
Belomestny, Denis; Reiß, Markus

Working Paper

Spectral calibration of exponential Lévy

SFB 649 Discussion Paper, No. 2006,034

Provided in Cooperation with:
Collaborative Research Center 649: Economic Risk, Humboldt University Berlin

Suggested Citation: Belomestny, Denis; Reiß, Markus (2006) : Spectral calibration of exponential Lévy,
SFB 649 Discussion Paper, No. 2006,034, Humboldt University of Berlin, Collaborative Research
Center 649 - Economic Risk, Berlin

This Version is available at:
https://hdl.handle.net/10419/25125

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/25125
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 
 
 
 
 
 

 
 
 
 
 
 

SFB 649 Discussion Paper 2006-034 

Spectral calibration of 
exponential Lévy 

Models [1] 
 

Denis Belomestny* 
Markus Reiß** 

* Weierstrass Institute for Applied Analysis and Stochastics, 
Berlin, Germany 

** Institute of Applied Mathematics, Ruprecht-Karls-Universität 
Heidelberg, Germany 

 

This research was supported by the Deutsche 
Forschungsgemeinschaft through the SFB 649 "Economic Risk". 

 
http://sfb649.wiwi.hu-berlin.de 

ISSN 1860-5664 
 

SFB 649, Humboldt-Universität zu Berlin 
Spandauer Straße 1, D-10178 Berlin 

S
FB

  
  
  
6

 4
 9

  
  
  
  

  
  
  
E

 C
 O

 N
 O

 M
 I 

C
  

  
 R

 I 
S

 K
  
  
  
  
  
  

  
  
 B

 E
 R

 L
 I 

N
 



Spectral calibration of exponential Lévy
models ?
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Abstract. We investigate the problem of calibrating an exponential Lévy model
based on market prices of vanilla options. We show that this inverse problem is in
general severely ill-posed and we derive exact minimax rates of convergence. The
estimation procedure we propose is based on the explicit inversion of the option
price formula in the spectral domain and a cut-off scheme for high frequencies as
regularisation.
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1. Introduction

The work on calibration methods for financial models based on Lévy pro-
cesses has mainly focused on certain parametrisations of the underlying
Lévy process with the notable exception of Cont and Tankov (2004b). Since
the characteristic triplet of a Lévy process is a priori an infinite-dimensional
object, the parametric approach is always exposed to the problem of mis-
specification, in particular when there is no inherent economic foundation
of the parameters and they are only used to generate different shapes of
possible jump distributions. The goal of this paper is to investigate mathe-
matically the problem of nonparametric inference for the Lévy triplet when
the asset price (St) follows an exponential Lévy model

St = Sert+Xt with a Lévy process Xt for t > 0. (1)

We suppose that at time t = 0 we dispose of prices for vanilla European
call and put options on this asset with different strike prices and possibly
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different maturities. By basing our estimation on option data we draw infer-
ence on the underlying risk neutral price process, which in general cannot
be determined from historical price data due to the incompleteness of the
Lévy market.

The observed option prices will be slightly unprecise due to bid-ask
spreads or other market frictions. In the ideal case of precise observations
for all possible strike prices the state price density and hence the Lévy triplet
can be uniquely identified using the formula by Breeden and Litzenberger
(1978). Under the realistic model of finitely many noisy observations we
cannot hope to determine the triplet correctly, we should rather try to
provide an estimator which is as good as possible for the given accuracy
of the data. This optimality property is usually assessed by the minimax
paradigm, which measures the inherent complexity of the statistical problem
class. One of the main results of the present paper is a lower bound, showing
that already in the simple exponential Lévy model the estimation problem
is in general severely ill-posed, that is, the estimation error for any part of
the Lévy triplet as a function of the accuracy of the observations will only
converge with a logarithmic rate for any conceivable estimation procedure.

On the other hand, we propose an explicit construction of an estimator
that attains this optimal minimax rate. The procedure is based on the in-
version of the explicit pricing formula via Fourier transforms by Carr and
Madan (1999) and a regularisation in the spectral domain. Using the Fast
Fourier Transformation, the procedure is easy to implement and yields good
results in simulations in view of the severe ill-posedness, see also the sup-
plement Belomestny and Reiß (2006). Below, we discuss the features of our
method in detail and compare it with the penalized least squares approach
by Cont and Tankov (2004b). In comparison with standard statistical ill-
posed problems, the main challenges are the nonlinearity involved and the
complex interplay between the jump measure as nonparametric part and
the drift and diffusion coefficient as parametric parts.

The exponential Lévy model reflects the assumption that the log returns
of the asset evolve independently and with identical distribution for the
same time steps, which is plausible for liquid markets and not too long time
horizons. This basic model class, first introduced by Merton (1976), has
been considered recently for a variety of pricing and optimisation problems
in finance, cf. the recent works by Kallsen (2000), Mordecki (2002), Emmer
and Klüppelberg (2004), Cont and Voltchkova (2005) and the references
therein.

When no model for the price process is specified, calibration from op-
tion data can be used to estimate the state price density, see Aı̈t-Sahalia
and Duarte (2003). This density yields the distribution of the asset price
at the times of maturity, but does not provide any information on the evo-
lution of the price in time. A structural assumption on the price process
allows to find prices for path-dependent options or to perform a dynamic
risk management. In financial engineering information about the expected
time evolution is obtained by smoothing implied Black-Scholes volatility sur-
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faces, e.g. Fengler (2005). For the generalised Black-Scholes model Dupire’s
formula permits the calibration from option prices, see e.g. Jackson, Süli,
and Howison (1999) for a numerical approach and Crépey (2003) for a the-
oretical study. The calibration of parametric exponential Lévy models has
been studied for example by Eberlein, Keller, and Prause (1998) and Carr,
Geman, Madan, and Yor (2002).

After introducing the financial and statistical model in Section 2, the
estimation method is developed in Section 3. The main theoretical results
are formulated in Section 4. We conclude in Section 5. The proofs of the
upper and lower bounds are deferred to Sections 6 and 7, respectively.

2. The model

2.1. The exponential Lévy model and option prices

Since we base our calibration on option prices, we place ourselves imme-
diately in a risk neutral world, modeled by a filtered probability space
(Ω,F ,Q, (Ft)), on which the price process (St, t > 0) of an asset after
discounting forms a martingale. As is standard in the calibration literature,
the martingale measure Q is assumed to be settled by the market and to be
identical for all options under consideration.

We suppose that under Q the process St follows the Lévy model (1),
where S > 0 is the present value of the asset and r > 0 is the riskless
interest rate, which is assumed to be known and constant. An excellent
reference for this model in finance is the monograph by Cont and Tankov
(2004a). In this paper we shall only consider Lévy processes X with a jump
component of finite intensity and absolutely continuous jump distribution.
Extensions to the infinite intensity case can be found in Belomestny and
Reiß (2005). The characteristic function of XT is then given by the Lévy-
Khintchine representation

ϕT (u) := E[eiuXT ] = exp
(
T

(
−σ2u2

2
+ iγu+

∫ ∞

−∞
(eiux− 1)ν(x) dx

))
. (2)

σ > 0 is called volatility, γ ∈ R drift and the non-negative function ν ∈
L1(R) is the jump density with intensity λ := ‖ν‖L1(R).

