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Abstract: Ambiguity, also called Knightian or model uncertainty, is a key feature in

financial modeling. A recent paper by Maccheroni et al. (2004) characterizes investor

preferences under aversion against both risk and ambiguity. Their result shows that these

preferences can be numerically represented in terms of convex risk measures. In this paper

we study the corresponding problem of optimal investment over a given time horizon, using

a duality approach and building upon the results by Kramkov and Schachermayer (1999,

2001).

Key words: Model uncertainty, ambiguity, convex risk measures, optimal investments,

duality theory

1 Introduction

In the vast majority of the literature on optimal investments in financial markets it is

assumed that decisions are based on a classical expected utility criterion in the sense

of John von Neumann and Oscar Morgenstern. Underlying this concept is the assump-

tion that expected utility is computed in terms of a probability measure that accurately

models future stock price evolutions. In reality, however, the choice of this probability

measure is itself subject to model uncertainty, often also called ambiguity or Knightian

uncertainty. Economists have long been aware of this fact, and in the late 1980’s Gilboa

and Schmeidler [36, 20] formulated axioms on investor preferences that should account

for aversion against both risk and ambiguity. They showed that these preferences can be

numerically represented by a ‘coherent’ robust utility functional of the form

X 7−→ inf
Q∈Q

EQ[ U(X) ], (1)

∗Supported by Deutsche Forschungsgemeinschaft through the SFB 649 “Economic Risk”.
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where U is a utility function and Q is a class of probability measures; see also [18, Section

2.5] for a survey. The elements of Q can be interpreted as prior models, which possibly

describe the probabilities of future scenarios. Taking the infimum of all expected utilities

for these prior models thus corresponds to a worst-case approach. Systematic analyses of

optimal investment decisions under this type of preferences were given, among others, by

Talay and Zheng [38], Quenez [30], the author [32, 33], Burgert and Rüschendorf [5], Wu

and the author [35], Föllmer and Gundel [15], Müller [29], and Hernández-Hernández and

the author [22].

One might object that robust utility functionals of the form (1) leave no room for

discriminating models in Q according to their plausibility. If, for instance, the class of

prior models arises as a confidence set in statistical estimation, then the original estimate

might have a higher plausibility, and thus should receive a higher weight, than a model

at the boundary of the confidence set. Or one might wish to include the results of certain

stress test models when their outcomes differ significantly from the ones of plausible

priors; see, e.g., Carr et al. [6] and [18, Section 4.8]. These objections to robust utility

functionals of the form (1) correspond to objections that can be raised on an axiomatic

level against the axiom of ‘certainty independence’ introduced in [20]. By weakening this

axiom, Maccheroni et al. [27] recently obtained a numerical representation of the form

X 7−→ inf
Q

(
EQ[ U(X) ] + γ(Q)

)
, (2)

where the function γ assigns a penalization weight γ(Q) to each possible probabilistic

model Q. This class of robust utility functionals clearly extends the class (1) and leaves

room for a discrimination among possible prior models. The move from (1) to (2) is

similar to the generalization of coherent by convex risk measures [16, 17, 18, 19].

Our goal in this paper is to study the problem of constructing dynamic investment

strategies whose terminal wealth maximizes a functional (2) for a given initial investment.

More precisely, we will build on the results by Kramkov and Schachermayer [25, 26] and

develop the duality theory for the maximization of the robust utility in a very general set-

ting and under rather weak assumptions. Our main results are a minimax identity stating

that the maximization over strategies and the minimization over measures can be inter-

changed, an analysis of the duality relations between the primal and the dual problems,

and an existence and uniqueness result for optimal strategies based on a characterization

of the optimal terminal wealth. The duality theory for ‘coherent’ robust utility function-

als of the form (1) was first developed in [30] and later extended in [35]. Our results

given here are stronger than the ones in [35] even when restricted to the ‘coherent’ case.

In particular, we discuss the structure of the set of all solutions to the dual (and hence

the primal) problem and prove the existence of a unique solution that satisfies a natural

property of maximality. This discussion requires us to work with a setup of the dual

problem, which is somewhat different from the one introduced in [35]. We also discuss in

detail what happens if even the maximal solution does not have full support.

In many situations, the dual problem is simpler than the primal one, and so it can

be advantageous to apply some kind of control approach to the dual rather than to the



3

primal problem. This is already true for the maximization of classical von Neumann-

Morgenstern utility, but in robust utility maximization there is the additional advantage

that the dual problem simply involves the minimization of a convex functional while the

primal problem requires to find a saddlepoint of a functional, which is concave in one

argument and convex in the other. In the case of ‘coherent’ robust utility maximization,

[30] combines duality techniques with a control approach based on backward stochastic

differential equations, while in [22] a Hamilton-Jacobi-Bellman partial differential equation

(PDE) is derived for the dual problem. Based on the duality results given in (an earlier

version of) this paper, Hernández-Hernández and the author [23] recently obtained an

explicit PDE characterization of the optimal strategy in an incomplete diffusion market

model where the robust utility functional is defined in terms of a logarithmic utility

function and a rather general dynamically consistent penalty function γ(·). This penalty

function is described in Example 3.4.

Another feature of the duality method is that it works in a much more general set-

ting than control techniques. The latter approach requires in particular the dynamic

consistency of the underlying convex risk measure

ρ(Y ) := sup
Q

(
EQ[−Y ]− γ(Q)

)
in the sense described, e.g., by Epstein and Schneider [14] for coherent risk measures and

by Cheridito et al. [7] for the general case. This requirement of dynamic consistency rules

out many examples, for which the dual approach makes perfect sense; see the discussion

in Section 3 and in particular Remark 3.5. See also [32] for the explicit computation of

optimal strategies in ‘coherent’ examples, which are not dynamically consistent.

In Section 2 we formulate our hypotheses and state our main results. As in standard

expected utility maximization, we observe that the duality for the value functions of the

robust problem holds under rather mild conditions, while a stronger condition is necessary

to guarantee the existence of optimal strategies. In Section 3 we present possible choices

for penalty functions γ(·). We also give examples showing that the value function of

the robust problem may not be continuously differentiable. Equivalently, the dual value

function may not be strictly convex. We also illustrate that the maximal solution of the

dual problem may fail to have full support. Proofs are given in Section 4.

2 Statement of main results

As Kramkov and Schachermayer [25, 26], we assume that the utility function of the

investor is a strictly increasing and strictly concave function U : (0,∞) → R, which also

is continuously differentiable and satisfies the Inada conditions

U ′(0+) = +∞ and U ′(∞−) = 0.

Payoffs are modeled as random variables X on a given probability space (Ω,F , P). Their

utility shall be assessed in terms of a robust utility functional of the form

X 7−→ inf
Q

(
EQ[ U(X) ] + γ(Q)

)
. (3)
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Here we assume that γ is bounded from below and equal to the minimal penalty function

of the convex risk measure ρ defined by

ρ(Y ) := sup
Q�P

(
EQ[−Y ]− γ(Q)

)
, Y ∈ L∞(P).

That is, γ satisfies the biduality relation

γ(Q) = sup
Y ∈L∞(P)

(
EQ[−Y ]− ρ(Y )

)
; (4)

see [16, 18]. We may assume without loss of generality that ρ is normalized in the sense

that ρ(0) = − infQ γ(Q) = 0. We also assume the following conditions:

Assumption 2.1 The risk measure ρ is continuous from below: If Yn ∈ L∞ increases

a.s. to Y ∈ L∞, then ρ(Yn) → ρ(Y ). It is also sensitive1 in the sense that every nonzero

Y ∈ L∞− satisfies ρ(Y ) > 0.

