condition (3) implies λ1 ≡ 0 and λ2 ≡ 0 by the uniqueness of polynomial

expansion.

The next lemma shows that the matrix Ss(x) is proportional to the limiting dispersion

matrix

Lemma A.2 As n→∞

sup
xs∈supp(ws),x−s∈supp(w−s)

∣∣ZT
s Ws(x−s)Zs − ϕ(xs,x−s)S(xs,x−s)

∣∣ = o(b) a.s.

where b = lnn
(
h+ gqmax + 1/

√
nhgprod

)
.

Proof. The conclusion follows by directly using the covering technique and exponential

inequalities for β-mixing processes, as in the proof of Theorem 2.2 of Bosq (1998).

Now let c be an integer such that bc+1 = o (hp+2), the next lemma decomposes the

dispersion matrix.

Lemma A.3 For any integer k,

(
ZT

s Ws(x−s)Zs

)−1 − S−1
s (xs,x−s)

ϕ(xs,x−s)

=
S−1
s (xs,x−s)

ϕ(xs,x−s)

c∑

`=1

{
Ip+d −

ZT
s Ws(x−s)ZsS

−1
s (xs,x−s)

ϕ(xs,x−s)

}`

+Rs (xs,x−s)

as n→∞, where the matrix Rs (xs,x−s) satisfies

sup
xs∈supp(ws),x−s∈supp(w−s)

|Rs (xs,x−s)| = o
(
hp+2

)
a.s.

Proof. By a Taylor expansion for the matrix inversion operation, Lemma A.2 immedi-

ately yields the result.

Lemma A.4 Define

Ds1 (xs) =
1

n

n∑

i=1

w−s(Xi,−s)Rs (xs,Xi,−s)Z
T
s WisE,

Ds2 (xs) =
1

n

n∑

i=1

w−s(Xi,−s)Rs (xs,Xi,−s)Z
T
s Wis

[
{fs(Xjs)}nj=1 −

p∑

ν=0

f
(ν)
s (xs)h

ν

ν!
Zseν

]
,

Ds3 (xs) =
1

n

n∑

i=1

w−s(Xi,−s)Rs (xs,Xi,−s)Z
T
s Wis

×



{∑

s′ 6=s

fs′(Xjs′)

}n

j=1

−
∑

s′ 6=s

fs′(Xis′)Zsep+s′


 .
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Then, as n→∞

sup
xs∈supp(ws)

{|Ds1 (xs)|+ |Ds2 (xs)|+ |Ds3 (xs)|} = o(hp+2) a.s.

Proof. The lemma follows directly from Lemmas A.3.

Lemma A.5 Write Wis = Ws(Xi,−s) and E = {σ(X1,T1)ε1, ..., σ(Xn,Tn)εn}T . For ` =

1, 2, ..., define

R`1(xs) =
1

n

n∑

i=1

w−s(Xi,−s)

ϕ(xs,Xi,−s)
S−1
s (xs,Xi,−s)

{
Ip+d −

ZT
s WisZsS

−1
s (xs,Xi,−s)

ϕ(xs,Xi,−s)

}`

×ZT
s WisE (A.3)

R`2(xs) =
1

n

n∑

i=1

w−s(Xi,−s)

ϕ(xs,Xi,−s)
S−1
s (xs,Xi,−s)

{
Ip+d −

ZT
s WisZsS

−1
s (xs,Xi,−s)

ϕ(xs,Xi,−s)

}`

×ZT
s Wisis

[
{fs(Xjs)}nj=1 −

p∑

ν=0

f
(ν)
s (xs)h

ν

ν!
Zseν

]
(A.4)

R`3(xs) =
1

n

n∑

i=1

w−s(Xi,−s)

ϕ(xs,Xi,−s)
S−1
s (xs,Xi,−s)

{
Ip+d −

ZT
s WisZsS

−1
s (xs,Xi,−s)

ϕ(xs,Xi,−s)

}`

×ZT
s Wis



{∑

s′ 6=s

fs′(Xjs′)

}n

j=1

−
∑

s′ 6=s

fs′(Xis′)Zsep+s′


 . (A.5)

Then, as n→∞,

|R`1(xs)|+ |R`2(xs)|+ |R`3(xs)| = op

(
b`/
√
nh
)
. (A.6)