A risk neutral price at time t = 0 for a European call option with strike
K and maturity T is given by

C(K, T ) = e−rT E[(ST −K)+], (3)

where (A)+ := max(A, 0). By the independence of increments in X the
martingale condition on e−rtSt may be equivalently characterized by

∀ t > 0 : E[eXt ] = 1 ⇐⇒ σ2

2
+ γ +

∫ ∞

−∞
(ex − 1)ν(x) dx = 0. (4)

Observe that we have imposed implicitly the exponential moment condition∫∞
0

(ex − 1)ν(x) dx < ∞ to ensure the existence of E[St]. Another conse-
quence is that the characteristic function ϕT is defined on the whole strip
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{z ∈ C | Im(z) ∈ [−1, 0]} in the complex plane, which will be important
later. We reduce the number of parameters by introducing the negative
log-forward moneyness

x := log(K/S)− rT,

such that the call price in terms of x is given by

C(x, T ) = S E[(eXT − ex)+].

The analogous formula for the price of a put option is P(x, T ) = S E[(ex −
eXT )+] and the well-known put-call parity is easily established:

C(x, T )− P(x, T ) = S E[eXT − ex] = S(1− ex). (5)

2.2. The observations

We focus on the calibration from options with a fixed maturity T > 0 and
mention the straight-forward extension to several maturities in Section 3.1.
The prices of N call options (or by the put-call parity (5) alternatively put
options) are observed at different strikes Kj , j = 1, . . . , N , corrupted by
noise:

Yj = C(Kj , T ) + σjεj , j = 1, . . . , N. (6)

We assume the observational noise (εj) to consist of independent centred
random variables with E[ε2

j ] = 1 and supj E[ε4
j ] < ∞. The noise levels (σj)

are assumed to be positive and known.
For observational noise with a known and smooth correlation structure

the calibration problem becomes more stable. As long as no empirically val-
idated model for the observational noise exists, we work under the assump-
tion of independent perturbations which is canonical and least favourable.

As we need to employ Fourier techniques, we introduce the function

O(x) :=

{
S−1C(x, T ), x > 0,

S−1P(x, T ), x < 0
(7)

in the spirit of Carr and Madan (1999). O records normalised call prices
for x > 0 and normalised put prices for x 6 0. The following important
properties of O are easily obtained from the put-call parity (5) and the
martingale condition (4), see Belomestny and Reiß (2005) for the exact
derivation.

Proposition 1.

(a) We have O(x) = S−1C(x, T )− (1− ex)+ for all x ∈ R.
(b) O(x) ∈ [0, 1 ∧ ex] holds for all x ∈ R.
(c) If Cα := E[eαXT ] is finite for some α > 1, then O(x) 6 Cαe(1−α)x holds

for all x > 0.
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(d) At any x ∈ R \{0}, respectively x ∈ R \{0, γT} in the case σ = 0, the
function O is twice differentiable with ‖O′′‖L1(R) 6 3. The first deriva-
tive O′ has a jump of height −1 at zero and, in the case σ = 0, a jump
of height +eT (γ−λ) at γT .

(e) The Fourier transform of O satisfies

FO(v) =
1− ϕT (v − i)

v(v − i)
, v ∈ R . (8)

This identity extends to all complex values v with Im(v) ∈ [0, 1].

Remark that an interesting way to estimate γ and λ (but not ν) is
suggested by Proposition 1(d): a change point detection algorithm for jumps
in the derivative of O, as proposed by Goldenshluger, Tsybakov, and Zeevi
(2005), yields an estimate of γ and a subsequent estimate of the jump size
an estimate of λ.

We transform our observations (Yj) and predictors (Kj) to

Oj := Yj/S − (1−Kje
−rT /S)+ = O(xj) + δjεj , (9)

xj := log(Kj/S)− rT, (10)

where δj = S−1σj . In practice, the design (xj) will be rather dense around
x = 0 and sparse for options further out of the money or in the money, cf.
Fengler (2005) for a study on the German DAX index.

In order to facilitate the subsequent analysis we make a mild moment
assumption on the price process, which guarantees by Proposition 1(b,c)
the exponential decay of O.

Assumption 1 We assume that C2 := E[e2XT ] is finite. This is equivalent
to postulating for the asset price a finite second moment: E[S2

T ] < ∞.

3. The method of estimation

3.1. Outline of the method

Since our asset follows an exponential Lévy model, the jumps in the Lévy
process appear exponentially transformed in the asset prices and it is intu-
itive that inference on the exponentially weighted jump measure

µ(x) := exν(x), x ∈ R,

will lead to spatially more homogeneous properties of the estimator than
for ν itself. Our calibration procedure relies essentially upon the formula

ψ(v) :=
1
T

log
(
1 + iv(1 + iv)FO(v)

)
=

1
T

log(ϕT (v − i))

= −σ2v2

2
+ i(σ2 + γ)v + (σ2/2 + γ − λ) + Fµ(v), (11)
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which is a simple consequence of the formulae (2) and (8). Note that the
function ψ is up to a shift in the argument the cumulant-generating function
of the Lévy process and a continuous version of the logarithm must be taken
such that ψ(0) = 0, which is implied by the martingale condition.

Formula (11) shows that the Lévy triplet is uniquely identifiable given
the observation of the whole option price function O without noise: Fµ(v)
tends to zero as |v| → ∞ due to the Riemann-Lebesgue Lemma such that
ψ is the sum of a quadratic polynomial and a function vanishing at infinity.
Then σ2, γ, λ are identifiable as coefficients in the polynomial for arguments
tending to infinity. The function Fµ(v) is obtained as the difference between
ψ and the polynomial.

This identification procedure, however, is not stable such that the prob-
lem becomes ill-posed. Still, a properly refined application of this approach
combined with a spectral regularisation method will equip us with esti-
mators for the whole triplet T = (σ2, γ, µ) (we parametrize Lévy triplets
equivalently with µ or ν).

The model (11) has a structure similar to the well-known partial linear
models, but in fact there is one substantial difference: the function Fµ is
not supposed to be smooth, but instead it is decaying for high frequencies
because we work in the spectral domain. This is also why we shall regularize
the problem by cutting off frequencies |v| higher than a certain threshold
level U , which depends on the noise level and the smoothness assumptions
on the unknown jump density. Let us present the basic estimation procedure.
Further details are specified in Section 6.1, while a more elaborate numerical
implementation is presented in (Belomestny and Reiß 2006).

(a) We approximate the function O by building a function Õ ∈ L1, approx-
imating the true function O, based on the observations (Oj). It suffices
to interpolate the data points (Oj) linearly, but in simulations it turns
out that some smoothing procedure is preferable, cf. the discussion in
Section 3.2.

(b) For κ(v) ∈ (0, 1), specified later in (27), we calculate

ψ̃(v) :=
1
T

log>κ(v)

(
1 + iv(1 + iv)FÕ(v)

)
, v ∈ R, (12)

where the trimmed log-function log>κ : C \ {0} → C is given by

log>κ(z) :=

{
log(z), |z| ≥ κ

log(κ z/|z|), |z| < κ
(13)

and log(•) is taken in such a way that ψ̃(v) is continuous with ψ̃(0) = 0
(almost surely the argument of the logarithm in (12) does not vanish).
If we observe option prices for different maturities Tk, we perform the
steps (a) and (b) for each Tk separately and aggregate at this point the
different estimators for ψ to obtain one estimator with less variance, e.g.
by taking a weighted average. Similarly, estimators obtained on different
days can be aggregated at this stage.
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(c) With an estimate ψ̃ of ψ at hand, we obtain estimators for the para-
metric part (σ2, γ, λ) by an averaging procedure taking into account
the polynomial structure in (11). Upon fixing the spectral cut-off value
U > 0, we set

σ̂2 :=
∫ U

−U

Re(ψ̃(u))wU
σ (u) du, (14)

γ̂ := −σ̂2+
∫ U

−U

Im(ψ̃(u))wU
γ (u) du, (15)

λ̂ :=
σ̂2

2
+ γ̂−

∫ U

−U

Re(ψ̃(u))wU
λ (u) du, (16)

where the weight functions wU
σ , wU

γ and wU
λ satisfy

∫ U

−U

−u2

2 wU
σ (u) du = 1,

∫ U

−U

uwU
γ (u) du = 1,

∫ U

−U

wU
λ (u) du = 1; (17)

∫ U

−U

wU
σ (u) du = 0,

∫ U

−U

u2wU
λ (u) du = 0. (18)

The estimate of the coefficients can be understood as an orthogonal
projection estimate with respect to a weighted L2-scalar product.