In Section 3 we have collected a number of particular examples for economically and

statistically meaningful choices for γ. If γ only takes the values 0 and +∞, then (3)

reduces to the representation of a robust utility functional in the sense of Gilboa and

Schmeidler [20]:

X 7−→ inf
Q∈Q

EQ[ U(X) ] (5)

for a convex set Q of probability measures. In this case, Assumption 2.1 is equivalent to

[35, Assumption 2.1], as can be seen by combining the general representation theory of

convex and coherent risk measures [18] with [35, Lemma 3.2] and Lemma 4.1 below. Even

when restricted to this special case, our results will be stronger than those obtained in

[35]. Particular examples for optimal investment problems with robust utility functionals

of type (5) were analyzed by Quenez [30] and the author [32].

Remark 2.2 If the utility function U is not bounded from below, we must be careful

in defining the expression infQ

(
EQ[ U(X) ] + γ(Q)

)
. First, it is clear that probabilistic

models with an infinite penalty γ(Q) should not contribute to the value of the robust

utility functional. We therefore restrict the infimum to models Q in the domain

Q := {Q � P | γ(Q) < ∞}

of γ. That is, we precise (3) by writing

X 7−→ inf
Q∈Q

(
EQ[ U(X) ] + γ(Q)

)
.

Second, we have to address the problem that the Q-expectation of U(X) might not be well-

defined in the sense that EQ[ U+(X) ] and EQ[ U−(X) ] are both infinite. This problem

will be resolved by extending the expectation operator EQ[ · ] to the entire set L0:

EQ[ F ] := sup
n

EQ[ F ∧ n ] = lim
n↑∞

EQ[ F ∧ n ] for arbitrary F ∈ L0. (6)

It is easy to see that in doing so we retain the concavity of the functional X 7→ EQ[ U(X) ]

and hence of the robust utility functional.

1Sensitivity is also called relevance.
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For the financial market model, we use the same setup as Kramkov and Schachermayer

[25, 26]. The discounted price process of d assets is modeled by a stochastic process S =

(St)0≤t≤T . We assume that S is a d-dimensional semimartingale on (Ω,F , (Ft)0≤t≤T , P). A

self-financing trading strategy can be regarded as a pair (x, ξ), where x ∈ R is the initial

investment and ξ = (ξt)0≤t≤T is a d-dimensional predictable and S-integrable process.

The value process X associated with (x, ξ) is given by X0 = x and

Xt = X0 +

∫ t

0

ξr dSr , 0 ≤ t ≤ T .

For x > 0 given, we denote by X (x) the set of all value processes X that satisfy X0 ≤ x

and are admissible in the sense that Xt ≥ 0 for 0 ≤ t ≤ T . We assume that our model is

arbitrage-free in the sense that M 6= ∅, where M denotes the set of measures equivalent

to P under which each X ∈ X (1) is a local martingale; see [25]. Thus, our main problem

can be stated as follows:

Maximize inf
Q∈Q

(
EQ[ U(XT ) ] + γ(Q)

)
among all X ∈ X (x).

Consequently, the value function of the robust problem is defined as

u(x) := sup
X∈X (x)

inf
Q∈Q

(
EQ[ U(XT ) ] + γ(Q)

)
.

One of our first results will be the minimax identity

u(x) = inf
Q∈Q

(
uQ(x) + γ(Q)

)
, where uQ(x) := sup

X∈X (x)

EQ[ U(XT ) ].

The function uQ is the value function of the optimal investment problem for an investor

with subjective measure Q ∈ Q. Next, we define as usual the convex conjugate function

V of U by

V (y) := sup
x>0

(
U(x)− xy

)
, y > 0.

With this notation, it was stated in Theorem 3.1 of [25] that, for Q ∼ P with finite value

function uQ,

uQ(x) = inf
y>0

(
vQ(y) + xy

)
and vQ(y) = sup

x>0
(uQ(x)− xy), (7)

where the dual value function vQ is given by

vQ(y) = inf
Y ∈YQ(y)

EQ[ V (YT ) ], Q ∈ Q,

and the space YQ(y) is defined as the set of all positive Q-supermartingales such that

Y0 = y and XY is a Q-supermartingale for all X ∈ X (1). We thus define the dual value

function of the robust problem by

v(y) := inf
Q∈Q

(
vQ(y) + γ(Q)

)
= inf

Q∈Q
inf

Y ∈YQ(y)

(
EQ[ V (YT ) ] + γ(Q)

)
.
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Definition 2.3 Let y > 0 be such that v(y) < ∞. A pair (Q, Y ) is a solution of the dual

problem if Q ∈ Q, Y ∈ YQ(y), and v(y) = EQ[ V (YT ) ] + γ(Q).

Let us finally introduce the set Qe of measures in Q that are equivalent to P:

Qe := {Q ∈ Q |Q ∼ P}.

Our assumptions on γ guarantee that Qe is always nonempty; see Lemma 4.1.

Theorem 2.4 In addition to the above assumptions, let us assume that

uQ0(x) < ∞ for some x > 0 and some Q0 ∈ Qe (8)

and that

v(y) < ∞ implies vQ1(y) < ∞ for some Q1 ∈ Qe. (9)

Then the robust value function u is concave, takes only finite values, and satisfies

u(x) = sup
X∈X (x)

inf
Q∈Q

(
EQ[ U(XT ) ] + γ(Q)

)
= inf

Q∈Q
sup

X∈X (x)

(
EQ[ U(XT ) ] + γ(Q)

)
.

Moreover, the two robust value functions u and v are conjugate to another:

u(x) = inf
y>0

(
v(y) + xy

)
and v(y) = sup

x>0

(
u(x)− xy

)
. (10)

In particular, v is convex. The derivatives of u and v satisfy

u′(0+) = ∞ and v′(∞−) = 0. (11)

If furthermore v(y) < ∞, then the dual problem admits a solution (Q̂, Ŷ ) that is maximal

in the sense that any other solution (Q, Y ) satisfies Q � Q̂ and YT = ŶT Q-a.s.

It is possible that the maximal Q̂ is not equivalent to P; see Example 3.2 below.

If this happens, then Q̂ considered as a financial market model on its own may admit

arbitrage opportunities. In this light, one also has to understand the conditions (8) and

(9): They exclude the possibility that the value functions uQ and vQ are only finite for

some degenerate model Q ∈ Q, for which the duality relations (7) need not hold.

The situation simplifies considerably if we assume that all measures in Q are equiv-

alent to P. In this case, condition (9) is always satisfied and (8) can be replaced by the

assumption that u(x) < ∞ for some x > 0. Moreover, the optimal Ŷ is then P-almost

surely unique. Despite this fact, however, and in contrast to the situation in [25, 26], it

can happen that the dual value function v is not strictly convex—even if all measures in Q
are equivalent to P. Equivalently, the value function u may fail to be continuously differ-

entiable. This fact will be illustrated in Example 3.1 below. A sufficient condition for the

strict convexity of v and the continuous differentiability of u is given in the next result. It

applies in particular to entropic penalties (Example 3.3) and to penalty functions defined

in terms of many other statistical distance functions (Example 3.8).
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Proposition 2.5 Suppose that the assumptions of Theorem 2.4 are satisfied and γ is

strictly convex on Q. Then u is continuously differentiable and v is strictly convex on its

domain.