Proof. For simplicity of notations, consider the case of R`1(xs) and only ` = 1. The

term R`1(xs) equals P1 − P2 in which

P1 =
1

n

n∑

i=1

w−s(Xi,−s)S
−1
s (xs,Xi,−s)

{
S(xs,Xi,−s)

ϕ(xs,Xi,−s)
− E

(
ZT

s WisZs|xs,Xi,−s

)

ϕ2(xs,Xi,−s)

}

×S−1
s (xs,Xi,−s)Z

T
s WisE,

P2 =
1

n

n∑

i=1

w−s(Xi,−s)S
−1
s (xs,Xi,−s)

{
ZT

s WisZs

ϕ(xs,Xi,−s)
− E

(
ZT

s WisZs|xs,Xi,−s

)

ϕ2(xs,Xi,−s)

}

×S−1
s (xs,Xi,−s)Z

T
s WisE.
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Denote ξi = (Xi,Ti, Yi), The term P1 can be written as the von Mises’ differentiable statistic

Vn = (2n2)−1
∑n

i,j=1 gn (ξi, ξj) where gn (ξi, ξj) equals

w−s(Xi,−s)S
−1
s (xs,Xi,−s)

{
S(xs,Xi,−s)

ϕ(xs,Xi,−s)
− E

(
ZT

s WisZs|xs,Xi,−s

)

ϕ2(xs,Xi,−s)

}

×S−1
s (xs,Xi,−s)




TjsKh (Xjs − xs)Lg(Xj,−s −Xi,−s)σ(Xj,Tj)εj

p {(Xjs − xs)/h}TjsKh (Xjs − xs)Lg(Xj,−s −Xi,−s)σ(Xj,Tj)εj

Tj,−sKh (Xjs − xs)Lg(Xj,−s −Xi,−s)σ(Xj,Tj)εj




+ w−s(Xj,−s)S
−1
s (xs,Xj,−s)

{
S(xs,Xj,−s)

ϕ(xs,Xj,−s)
− E

(
ZT

s WjsZs|xs,Xj,−s

)

ϕ2(xs,Xj,−s)

}

×S−1
s (xs,Xj,−s)




TisKh (Xis − xs)Lg(Xi,−s −Xj,−s)σ(Xi,Ti)εi

p {(Xis − xs)/h}TjsKh (Xis − xs)Lg(Xi,−s −Xj,−s)σ(Xi,Ti)εi

Ti,−sKh (Xis − xs)Lg(Xi,−s −Xj,−s)σ(Xi,Ti)εi


 .

First, one calculates that gn,0 = 0 and gn,1 (ξj) equals

∫
S−1
s (xs, z−s)w−s(z−s)S

−1
s (xs, z−s)

{
S(xs, z−s)

ϕ(xs, z−s)
− E

(
ZT

s WisZs|xs, z−s

)

ϕ2(xs, z−s)

}

×S−1
s (xs, z−s)




TjsKh (Xjs − xs)Lg(Xj,−s − z−s)σ(Xj,Tj)εj

p {(Xjs − xs)/h}TjsKh (Xjs − xs)Lg(Xj,−s − z−s)σ(Xj,Tj)εj

Tj,−sKh (Xjs − xs)Lg(Xj,−s − z−s)σ(Xj,Tj)εj




×ϕ−s(z−s)dz−s

which has mean zero and variance of order b2/nh. So V
(1)
n = n−1

∑n
j=1 gn,1 (ξj) = op

(
b/
√
nh
)
.

Next, take a small constant δ > 0. Then, the (2 + δ)-th moment of gn (ξi, ξj) , i < j, is not

greater than

Cb2+δC(ρ)




1

g1+2δ
prod

E

∣∣∣∣∣∣∣∣

TjsKh (Xjs − xs)σ(Xj,Tj)εj

p {(Xjs − xs)/h}TjsKh (Xjs − xs) σ(Xj,Tj)εj

Tj,−sKh (Xjs − xs)σ(Xj,Tj)εj

∣∣∣∣∣∣∣∣

2+2δ


(2+δ)/(2+2δ)

≤ Cb2+δC(ρ)

(
1

h1+2δg1+2δ
prod

)(2+δ)/(2+2δ)

by Lemma 1 of Yoshihara (1976).