(d) Finally, we define the estimator for µ as the inverse Fourier transform
of the remainder:

µ̂(x) := F−1
[(

ψ̃(•) + σ̂2

2 (•− i)2 − iγ̂(•− i) + λ̂
)
1[−U,U ](•)

]
(x). (19)

Then the identity F µ̂(0) = − σ̂2

2 − γ̂ + λ̂ shows that the estimated triplet
still satisfies the martingale condition (4).

3.2. Discussion of the method

First note that the computational complexity of the estimation procedure
is very low. Step (a) is a standard interpolation or regression estimation
procedure, which is well established and fast. The only time consuming
steps are the three integrations in step (c) and the (fast) Fourier transforms
in steps (a) and (d).

In step (a) a reasonable approximation of FO based on discrete data
must be found. Asymptotically, it suffices to use simple linear interpola-
tion because all regularisation takes place later in the spectral domain by
damping high frequencies. Depending on the observation design (xj) and
the noise levels (δj), it may nevertheless pay off to invest more in obtaining
a good approximating function Õ. When the distance ∆j = xj − xj−1 be-
tween the transformed prices is rather large compared to the noise level δj ,
the numerical approximation error prevails and higher order interpolation
schemes might significantly reduce the total error |Õ − O| if O is smooth.
In Proposition 2 below, we only take advantage of the fact that O is almost
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everywhere twice differentiable, but more regularity will persist for regular
jump densities. Note that for a financial Lévy model it is quite reasonable
to assume that the Lévy measure is absolutely continuous and has even
a smooth density (at least off the origin). Prices are conceived by a large
number of agents on the market who in addition all share some uncertainty
about possible jump sizes, which smears out possible point masses.

As usually, the estimation procedure is specified by certain parameters.
The stabilisation of the logarithm by the function κ(v) is enforced mainly
for theoretical reasons to prevent explosions in the logarithm due to large
deviations, its practical importance is minor. For the weights wU

σ , wU
γ , wU

λ

it suffices to use weight functions satisfying (29) below for some large smax

like in standard nonparametrics where the order of the kernel must only be
sufficiently large, see Belomestny and Reiß (2006) for an example. Like for
classical kernel estimators, their choice is not very critical. We are thus left
with only one important tuning parameter, the spectral cut-off frequency U .
In Theorem 1 an asymptotically optimal choice is given, while Belomestny
and Reiß (2006) discuss some methods to determine U directly from the
data. Note, however, that a proper mathematical analysis for these com-
pletely data-driven (i.e., unsupervised) choices of U seems challenging due
to the underlying nonlinear ’change point detection’-structure, for which a
data-driven algorithm even in the idealized linear setting of Goldenshluger,
Tsybakov, and Zeevi (2005) is not yet available.

While the spectral calibration method is here only applied to the non-
parametric estimation of the Lévy triplet in an exponential Lévy model, it is
more generally applicable. Suppose we prescribe a finite-dimensional para-
metric model for the Lévy measure. Then we can follow steps (a) through (c)
and fit the remainder term in step (d) to the parameters by a least-squares
criterion. In comparison with the classical least-squares approach this has
the advantage of yielding faster algorithms, which are also more robust due
to the variance reduction caused by the spectral cut-off. Moreover, many
more financial models have been propagated where the option price and
the model parameters are linked by a relationship in the spectral domain,
cf. Duffie, Filipovic, and Schachermayer (2003) and the references therein.
Although each model needs to be analyzed in detail, the general principles
of the spectral calibration method will apply.

Let us finally make a comparison with the nonlinear penalized least-
squares (PLS) approach by Cont and Tankov (2004b) for the same cali-
bration problem. There an exponential Lévy model is selected as a prior
and exponential Lévy models are considered that are obtained by a mar-
tingale measure equivalent to the prior. For each model the sum of squares
of the distances between observed and model option prices is penalized by
the relative entropy with respect to the prior. The estimated triplet is ob-
tained by minimizing this penalized least squares criterion. In practice, the
Lévy measure is approximated by a finite-dimensional collection of point
measures and the minimizer is found by an iterative descent algorithm.
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Fig. 1. Kou model. Left: Simulated option price data (Oj) as function of xj .
Right: Calibrated Lévy density ν̂ and true ν (dashed).

Both methods have certain distinctive features. In the PLS method the
penalisation plays a double role, it uses prior knowledge for the unknown
Lévy triplet and it stabilizes the inverse problem. Because of the relative
entropy penalisation, the volatility σ is fixed in advance by the prior and
cannot be calibrated. In comparison, the spectral calibration (SC) method
profits from the regularity of the jump density for regularizing the inverse
problem. In particular, the volatility can be calibrated. The SC estimators
depend only on one critical tuning parameter, the cut-off frequency U , and
given U they are always uniquely defined.

In simulations the experience is that both methods yield roughly com-
parable results. The PLS method fits better the option price function, while
the SC method performs better in estimating the Lévy triplet. The PLS
method has difficulties in estimating the jump density near zero, because
there are no smoothness constraints, while the SC method can yield nega-
tive values for jump densities, which should be corrected a posteriori, see
Belomestny and Reiß (2006). Because it avoids a numerical minimisation
procedure, the SC method is considerably faster than the PLS method.

3.3. A numerical example

We consider the double exponential jump diffusion model proposed by Kou
(2002), where the Lévy triplet is specified by the jump density

ν(x) = λ
(
pλ+e−λ+x1[0,∞)(x) + (1− p)λ−eλ−x1(−∞,0)(x)

)
, x ∈ R, (20)

and the parameters σ, λ, λ+, λ− > 0 and p ∈ [0, 1], while γ is uniquely
determined by the martingale condition. We simulate the Kou model with
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parameters σ = 0.1, λ = 5, λ− = 4, λ+ = 8, p = 1/3 and apply the non-
parametric calibration procedure given the noisy observation of N = 50
European options with maturity T = 0.25, interest rate r = 0.06 and noise
levels δj = O(xj)/10. The strike prices giving rise to the design points (xj)
have been obtained by a random sample which yields more option prices at
the money than further in or out of the money.

In this example we use a standard procedure based on cubic smoothing
splines with cross validation for step (a) of the algorithm. The spectral cut-
off frequency U is selected in a data-driven way by looking for the values
where the estimates stabilize when U increases. As a postprocessing step
the estimated Lévy density is corrected to ensure that it is non-negative.
A more precise description of the implementation of the entire procedure is
given in Belomestny and Reiß (2006).

In Figure 1 (left) the simulated observations (Oj) are depicted as a
function of the corresponding log-forward moneyness (xj) on the horizontal
axis. The calibrated Lévy density ν̂ is shown in Figure 1 (right) together
with the true density ν from (20). The parameters were estimated as σ̂ =
0.131, λ̂ = 4.983, γ̂ = 0.424 (γ = 0.423). We observe that the calibration
recovers the main features of the Lévy triplet like the magnitude of the
volatility and jump intensity or the mode and the skewness of the jump
density.