Our next aim is to get existence results for optimal strategies. In the classical case

Q = {P}, it was shown in [26] that a necessary and sufficient condition for the existence

of optimal strategies at each initial capital is the finiteness of the dual value function vP.

This condition translates as follows to our robust setting:

vQ(y) < ∞ for all y > 0 and each Q ∈ Qe. (12)

Recall from [26, Note 2] that (12) holds as soon as uQ is finite for all Q ∈ Qe and the

asymptotic elasticity of the utility function U is strictly less than one:

AE(U) = lim sup
x↑∞

xU ′(x)

U(x)
< 1.

Theorem 2.6 In addition to the assumptions of Theorem 2.4, let us assume (12). Then

both value functions u and v take only finite values and satisfy

u′(∞−) = 0 and v′(0+) = −∞. (13)

The robust value function u is strictly concave, and the dual value function v is contin-

uously differentiable. Moreover, for any x > 0 there exist an optimal strategy X̂ ∈ X (x)

for the robust problem. If y > 0 is such that v′(y) = −x and (Q̂, Ŷ ) is a solution of the

dual problem, then

X̂T = I(ŶT ) Q̂-a.s. (14)

for I := −V ′ and (Q̂, X̂) is a saddlepoint for the robust problem:

u(x) = inf
Q∈Q

(
EQ[ U(X̂T ) ] + γ(Q)

)
= E bQ[ U(X̂T ) ] + γ(Q̂) = u bQ(x) + γ(Q̂).

Furthermore, X̂Ŷ Ẑ is a martingale under P, where (Ẑt)0≤t≤T is the density process of Q̂

with respect to P .

In the preceding theorem, let us take (Q̂, Ŷ ) as a maximal solution of the dual problem

as constructed in Theorem 2.4. Then the solution X̂T will be P-a.s. unique as soon as

Q̂ ∼ P. This equivalence holds trivially if all measures in Q are equivalent to P. In the

general case, however, Example 3.2 will show that Q̂ need not be equivalent to P, so that

(14) cannot guarantee the P-a.s. uniqueness of X̂T . Nevertheless, we can construct an

optimal strategy from a given solution of the dual problem by superhedging an appropriate

contingent claim H ≥ 0:

Corollary 2.7 Suppose the assumptions of Theorem 2.6 hold. Let (Q̂, Ŷ ) be a solution

of the dual problem at level y > 0 and consider the contingent claim

H := I(ŶT )I
{ bZ>0}

,
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where dQ̂ = Ẑ dP. Then x = −v′(y) is the minimal initial investment x′ > 0 for which

there exists some X ∈ X (x′) such that XT ≥ H P-a.s. If furthermore X̂ ∈ X (x) is such a

strategy, then it is a solution for the robust utility maximization problem at initial capital

x.

Remark 2.8 Instead of working with the terminal values of processes in the space YQ(y),

it is sometimes more convenient to work with the densities of measures in the set M of

equivalent local martingale measures. In fact, the dual value function satisfies

v(y) = inf
P ∗∈M

inf
Q∈Qe

(
EQ

[
V

(
y
dP ∗

dQ

) ]
+ γ(Q)

)
. (15)

This identity follows from Lemma 4.4 below and the corresponding identity in [25, 26].

Since the infimum in (15) need not be attained, it is often not possible to represent

the optimal solution X̂T in terms of the density of an equivalent martingale measure.

Nevertheless, Föllmer and Gundel [15] recently observed that the elements of YQ(1) can

be interpreted as density processes of ‘extended martingale measures’.

3 Examples and Counterexamples

The first example in this section illustrates that the value function u need not be contin-

uously differentiable and its dual v need not be strictly convex, even if all measures in

Q are mutually equivalent. The second example illustrates that the maximal solution of

the dual problem, as constructed in Theorem 2.4, may not have full support. The subse-

quent examples provide explicit choices for penalty functions γ, which are natural from

an economical or statistical point of view. They will also illustrate that control methods

are often not feasible for robust optimization problems.

Example 3.1 (Non-differentiability of the value function) We consider a one-period

trinomial model where the risky asset starts off at S0 = 1. At time t = 1, it can take the

values 0, 1, and 2. Consequently, we let Ω := {ω−, ω0, ω+} and define S1(ω±) := 1 ± 1

and S1(ω0) := 1. A probability measure Q on Ω is determined by p := Q[ {ω+}] and

q := Q[ {ω−}]. This model fits into the semimartingale framework by taking St := 1

and Ft := {∅, Ω} as long as t < 1 and F1 := σ(S1). It is arbitrage-free and satisfies the

assumption M 6= ∅ iff p and q are both strictly positive. An investment ξ in the risky

asset made for an initial wealth x results in a terminal payoff X1 = x+ξ(S1−S0). Hence,

ξ is admissible iff |ξ| ≤ x. Let us take U(x) =
√

x. Then the Q-expected utility of an

admissible investment ξ is given by

EQ

[
U(x + ξ(S1 − S0))

]
= p

√
x + ξ + (1− p− q)

√
x + q

√
x− ξ.

Optimizing over ξ yields that

ξ = x · p2 − q2

p2 + q2
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is the unique optimal strategy for Q. Now we take 0 < a < b < 2/3 and define Q as the

set of all measures Qp for which q = p/2 and a ≤ p ≤ b. This set Q is parameterized by p

and consists of mutually equivalent measures. For Qp ∈ Q, the value function is given by

uQp(x) =
√

x(1 + βp),

where β =
√

8/5− 3/2 + 1/
√

10 > 0. The penalty function

γ(Q) :=

{
β(b− p) if Q = Qp ∈ Q,

+∞ otherwise,

is convex and lower semicontinuous and thus satisfies our assumptions. By Theorem 2.4,

the robust value function is given by

u(x) = inf
Q∈Q

(
uQ(x) + γ(Q)

)
=
√

x + βb + β inf
a≤p≤b

(
p
√

x− p
)
.

The infimum on the right equals b
√

x − b for x < 1 and a
√

x − a for x > 1. Hence, u is

not continuously differentiable at x = 1, and v cannot be strictly convex; see, e.g., [31,

Theorem V.26.3].

Example 3.2 (The maximal Q̂ may fail to have full support) The fact that the

measure Q̂ associated with the maximal solution for the dual problem may not be equiv-

alent to P can be deduced from [35, Example 2.5 and Theorem 2.6]. Here we give a more

direct argument within the setting of [35, Example 2.5]. We consider a one-period model

in discrete time (t = 0, 1) with two risky assets S1, S2 satisfying S1
0 = S2

0 = 1. Under the

measure P := Q1, the first asset S1
1 has the distribution

Q1[ S
1
1 = 2 ] =: q = 1−Q1[ S

1
1 = 0 ],

where 1/2 < q < 1. The second asset S2
1 has support {0, 1, . . . }, and finite expected value

EQ1 [ S
2
1 ] > S2

0 = 1. We take P := Q1 as our reference measure. We introduce another

measure Q0 � P by requiring that

Q0[ S
1
1 = 2 ] = Q0[ S

1
1 = 0 ] = 1/2 and Q0[ S

2
1 = 0 ] = 1.