Hence, one can take Mn = Mn,0 = Cb2+δ
(
h1+2δg1+2δ

prod

)−(2+δ)/(2+2δ)
in the context of

Lemma A.1 withm = c = 2 and r = 1. Similarly, one can show thatMn,1 = Cb2+δh−(1+δ)g
−(2+δ)
prod .
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Now applying Lemma A.1 with m = c = 2 and r = 1, (A.2) gives

EP 2
1 ≤ Cn−2b2 (hgprod)

−2(1+2δ)/(2+2δ) + Cn−3b2h−(1+δ)2/(2+δ)g
−(2+δ)2/(2+δ)
prod + Cb2/nh

≤ Cn−1h−1b2

by making δ sufficiently small. Similar arguments establish that EP 2
2 ≤ Cn−1h−1b2. Hence

P1 − P2 = op(b/
√
nh). We have thus concluded the proof of the lemma.

Now write qs(u; t) for the (p+ d)-dimensional vector given by

qs(u; t)
T =

(
p(u)T ts, t

T
−s

)
= (ts, uts, . . . , u

pts, t
T
−s),

and define an equivalent kernel

K∗
s (u; t,x) = eT0 S

−1
s (x)qs(u; t)K(u). (A.7)

Write K∗
s,h(u; t,x) = (1/h)K∗

s (u/h; t,x) , i.e.

K∗
s,h(u; t,x) = (1/h)eT0 S

−1
s (x)qs(u/h; t)K(u/h). (A.8)

This kernel satisfies the moment conditions as are given in the following lemma, which follows

directly from the definition of Ss(x) and S
−1
s (x).

Lemma A.6 Let δjk equal 1 if j = k and 0 otherwise. Then

E
{∫

uqTsK
∗
s (u;T,X)du|X = x

}
= δ0q, 0 ≤ q ≤ p ;

E
{∫

Ts′K
∗
s (u;T,X)du|X = x

}
= 0, s′ = 1, ..., d, s′ 6= s.

(A.9)

In order to prove Theorem 1, we begin by observing

eT0
(
ZT

s WisZs

)−1
ZT

s WisZsel = δ0l, l = 0, ..., p+ d− 1.

Define Q1n =
∑n

i=1w−s(Xi,−s)/n and

Q2n(xs) = n−1

n∑

i=1

w−s(Xi,−s)e
T
0

(
ZT

s WisZs

)−1
ZT

s Wis

{
Y −

p∑

ν=0

f
(ν)
s (xs)h

ν

ν!
Zseν

−
d∑

s′ 6=s

fs′(Xis′)Zsep+s′

}
.

Then, we obtain Q1n

{
f̂s(xs)− fs(xs)

}
= Q2n(xs). By Lemmas A.5, A.4 and A.3 and by

the definition of K∗
s,h(u, t;x) in (A.8), we now write

Q2n(xs) =
3∑

a=1

{
Pan(xs) +

c∑

l=1

Rla(xs) +Dsa (xs)

}
(A.10)

25



where for a = 1, 2, 3

Pan(xs) = n−2

n∑

i,j=1

w−s(Xi,−s)

ϕ(xs,Xi,−s)
K∗

s,h (Xjs − xs;Tj, xs,Xi,−s)Lg(Xj,−s −Xi,−s)Hjs (A.11)

with Hjs being σ(Xj,Tj)εj for a = 1, {fs(Xjs)−
∑p

ν=0 f
(ν)
s (xs)(Xjs − xs)

ν/ν!}Tjs for a = 2

and
∑d

s′=1,s′ 6=s{fs′(Xjs′)− fs′(Xis′)}Tjs′ .

In the following three lemmas, we derive the asymptotics for P1n, P2n and P3n.

Lemma A.7 As n→∞,

P1n(xs) = n−1

n∑

j=1

pjs(xs)εj + op{(nh log n)−1/2}

where pjs(xs) = w−s(Xj,−s)K
∗
s,h (Xjs − xs;Tj, xs,Xj,−s)ϕ−s(Xj,−s)σ(Xj,Tj)/ϕ(xs,Xj,−s).

Proof. By the definition (A.11) and using Lemma A.1 for geometrically β-mixing processes,

P1n(xs) = n−1

n∑

j=1

∫
w−s(x−s)

ϕ(xs,x−s)
K∗

s,h (Xjs − xs;Tj, xs,x−s)

×Lg(Xj,−s − x−s)ϕ−s(x−s)dx−sσ(Xj,Tj)εj + op{(nh log n)−1/2}.