Simulations show that for twice as many data points (N = 100) and ob-
servations with half as much noise (δj = O(xj)/20) the calibration results
are already very satisfactory. Usually, the quality of the estimators depends
slightly more on the noise level (δj) than on the number of observations
N , that is the distance of observations ∆. The double-exponential jump
density in the Kou model is difficult to estimate because of its nondiffer-
entiability at zero. For smoother jump densities, as in the Merton (1976)
model, even better estimates are obtained. In Belomestny and Reiß (2006)
further calibration results are presented.

4. Risk bounds

4.1. The main results

We shall use throughout the notation A . B if A is bounded by a constant
multiple of B, independently of the parameters involved, that is, in the
Landau notation A = O(B). Equally A & B means B . A and A ∼ B
stands for A . B and A & B simultaneously.

To assess the quality of the estimators, we quantify their risks under a
smoothness condition of order s on the transformed jump density µ.

Definition 1. For s ∈ N and R, σmax > 0 let Gs(R, σmax) denote the set
of all Lévy triplets T = (σ2, γ, µ), satisfying the martingale condition and
Assumption 1 with C2 6 R, such that µ is s-times (weakly) differentiable
and

σ ∈ [0, σmax], |γ|, λ ∈ [0, R], max
06k6s

‖µ(k)‖L2(R) 6 R, ‖µ(s)‖L∞(R) 6 R.
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σ2 γ λ µ

σmax > 0 | log(ε)|−(s+3)/2 | log(ε)|−(s+2)/2 | log(ε)|−(s+1)/2 | log(ε)|−s/2

σmax = 0 0 ε(2s+4)/(2s+5) ε(2s+2)/(2s+5) ε2s/(2s+5)

Table 1. The minimax rates vq,σmax for the different parameters q.

Since the underlying Lévy triplet is only identifiable if O(x) is known for
all x ∈ R, we consider the asymptotics of a growing number of observations
with

∆ := max
j=2,...,N

(xj − xj−1) → 0 and A := min(xN ,−x1) →∞. (21)

In contrast to standard regression estimates we shall always track ex-
plicitly the dependence on the level (δk) of the noise in the observations,
which is usually rather small for observed option prices. The subsequent
analysis can certainly be improved for a concrete design (xj) and concrete
noise levels (δj), but for revealing the main features it is more transparent
and concise to state the results in terms of the abstract noise level

ε := ∆3/2 + ∆1/2‖δ‖l∞ , (22)

comprising the level of the numerical interpolation error and of the stochas-
tic error simultaneously. Here and in the sequel we use the norms ‖δ‖l∞ :=
supk δk and ‖δ‖2l2 :=

∑
k δ2

k.
We now state the main results about the risk upper bounds of the estima-

tors obtained by the basic procedure, given the specific choices in Section
6.1, and about the risk lower bounds valid for any estimation procedure
whatsoever. The proofs are given in Sections 6 and 7 for the upper and
lower bounds, respectively.

Theorem 1. Assume e−A . ∆2 and ∆‖δ‖2l2 . ‖δ‖2l∞ . For any σ̄ > σmax

we choose

Uσ̄ := σ̄−1
(
2 log(ε−1)/T

)1/2
, U0 := ε−2/(2s+5), (23)

in the cases σmax > 0 and σmax = 0, respectively. Then every estimator
q̂ ∈ {σ̂2, γ̂, λ̂, µ̂} for the corresponding parameter q satisfies the following
asymptotic risk bound:

sup
T ∈Gs(R,σmax)

ET [‖q̂ − q‖2]1/2 . vq,σmax ,

where ‖•‖ denotes the absolute value for q ∈ {σ2, γ, λ} and the L2(R)-norm
for q = µ and the rate vq,σmax is given in Table 1.

The two assumptions in the theorem are not very severe: because of
the exponential decay of O the width A of the design only needs to grow
logarithmically and the error levels (δk) need only be square summable after
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renormalisation. The latter condition can certainly be further relaxed since
this term is caused by a rough bound on the quadratic remainder term.

For the lower bounds we appeal to the equivalence between the regression
and the Gaussian white noise model, as established by Brown and Low
(1996), and consider merely the idealized observation model

dZ(x) = O(x) dx + εdW (x), x ∈ R, (24)

with the noise level asymptotics ε → 0, a two-sided Brownian motion W
and with O = OT denoting the option price function from (7) for the given
triplet T . Here, the noise level ε corresponds exactly to the regression er-
ror ∆1/2‖δ‖l∞ . Due to Assumption 1 the option price functions O decrease
exponentially and the results by Brown and Low (1996) remain valid for
unbounded intervals. This simplification avoids tedious numerical approxi-
mations in the proofs.

Theorem 2. Let s ∈ N, R > 0 and σmax > 0 be given. For the observation
model (24) and any quantity q ∈ {σ2, γ, λ, µ} the following asymptotic risk
lower bounds hold:

inf
q̂

sup
T ∈Gs(R,σmax)

ET [‖q̂ − q‖2]1/2 & vq,σmax
,

where ‖•‖ denotes the absolute value for q ∈ {σ2, γ, λ} and the L2(R)-
norm for q = µ, the infimum is always taken over all estimators, that is all
measurable functions of the observation Z, and the rate vq,σmax is given in
Table 1. Hence, our estimators are rate-optimal.

4.2. Discussion of the results

As we want to identify the Lévy triplet exactly in the limit, we have to
assume the asymptotics ∆ → 0 and A →∞ in the upper bound result. The
numerical interpolation error term ∆3/2 contained in ε can be made smaller
by using higher-order schemes, see Section 3.2. On the other hand, the
statistical error term ∆1/2‖δ‖l∞ cannot be avoided as proved by the lower
bound. Another way to study the calibration problem is to keep the number
N of observations fixed and just to consider the asymptotics ‖δ‖l∞ → 0. In
this case the original Lévy triplet is not identifiable and the triplet of interest
has to be properly defined in the set of triplets giving rise to the uncorrupted
option prices, cf. Cont and Tankov (2005) for a minimum relative entropy
approach.

We observe that for σ > 0 the rate corresponds to a severely ill-posed
problem, while for known σ = 0 the rates are much better, but still ill-posed
compared to those obtained in classical nonparametric regression. The se-
vere ill-posedness in the case σ > 0 is due to an underlying deconvolution
problem with the Gaussian kernel of variance σ2: the law of the diffusion
part of XT is convolved with that of the compound Poisson part to give
the density of XT . This type of estimation problem has been studied thor-
oughly by Butucea and Matias (2005) in an idealized density estimation
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setup. Note the general order in which the (asymptotic) quality of estima-
tion decreases: σ2, γ, λ and finally µ, which is related to the domination
property formulated in Aı̈t-Sahalia and Jacod (2004). For small values of σ
and finite samples the performance is not so bad, compare the simulations
in Section 3.3; it just needs a lot more observations to improve on that.

At first sight the rates for the parametric estimation part are astonishing.
They are worse than in usual semi-parametric problems which also indicates
that misspecified parametric models will give unreliable estimates for the
volatility and jump intensity. In the case σ = 0, however, these rates are
easily understood when employing the language of distributions. With δ0

denoting the Dirac distribution in zero and δ′0 its derivative we have

log(ϕT (u)) = TF(
γδ′0 + ν − λδ0

)
(u).

Estimating the density of XT and similarly its characteristic function from
the noisy observations of O amounts roughly to differentiate the observed
function twice, cf. Aı̈t-Sahalia and Duarte (2003) and the remark after equa-
tion (34) below. This gives the minimax rate for ν and µ as that of esti-
mating the second derivative of a regression function of regularity s + 2.
For the parameter λ it suffices to estimate the jump in the antiderivative
of F−1(log(ϕT )), which corresponds to a pointwise estimation problem in
the first derivative of a regression function, while for γ the analogy is the
estimation of the regression function itself at zero. This explains also why
in the class Gs we have measured the regularity not only in L2, but also
uniformly. In fact, if we only assume an L2-Sobolev condition, then the
same lower bound techniques will yield slower rates for the parameters, as
is typical for pointwise estimation problems.