We define γ(Q) = 0 if Q = Qα := αQ1 + (1 − α)Q0 for some 0 ≤ α ≤ 1 and γ(Q) = ∞
otherwise. Note that a trading strategy can only be admissible for P = Q1 if it does not

contain short positions in the second asset, because S2
1 is unbounded. Hence, under Q0

any strategy X ∈ X (1) is a supermartingale, and it follows that vQ0(y) = V (y). Under

Qα with α > 0, any long position in the first asset will be a submartingale, and so we

must have vQα(y) > V (y). This shows that Q̂ = Q0 and Ŷ1 = yI
{S2

1=0}
is the unique

solution of the dual problem. Moreover, one can easily show that X̂1 ≡ x is the unique

solution of the primal problem; see [35, Example 2.5]. The constant y = I(x), however,

does not belong to any of the spaces YQα(y) for α > 0. This illustrates that it is possible

that the duality relation

X̂T = I(ŶT )
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cannot be extended to a P-a.s. identity. Finally, note that Q0 considered as a market

model on its own has not the same admissible strategies as P, since short selling the

second asset is admissible in the model Q0. In fact, such short sales even create arbitrage

opportunities under Q0. ♦

Example 3.3 (Entropic penalties) A popular choice for γ is taking (a multiple of)

the relative entropy with respect to P, which is defined as

H(Q|P) =

∫
dQ

dP
log

dQ

dP
dP = sup

Y ∈L∞

(
EQ[ Y ]− log E[ eY ]

)
, Q � P;

see, e.g., [18, Sections 3.2 and 4.9]. Due to the classical duality formula

log E[ eX ] = sup
Q∈Q

(
EQ[ X ]−H(Q|P)

)
, (16)

the choice γ(Q) = 1
θ
H(Q|P) corresponds to the utility functional

inf
Q∈Q

(
EQ[ U(XT ) ] + γ(Q)

)
= −1

θ
log E

[
e−θU(XT )

]
of the terminal wealth, which obviously satisfies Assumption 2.1. Its maximization

is equivalent to the maximization of the ordinary expected utility E[ Ũ(XT ) ], where

Ũ(x) = −e−θU(x) is strictly concave, increasing, and satisfies the Inada conditions. Thus,

robustness effects are only felt in intertemporal optimization problems; see Hansen and

Sargent [21], Barrieu and El Karoui [2], or Bordigoni et al. [4]. For related problems see,

e.g., El Karoui et al [13], Schroder and Skiadas [37], and the references therein.

The use of entropic penalties in intertemporal optimization problems is facilitated

by the dynamic consistency of the corresponding conditional risk measure ρt(X) :=
1
θ
log E[ e−θX | Ft ], namely,

ρ0(−ρt(Y )) = ρ0(Y ) for all Y ∈ L∞. (17)

This property of dynamic consistency corresponds to the Bellman principle in dynamic

programming and is the essential ingredient for the application of control methods.

Example 3.4 (A class of dynamically consistent penalties) Suppose that the fil-

tration (Ft)0≤t≤T is generated by a d-dimensional standard Brownian motion W . Then

for every measure Q � P there exists a d-dimensional predictable process η such that∫ T

0
|ηt|2 dt < ∞ Q-a.s. and dQ/dP = E(

∫
0
ηt dWt)T Q-a.s., where E(M)t = exp(Mt−〈M〉t)

denotes the stochastic exponential of a continuous semimartingale M . Let h : R → [0,∞]

be a lower semicontinuous proper convex function and suppose that there are constants

κ1, κ2 > 0 such that h(x) ≥ κ1|x|2 − κ2. Then the penalty functions

γt(Q) := EQ

[ ∫ T

t

h(ηu) du
∣∣Ft

]
define a dynamically consistent family (ρt)0≤t≤T of risk measures. Moreover, γ0 is the

minimal penalty function of ρ0, and ρ0 satisfies Assumption 2.1; see [23, Lemma 4.1]. Note

that the case h(x) = 1
2
|x|2 corresponds to the entropic penalty function γ(Q) = H(Q|P).
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Remark 3.5 Recently, the dynamic consistency (17) of risk measures has been the sub-

ject of intense study; see, e.g., [7], [12], and the references therein. As explained above,

it is the crucial property needed for an application of control methods and thus greatly

facilitates computations. As a normative economic postulate, however, it is debatable

as it would require that the investor does not change the penalty function for the en-

tire investment period [0, T ] (apart from the obvious Markovian-type updating). But

financial models are typically not accurate, and each piece of freshly revealed information

might require to adjust models and hence penalty functions. In reality, this fact is usually

taken into account by a periodic model recalibration, resulting in ever changing model

parameters and thus non-Markovian updating.

In addition to the argument in the preceding remark, the following examples will

illustrate that some natural risk measures do not satisfy the property (17). These examples

all belong to the class of law-invariant convex risk measures. The failure of dynamic

consistency for law-invariant coherent risk measures has already been pointed out by

Delbaen [10]. In [32] one can find number of explicit computations of optimal strategies

for robust utility functionals defined in terms of coherent risk measures for which dynamic

consistency (17) is not given. The method in [32], however, is confined to complete market

models, whereas our duality results presented in Section 2 are available in the general case.

Example 3.6 (Shortfall risk) Let ` : R → R be convex, increasing, and nonconstant

and take x in the interior of `(R). The associated shortfall risk measure

ρ(Y ) := inf
{

m ∈ R |E[ `(−Y −m) ] ≤ x
}
, Y ∈ L∞, (18)

was introduced by Föllmer and the author in [16]. Assumption 2.1 is satisfied due to [18,

Proposition 4.104]. Using (16), one sees that the choice `(y) = eθy corresponds to the

entropic penalty γ(Q) = 1
θ
H(Q|P). For general `, the penalty function is given by

γ(Q) = inf
λ>0

1

λ

(
x + E

[
`∗

(
λ

dQ

dP

) ])
= inf

λ>0

(
λx + λE

[
`∗

(
λ−1dQ

dP

) ])
, Q � P, (19)

where `∗ is the Fenchel-Legendre transform of `; see [16, Theorem 10] or [18, Theorem

4.106]. The risk measure ρ satisfies ρ(0) = 0 if we take x = `(0). It induces a dynamic

risk measure ρt, 0 ≤ t ≤ T , in a canonical way by replacing the expectation operator in

(18) with a conditional expectation. It is easy to see that this dynamic risk measure is

weakly dynamically consistent in the sense that

ρt(Y ) ≤ 0 P-a.s. ⇒ ρ0(Y ) ≤ 0 and ρt(Y ) ≥ 0 P-a.s. ⇒ ρ0(Y ) ≥ 0; (20)

see Weber [39]. This weak property, however, does not guarantee the validity of (17), as

is illustrated by the following simple example.

Example 3.7 (Shortfall risk may not be dynamically consistent) As a loss func-

tion we take `(y) = (y+ε)+, where 0 < ε < 1/4. Let Y1, Y2 be two Bernoulli random vari-

ables such that P[ Yi = 0 ] = P[ Yi = 1 ] = 1/2, i = 1, 2. Suppose that Y1 is F1-measurable



12

and Y2 is independent of F1, while F0 is trivial. We let Y := −Y1Y2 and compute its

risk under the dynamic shortfall risk measure arising from (18), which is normalized if

we choose x = ε. A straightforward computation then shows that ρ0(Y ) = 1− 3ε, while

ρ1(Y ) = (1 − ε)Y1 and ρ0(−ρ1(Y )) = 1 − 2ε. We believe that this failure of dynamic

consistency for shortfall risk is the rule rather than the exception.