By the change of variable x−s = Xj,−s − gv−s and the fact that L is of order q, it equals

n−1

n∑

j=1

w−s(Xj,−s)

ϕ(xs,Xj,−s)
K∗

s,h (Xjs − xs;Tj, xs,Xj,−s)ϕ−s(Xj,−s)σ(Xj,Tj)εj

+op{(nh log n)−1/2}.

This completes the proof of the lemma.

Lemma A.8 As n→∞, P2n(xs) = κs(xs)h
p+1 + op(h

p+1) where

κs(xs) = (p+ 1)!−1f (p+1)
s (xs)

∫
up+1E {w−s(X−s)TsK

∗
s (u;T, xs,X−s)} du.

Proof. By definition (A.11) and again using Lemma A.1, we derive

P2n(xs) =

∫
w−s(x−s)

ϕ(xs,x−s)
K∗

s,h (zs − xs; t, xs,x−s)Lg(z−s − x−s)

×
{
fs(zs)−

p∑

ν=0

f (ν)
s (xs)(zs − xs)

ν/ν!
}
tsψ(z, t)ϕ−s(x−s)dzdtdx−s {1 + op(1)} .
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By the changes of variables zs = xs + hu and z−s = x−s + gv−s, we obtain

P2n(xs) = hp+1(p+ 1)!−1

∫
w−s(x−s)

ϕ(xs,x−s)
K∗

s (u; t, xs,x−s) f
(p+1)
s (xs)u

p+1ts

×ϕ−s(x−s)ψ(xs,x−s, t)dudx−sdt {1 + op(1)}

= hp+1(p+ 1)!−1f (p+1)
s (xs)E

[
w−s(X−s)

∫
K∗

s (u; t, xs,X−s)u
p+1ts

ψ(t|xs,X−s)dudt
]
+ op(h

p+1).

This completes the proof of the lemma.

Lemma A.9 As n→∞, P3n(xs) = Op (g
q
max).

Proof. By definition (A.11) and applying Lemma A.1, one has

P3n(xs) =

∫
w−s(x−s)

ϕ(xs,x−s)
K∗

s,h (zs − xs; t, xs,x−s)Lg(z−s − x−s)

×
[∑

s′ 6=s

{fs′(zs′)− fs′(xs′)} ts′
]
ψ(z, t)ϕ−s(x−s)dzdtdx−s {1 + op(1)} .

After the changes of variables z−s = x−s + gv−s and zs = xs + hu, we obtain

P3n(xs) =

∫
w−s(x−s)

ϕ(xs,x−s)
K∗

s (u; t, xs,x−s)L(v−s)

[∑

s′ 6=s

{fs′(xs′ + gs′vs′)− fs′(xs′)} ts′
]

×ψ(xs + hu,x−s + gv−s, t)ϕ−s(x−s)dudv−sdtdx−s {1 + op(1)}
= Op(g

q
max)

since L is of order q by the assumption A1. Thus, we have proved the lemma.

Proof of Theorem 1. By Lemma A.7 and the martingale central limit theorem of Liptser

and Shirjaev (1980),
√
nhP1n(xs) for each xs ∈ supp(ws) is asymptotically normal with

mean 0 and variance

h

∫
w2
−s(z−s)

ϕ2(xs, z−s)
K∗2

s,h (zs − xs; t, xs, z−s)ϕ
2
−s(z−s)σ

2(z, t)ψ(z, t)dzdt {1 + o(1)} .

By the change of variable zs = xs + hu, the leading term of this equals

τ 2
s (xs) =

∫
w2
−s(z−s)

ϕ2(xs, z−s)
K∗2

s (u; t, xs, z−s)ϕ
2
−s(z−s)σ

2(xs, z−s, t)ψ(xs, z−s, t)dudz−sdt.

The theorem now follows immediately from Lemmas A.7, A.8, the conditions on the band-

widths as given in A7, and the fact that Q1n =
∫
w−s(z−s)ϕ−s(z−s)dz−s +Op(n

−1/2).
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Proof of Theorem 2. One first notes that (8) follows directly from (7), so we will only

show the latter. Now, from Lemmas A.7, A.8, A.9 and the conditions on the bandwidths,

we obtain

f̂s(xs)− fs(xs) = bs(xs)h
p+1 + n−1η−1

s

n∑

j=1

pjs(xs)εj + op(h
p+1). (A.12)

Applying (A.12), one only needs to show that the two stochastic terms n−1
∑n

j=1 pjs(xs)εj

and n−1
∑n

j=1 pjs′(xs′)εj for s 6= s′ have covariance of order o(n−1h−1). Noting that the εj’s

are i.i.d. white noise and each εi is independent of the vectors (Xj,Tj), j = 1, ..., i for each

i = 1, ..., n, we need only to show that

E {pjs(xs)pjs′(xs′)} = o(h−1). (A.13)

By change of variables technique for Xs and Xs′ which are contained in pjs(xs) and pjs′(xs′)

respectively, one may show that the left hand side of (A.13) is actually O(1), which proves

the theorem.