Observe that the estimation of the jump density at zero is only possible
by imposing a certain regularity there, otherwise it is clearly not possible
to detect jumps of height zero.

5. Conclusion

We have developed an estimation procedure for the nonparametric calibra-
tion of exponential Lévy models which is mathematically satisfying because
of its minimax properties and which yields a straight-forward algorithm for
the implementation. The corresponding lower bound results show that the
calibration is in general a hard problem to solve, at least if high accuracy is
desired. Nevertheless, the estimation procedure is well suited to gain general
insight into the size of the parameters and the structure of the jump den-
sity. Even if reasonable parametric models exist that can be better fitted, a
goodness-of-fit test based on our nonparametric approach should always be
used to check against model misspecification.

Our procedure can be adapted to different models as long as the inverse
transformation from the option prices to the characteristic function can be
calculated and the unknown quantities can be determined from the struc-
ture of the characteristic function, cf. the treatment of unbounded jump
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densities in Belomestny and Reiß (2005). In fact, the inhomogeneity in em-
pirical jump densities across maturities (see Cont and Tankov (2004a) and
Belomestny and Reiß (2006)) suggests that the exponential Lévy model
should be extended, for example by abandoning homogeneity in time. In
conclusion we believe that the question of calibration for models in finan-
cial mathematics should be addressed with the same rigour and intensity as
other primary questions like pricing, hedging and risk management.

6. Proof of the upper bounds

All calculations take place in the setting of Section 4. To facilitate the
calculations we introduce the exponentially increasing function

E(x) := ex−1
x , x > 0, and set E(0) := 1. (25)

6.1. Specification of the method

In step (a) we interpolate the data (Oj) by setting

Õ(x) = β0(x) +
N∑

j=1

Ojbj(x), x ∈ R,

where (bj) are linear splines and the function β0 is added to take care of
the jump in the derivative of O at zero: β′0(0+)− β′0(0−) = −1. We choose
bk, k = 1, . . . , N, as the linear B-spline with knots at xk−1, xk, xk+1 and
β0 as the linear spline with knots at xj0−1, 0, xj0 and with β0(xj−1) =
β0(xj) = 0, β0(0) = xj−1xj/(xj−1 − xj), where the index j0 is defined
by xj0−1 < 0 < xj0 (excluding the improbable case xj = 0). To ease the
mathematical treatment of the extrapolation error, we assume that all data
is contained in the interval (−A−∆,A+∆). Adding the extrapolated design
points x0 = −A−∆ and xN+1 = A + ∆, we set Õ(x0) = Õ(xN+1) = 0. As
bias we encounter the following linear interpolation of O

Ol(x) := E[Õ(x)] =
N∑

j=1

O(xj)bj(x) + β0(x), x ∈ R . (26)

More generally, we merely need to ensure for step (a) that the results of
Proposition 2 and estimate (35) are satisfied.

We have enforced |ψ̃T (v)| > log(κ(v)) in (12) to prevent unboundedness
in the case of large stochastic errors. For Lévy triplets in Gs(R, σmax) a
reasonable choice for κ(v) can be obtained from the following calculation
using the identity σ2

2 +γ+Fµ(0) = λ derived from the martingale condition
(4):

1
2 |ϕT (v − i)| = 1

2 exp
(
−T

σ2

2
v2 − TFµ(0) + T Re(Fµ(v))

)
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> 1
2 exp

(
−T

σ2
max

2
v2 − 4TR

)
=: κ(v). (27)

The only reason for the factor 1/2 is the mathematical tractability giving
later the bound of Lemma 1.

Concerning the choice of the weight functions, we take advantage of the
smoothness s of µ by taking functions w such that Fw has s vanishing mo-
ments. Equivalently expressed in the spectral domain, the weight functions
w(u) grow with frequencies |u| like |u|s to profit from the decay of |Fµ(u)|.
Hence, we define for all U > 0 families of weight functions by rescaling:

wU
σ (u) = U−3w1

σ(u/U), wU
γ (u) = U−2w1

γ(u/U), wU
λ (u) = U−1w1

λ(u/U),
(28)

where the functions w1
σ, w1

γ , w1
λ satisfy conditions (17) and (18) as well as

F(w1
σ(u)/us), F(w1

γ(u)/us), F(w1
λ(u)/us) ∈ L1(R). (29)

In addition the support of the weight functions w1
σ, w1

γ , w1
λ is assumed to

be contained in [−1, 1]. Note that the property F(w(u)/us) ∈ L1(R) means
in particular that w(u)/us is continuous and bounded such that

|wU
σ (u)| . U−(s+3)|u|s, |wU

γ (u)| . U−(s+2)|u|s, |wU
λ (u)| . U−(s+1)|u|s.

(30)

6.2. A numerical approximation result

Proposition 2. Under the hypothesis e−A . ∆2 we obtain uniformly over
all Lévy triplets satisfying Assumption 1

sup
u∈R

|E[FÕ(u)−FO(u)]| = sup
u∈R

|FOl(u)−FO(u)| . ∆2. (31)

Proof. By standard Fourier estimates the assertion follows once we have
proved ‖Ol −O‖L1 . ∆2.

Note that O−β0 is twice differentiable except at the points xj0−1, 0, xj0

and possibly γT by Proposition 1(d). Moreover, O − β0 has a derivative
near zero which is uniformly bounded by a constant C0, which follows from
the L1-estimate for O′′ in Proposition 1(d).

Starting with the case σ > 0, we obtain the classical quadrature estimate
for the trapezoidal rule using the mean value theorem:

∫ xN

x1

|Õl(x)−O(x)| dx 6 ‖O′′‖L1∆2 + 2C0∆
2.

By Assumption 1 and Proposition 1(b,c) the extrapolation error is bounded
by ∫

[x0,x1]∪[xN ,xN+1]

|E[Õ(x)−O(x)]| dx 6 4C2∆e−(A−∆).
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An application of Proposition 1(d) therefore shows for σ > 0
∫ ∞

−∞
|E[Õ(x)−O(x)]| dx 6 e−A + 3∆2 + 2C0∆

2 + 4C2∆e−(A−∆) . ∆2.

In the case σ = 0 we consider the index j∗ with xj∗−1 6 γT < xj∗ and
face an additional error estimated by
∫ xj∗

xj∗−1

|E[Õ(x)−O(x)]| dx 6
∫ xj∗

xj∗−1

‖(O − β0)′‖L∞

∣∣∣2(x− xj∗−1)(xj∗ − x)
xj∗ − xj∗−1

∣∣∣ dx

6 ‖(O − β0)′‖L∞(xj∗ − xj∗−1)2

We infer that this error term is also of order ∆2 and thus does not enlarge
the convergence rate.

6.3. Upper bound for σ2

The rate for σ2 follows once the general risk estimate

E[|σ̂2 − σ2|2] . U−2(s+3) + E(Tσ2U2)U−1ε2 + E(Tσ2
maxU2)2U4ε4 (32)

has been shown for U . ∆−1 uniformly over Gs(R, σmax), since the explicit
choice of U renders the second and third term asymptotically negligible.

Consider in the definition (12) of ψ̃ separately the linearisation L, ne-
glecting the stabilisation by κ, and the remainder term R:

L(u) := T−1ϕT (u− i)−1(u− i)uF(Õ − O)(u), (33)

R(u) := ψ̃(u)− ψ(u)− L(u). (34)

When neglecting the remainder term, we may view ψ̃(u) as observation
of ψ(u) in additive noise, whose intensity grows like |ϕT (u−i)|−1|(u−i)u| ∼
u2eTσ2u2

for |u| → ∞. This heteroskedasticity reflects the degree of ill-
posedness of the estimation problem.