Note the the condition of weak dynamic consistency (20) is necessary for (17). Yet,

Weber [39] showed that, under certain technical regularity conditions, shortfall risk is the

only law-invariant risk measure such that the associated canonical dynamic risk measure

is weakly dynamically consistent. Here is another natural choice for a law-invariant risk

measure, which may not even satisfy (20).

Example 3.8 (Statistical distance functions) Let g : [0,∞) → R∪{+∞} be a lower

semicontinuous convex function satisfying g(1) < ∞ and the superlinear growth condition

g(x)/x → +∞ as x ↑ ∞. Associated to it is the g-divergence

Ig(Q|P) := E
[
g
(dQ

dP

) ]
, Q � P,

as introduced by Csiszar [8, 9]. The g-divergence Ig(Q|P) can be interpreted as a statistical

distance between the hypothetical model Q and the reference measure P, so that taking

γ(Q) := Ig(Q|P) is a natural choice for a penalty function. The particular choice g(x) =

x log x corresponds to the relative entropy Ig(Q|P) = H(Q|P). Taking g(x) = 0 for

x ≤ λ−1 and g(x) = ∞ otherwise corresponds to the coherent risk measure Average Value

at Risk,

AVaRλ(Y ) = sup
{
EQ[−Y ] | dQ/dP ≤ λ−1

}
,

which is also called Expected Shortfall or Conditional Value at Risk. One easily sees that

AVaRλ does not satisfy the condition of weak dynamic consistency (20); see also [39].

In particular it does not satisfy (17). See [32, 33] for an analysis of optimal investment

problems for AVaRλ in complete market models.

For general g the penalty function γ(Q) = Ig(Q|P) corresponds to the convex risk

measure

ρ(Y ) = sup
Q�P

(
EQ[−Y ]− γ(Q)

)
, Y ∈ L∞,

which satisfies Assumption 2.1 and will be normalized as soon as g(1) = 0. Indeed, the

level sets {dQ/dP | Ig(Q|P) ≤ c} are weakly compact in L1(P) due to the superlinear

growth condition, and so continuity from below follows from [28, Lemma 2] together with

[18, Corollary 4.35]; see also [24, Theorem 2.4]. The convex risk measure ρ satisfies the

variational identity

ρ(Y ) = sup
Q�P

(
EQ[−Y ]− γ(Q)

)
= inf

z∈R

(
E[ g∗(z − Y ) ]− z

)
, Y ∈ L∞, (21)

where g∗(y) = supx>0(xy − g(x)). In the particular situation considered in this example,

the identity (21) yields an alternative way for transforming the original maximin problem
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of robust utility maximization into a simpler minimization problem; see also the arguments

in [34, Theorem 2.14]. The formula (21) was obtained by Ben-Tal and Teboulle [3] for

R-valued g. In the case of AVaRλ, we have g∗(y) = 0∨y/λ and hence recover [18, Lemma

4.46] as a special case of (21). Below we will give a proof, which works in the general case

and is based on the results from Föllmer and the author [16, 18] quoted in Example 3.6.

Proof of (21): For λ > 0 let gλ(x) := λg(x/λ). Then (λ, x) 7→ gλ(x) is convex due to (25)

below. Let γλ(Q) = Igλ
(Q|P) be the corresponding gλ-divergence. Then (λ, Q) 7→ γλ(Q)

is a convex functional, and it follows easily that

h(λ) :=

{
minQ�P

(
EQ[ Y ] + γλ(Q)

)
if λ > 0,

+∞ otherwise,

is a lower semicontinuous convex function in λ if Y ∈ L∞ is fixed. Our aim is to compute

h(1). The idea is to use the fact that (19) is the penalty function of the risk measure in

(18) in order to identify the Fenchel-Legendre transform h∗ of h. We only have to observe

that ` := g∗ satisfies the assumptions of Example 3.6 and that `∗ = g∗∗ = g so as to apply

(19):

f(x) := inf
{

m ∈ R |E[ g∗(−m− Y ) ] ≤ x
}

= sup
Q�P

(
EQ[−Y ]− inf

λ>0

(
λx + E

[
gλ

(dQ

dP

) ]))
= − inf

λ>0
inf

Q�P

(
EQ[ Y ] + λx + γλ(Q)

)
= − inf

λ>0

(
λx + h(λ)

)
= h∗(−x),

for all x in the interior of g∗(R), which coincides with the interior of dom f . Convexity

hence yields h(1) = h∗∗(1) = supx(x − f(−x)). The definition of f yields that x =

−E[ g∗(−f(−x)− Y ) ]. Hence,

h(1) = sup
x∈R

(
− E[ g∗(−f(−x)− Y ) ]− f(−x)

)
,

and the assertion follows by noting that the range of f contains all points to the left of

‖Y −‖∞− x0, where x0 is the lower bound all points in which the right-hand derivative of

g∗ is strictly positive.

4 Proofs

For c ≥ 0, let us introduce the sets

Q(c) := {Q ∈ Q | γ(Q) ≤ c} and Qe(c) := {Q ∈ Q(c) |Q ∼ P}.
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With Z(c), Z, Ze(c), and Ze, we will denote the corresponding sets of densities, e.g.,

Z :=
{ dQ

dP
∣∣ Q ∈ Q

}
, Ze(c) :=

{ dQ

dP
∣∣ Q ∈ Qe(c)

}
.

In the sequel, we will identify measures Q ∈ Q with their densities Z = dQ/dP, and we

will also write γ(Z), uZ , vZ for γ(Q), uQ, and vQ, respectively. Due to (4), Z 7→ γ(Z) is

a convex and weakly lower semicontinuous functional on L1(P).

Lemma 4.1 For every c > 0, the level set Z(c) is weakly compact, and Ze(c) is nonempty.

Moreover, Z 7→ γ(Z) is lower semicontinuous with respect to P-a.s. convergence on Z(c).

Proof: The set Z(c) is weakly closed by the weak lower semicontinuity of γ and uniformly

integrable due to [18, Lemma 4.22]. Hence, Z(c) is weakly compact according to the

Dunford-Pettis theorem. Next, for all c > 0 we have that P[ A ] > 0 implies Q[ A ] > 0 for

some Q ∈ Q(c). Indeed, the sensitivity of ρ gives

0 < ρ(−cI
A
) = sup

Q∈Q(c)

(cQ[ A ]− γ(Q)).

Hence, the assertion Ze(c) 6= ∅ follows from the Halmos-Savage theorem. Finally, if

Zn → Z P-a.s. and all Zn belong to some level set Z(c), then convergence also holds in

L1(P), and the lower semicontinuity of γ follows from (4).

We note next that the space YQ(y) can easily be related to Y(y) := YP(y):

Lemma 4.2 Let (Zt)0≤t≤T be the density process of Q � P with respect to P. Then a

process Y Q belongs to YQ(y) if and only if Y QZ ∈ Y(y). In particular, we have

v(y) = inf
Z∈Z

inf
Y ∈Y(y)

(
E

[
ZV

(YT

Z

) ]
+ γ(Z)

)
. (22)

Proof: Take 0 ≤ s < t ≤ T . If Y Q ∈ YQ(y) and X ∈ X (1), then

XsY
Q
s ≥ EQ[ XtY

Q
t | Fs ] =

1

Zs

E[ XtY
Q
t Zt | Fs ] P-a.s. on {Zs > 0}.

On {Zs = 0} we have P-a.s. Zt = 0 and hence E[ XtY
Q
t Zt | Fs ] = 0 = XsY

Q
s Zs. Combin-

ing these two facts shows that XY QZ is a P-supermartingale and hence that Y QZ ∈ Y(y).