Proof of Theorem 5. For this proof, we use (A.10) again. Under the hypothesis (11),

P2n(xs) = Rl2(xs) = Ds2 (xs) = 0 and thus

Q1n

{
f̂s(xs)− α

}
= P1n(xs) +

c∑

l=1

Rl1(xs) +Ds1 (xs) + P3n(xs) +
c∑

l=1

Rl3(xs) +Ds3 (xs) .

Hence to study
∑n

k=1 f̂s(Xks)
2ws(Xks)/n, we derive the asymptotics of such as

∑n
k=1ws(Xks)

P 2
1n(Xks)/n. Let ξi = (Xi,Ti, Yi) and define

g̃n (ξi, ξj, ξk, ξl, ξm) = ws(Xks)
w−s(Xi,−s)

ϕ(Xks,Xi,−s)
K∗

s,h (Xjs −Xks;Tj, Xks,Xi,−s)

×Lg(Xj,−s −Xi,−s)σ(Xj,Tj)εj

× w−s(Xl,−s)

ϕ(Xks,Xl,−s)
K∗

s,h (Xms −Xks;Tm, Xks,Xl,−s)

×Lg(Xm,−s −Xl,−s)σ(Xm,Tm)εm.

Then, by the definition (A.11)

n∑

k=1

ws(Xks)P
2
1n(Xks)/n = n−5

n∑

i,j,k,l,m=1

g̃n (ξi, ξj, ξk, ξl, ξm) .

Next, we define gn (ξi, ξj, ξk, ξl, ξm) =
∑
g̃n (ξi′ , ξj′ , ξk′ , ξl′ , ξm′) /5!, where the sum is over

all possible permutations (i′, j′, k′, l′,m′) of (i, j, k, l,m). Then
∑n

k=1ws(Xks)P
2
1n(Xks)/n is
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expressed as a V statistic n−5
∑n

i,j,k,l,m=1 gn (ξi, ξj, ξk, ξl, ξm). It is easy to see that gn,0 = 0,

gn,1 = 0, and by changes of variables gn,2 (ξj, ξm) equals

σ(Xj,Tj)σ(Xm,Tm)εjεm

∫
ws(Xjs − huks)w−s(Xj,−s − gui,−s)w−s(Xm,−s − gul,−s)

ϕ(Xjs − huks,Xj,−s − gui,−s)ϕ(Xjs − huks,Xm,−s − gul,−s)

×K∗
s

(
uks;Tj, Xjs − huks,Xj,−s − gui,−s

)
L(ui,−s)L(ul,−s)

×K∗
s,h

(
Xms −Xjs + huks;Tm, Xjs − huks,Xm,−s − gul,−s

)

×ψ(xis,Xj,−s − gui,−s, ti)ψ(xls,Xm,−s − gul,−s, tl)ψ(Xjs − huks,xk,−s, tk)

×dxisdui,−sdxlsdul,−sduksdxk,−sdtidtldtk.

To establish the asymptotic normality of the off-diagonal sum 2n−2
∑

1≤j<m≤n gn,2 (ξj, ξm),

we use Lemma 3.2 of Hjellvik, Yao and Tjøstheim (1998). Let δ2
n be their σ2

n, i.e., δ
2
n =

∑
1≤j<m≤n var {2n−2gn,2 (ξj, ξm)}. Define λnk in the same way as their Mnk for k = 1, . . . , 6

with 2n−2gn,2 (ξj, ξm) taking the role of their ϕjm. If we prove that for some ζ > 0

n2δ−2
n

(
λ

1/(ζ+1)
n1 + λ

1/(ζ+1)
n5 + λ

1/2
n6

)
−→ 0 (A.14)

n3/2δ−2
n

(
λ

1/{2(ζ+1)}
n2 + λ

1/2
n3 + λ

1/{2(ζ+1)}
n4

)
−→ 0, (A.15)

then we establish that 2n−2
∑

1≤j<m≤n gn,2 (ξj, ξm) is asymptotically normal with mean 0

and variance δ2
n.