Lemma 1. For all u ∈ R the remainder term satisfies

|R(u)| 6 T−1κ(u)−2(u4 + u2)|F(Õ − O)(u)|2.
Proof. Let us set ϕ̃T (u − i) := 1 − u(u − i)FÕ(u) which equals eTψ̃(u) if
|ϕ̃T (u − i)| > κ(u). Using |eTψ̃(u)| > κ(u), u ∈ R, we obtain by a second-
order expansion of the logarithm

|T ψ̃(u)− log(ϕT (u− i)))− ϕT (u− i)−1(eTψ̃(u) − ϕT (u− i))|
6 1

2κ(u)−2|eTψ̃(u) − ϕT (u− i)|2.
This gives the result whenever |ϕ̃T (u − i)| > κ(u). For the other values u
the inequalities |ϕ̃T (u− i)| < κ(u) 6 |ϕT (u− i)|/2 imply 1 6 |ϕ̃T (u− i)−
ϕT (u− i)|κ(u)−1 and hence

|ϕT (u− i)−1(eTψ̃(u) − ϕ̃T (u− i))| 6 1
2κ(u)−2|ϕ̃T (u− i)− ϕT (u− i)|2
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= 1
2κ(u)−2(u4 + u2)|F(Õ −O)(u)|2.

Together with the previous result this gives for all u ∈ R the assertion of
the lemma. ut

We shall frequently use the following norm bounds for the B-splines (bk),
which follow from ‖bk‖∞ = 1 and |xk+1 − xk−1| 6 2∆:

‖Fbk‖L2 =
√

2π‖bk‖L2 6 (4π∆)1/2, ‖Fbk‖∞ 6 ‖bk‖L1 6 2∆. (35)

We decompose σ̂2 in terms of L and R from (33) and (34):

σ̂2 =
∫ U

−U

(
−σ2

2
(u2 − 1) + γ + Re(Fµ(u))− λ + Re(L(u) +R(u))

)
wU

σ (u) du

= σ2 +
∫ U

−U

Re
(Fµ(u) + L(u) +R(u)

)
wU

σ (u) du, (36)

which yields

E[|σ̂2 − σ2|2] 6 3
∣∣∣
∫ U

−U

Fµ(u)wU
σ (u) du

∣∣∣
2

+ 3E
[∣∣∣

∫ U

−U

L(u)wU
σ (u) du

∣∣∣
2]

+ 3E
[∣∣∣

∫ U

−U

R(u)wU
σ (u) du

∣∣∣
2]

.

Let us consider the three terms in the sum separately. The nuisance of
Fµ causes a deterministic error which can be bounded using (iu)sFµ(u) =
Fµ(s)(u) and the Plancherel isometry by:

∣∣∣
∫ U

−U

Fµ(u)wU
σ (u) du

∣∣∣ = 2π
∣∣∣
∫ ∞

−∞
µ(s)(x)F−1(wU

σ (u)/(iu)s)(x) dx
∣∣∣

6 U−(s+3)‖µ(s)‖∞‖F(w1
σ(u)/us)‖L1 . (37)

The linear error term can be split into a bias and a variance part (Var[Z] :=
E[|Z − E[Z]|2]):

E
[∣∣∣

∫ U

−U

L(u)wU
σ (u) du

∣∣∣
2]

=
∣∣∣
∫ U

−U

u(u− i)E[F(Õ − O)(u)]wU
σ (u)

ϕT (u− i)
du

∣∣∣
2

+ Var
[∫ U

−U

u(u− i)FÕ(u)wU
σ (u)

ϕT (u− i)
du

]
=: L2

b + Lv.

The bias term is easily bounded by Proposition 2, using the uniform bound
on Us+3wU

σ (u)/us:

|Lb| 6 ‖F(Ol −O)‖∞
∫ U

−U

|ϕT (u− i)|−1(u4 + u2)1/2|wU
σ (u)| du

. ∆2U−(s+3)

∫ U

−U

eT σ2
2 u2+2T‖µ‖L1 |u|s+2 du.
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Making use of
∫ U

0
2uecu2

du = ecU2−1
c = E(cU2)U2 for any c > 0, we esti-

mate the last integral by
∫ U

−U

eT σ2
2 u2+2T‖µ‖L1 |u|s+2 du 6 e2T‖µ‖L1 Us+3E(T σ2

2 U2)

and derive from ‖µ‖L1 = Fµ(0) 6 2R for the bias part in the linear term

|Lb| . ∆2E(T σ2

2 U2). (38)

For the variance part of the linear error term we use the support proper-
ties supp(wU

σ ) ∈ [−U,U ] and supp(bk) = [xk−1, xk+1]. Several applications
of the Plancherel identity, the Cauchy-Schwarz inequality and estimate (35)
then yield

Lv =
∫ U

−U

∫ U

−U

Cov
( (u− i)uFÕ(u)

ϕT (u− i)
,
(v − i)vFÕ(v)

ϕT (v − i)

)
wU

σ (u)wU
σ (v) dudv

=
N∑

k=1

δ2
k

∣∣∣
∫ U

−U

ϕT (u− i)−1(u− i)uFbk(u)wU
σ (u) du

∣∣∣
2

= 2π

N∑

k=1

δ2
k

∣∣∣
∫ ∞

−∞
F−1

(
ϕT (u− i)−1(u− i)uwU

σ (u)
)
(x)bk(−x) dx

∣∣∣
2

6 2π

N∑

k=1

δ2
k

∫ xk+1

xk−1

∣∣∣F−1
(
ϕT (u− i)−1(u− i)uwU

σ (u)
)
(−x)

∣∣∣
2

dx ‖bk‖2L2

. ∆‖δ‖2l∞
∫ ∞

−∞

∣∣∣F−1
(
ϕT (u− i)−1(u− i)uwU

σ (u)
)
(−x)

∣∣∣
2

dx

∼ ∆‖δ‖2l∞
∫ U

−U

|ϕT (u− i)|−2(u4 + u2)wU
σ (u)2 du

. ∆U−1E(Tσ2U2)‖δ‖2l∞ .

Altogether we obtain for the linear error term

E
[∣∣∣

∫ U

−U

L(u)wU
σ (u) du

∣∣∣
2]

. E(Tσ2U2)
(
∆4 + U−1∆‖δ‖2l∞

)
. (39)

It remains to estimate the quadratic remainder term. Due to Lemma 1
and Proposition 2 we have

E
[∣∣∣

∫ U

−U

R(u)wU
σ (u) du

∣∣∣
2]

(40)

.
∫ U

−U

∫ U

−U

E
[∣∣∣F(Õ − O)(u)F(Õ − O)(v)

∣∣∣
2]u4wU

σ (u)v4wU
σ (v)

κ(u)2κ(v)2
dudv.

The independence of (εk) and the finiteness of their fourth order moments
entail the inequality
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E
[∣∣∣F(Õ − O)(u)F(Õ − O)(v)

∣∣∣
2
]

6

‖F(Ol −O)‖4∞ + E[|F(Õ − Ol)(u)F(Õ − Ol)(v)|2],
which together with estimates (30), (35) yields that (40) is bounded in order
by

∫ U

−U

∫ U

−U

(
∆8 + E

[∣∣∣
N∑

k,l=1

δkδlεkεlFbk(u)Fbl(v)
∣∣∣
2])u4wU

σ (u)v4wU
σ (v)

κ(u)2κ(v)2
dudv

.
∫ U

−U

∫ U

−U

(
∆8 +

N∑

k,l=1

δ2
kδ2

l |Fbk(u)|2|Fbl(v)|2
)u4wU

σ (u)v4wU
σ (v)

κ(u)2κ(v)2
du

=
(
∆4

∫ U

−U

u4wU
σ (u)

κ(u)2
du

)2

+
(∫ U

−U

N∑

k=1

δ2
k|Fbk(u)|2 u4wU

σ (u)
κ(u)2

du
)2

.
(
∆8U4 + ∆4U4‖δ‖2l2

)E(Tσ2
maxU2)2.

