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An iteration procedure for solving integral

equations related to optimal stopping problems

Denis Belomestny∗ and PavelV. Gapeev†

A new algorithm for finding value functions of finite horizon optimal
stopping problems in one-dimensional diffusion models is presented. It is
based on a time discretization of the corresponding integral equation. The
proposed iterative procedure for solving the discretized integral equation
converges in a finite number of steps and delivers in each step a lower
or an upper bound for value of discretized problem on the whole time
interval. The remarks on the application of the method for solving integral
equations related to some optimal stopping problems are given.

1 Introduction

Optimal stopping problems with finite time horizon play an important role in
the literature on stochastic control (see e.g. [29] for general theory). One of the
interesting and important problems in this domain is the pricing early exercise
American options which has come from the mathematical theory of modern
finance. This problem was first studied by McKean [17] who derived a free-
boundary problem for the value function and the optimal stopping boundary of
an early exercise American option and obtained a countable system of nonlinear
integral equations for the boundary. Kim [14], Jacka [11], and Carr, Jarrow and
Myneni [4] (see also Myneni [18]) have independently arrived at a nonlinear
integral equation for the exercise boundary of the American put option which
follows from the more general early exercise premium (EEP) representation.
The uniqueness of solution has been recently proven by Peskir [22].
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Since the value function and the stopping boundary of a general finite horizon
optimal stopping problem cannot be found in an explicit form, some different
numerical procedures for calculating the value and the boundary have been pro-
posed. Carr [3] presented a method based on the randomization of the horizon
using the Erlang distribution, which is equivalent to taking the Laplace trans-
form of the initial value of an American put option. In that case, the solution of
the related free-boundary problem can be derived in a closed form. Hou, Little
and Pant [10] have established a new representation for the American put option
and proposed an efficient numerical algorithm for solving the corresponding non-
linear integral equation for the optimal exercise boundary. Pedersen and Peskir
[20] (see also [6]-[7]) have used the backward induction method and simple time
discretization of the nonlinear integral equation for obtaining the optimal stop-
ping boundary. Kolodko and Schoenmakers [15] presented a policy iteration
method for computing the optimal Bermudan stopping time. In recent years,
Monte Carlo based methods have become rather popular (see e.g. Rogers [25],
Haugh and Kogan [9], and Glasserman [8] for an overview). In [1] an iterative
Monte-Carlo procedure has been proposed which makes use of the earlier exer-
cise premium representation for American and Bermudan options. The method
of [1] can be considered as an analogue to the classical Picard iteration method
applied for the proof of existence of solutions of integral equations (cf. e.g. Tri-
comi [31]) having the advantage that it allows to obtain an upper bound for the
value function from a lower one and the lower bound from an upper one. In
this paper, we propose a modification of this method, which employees along
with the expected reward at the finite time horizon the value function and the
stopping boundary of the corresponding perpetual optimal stopping problem
(see also Shiryaev et al. [28], Shiryaev [30], Novikov and Shiryaev [19]). More-
over, the convergence of the new algorithm under some regularity conditions is
established and the rates of convergence are obtained.

The paper is organized as follows. In Section 2, we give a formulation of a
finite horizon optimal stopping problem for one-dimensional diffusion processes
with a general gain function and discuss different forms of the analogues of EEP
representation. In Section 3, we construct a simple time discretization of the
corresponding integral equation and propose a numerical iteration procedure for
solving it, which produces in each step lower or upper bounds for the solution
and arrives at it in a finite number of steps. We stress that as opposite to the
backward induction, in each step the procedure delivers an approximation on
the whole time interval and not only for the several last time intervals. The main
results of the paper are formulated in Lemma 3 and Theorem 4. In Section 4,
we illustrate the action of this method on the problems of pricing early exercise
American put and Asian options in Black-Scholes models as well as on the finite
horizon Bayesian sequential testing and disorder detection problems for Wiener
processes. We conclude the paper by pointing out some related open problems.
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2 Formulation of the problem

In this section we recall general results from [29], [12] and [20] (see also [17], [14],
[11], [4] and [22]) and formulate the problem of estimating the value function of
an optimal stopping problem in a one-dimensional diffusion model with finite
time horizon.