Conversely, suppose that Y := Y QZ ∈ Y(y). Then we have Q-a.s. for each X ∈ X (1)

EQ[ XtY
Q
t | Fs ] =

1

Zs

E
[
XtYt | Fs

]
≤ XsYs

Zs

= XsY
Q
s .
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The formula (22) is more convenient than our original definition of v, as the infimum

is now taken over two sets that are no longer related to another. As in [25, 26], we

obtain “abstract versions” of our theorems if we replace the spaces X (x) and YQ(y) by

the respective spaces

C(x) =
{

g ∈ L0
+(Ω,FT , P) | 0 ≤ g ≤ XT for some X ∈ X (x)

}
.

and

DQ(y) =
{

h ∈ L0
+(Ω,FT , Q) | 0 ≤ h ≤ YT for some Y ∈ YQ(y)

}
.

Obviously, this substitution does not affect the values of our value functions, i.e., using

our convention (6) we have uQ(x) = supg∈C(x) EQ[ U(g) ], vQ(y) = infh∈DQ(y) EQ[ V (h) ],

u(x) = sup
g∈C(x)

inf
Q∈Q

(
EQ[ U(g) ] + γ(Q)

)
,

and

v(y) = inf
Q∈Q

inf
h∈DQ(y)

(
EQ[ V (h) ] + γ(Q)

)
= inf

Z∈Z
inf

h∈D(y)

(
E

[
ZV

( h

Z

) ]
+ γ(Z)

)
.

Moreover, any optimal g or h, if they exist, can be taken as the terminal value of some

process X ∈ X (x) or Y ∈ YQ(y). Next, recall from [25] that for Q ∼ P and x, y ≥ 0

given,

g ∈ C(x) ⇐⇒ g ≥ 0 and sup
h∈DQ(y)

EQ[ hg ] ≤ xy

h ∈ DQ(y) ⇐⇒ h ≥ 0 and sup
g∈C(x)

EQ[ hg ] ≤ xy.
(23)

We point out that validity of this relation is not clear for Q 6∼ P, and this will create a

few technical difficulties in the sequel.

Under the convention (6), g 7→ EQ[ U(g) ] is a concave functional on C(x) for each

Q ∈ Q and all x > 0. Using the fact that

{αg + (1− α)g′ | g ∈ C(x), g′ ∈ C(x′) } ⊂ C(αx + (1− α)x′)

then yields the concavity of the value functions uQ and u. The concavity of uQ implies in

turn that

uQ ≡ +∞ as soon as EQ[ U+(g) ] = +∞ for some g ∈
⋃
x>0

C(x); (24)

see [35, Lemma 3.1].

A key observation for our future analysis is the convexity of the function (z, y) 7→
zV (y/z). In fact, one has

(αz0 + (1− α)z1)V

(
αy0 + (1− α)y1

αz0 + (1− α)z1

)
< αz0V

(y0

z0

)
+ (1− α)z1V

(y1

z1

)
(25)

as soon as y0/z0 6= y1/z1 and 0 < α < 1; see Equation (21) in [35].
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Lemma 4.3 If v(y) < ∞, then there exist ĥ ∈ D(y) and Ẑ ∈ Z such that

v(y) = E[ ẐV (ĥ/Ẑ) ] + γ(Ẑ).

Moreover, Ẑ =: dQ̂/dP and ĥ can be chosen in such a way that ĥ/Ẑ coincides Q̂-a.s.

with the terminal value of some Ŷ ∈ Y bQ(y) and such that (Q̂, Ŷ ) is a solution of the dual

problem, which is maximal in the sense of Theorem 2.4.

Proof: Let (Zn, hn) ∈ Z×D(y) be a sequence such that E[ ZnV (hn/Zn) ]+γ(Zn) → v(y).

Jensen’s inequality implies that

E[ ZV (h/Z) ] ≥ V
(
E

[
h I{Z>0}

])
≥ V (y) for all Z and h ∈ D(y). (26)

Hence we must have c := 1 + lim supn γ(Zn) < ∞, and so we can assume without loss of

generality that Zn ∈ Z(c) for all n.

Applying twice the standard Komlos-type argument of Lemma A1.1 in [11], we obtain

a sequence

(Z̃n, h̃n) ∈ conv{(Zn, hn), (Zn+1, hn+1), . . . } ⊂ Z(c)×D(y)

that converges P-a.s. to some (Ẑ0, ĥ0). From (23) we get ĥ0 ∈ D(y). Lemma 4.1 implies

Ẑ0 ∈ Z(c). It was shown in the proof of [35, Lemma 3.7] that the function

Z(c)×D(y) 3 (Z, h) 7−→ E
[
ZV

(
h/Z

) ]
(27)

is lower semicontinuous with respect to P-a.s. convergence. By the convexity of (x, z) 7→
zV (x/z) and Lemma 4.1 we thus get

E[ Ẑ0V (ĥ0/Ẑ0) ] + γ(Ẑ0) ≤ lim inf
n↑∞

(
E[ ZnV (hn/Zn) ] + γ(Zn)

)
= v(y).

In this sense, the pair (ĥ0, Ẑ0) is optimal.

Suppose (ĥ1, Ẑ1) is another optimal pair, and let ĥt := tĥ1 + (1 − t)ĥ0 and Ẑt :=

tẐ1 +(1− t)Ẑ0 for 0 ≤ t ≤ 1. The convexity of (h, Z) 7→ E[ ZV (h/Z) ]+γ(Z) implies that

each pair (ĥt, Ẑt) is also optimal. If 0 < t < 1, then {Ẑt > 0} = {Ẑ0 > 0} ∪ {Ẑ1 > 0}.
Moreover, (25) shows that the ratio ĥt/Ẑt does not depend on t ∈ (0, 1). Hence, there

exists a random variable ŶT ≥ 0 and a sequence Z̃1, Z̃2, . . . such that the following hold:

(a) P[ Z̃n > 0 ] tends to the maximum P-probability for the support of any optimal Ẑ;

(b) {Z̃1 > 0} ⊂ {Z̃2 > 0} ⊂ · · · ;

(c) for each n, we have h̃n := ŶT Z̃n ∈ D(y), and the pair (h̃n, Z̃n) is optimal.

By using a Komlos-type argument, we may assume that the Z̃n converge P-a.s to some

Ẑ ∈ Z. Then ŶT Ẑ ∈ D(y) by (23) and in turn ŶT ∈ D bQ(y) due to Lemma 4.2. Hence,

we may assume that ŶT is the terminal value of some Ŷ ∈ Y bQ(y). As above, we then

conclude E bQ[ V (ŶT ) ] + γ(Q̂) ≤ v(y), that is, (Q̂, Ŷ ) is a solution of the dual problem.

Clearly, (Q̂, Ŷ ) is maximal.
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Let Qf denote the set of Q ∈ Q such that uQ(x) < ∞ for some and hence all x > 0.

Similarly we define Qf
e , Zf , and Zf

e . We will show next that in (22) the set Q can be

replaced by the smaller sets Qe and Qf
e .

Lemma 4.4 For v(y) < ∞ the dual value function of the robust problem satisfies

v(y) = inf
Q∈Qe

(
vQ(y) + γ(Q)

)
= inf

Q∈Qf
e

(
vQ(y) + γ(Q)

)
.