Putting all estimates together and using U . ∆−1 as well as ∆‖δ‖2l2 . ‖δ‖2l∞
we obtain (32) and consequently the rate for σ2.

6.4. Upper bound for γ and λ

Since the claimed risk bound for γ̂ is larger than for σ̂2, we only need to
estimate the risk of γ̂ + σ̂2

2 instead of that for γ̂. Equally, we can restrict
to λ̂ − σ̂2

2 − γ̂ instead of λ̂. Then the proof follows exactly the lines of the
proof for σ̂2, the only difference being the different norming in estimate
(30) giving rise to a factor U for γ and a factor U2 for λ. It remains to
note that we obtain the bounds in the compound Poisson case by setting
σ = σmax = 0 and considering the continuous extension of the bounds for
that case. For γ̂ we obtain as bias

∣∣∣
∫ U

−U

Fµ(u)wU
γ (u) du

∣∣∣ . U−(s+2). (41)

The linear error term is estimated by

E
[(∫ U

−U

L(u)wU
γ (u) du

)2]
. E(Tσ2U2)

(
U2∆4 + U∆‖δ‖2l∞

)
(42)

and the remainder satisfies

E
[∣∣∣

∫ U

−U

R(u)wU
γ (u) du

∣∣∣
2]

. E(Tσ2
maxU2)2

(
∆8U6 + ∆4U6‖δ‖2l2

)
. (43)

For λ̂ we obtain the same asymptotic error bounds as for γ̂, but multiplied
by U when regarding the root mean square error. With the rate-optimal
choice (23) of U this gives the asserted risk bounds for γ̂ and λ̂.
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6.5. Upper bound for µ

The assertion follows as soon as the following Gs(R, σmax)-uniform risk
bound for general U holds:

E
[ ∫ ∞

−∞
|µ̂(x)− µ(x)|2 dx

]
. U−2s + E(Tσ2U2)U5ε2 + E(2Tσ2

maxU2)U9ε4.

(44)

The bias in estimating µ due to the cutoff at U can be estimated by
∫ ∞

−∞
|Fµ(u)(1−1[−U,U ])|2 du 6 U−2s

∫ ∞

−∞
|u|2s|Fµ(u)|2 du = U−2s‖µ(s)‖2L2 .

(45)
The variance term can be split up according to the different risk contribu-
tions. For u ∈ [−U,U ] we obtain

E[|F(µ̂− µ)(u)|2]
6 4E[|ψ̃(u)− ψ(u))|2] + 4(u2 + 1)2 E[|σ̂2 − σ2|2]

+ 4(u2 + 1)E[|γ̂ − γ|2] + 4E[|λ̂− λ|2]
. E[|L(u)|2] + E[|R(u)|2] + U4 E[|σ̂2 − σ2|2] + U2 E[|γ̂ − γ|2] + E[|λ̂− λ|2]
. E[|L(u)|2] + E[|R(u)|2] + U−2(s+1) + E(Tσ2U2)U3ε2 + E(Tσ2

maxU2)2U8ε4.

In analogy to the previous estimates for σ̂2 we find

E[|L(u)|2] 6|ϕT (u− i)|−2(u4 + u2)(‖F(O −Ol)‖2∞ + Var[FÕ(u)])

. eTσ2u2
u4

(
∆4 + ∆2‖δ‖2l2

)
.

With a look at Lemma 1 we estimate the remainder by

E[|R(u)|2] 6 16κ(u)−4(u4 + u2)2 E[|F(Ol −O)(u)|4 + |F(Õ − Ol)(u)|4]
. e2Tσ2

maxu2
u8

(
∆8 + ∆4‖δ‖4l2

)
.

The Plancherel identity and these estimates yield together (44) via
∫ ∞

−∞
E[|µ̂(x)− µ(x)|2] dx . U−2s + E(Tσ2U2)U5ε2 + E(2Tσ2

maxU2)U9ε4

+ E(Tσ2U2)U4ε2 + E(Tσ2
maxU2)2U9ε4

∼ U−2s + E(σ2U2)U5ε2 + E(2Tσ2
maxU2)U9ε4.

7. Proof of the lower bounds

We follow the usual Bayes prior technique, see e.g. Korostelev and Tsybakov
(1993), and perturb a fixed Lévy triplet T0 = (0, γ0, ν0) in the interior of
Gs(R, σmax) such that the perturbations remain in Gs(R, σmax).
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7.1. Lower bound for µ in the case σ = 0

Fix a positive integer j. Let ψ(j) ∈ C∞(R) be some function with
support in [0, 1] satisfying ‖ψ(j)‖L2 = 1,

∫
ψ(j)(x)e−2−jx dx = 0 and∫ |Fψ(j)(u)u−2|2 du < ∞. Certainly, there are infinitely many functions ψ(j)

fulfilling these requirements; the last property follows for instance if ψ is the
second derivative of an L2-function. Introduce the wavelet-like notation

ψjk(x) := 2j/2ψ(j)(2jx− k), j > 0, k = 0, . . . , 2j − 1.

Consider for any r = (rk) ∈ {−1,+1}2j

and some β > 0 the perturbed Lévy
triplets Tr = (0, γ0, µr) with

µr(x) = µ0(x) + β2−j(s+1/2)
2j∑

k=1

rkψjk(x), x ∈ R .

We note that due to Fψjk(0) = 0 and
∫

e−xψjk(x) dx = 0 the triplet
Tr satisfies the martingale condition such that Tr ∈ Gs(R, 0) holds for a
sufficiently small choice of the constant β > 0.

The Gaussian likelihood ratio of the observations under the probabilities
corresponding to Tr′ and Tr under the law of Tr for some r, r′ with rk = r′k
for all k except one k0 is given by

Λ(r′, r) = exp
(∫ ∞

−∞
(Or′−Or)(x)ε−1 dW (x)−1

2

∫ ∞

−∞
|Or′−Or)(x)|2ε−2 dx

)
.

Hence, the Kullback-Leibler divergence (relative entropy) between the two
observation models equals

KL(Tr′ |Tr) =
1
2

∫ ∞

−∞
|(Or′ −Or)(x)|2ε−2 dx.

The standard Assouad Lemma (Korostelev and Tsybakov 1993, Thm.
2.6.4) now yields the lower bound for the risk of any estimator µ̂ of µ

inf
µ̂

sup
T =(0,γ,µ)∈Gs(R,0)

ET
[∫

|µ̂(x)− µ(x)|2 dx
]

& 2j‖µr − µr′‖2L2 ∼ 2−2js,

provided the Kullback-Leibler divergence KL(Tr′ |Tr) stays uniformly
bounded by a small constant. It remains to determine a minimal rate for
2j →∞ such that this holds when the noise level tends to zero.