2.1. For a precise formulation of the finite horizon optimal stopping problem
for diffusion processes, let us consider a probability space (Ω,F , Q) with a
standard Brownian motion B = (Bt)0≤t≤T started at zero. Suppose that the
process X = (Xt)0≤t≤T solves the stochastic differential equation:

dXt = µ(Xt) dt + σ(Xt) dBt (X0 = x) (2.1)

where x ∈ E is a given number from the connected state space E ⊆ R of
the process X . Here µ(x) is a drift and σ(x) > 0 for x ∈ E is a diffusion
coefficient.

In the present paper we consider the problem of computing the value func-
tion:

V (t, x) = sup
0≤τ≤T−t

Et,x

[
e−λτ G(t + τ,Xt+τ )

]
(2.2)

where the supremum is taken over all stopping times τ of the process X (i.e.
with respect to the natural filtration (Ft+u)0≤u≤T−t generated by the process
(Xt+u)0≤u≤T−t ). Here Et,x denotes the expectation with respect to the initial
measure Qt,x when the process (Xt+u)0≤u≤T−t starts at Xt = x for some
x ∈ E , and λ > 0 is a discounting factor.

Throughout the paper we assume that the gain function G(t, x) satisfies
some regularity conditions (see [32], [12] and [20]) implying the existence of a
strictly decreasing continuous function b(t) such that the first passage time:

τb = inf{0 ≤ u ≤ T − t | Xt+u ≥ b(t + u)}
= inf{0 ≤ u ≤ T − t | V (t + u,Xt+u) ≤ G(t + u,Xt+u)} (2.3)

is optimal and the value function (2.2) admits the following representation which
is called early exercise premium representation in the case of American option
problems:

V (t, x) = e−λ(T−t) Et,x

[
G(T,XT )

]−
∫ T−t

0

e−λu Et,x

[
H(t + u,Xt+u)

× I(Xt+u ≥ b(t + u))
]
du

= e−λ(T−t) Et,x

[
G(T,XT )

]−
∫ T−t

0

e−λu Et,x

[
H(t + u,Xt+u) (2.4)

× I(V (t + u, Xt+u) ≤ G(t + u,Xt+u)
]
du

where
H(t, x) = (Gt + µ(x)Gx + (σ2(x)/2)Gxx − λG)(t, x) (2.5)
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for all (t, x) ∈ [0, T ]× E and I( · ) denotes the indicator function. Among the
regularity conditions mentioned above we refer the following:

(t, x) 7→ G(t, x) is C1,2 on [0, T ]× E (2.6)
x 7→ H(t, x) is decreasing on E for each 0 ≤ t ≤ T (2.7)
t 7→ H(t, x) is decreasing on [0, T ] for each x ∈ E (2.8)

(cf. Theorem 4.3, Propositions 4.4 and 4.5 in [12]). Note that the problem (2.2)
turns out to be non-trivial if there exists a continuous function a(t) such that:

H(t, x) > 0 for x ∈ E such that x < a(t) (2.9)
H(t, x) = 0 for x ∈ E such that x = a(t) (2.10)
H(t, x) < 0 for x ∈ E such that x > a(t) (2.11)

hold for all (t, x) ∈ [0, T ] × E . Then it follows by applying Itô’s formula that
a(t) < b(t) for all 0 < t < T . Following the lines of [20], in the sequel we assume
that conditions (2.6)-(2.11) hold. Further conditions on the functions G(t, x)
and H(t, x) will be imposed below.

It is also known (see [20], [14] and [11]-[12]) that the stopping boundary b(t)
of the finite horizon optimal stopping problem (2.2) solves the nonlinear integral
equation:

G(t, b(t)) = e−λ(T−t) Et,b(t)

[
G(T, XT )

]
(2.12)

−
∫ T−t

0

e−λu Et,b(t)

[
H(t + u,Xt+u) I(Xt+u ≥ b(t + u))

]
du

for all 0 ≤ t ≤ T and x ∈ E . By using the change-of-variable formula with local
times on curves (see [21]), it was proven in [20] (see also [22]-[24] and [6]-[7]) that
the equation (2.12) admits a unique solution. Note that the nonlinear integral
equation (2.4) is preferable over the equation (2.12), which involves the optimal
stopping boundary since it allows a clear generalization to the multidimensional
case. Generally, the equations (2.4) and (2.12) cannot be solved in an explicit
form and numerical methods have to be used.