We compute δ2
n first. Note that

δ2
n =

2

n2

∫ {
σ(xj, tj)σ(xm, tm)

∫
ws(xjs)w−s(xj,−s)w−s(xm,−s)

ϕ(xjs,xj,−s)ϕ(xjs,xm,−s)

×K∗
s (uks; tj, xjs,xj,−s)K

∗
s,h (xms − xjs + huks; tm, xjs,xm,−s)

×L(ui,−s)L(ul,−s)ψ(xis,xj,−s, ti)ψ(xls,xm,−s, tl)ψ(xjs,xk,−s, tk)

×dxisdui,−sdxlsdul,−sduksdxk,−sdtidtldtk

}2

ψ(xj, tj)ψ(xm, tm)

×dxjdxmdtjdtm
{
1 +O

(
hp+1 + gq

)}
.

By the change of variable xms = xjs + hvs and further approximations of the functions, we

obtain δ2
n = {1 +O(hp+1 + gq)}n−2h−1η4

sγ
2
s , where

γ2
s =

2

η4
s

∫
w2
−s(x−s)w

2
−s(z−s)w

2
s(xs)

ϕ2(xs,x−s)ϕ2(xs, z−s)

{
K∗(c)

s (u; t1, t2, xs,x−s, z−s)
}2

×ϕ2
−s(x−s)ϕ

2
−s(z−s)σ

2(xs,x−s, t1)σ
2(xs, z−s, t2)ϕ

2
s(xs) (A.16)

×ψ(xs,x−s, t1)ψ(xs, z−s, t2)dudxsdx−sdz−sdt1dt2

and K
∗(c)
s (w; t1, t2, xs,x−s, z−s) =

∫
K∗

s (u; t1, xs,x−s)K
∗
s (w + u; t2, xs, z−s) du.
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Next, we approximate λnj. We only illustrate the calculation of λn4. For j < k and

l < m with all j, k, l,m different, we obtain

E |gn,2(ξj, ξk)gn,2(ξl, ξm)|2(1+ζ)

≤ const.h−4(1+ζ)+2
(
E|ε1|2(1+ζ)

)4 ∫ ∣∣σ(xj, tj)σ(xjs + hv,xk,−s, tk)σ(xl, tl)

×σ(xls + hv′,xm,−s, tm)
∣∣2(1+ζ)∣∣K∗(c)

s (v; tj, tk, xjs,xj,−s,xk,−s)

×K∗(c)
s (v′; tl, tm, xls,xl,−s,xm,−s)

∣∣2(1+ζ)
ψj,k,l,m(xj, tj;xjs + hv,xk,−s, tk;xl, tl;

xls + hv′,xm,−s, tm) dxjdtjdvdxk,−sdtkdxldtldv
′dxm,−sdtm,

where the integrations with respect to xj, dv, dxk,−s, xl, dv
′, dxm,−s are over compact sets.

By the assumption A6 the right hand side of the above inequality is bounded by

const.h−4(1+ζ)+2

∫
(‖tj‖‖tk‖‖tl‖‖tm‖)2(1+ζ)|σ̃(tj)σ̃(tk)σ̃(tl)σ̃(tm)|2(1+ζ)

×ϕ̃j,k,l,m(tj, tk, tl, tm) dtjdtkdtldtm

≤ const.h−4(1+ζ)+2.

This shows

n3/2δ−2
n λ

1/{2(ζ+1)}
n4 ³ n3/2 × n2h× n−4h−(1+2ζ)/(1+ζ) = n−(2p+2pζ+3+ζ)/{2(1+ζ)(2p+3)}.

Similarly, we can establish

n2δ−2
n λ

1/(ζ+1)
n1 ³ n2 × n2h× n−4h−2ζ/(ζ+1) = h(1−ζ)/(1+ζ),

n3/2δ−2
n λ

1/{2(ζ+1)}
n2 ³ n3/2 × n2h× n−4h−(1+2ζ)/(1+ζ) = n−(2p+2pζ+3+ζ)/{2(1+ζ)(2p+3)},

n3/2δ−2
n λ

1/2
n3 ³ n3/2 × n2h× n−4h−3/2 = (nh)−1/2,

n2δ−2
n λ

1/{2(ζ+1)}
n5 ³ n2 × n2h× n−4h−(1+2ζ)/{2(ζ+1)} = h1/{2(1+ζ)},

n2δ−2
n λ

1/2
n6 ³ n2 × n2h× n−4h−1/2 = h1/2.