Arguing in the spectral domain and using the general estimate |ez−1| 6
2|z|, for |z| 6 δ and some small δ > 0, together with ‖ϕT,r′/ϕT,r‖∞ → 1 for
2j →∞, we obtain for all sufficiently large j

KL(Tr′ |Tr) =
1

4πε2

∫ ∞

−∞
|F(Or′ −Or)(u)|2 du

6 ε−2

∫ ∞

−∞

∣∣∣ϕT,r(u− i)− ϕT,r′(u− i)
u(u− i)

∣∣∣
2

du
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6 4ε−2

∫ ∞

−∞
|ϕT,r(u− i)|2T 2|F(µr − µr′)(u)|2(u4 + u2)−1 du

. ε−22−j(2s+1)

∫ ∞

−∞
|Fψjk0(u)|2u−4 du

= ε−22−j(2s+5)

∫ ∞

−∞
|Fψ(j)(v)|2v−4 dv.

Hence, for 2j(2s+5) ∼ ε2 with a sufficiently large constant the Kullback-
Leibler divergence remains bounded and the asymptotic lower bound for µ
follows.

7.2. Lower bound for γ and λ in the case σ = 0

Let us start with the lower bound for γ. We proceed as before by perturbing
a triplet T0 = (0, γ0, µ0) from the interior of Gs(R, 0), but this time we only
consider one alternative T1 = (0, γ1, µ1) and choose the perturbation in such
a way that the characteristic function ϕT (u− i) does not change for small
values of |u|. For any δ > 0 and U > 0 put

γ1 := γ0 + δ, Fµ1(u) := Fµ0(u)− δi(u− i)e−u2/U2
, u ∈ R .

Then the function µ1 is real-valued. Moreover, the martingale condition (4)
is satisfied:

γ1 + Fµ1(0)−Fµ1(i) = γ0 + δ + Fµ0(0)− δ −Fµ0(i) + 0 = 0.

Because of

‖µ(s)
1 − µ

(s)
0 ‖∞ 6 2π

∫ ∞

−∞
|u|s|F(µ1 − µ0)(u)|du . δ

∫ ∞

−∞
|u|s+1e−u2/U2

du

we get ‖µ(s)
1 −µ

(s)
0 ‖∞ . δUs+2 and even better bounds for ‖µ(k)

1 −µ
(k)
0 ‖L2 ,

k = 0, . . . , s. It suffices to choose U ∼ δ−1/(s+2) small enough to ensure
that T1 still lies in our nonparametric class Gs(R, 0). The basic lower bound
result (Korostelev and Tsybakov 1993, Prop. 2.2.2) then yields

inf
γ̂

sup
(0,γ,µ)∈Gs(R,0)

Eγ,µ[|γ̂ − γ|2] & δ2,

provided the Kullback-Leibler divergence between T1 and T0 remains asymp-
totically bounded. As in the lower bound proof for µ, in particular using
F(µ1 − µ0)(i) = 0, we obtain

KL(T1|T0)

6 4
ε2

∫ ∞

−∞

|ϕ0,T (u− i)|2T 2|i(γ1 − γ0)(u− i) + F(µ1 − µ0)(u)|2
(u4 + u2)

du

. ε−2δ2

∫ ∞

−∞
|i(u− i)(1− e−u2/U2

)|2(u4 + u2)−1 du
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= ε−2δ2

∫ ∞

−∞
(1− e−v2

)2U−2v−2U dv

. ε−2δ2U−1 ∼ ε−2δ(2s+5)/(s+2).

Thus, the Kullback-Leibler divergence remains small for δ ∼ ε(2s+4)/(2s+5)

with a small constant, which gives the asymptotic lower bound for γ.
For the lower bound of λ we perturb the triplet T0 leaving γ0 and σ0 = 0

fixed and putting

Fµ1(u) := Fµ0(u) + δe−u(u−i)/U2
.

By similar estimates as for γ, when choosing U ∼ δ−1/(s+1) with a suffi-
ciently small constant, the perturbation T1 lies in Gs(R, 0) and the Kullback-
Leibler divergence is asymptotically bounded by

KL(T1|T0) . ε−2δ2U−3 ∼ ε−2δ(2s+5)/(s+1).

The basic lower bound results yields the asserted lower bound for λ.

7.3. Lower bound for µ in the case σ > 0

The interesting deviation from standard proofs of lower bounds (see e.g.
Butucea and Matias (2005)) for severely ill-posed problems is that we face
the restriction that Fµ is analytic in a strip parallel to the real line and is
uniquely identifiable from its values on any open set. So, let T0 = (σ2

0 , γ0, µ0)
with σ0 > 0 be a Lévy triplet from the interior of Gs(R, σmax). Consider
the perturbation T1 = (σ2

0 , γ0, µ1) with

Fµ1(u) := Fµ0(u) + δm1/4e−(Tσ2
0u2/m)m/2(Tσ2

0/m)mum(u− i)m, u ∈ R .

for m ∈ N, δ > 0. Then we have uniformly for m →∞ and δ → 0

‖µ1 − µ0‖2L2 =
2πδ2

√
Tσ2

0

∫ ∞

0

e−vv(1+2m)/2m(1 + m−1v−1/m)m dv ∼ δ2.

Similarly, for k = 1, . . . , s we derive uniformly in m and δ

‖µ(k)
1 − µ

(k)
0 ‖L2 =

√
2π‖ukF(µ1 − µ0)(u)‖L2 ∼ δmk/2,

‖µ(s)
1 − µ

(s)
0 ‖∞ 6 ‖usF(µ1 − µ0)(u)‖L1 6 δms/2−1/4.

Therefore choosing δ ∼ m−s/2 with a small constant yields T1 ∈ Gs(R, σmax)
because we then also have that µ1 is real-valued and T1 satisfies the mar-
tingale condition and Assumption 1.

By the same arguments as before and by Stirling’s formula to estimate
the Gamma function, the Kullback-Leibler divergence between the observa-
tions under T0 and under T1 is asymptotically bounded by

4ε−2

∫ ∞

−∞
|ϕ0,T (u− i)|2T 2|F(µ1 − µ0)(u)|2(u4 + u2)−1 du
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. ε−2δ2

∫ ∞

−∞
e−Tσ2

0u2
m1/2e−(Tσ2

0u2/m)m

(Tσ2
0/m)2mu2m−2|u− i|2m−2 du

= ε−2δ2m−7/2(Tσ2
0m)−1/2

∫ ∞

0

e−mv1/m

e−vv
2m−1
2m (1 + m−1v−1/m)m−1 dv

. ε−2δ2m−4

∫ ∞

0

e−mv1/m

dv

= ε−2δ2m−4

∫ ∞

0

e−zzm−1m1−m dz

= ε−2δ2m−m−3Γ (m) . ε−2δ2m−m−3(m− 1)m−1/2e1−m ∼ ε−2m−3−se−m.

Consequently, the Kullback-Leibler divergence remains small when choosing
m > 2 log(ε−1), but m . log(ε−1), which gives δ ∼ log(ε−1)−s/2. From the
basic general lower bound result we therefore obtain the asymptotic lower
bound for µ.

7.4. Lower bound for σ2, γ and λ in the case σ > 0

Since the proof is very similar to the preceding calculations, we only give
the perturbations of the basic triplet T0 = (σ0, γ0, µ0) with σ0 > 0 which are
least favourable. More details can be found in Belomestny and Reiß (2005).

For γ we leave σ0 fixed and use a perturbation of the form

γ1 := γ0 + δ, Fµ1(u) := Fµ0(u)− δi(u− i)e−u2m/U2m

.

For λ we keep σ0 and γ0 fixed and consider

Fµ1(u) := Fµ0(u) + δe−um(u−i)m/U2m

.

For σ2 we leave γ0 invariant and consider the perturbation

σ2
1 := σ2

0 + 2δ, Fµ1(u) := Fµ0(u) + δ(u− i)2e−u2m/U2m

.

Each time m is chosen to be of order log(ε−1) and the value of δ > 0 results
from the smoothness class considered.
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