2.2. By means of standard arguments based on the strong Markov property
it can be shown that the arbitrage-free price (2.2) solves the following parabolic
free-boundary problem (see [17]):

(Vt + µ(x)Vx + (σ2(x)/2)Vxx)(t, x) = λV (t, x) for x ∈ E, x < b(t) (2.13)

V (t, x)
∣∣
x=b(t)

= G(t, x)
∣∣
x=b(t)

(instantaneous stopping) (2.14)

Vx(t, x)
∣∣
x=b(t)

= Gx(t, x)
∣∣
x=b(t)

(smooth fit) (2.15)

V (t, x) > G(t, x) for x ∈ E such that x < b(t) (2.16)
V (t, x) = G(t, x) for x ∈ E such that x > b(t) (2.17)

where the condition (2.14) is satisfied for all 0 ≤ t ≤ T and the condition (2.15)
is satisfied for all 0 ≤ t < T .
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Note that the superharmonic characterization of the value function (see [5]
and [29]) implies that (2.2) is the smallest function satisfying (2.13)-(2.14) and
(2.16)-(2.17).

2.3. Let us denote by V (t, x) and b(t) the value function and the stopping
boundary of the related infinite horizon optimal stopping problem defined by
(2.2)-(2.3) under T = ∞ . In the sequel, we will consider only the optimal
stopping problems such that V (t, x) = V (x) and b(t) = b holds for all 0 ≤ t ≤ T
and x ∈ E . Moreover, we will assume that the limit:

G(x) = lim
T→∞

e−λ(T−t) Et,x

[
G(T,XT )

]
exists and is finite. (2.18)

Then, letting T tend to infinity in (2.4) and (2.12), we obtain:

V (x) = G(x)−
∫ ∞

0

e−λu Et,x

[
H(t + u,Xt+u) I(Xt+u ≥ b)

]
du (2.19)

= G(x)−
∫ ∞

0

e−λu Et,x

[
H(t + u,Xt+u) I(V (Xt+u) ≤ G(t + u,Xt+u)

]
du

and

G(t, b) = G(b) (2.20)

−
∫ ∞

0

e−λu Et,b

[
H(t + u,Xt+u) I(V (Xt+u) ≤ G(t + u,Xt+u)

]
du

for all 0 ≤ t ≤ T and x ∈ E , where the functions V (x) and the number b are
uniquely determined by the equations (2.19) and (2.20), respectively.

From the formulas (2.4) and (2.19) it follows that:

V (t, x) = Ṽ (t, x)−
∫ ∞

0

e−λu Et,x

[
H(t + u,Xt+u)

× I(b(t + u) ≥ Xt+u > b)
]
du

= Ṽ (t, x)−
∫ T−t

0

e−λu Et,x

[
H(t + u,Xt+u) (2.21)

× I(V (t + u,Xt+u) ≤ G(t + u, Xt+u) < V (Xt+u)
]
du

where we set:

Ṽ (t, x) = V (t, x) + e−λ(T−t) Et,x

[
G(T,XT )

]
(2.22)

−
∫ ∞

T−t

e−λu Et,x

[
H(t + u,Xt+u) I(Xt+u ≥ b)

]

for all 0 ≤ t ≤ T and x ∈ E . The expressions (2.4) and (2.21) serve as the basis
for our algorithm. Note that (2.21) has an advantage over (2.4), since it involves
probabilities of Xt belonging to a bounded intervals which are numerically easier
to compute by using Monte Carlo methods than those for unbounded intervals.
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3 Main results and proofs

In this section, we approximate the initial model by discretizing the integral
equation (2.21) and propose an iteration procedure which solves the discretized
integral equation in a finite number of steps. We prove uniform convergence of
this solution to the initial value function as the discretization becomes finer and
determine the rate of convergence.