Thus, if we take ζ such that 0 < ζ < 1, the convergences (A.14) and (A.15) hold.

By the martingale central limit theorem again, the diagonal sum n−2
∑n

j=1 gn,2 (ξj, ξj) is

also asymptotically normal with mean η2
svsn

−1h−1{1 +O(hp+1)}, where vs is given by

vs =

∫
w2
−s(x−s)ws(xs)

η2
sϕ

2(x)
K∗2

s (u; t,x)ϕ2
−s(x−s)σ

2(x, t)ψ(x, t)ϕs(xs)dudxdt. (A.17)

The asymptotic variance of n−2
∑n

j=1 gn,2 (ξj, ξj) is likewise calculated, and may be shown to

be of order n−3h−2.
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Therefore, we establish

nh1/2

{
n−2

n∑

j=1

n∑

m=1

gn,2 (ξj, ξm)−
η2
s

nh
vs

}
L→ N

(
0, η4

sγ
2
s

)
. (A.18)

Application of Lemma A.1 reveals that n−c
∑n

j1,...,jc=1 gn,c (ξj1 , ..., ξjc
) = o

(
n−1h−1/2

)
for

c = 3, 4, 5. Using Lemma A.1 again, now to terms such as
∑n

k=1ws(Xks)P
2
3n(Xks)/n,∑n

k=1ws(Xks)R
2
`1(Xks)/n and

∑n
k=1ws(Xks)R

2
`3(Xks)/n, one may show that they are all of

order o
(
n−1h−1/2

)
as well. Using Lemma A.4 one may also prove

∑n
k=1ws(Xks)D

2
s1(Xks)/n

and
∑n

k=1ws(Xks)D
2
s3(Xks)/n are both of order o (h2p+4) = o

(
n−1h−1/2

)
. Similar arguments

establish that {
∑n

i=1 f̂s(Xis)ws(Xis)}2 = o
(
n−1h−1/2

)
. Hence,

Vns = Q−2
1n

n∑

k=1

P 2
1n(Xks)ws(Xks)/n+ o

(
n−1h−1/2

)
.

This completes the proof of Theorem 5.

A.3 Proofs of Theorems 3, 4 and 6

Define qsu(v; t)
T =

(
p(v)T tsu, t

T
−(su)

)
and Ssu(x) in the same way as Ss(x) with Ts and T−(s)

being replaced by Tsu and T−(su), respectively. Define an equivalent kernel K∗
(su)(v; t,x) =

eT0 S
−1
su (x)qsu(v; t)K(v). Let K

∗(c)
(su) denote the two-folded convolution of K∗

(su). Theorems 3

and 6 can be proved in the same way as in the proofs of Theorems 1 and 5 with the following

definitions of κsu, τ
2
su, γsu and vsu:

κsu(xs) =
f

(p+1)
su (xs)

(p+ 1)!

∫
up+1E

{
w−s(X−s)TsuK

∗
(su)(v;T, xs,X−s)

}
dv, (A.19)

τ 2
su(xs) =

∫
w2
−s(z−s)

ϕ2(xs, z−s)
K∗2

(su) (v; t, xs, z−s)ϕ
2
−s(z−s)σ

2(xs, z−s, t)

×ψ(xs, z−s, t)dvdz−sdt, (A.20)

γ2
su =

2

η4
s

∫
w2
−s(x−s)w

2
−s(z−s)w

2
s(xs)

ϕ2(xs,x−s)ϕ2(xs, z−s)

{
K
∗(c)
(su) (v; t1, t2, xs,x−s, z−s)

}2

×ϕ2
−s(x−s)ϕ

2
−s(z−s)σ

2(xs,x−s, t1)σ
2(xs, z−s, t2)ϕ

2
s(xs) (A.21)

×ψ(xs,x−s, t1)ψ(xs, z−s, t2)dvdxsdx−sdz−sdt1dt2,

vsu =

∫
w2
−s(x−s)ws(xs)

η2
sϕ

2(x)
K∗2

(su) (v; t,x)ϕ
2
−s(x−s)σ

2(x, t)ψ(x, t)

×ϕs(xs)dvdxdt. (A.22)

The proof of Theorem 4(i) is the same as that of the first part of Theorem 2. For the
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proof of Theorem 4(ii), define

pjsu(xs) =
w−s(Xj,−s)

ϕ(xs,Xj,−s)
K∗

(su),h (Xjs − xs;Tj, xs,Xj,−s)ϕ−s(Xj,−s)σ(Xj,Tj)

where K∗
(su),h (v; t,x) = (1/h)K∗

(su) (v/h; t,x). We observe

f̂su(xs)− fsu(xs) = bsu(xs)h
p+1 + n−1η−1

s

n∑

j=1

pjsu(xs)εj + op(h
p+1).