Proof: As for the proof of the first identity, suppose Z0 ∈ Z\Ze and h0 ∈ D(y) are

such that E[ Z0V (h0/Z0) ] < ∞. Due to our assumption (9), we may choose Z1 ∈ Ze

and h1 ∈ D(y) such that E[ Z1V (h1/Z1) ] < ∞. Now let Zt := tZ1 + (1 − t)Z0 ∈ Ze and

ht := th1 + (1 − t)h0 for 0 < t ≤ 1. Since the function t 7→ E[ ZtV (ht/Zt) ] + γ(Zt) is

convex and takes finite values, it is upper semicontinuous and we get vZ0(y) + γ(Z0) ≥
lim supt↓0(vZt(y)+γ(Zt)). This proves the first identity. The second identity follows from

the fact that for Q ∼ P we have vQ ≡ ∞ as soon as uQ ≡ ∞; see the proof of [35, Lemma

3.5].

Remark 4.5 In the sequel, we will sometimes use variants of the upper semicontinuity

argument in the preceding proof. For a convex set Z ′ ⊂ Z and Z0, Z1 ∈ Z ′ let Zt :=

tZ1 +(1− t)Z0. If f : Z ′ → R∪{∞} is a convex functional and f(Zt) < ∞ for 0 < t < 1,

then t 7→ f(Zt) is upper semicontinuous on [0, 1]. If f is moreover lower semicontinuous

(e.g., with respect to P-a.s. convergence), then t 7→ f(Zt) is even continuous on [0, 1]. Due

to (4), this argument applies to Z ′ := Z and f(Z) := γ(Z). It also works for Z ′ := Zf

and f(Z) := uZ(x); see [35, Lemma 3.3].

Lemma 4.6 We have

u(x) = sup
g∈C(x)

inf
Q∈Q

(
EQ[ U(g) ] + γ(Q)

)
= inf

Q∈Q

(
uQ(x) + γ(Q)

)
= sup

g∈C(x)

inf
Q∈Qe

(
EQ[ U(g) ] + γ(Q)

)
= inf

Q∈Qe

(
uQ(x) + γ(Q)

)
.

Proof: Take ε ∈ (0, 1) and let c := 1 + u(x + 1)− U(ε) ∧ 0 so that

u(x + ε) ≥ sup
g∈C(x)

inf
Q∈Q

(
EQ[ U(ε + g) ] + γ(Q)

)
= sup

g∈C(x)

inf
Z∈Z(c)

(
E[ ZU(ε + g) ] + γ(Z)

)
.

On the one hand, the function U(·+ε) is bounded from below, and so Z 7→ E[ ZU(ε+g) ]

is a weakly lower semicontinuous affine functional on Z(c). Furthermore, Z 7→ γ(Z) is

also weakly lower semicontinuous, and the set Z(c) is convex and weakly compact by

Lemma 4.1. On the other hand, for each Z ∈ Z(c), g 7→ E[ ZU(ε + g) ] is a concave

functional defined on the convex set C(x). Thus, the conditions of the lopsided minimax

theorem [1, Chapter 6, p. 295] are satisfied, and so

sup
g∈C(x)

inf
Z∈Z(c)

(
E[ ZU(ε + g) ] + γ(Z)

)
= inf

Z∈Z(c)
sup

g∈C(x)

(
E[ ZU(ε + g) ] + γ(Z)

)
.
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Since this expression is bounded above by u(x + ε) < c + U(ε) ∧ 0, we may replace Z(c)

by Z. Hence, we arrive at

u(x + ε) ≥ inf
Z∈Z

sup
g∈C(x)

(
E[ ZU(ε + g) ] + γ(Z)

)
≥ inf

Z∈Z
sup

g∈C(x)

(
E[ ZU(g) ] + γ(Z)

)
≥ sup

g∈C(x)

inf
Z∈Z

(
E[ ZU(g) ] + γ(Q)

)
= u(x).

Sending ε ↓ 0 and using the continuity of u yields the first part of the lemma.

We still have to show that Z may be replaced by Ze. To this end, let Z0 ∈ Zf\Ze.

By assumption (8) there also exists some Z1 ∈ Zf
e . Remark 4.5 then gives uZ0(x) =

limt↓0 uZt(x), where Zt := (1− t)Z0 + tZ1 ∈ Ze for 0 < t ≤ 1. Hence, using the first part

of this proof,

u(x) = inf
Z∈Ze

(
uZ(x) + γ(Z)

)
≥ sup

g∈C(x)

inf
Q∈Qe

(
EQ[ U(g) ] + γ(Q)

)
≥ sup

g∈C(x)

inf
Q∈Q

(
EQ[ U(g) ] + γ(Q)

)
= u(x).

Proof of Theorem 2.4: By Lemma 4.6, (7), and Lemma 4.4,

u(x) = inf
Q∈Qe

(
uQ(x) + γ(Q)

)
= inf

Q∈Qf
e

(
uQ(x) + γ(Q)

)
= inf

Q∈Qf
e

inf
y>0

(
vQ(y) + γ(Q) + xy

)
= inf

y>0

(
v(y) + xy

)
,

which is the first identity in (10).

To prove the second one, we first observe that v is convex due to the convexity of

(Z, h) 7→ E[ ZV (h/Z) ] + γ(Z). Next we will prove that v is lower semicontinuous on

[0,∞) if we define v(0) := V (0) := limy↓0 V (y). This will then imply that v is the

conjugate function of u according to standard biduality results; see, e.g., [18, Proposition

A.6 (b)]. To this end, take a sequence yn > 0 converging to y ≥ 0. There is nothing to

show if lim infn v(yn) = ∞, so we may assume that supn v(yn) < ∞. By Lemma 4.3 there

are ĥn ∈ D(yn) and Ẑn ∈ Z such that v(yn) = E[ ẐnV (ĥn/Ẑn) ] + γ(Ẑn). By (26) we

have v(yn) ≥ V (yn) + γ(Ẑn). Since γ is bounded from below, we must necessarily have

V (y) < ∞. Moreover, all Ẑn must belong to some Z(c) for some finite constant c. As

above, we can pass to a sequence of convex combinations, which converges P-a.s. to some

(ĥ, Ẑ). Using again (23) and Lemma 4.1 yields (ĥ, Ẑ) ∈ D(y)×Z(c), while convexity, lower

semicontinuity of (27), and Lemma 4.1 give v(y) ≤ E[ ẐV (ĥ/Ẑ) ] + γ(Ẑ) ≤ lim infn v(yn).

The identities in (11) can be proved as in [25, Lemma 3.5].

Proof of Proposition 2.5: The strict convexity of v will imply the differentiability of u;

see, e.g., [31, Theorem V.26.3]. So suppose by way of contradiction that 0 < y0 < y1 are

such that v is finite and affine on [y0, y1]. By Lemma 4.3 there are Zi ∈ Z and hi ∈ D(yi)
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such that v(yi) = E[ ZiV (hi/Zi) ] + γ(Zi). We let ỹ := (y1 + y0)/2, h̃ := (h1 + h0)/2 etc.

Then h̃ ∈ D(ỹ) due to (23). Hence, the affinity of v and (25) imply that

v(ỹ) =
v(y1) + v(y0)

2
=

1

2

(
E[ Z1V (h1/Z1) ] + γ(Z1) + E[ Z0V (h0/Z0) ] + γ(Z0)

)
≥ E[ Z̃V (h̃/Z̃) ] + γ(Z̃) ≥ v(ỹ).

Hence, the strict convexity of γ implies that P-a.s. Z0 = Z1. But then we must also

h1 = h0 P-a.s. on {Zi > 0}, due to the strict convexity (25). Thus, we get v(y0) = v(y1).