3.1. In order to construct an approximation for the equation (2.21), let us
fix some arbitrary 0 ≤ t ≤ T and n ∈ N and introduce a partition of the time
interval [0, T − t] . Let u0 = 0 and ui = i∆n with ∆n = (T − t)/n implying
that ui − ui−1 = ∆n for every i = 1, . . . , n . Taking into account the structure
of the expression (2.21), let us define the approximation V̂n(t + u, x) for the
price V (t + u, x) as a solution of the equation:

V̂n(t + u, x) = Ṽ (t + u, x)−
n∑

i=dun/(T−t)e
e−λui Et+u,x

[
H(t + ui, Xt+ui

)

× I (̂bn(t + ui) ≥ Xt+ui > b)
]
∆n

= Ṽ (t + u, x)−
n∑

i=dun/(T−t)e
e−λui Et+u,x

[
H(t + ui, Xt+ui) (3.1)

× I(V̂n(t + ui, Xt+ui) ≤ G(t + ui, Xt+ui) < V (Xt+ui)
]
∆n

where the estimate b̂n(t+u) for the boundary b(t+u) is defined as the maximum
of the intersection curve of V̂n(t + u, x) with G(t + u, x) and the perpetual
stopping boundary b . Here dze denotes the largest integer part of a positive
number z > 0. It is clear that the equation (3.1) has a unique solution which can
be obtained by means of backward induction in a finite number of steps. This
implies that the (piecewise constant) function V̂n(t+u, x) is uniquely determined
by (3.1) for all 0 ≤ u ≤ T − t and x ∈ E . Let us set V̂ 0

n (t + u, x) = G(t + u, x)
and define the function V̂ 1

n (t + u, x) by the formula:

V̂ 1
n (t + u, x) = Ṽ (t + u, x)−

n∑

i=dun/(T−t)e
e−λui Et+u,x

[
H(t + ui, Xt+ui) (3.2)

× I(V̂ 0
n (t + ui, Xt+ui) ≤ G(t + ui, Xt+ui) < V (Xt+ui)

]
∆n

and the function V̂ 2
n (t + u, x) by the formula:

V̂ 2
n (t + u, x) = Ṽ (t + u, x)−

n∑

i=dun/(T−t)e
e−λui Et+u,x

[
H(t + ui, Xt+ui) (3.3)

× I(V̂ 1
n (t + ui, Xt+ui) ≤ G(t + ui, Xt+ui) < V (Xt+ui)

]
∆n

for all 0 ≤ u ≤ T − t , x ∈ E such that V̂ 2
n (t + u, x) ≥ V̂ 0

n (t + u, x), and V̂ 2
n (t +

u, x) = V̂ 0
n (t + u, x) elsewhere. Let us now define sequentially the functions
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V̂ m
n (t + u, x) for every m ∈ N , m ≥ 3 by the formula:

V̂ m
n (t + u, x) = Ṽ (t + u, x)−

n∑

i=dun/(T−t)e
e−λui Et+u,x

[
H(t + ui, Xt+ui) (3.4)

× I(V̂ m−1
n (t + ui, Xt+ui

) ≤ G(t + ui, Xt+ui
) < V (Xt+ui

)
]
∆n

for all 0 ≤ u ≤ T − t and x ∈ E .

Remark 1 It is easily seen from (3.1) that, by construction in (3.2)-(3.4), we
have:

V̂ 2k−1
n (t + u, x) ≥ V̂n(t + u, x) for 0 ≤ u ≤ T − t, x ∈ E, k ∈ N (3.5)

where the sequence (V̂ 2k−1
n (t + u, x))k∈N is monotone decreasing, and

V̂ 2k
n (t + u, x) ≤ V̂n(t + u, x) for 0 ≤ u ≤ T − t, x ∈ E, k ∈ N. (3.6)

where the sequence (V̂ 2k
n (t + u, x))k∈N is monotone increasing for each 0 ≤

u ≤ T − t , x ∈ E and every n ∈ N fixed. Moreover, any lower estimate
V̂ 2k−2

n (t + u, x) for V̂n(t + u, x) produces the upper one V̂ 2k−1
n (t + u, x) , and

any upper estimate V̂ 2k−1
n (t + u, x) produces the lower one V̂ 2k

n (t + u, x) for
each 0 ≤ u ≤ T − t , x ∈ E and every k ∈ N .

Remark 2 For every m < n the function u 7→ V̂ m
n (t + u, x) is an estimate

for V̂n(t + u, x) on the whole interval [0, T − t] for each 0 ≤ t ≤ T and x ∈ E
fixed. This fact shows the advantage of the proposed method over the standard
backward induction.