Thus for the case s = s′, we obtain cov
(
f̂su(xs), f̂su′(xs)

)
= η−2

s τsuu′(xs)n
−1h−1{1 + o(1)}

where

τsuu′(xs) =

∫
w2
−s(z−s)

ϕ2(xs, z−s)
K∗

(su) (v; t, xs, z−s)K
∗
(su′) (v; t, xs, z−s)ϕ

2
−s(z−s)

×σ2(xs, z−s, t)ψ(xs, z−s, t)dvdz−sdt, (A.23)

We note that τ 2
su(xs) = τsuu(xs). This completes the proof of Theorem 4.
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Table 1: MISEs of the estimators f̂1, f̂2 and f̂3 for the i.i.d. case.

f1 f2 f3

n=50 0.0559 0.1144 0.1336

n=100 0.0300 0.0515 0.0617

n=250 0.0108 0.0223 0.0225

Table 2: Proportions among the 100 replications of rejecting the null hypotheses Hs0, s =

1, 2, 3, at the significant level 0.05 for the i.i.d. case.

H10 H20 H30

n=50 0.94 0.85 0.02

n=100 1 1 0.04

n=250 1 1 0.08
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Table 3: Average squared residuals (ASR) and average squared prediction errors (ASPE)

obtained from fitting twelve VCAR models with the German real GNP data. Each model

is identified by the four digits which indicate the order in which the lagged variables Yt−1,

Yt−2, Yt−2 and Yt−4 enter the VCAR model. For example, the model ‘1234’ means Yt =

f1(Yt−1)Yt−2 + f2(Yt−3)Yt−4 + (noise). The partially linear VCAR model at the bottom is

Yt = f1Yt−2 + f2(Yt−3)Yt−4 + (noise).

Model ASR ASPE

1234 0.00021 0.00011

1243 0.00040 0.00019

1324 0.00025 0.00013

1342 0.00039 0.00016

1423 0.00026 0.00014

1432 0.00024 0.00009

2134 0.00023 0.00017

2143 0.00051 0.00037

2341 0.00049 0.00032

2431 0.00024 0.00015

3142 0.00041 0.00023

3241 0.00038 0.00017

Linear AR 0.00059 0.00041

Partially Linear VCAR 0.00032 0.00024
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Figure 1: Plots of the West German real GNP quarterly data from 1960:1 to 1990:4. Panel

(a) shows log(GNP) over time, and (b) depicts the first difference of log(GNP).
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Figure 2: Estimated functions under the models (20) and (21). Panels (a) and (b) depict f̂1

and f̂2, respectively, for the model (20), while (c) and (d) are for the model (21).

38



0 5 10 15 20

Lag

-0
.2

-0
.0

0.
2

0.
4

0.
6

0.
8

1.
0

A
C

F

a

0 5 10 15 20

Lag

-0
.2

-0
.0

0.
2

0.
4

0.
6

0.
8

1.
0

A
C

F

b

0 5 10 15 20

Lag

-0
.2

-0
.0

0.
2

0.
4

0.
6

0.
8

1.
0

A
C

F

c

0 5 10 15 20

Lag

-0
.2

-0
.0

0.
2

0.
4

0.
6

0.
8

1.
0

A
C

F

d

Figure 3: Autocorrelations of standardized residuals ε̂t. Panels (a) and (b) are for the model

(20) and depict the autocorrelations of |ε̂t| and ε̂2
t , respectively, while (c) and (d) are for the

model (21). The dotted horizontal lines at levels ±2×n−1/2 represent the 95.44% confidence

bands of the autocorrelation functions.
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Figure 4: Prediction for the West German real GNP quarterly data based on the marginal

integration fits of the varying coefficient models (20) and (21). Panel (a) is for the model

(20), and (b) is for (21). Solid lines represent the predicted values Ŷt, while the dotted are

for the observed values Yt.
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