However, taking a strictly positive h ∈ D(1) (e.g. the density of some P ∗ ∈ M) we have

h̃1 := h0 + (y1 − y0)h ∈ D(y1) and h̃1 > h0 so that

v(y1) ≤ E[ Z0V (h̃1/Z0) ] < E[ Z0V (h0/Z0) ] = v(y0) = v(y1),

which is the desired contradiction.

We turn now to the existence and characterization of optimal strategies.

Lemma 4.7 Under condition (12), for all x > 0 there exists some ĝ ∈ C(x) such that

infQ∈Q
(
EQ[ U(ĝ) ] + γ(Q)

)
= u(x).

Proof: Due to our assumption (12) and [35, Lemma 3.5], we haveQf
e = Qe. In particular,

we have EQ[ U+(g) ] < ∞ for all Q ∈ Qe and g ∈ C(x) by (24), and so the expectations

EQ[ U(g) ] are defined in the standard way. Moreover,

uQ(x)

x
−→ 0 as x ↑ ∞

for each Q ∈ Qe; see [26, Note 1]. Hence it follows from the proof of [26, Eq. (25)] that

the mapping C(x) 3 g 7→ EQ[ U(g) ] is upper semicontinuous with respect to P-almost-

sure convergence (note that the proof of Eq. (25) in [26] does not use the assumption

that (gn) is a maximizing sequence). Hence, C(x) 3 g 7→ infQ∈Qe

(
EQ[ U(g) ] + γ(Q)

)
is

also upper semicontinuous with respect to P-almost-sure convergence. Now let (g̃n) be a

maximizing sequence in C(x). By the usual Komlos-type argument there is a sequence

gn ∈ conv{g̃n, g̃n+1, . . . } converging P-a.s. to some ĝ ≥ 0. We have ĝ ∈ C(x) due to

(23). Moreover, the concavity of the functional g 7→ infQ∈Qe

(
EQ[ U(g) ] + γ(Q)

)
implies

that (gn) is again a maximizing sequence, while its upper semicontinuity yields that

infQ∈Qe

(
EQ[ U(ĝ) ] + γ(Q)

)
≥ u(x).

We note next that the set {Q ∈ Q |EQ[ U−(ĝ) ] = ∞} must be empty, for otherwise it

would have a nonvoid intersection with Qe. Hence, for Q ∈ Q\Qe and Q0 ∈ Qe, EQ[ U(ĝ) ]

is the limit as t ↑ 1 of EQt [ U(ĝ) ], where Qt := tQ + (1− t)Q0 ∈ Qe. By Remark 4.5, we

also have γ(Qt) → γ(Q). This shows that we have infQ∈Q
(
EQ[ U(ĝ) ] + γ(Q)

)
≥ u(x).
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Proof of Theorem 2.6: The existence of an optimal strategy X̂ follows from Lemma

4.7. The assertion that u′(∞−) = 0 follows from the fact that u(x)/x → 0 as x ↑ ∞,

which is itself a consequence of assumption (12) and [26, Note 1]. The second identity in

(13) follows from the first and the duality relations between u and v.

Now let y > 0 be such that v(y) + xy = u(x). Such a y exists due to the fact that

v′(0+) = −∞ and v′(∞−) = 0. We take a solution (Q̂, Ŷ ) to the dual problem at level

y and denote by Ẑ the density process of Q̂ with respect to P. By an abuse of notation,

we will also write ẐT = Ẑ. Our next goal is to show that (Q̂, X̂) is a saddlepoint for the

robust problem. To this end, take any Z1 ∈ Ze and let Zt := (1 − t)Ẑ + tZ1 ∈ Ze for

0 < t ≤ 1.

We first claim that vZt(y)+γ(Zt) → v(y) as t ↓ 0. To prove this claim, let ĥ, h1 ∈ D(y)

be such that v bZ(y) = E[ ẐV (ĥ/Ẑ) ] and vZ1(y) = E[ Z1V (h1/Z1) ], and let ht := (1− t)ĥ+

th1 ∈ D(y). By the convexity of (y, z) 7→ zV (y/z) we have

v(y) ≤ vZt(y) + γ(Zt) ≤ E
[
ZtV

(ht

Zt

) ]
+ γ(Zt)

≤ t
(
vZ1(y) + γ(Z1)

)
+ (1− t)

(
v bZ(y) + γ(Ẑ)

)
,

and our claim follows, since the right-hand side tends to v(y) as t ↓ 0.

Next, due to the duality relations (7) between vZt and uZt , we have vZt(y) + xy ≥
uZt(x). Moreover, as t ↓ 0, uZt(x) + γ(Zt) tends to u bZ(x) + γ(Ẑ) according to Remark

4.5. Thus, we obtain

u(x) = v(y) + xy = lim
t↓0

(vZt(y) + xy + γ(Zt)) ≥ lim
t↓0

(uZt(x) + γ(Zt)) = u bZ(x) + γ(Ẑ).

Thus, Lemma 4.6 implies that u bZ(x) + γ(Ẑ) = u(x). Now we can conclude that

u(x) = u bZ(x) + γ(Ẑ) ≥ E[ ẐU(X̂T ) ] + γ(Ẑ) ≥ inf
Q∈Q

(
EQ[ U(X̂T ) ] + γ(Q)

)
= u(x),

which finishes the proof that (Q̂, X̂) is a saddlepoint.

Next, we show that X̂T coincides Q̂-a.s. with I(ŶT ). We have 0 ≤ V (ŶT ) + X̂T ŶT −
U(X̂T ) Q̂-a.s. and

E bQ[ V (ŶT ) + X̂T ŶT − U(X̂T ) ] = v(y) + E[ X̂T ŶT Ẑ ]− u(x) ≤ v(y) + xy − u(x) = 0,

where we have used (23) and the fact that the process Ŷ Ẑ belongs to Y(y) due to Lemma

4.2. Thus, 0 = V (ŶT ) + X̂T ŶT − U(X̂T ) and in turn X̂T = I(ŶT ) Q̂-a.s. We also get

E[ X̂T ŶT Ẑ ] = xy, and this implies that the process X̂Ŷ Ẑ is a P-martingale.

We will show next that u is strictly concave. The continuous differentiability of v

will then follow by general principles (e.g., [31, Theorem V.26.3]) and from the duality

relations (10). Suppose by way of contradiction that u is not strictly concave. Since u

is strictly increasing with u′(0+) = ∞ and u′(∞−) = 0, there will be 0 < x0 < x1 and

y > 0 such that v(y) + xiy = u(xi) for i = 0, 1. Let X̂ i ∈ X (xi) be the corresponding

optimal solutions, and let (Q̂, Ŷ ) be a solution to the dual problem at level y. Then we

have both X̂0
T = I(ŶT ) = X̂1

T Q̂-a.s. and E bQ[ X̂0
T ŶT ] = x0y < x1y = E bQ[ X̂1

T ŶT ], which is

impossible.
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Proof of Corollary 2.7: The existence of a superhedging strategy for H with initial

capital x follows from Theorem 2.6. That is, we have H ∈ C(x). Moreover, we have

ŶT Ẑ ∈ D(y) by Lemma 4.2, and hence

sup
h∈D(y)

E[ Hh ] ≥ E[ HŶT Ẑ ] = xy,

where the equality on the right follows from Theorem 2.6. Hence, due to (23), H cannot

belong to any set C(x′) with x′ < x.
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