3.2. Let us now show that the sequence of functions (V̂ m
n (t+u, x))k∈N from

(3.2)-(3.4) converges to the function V̂n(t+u, x) in n steps for all 0 ≤ u ≤ T−t ,
x ∈ E and every n ∈ N .

Lemma 3 For each 0 ≤ t ≤ T fixed we have V̂ m
n (t + u, x) = V̂n(t + u, x) for

all 0 ≤ u ≤ T − t and x ∈ E and for every m ≥ n .

Proof. Let us fix some 0 ≤ t ≤ T and n ∈ N . Then, by construction of
V̂ m

n (t + u, x) in (3.2)-(3.4), the equalities:

V̂ 2k+1
n (t + u, x)− V̂ 2k

n (t + u, x) = −
n∑

i=dun/(T−t)e
e−λui Et+u,x

[
H(t + ui, Xt+ui)

× I(V̂ 2k
n (t + ui, Xt+ui) ≤ G(t + ui, Xt+ui) < V̂ 2k−1

n (t + ui, Xt+ui))
]
∆n (3.7)
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and

V̂ 2k+2
n (t + u, x)− V̂ 2k+1

n (t + u, x) = −
n∑

i=dun/(T−t)e
e−λui Et+u,x

[
H(t + ui, Xt+ui

)

× I(V̂ 2k
n (t + ui, Xt+ui) ≤ G(t + ui, Xt+ui) < V̂ 2k+1

n (t + ui, Xt+ui))
]
∆n (3.8)

are satisfied for all 0 ≤ u ≤ T − t and x ∈ E and for every k ∈ N .
In order to prove the desired assertion, we should use the mathematical

induction principle. First, we note that V̂ m
n (T, x) = G(T, x) for all x ∈ E and

m ∈ N . For checking the induction basis, it is enough to observe that if m = 2k
with k = 0 then (3.8) implies the equality:

V̂ 2
n (t + u, x)− V̂ 1

n (t + u, x) = −e−λun Et+u,x

[
H(t + un, Xt+un

) (3.9)

× I(V̂ 0
n (t + un, Xt+un) ≤ G(t + un, Xt+un) < V̂ 1

n (t + un, Xt+un))
]
∆n = 0

which holds for all (n− 1)(T − t)/n ≤ u ≤ T − t , where we have t + un = T by
definition of the partition.

3.3. We now prove that the solution of the discretized equation (3.1) con-
verges to V (t + u, x) uniformly on [0, T − t] as n tends to infinity. For this, let
us further denote:

F (t, x; t + u, y) = Et,x

[
H(t + u,Xt+u) I(Xt+u ≥ y)

]
(3.10)

for all 0 ≤ u ≤ T − t and x, y ∈ E .

Theorem 4 Suppose that the conditions (2.6)-(2.11) and (2.18) are satisfied.
Assume that the function:

x 7→ G(t, x) is monotone and convex on E with |Gx(t, x)| ≥ ε (3.11)

for some ε > 0 and the function:

y 7→ F (t, x; t + u, y) is C1 on E (3.12)

and
|Fy(t, x; t + u, y)| ≤ C√

u
(3.13)

holds for all 0 ≤ t ≤ T , 0 < u ≤ T − t and x, y ∈ E and some C > 0 . Let
V̂n(t + u, x) be a solution of the discretized equation (3.1). Then there exists
some t ∈ [0, T ] close enough to T such that the sequence (V̂n(t + u, x))n∈N
converges to V (t + u, x) uniformly for 0 ≤ u ≤ T − t and x ∈ E with the rate
1/n when n tends to infinity.
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Proof. First, we observe that the representations (2.4) and (3.1) imply:
∣∣∣V̂n(t, x)− V (t, x)

∣∣∣ (3.14)

≤
∣∣∣∣∣
∫ T−t

0

e−λu F (t, x; t + u, b(t + u)) du−
n∑

i=1

e−λui F (t, x; t + ui, b(t + ui))∆n

∣∣∣∣∣

+
n∑

i=1

e−λui

∣∣∣F (t, x; t + ui, b(t + ui))− F (t, x; t + ui, b̂(t + ui))
∣∣∣ ∆n

for all 0 ≤ t ≤ T and x ∈ E . In order to deal with the first term on the right-
hand side of (3.14), we can use the estimate for Riemann sum approximation
and obtain:

∣∣∣∣∣
∫ T−t

0

e−λu F (t, x; t + u, b(t + u)) du (3.15)

−
n∑

i=1

e−λui F (t, x; t + ui, b(t + ui))∆n

∣∣∣∣∣ ≤
C1

n

for n ≥ N and C1 > 0 fixed. As to the second term in (3.14), we can make use
of the mean value theorem and the inequality (3.13) to get:

∣∣∣F (t, x; t + ui, b(t + ui))− F (t, x; t + ui, b̂n(t + ui))
∣∣∣ (3.16)

=
∣∣Fy(t, x; t + ui, ξi)

∣∣ ∣∣̂bn(t + ui)− b(t + ui)
∣∣

≤ C√
ui

∣∣̂bn(t + ui)− b(t + ui)
∣∣

for some ξi ∈ E and every i = 1, . . . , n . From the assumption (2.6), by mean
value theorem it follows that:

∣∣∣G(t + ui, b̂(t + ui))−G(t + ui, b(t + ui))
∣∣∣ (3.17)

=
∣∣Gx(t + ui, ηi)

∣∣ ∣∣̂bn(t + ui)− b(t + ui)
∣∣

for some ηi ∈ E and every i = 1, . . . , n . Then, using (3.17) and taking into
account (3.11), from (3.16) it follows that:

∣∣∣F (t, x; t + ui, b(t + ui))− F (t, x; t + ui, b̂(t + ui))
∣∣∣ (3.18)

≤ C

ε
√

ui

∣∣∣G(t + ui, b̂n(t + ui))−G(t + ui, b(t + ui))
∣∣∣

=
C

ε
√

ui

∣∣∣V̂n(t + ui, b̂n(t + ui))− V (t + ui, b(t + ui))
∣∣∣

≤ C

ε
√

ui

∣∣∣V̂n(t + ui, xi)− V (t + ui, xi)
∣∣∣

9



for some xi ∈ E such that xi ∈ (̂bn(t) ∧ b(t), b̂n(t) ∨ b(t)). Hence, combining
(3.14)-(3.18), we get:

∣∣∣V̂n(t + ui, xi)− V (t + ui, xi)
∣∣∣ (3.19)

≤ sup
ui∈[0,T−t]

sup
xi∈E

∣∣∣V̂n(t + ui, xi)− V (t + ui, xi)
∣∣∣

for all 0 ≤ t ≤ T and every i = 1, . . . , n . By virtue of the fact that the function
e−λu/

√
u is decreasing, straightforward calculations show that the inequalities:

n∑

i=1

e−λui
C

ε
√

ui
∆n ≤ C

ε

∫ T−t

0

e−λu

√
u

du ≤ C2

√
T − t (3.20)

hold for all 0 ≤ t ≤ T and some C2 > 0 fixed. Therefore, combining (3.15)-
(3.20), from (3.14) we obtain:

∣∣∣V̂n(t, x)− V (t, x)
∣∣∣ ≤ C1

n
+ C2

√
T − t (3.21)

× sup
ui∈[0,T−t]

sup
xi∈E

∣∣∣V̂n(t + ui, xi)− V (t + ui, xi)
∣∣∣

for all 0 ≤ t ≤ T and x ∈ E . Hence, we have:

sup
u∈[0,T−t]

sup
x∈E

∣∣∣V̂n(t + u, x)− V (t + u, x)
∣∣∣ (3.22)

≤ C1

n
+ C2

√
T − t sup

u∈[0,T−t]

sup
x∈E

∣∣∣V̂n(t + u, x)− V (t + u, x)
∣∣∣

for all 0 ≤ t ≤ T and x ∈ E .
Let us now choose some t ∈ [0, T ] such that C2

√
T − t ≤ 1/2. Then it

follows from (3.22) that:

sup
u∈[0,T−t]

sup
x∈E

∣∣∣V̂n(t + u, x)− V (t + u, x)
∣∣∣ ≤ 2C1

n
(3.23)

for all n ∈ N such that n ≥ N . This completes the proof of the theorem. ¤
3.4. In principle, one could construct directly the estimate for the value

function (2.2) without use of discretization by the following iterative scheme.
Let us set V 0(t, x) = G(t, x) and define the function V 1(t, x) by the formula:

V 1(t, x) = Ṽ (t, x)−
∫ T−t

0

e−λu Et,x

[
H(t + u,Xt+u) (3.24)

× I(V 0(t + u,Xt+u) ≤ G(t + u,Xt+u) < V (Xt+u)
]
du

and the function V 2
n (t, x) by the formula:

V 2(t, x) = Ṽ (t, x)−
∫ T−t

0

e−λu Et,x

[
H(t + u,Xt+u) (3.25)

× I(V 1(t + u,Xt+u) ≤ G(t + u,Xt+u) < V (Xt+u)
]
du
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for all 0 ≤ t ≤ T , x ∈ E such that V 2(t, x) ≥ V 0(t, x), and V 2(t, x) = V 0(t, x)
elsewhere. Let us now define sequentially the functions V m(t, x) for every m ∈
N , m ≥ 3 by the formula:

V m(t, x) = Ṽ (t, x)−
∫ T−t

0

e−λu Et,x

[
H(t + u, Xt+u) (3.26)

× I(V m−1(t + u,Xt+u) ≤ G(t + u,Xt+u) < V (Xt+u)
]
du

for all 0 ≤ t ≤ T and x ∈ E .

Remark 5 Again, by the construction, we have:

V 2k−1(t, x) ≥ V (t, x) for 0 ≤ t ≤ T, x ∈ E, k ∈ N (3.27)

where the sequence (V 2k−1(t, x))k∈N is monotone decreasing, and

V 2k(t, x) ≤ V (t, x) for 0 ≤ t ≤ T, x ∈ E, k ∈ N. (3.28)

where the sequence (V 2k(t, x))k∈N is monotone increasing for each 0 ≤ t ≤ T ,
x ∈ E and every n ∈ N fixed. Moreover, any lower estimate V 2k−2(t, x) for
V (t, x) produces the upper one V 2k−1(t, x) , and any upper estimate V 2k−1(t, x)
produces the lower one V 2k(t, x) for each 0 ≤ t ≤ T , x ∈ E and every k ∈ N .
The question of convergence of the sequence (V m(t, x))m∈N to the value function
V (t, x) for each 0 ≤ t ≤ T , x ∈ E is left open here.

4 Examples

In this section we give some remarks on the application of the iterative proce-
dure introduced above to solving nonlinear integral equations arising from some
optimal stopping problems with finite time horizon.

Example 6 (Early exercise American put option [17], [22]). Suppose that in
(2.2) we have G(t, x) = (K − x)+ and λ = r for some K, r > 0 fixed. Assume
that in (2.1) we have µ(x) = rx , σ(x) = θx for x ∈ E = (0,∞) and some
θ > 0 , and hence H(t, x) = −rK in (2.5). In this case, as an analogue of the
formula (3.10), we have:

F (0, x; t, y) = −rK P0,x

[
Xt ≤ y

]
(4.1)

= −rK Φ
(

1
σ
√

t

(
log

y

x
−

(
r − θ2

2

)
t

))

for all t > 0 and x, y > 0 , where Φ(x) = (1/
√

2π)
∫ x

−∞ e−y2/2dy . Thus, the
conditions (3.11)-(3.13) as well as the other essential assumptions of Theorem
4 are satisfied (see [2]).
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Example 7 (Early exercise Asian option [24], [16]). Suppose that in (2.2)
we have G(t, x) = (1 − x/t)+ and λ = 0 . Assume that in (2.1) we have
µ(x) = (1 − rx) , σ(x) = θx for all x ∈ E = (0,∞) and some r, θ > 0 , and
hence H(t, x) = ((1/t + r)x− 1)/t in (2.5). In this case, as an analogue of the
formula (3.10), we have:

F (0, x; t, y) = E0,x

[
H(t, x) I(Xt ≤ y)

]
(4.2)

=
∫ ∞

0

∫ ∞

0

1
t

((1
t

+ r
)x + a

s
− 1

)
I
(x + a

s
≤ y

)
f(t, s, a) ds da

for all t > 0 and x, y > 0 , where

f(t, s, a) =
2
√

2
π3/2θ3

sr/θ2

a2
√

t
exp

(
2π2

θ2t
− (r + θ2/2)2

2θ2
t− 2

θ2a
(1 + s)

)
(4.3)

×
∫ ∞

0

exp
(
−2z2

θ2t
− 4

√
s

θ2a
cosh z

)
sinh z sin

(4πz

θ2t

)
dz

for all t > 0 and s, a > 0 . Thus, it can be verified that the conditions (3.11)-
(3.13) as well as the other essential assumptions of Theorem 4 are satisfied.

Example 8 (Bayesian Wiener sequential testing problem with finite horizon
[29; Chapter IV, Section 3], [6]). Suppose that in (2.2) we have G(t, x) =
−t− ax ∧ b(1− x) for some a, b > 0 fixed and λ = 0 . Assume that in (2.1) we
have µ(x) = 0 , σ(x) = θx(1 − x) for all x ∈ E = (0, 1) and some θ > 0 , and
hence H(t, x) = 1 in (2.5). In this case, as an analogue of the formula (3.10),
we have:

F (0, x; t, y) = P0,x

[
Xt ≤ y

]
(4.4)

= xΦ
(

1
θ
√

t
log

(
y

1− y

1− x

x

)
− θ

√
t

2

)

+ (1− x)Φ
(

1
θ
√

t
log

(
y

1− y

1− x

x

)
+

θ
√

t

2

)

for all t > 0 and x, y ∈ (0, 1) . Thus, it can be verified that the conditions (3.11)-
(3.13) as well as the other essential assumptions of Theorem 4 are satisfied.

Example 9 (Wiener disorder detection problem with finite horizon [29; Chap-
ter IV, Section 4], [7]). Suppose that in (2.2) we have G(t, x) = −(1− x) and
λ = 0 . Assume that in (2.1) we have µ(x) = η(1 − x) , σ(x) = θx(1 − x) for
all x ∈ E = (0, 1) and some η, θ > 0 . The reward of the related optimal stop-
ping problem contains also an integral and thus, as an analogue of the formula
(3.10), we have:

F (0, x; t, y) = E0,x

[
Xt I(Xt ≤ y) + (1−Xt) I(Xt ≥ y)

]
(4.5)

=
∫ y

0

z p(x; t, z) dz +
∫ 1

y

(1− z) p(x; t, z) dz
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for all t > 0 and x, y ∈ (0, 1) , where an explicit expression for the marginal
density function p is derived in [7; Section 4]. It can be verified that the condi-
tions (3.11)-(3.13) as well as the other essential assumptions of Theorem 4 are
satisfied (see [7]).

Example 10 (Early exercise Russian option [26]-[27], [23]). Suppose that in
(2.2) we have G(t, x) = x . Assume that in (2.1) we have:

dXt = −rXt dt + θXt dBt + dRt (X0 = x) (4.6)

where

Rt =
∫ t

0

I(Xu = 1)
d max0≤v≤u Su

Su
(4.7)

and St = exp(θBt + (r + θ2/2)t) for all t ≥ 0 and some r, θ > 0 , and hence
H(t, x) = −(r + λ)x for all x ∈ E = (0,∞) in (2.5). In this case, as an
analogue of the formula (3.10) we have:

F (0, x; t, y) = E0,x

[
H(t, x) I(Xt ≥ y)

]
(4.8)

= −
∫ ∞

1

∫ ∞

0

(m ∨ x

s

)
I
(m ∨ x

s
≥ y

)
f(t, s,m) ds dm

for all t > 0 and x, y > 0 , where

f(t, s, m) =
2

θ3
√

2πt3
log(m2/s)

sm
exp

(
− log2(m2/s)

2θ2t
+

β

θ
log s− β2

2
t

)
(4.9)

for 0 < s ≤ m and m ≥ 1 with β = r/θ + θ/2 . Thus, it can be shown that in
this case the condition (3.13) is not satisfied. This can be explained by the fact
that there is a reflection term (4.7) in the equation (4.6). Therefore, one should
find another arguments to prove the assertion of Theorem 4 for this case.
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