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Robust Econometrics

P. Č́ıžek and W. Härdle∗

Econometrics often deals with data under, from the statistical point of

view, non-standard conditions such as heteroscedasticity or measurement

errors and the estimation methods need thus be either adopted to such con-

ditions or be at least insensitive to them. The methods insensitive to vi-

olation of certain assumptions, for example insensitive to the presence of

heteroscedasticity, are in a broad sense referred to as robust (e.g., to het-

eroscedasticity). On the other hand, there is also a more specific meaning

of the word ‘robust’, which stems from the field of robust statistics. This

latter notion defines robustness rigorously in terms of behavior of an esti-

mator both at the assumed (parametric) model and in its neighborhood in

the space of probability distributions. Even though the methods of robust

statistics have been used only in the simplest setting such as estimation of

location, scale, or linear regression for a long time, they motivated a range

of new econometric methods recently, which we focus on in this chapter.

∗This work was supported by the Deutsche Forschungsgemeinschaft through the SFB

649 “Economic Risk”.
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The concepts and measures of robustness are introduced first (Section 1),

followed by a most common types of estimation methods and their properties

(Section 2). Various econometric methods based on these common estimators

are discussed later in Section 3, covering tasks from time series regression over

GMM estimation to simulation-based methods.

1 Measures of robustness

Robustness properties can be formulated within two frameworks: qualitative

and quantitative robustness. Qualitative robustness is concerned with the

situation in which the shape of the underlying (true) data distribution devi-

ates slightly from the assumed model. It focuses on questions like stability

and performance loss over a family of such slightly deviating distributions.

Quantitative robustness considers the situation in which the sensitivity of

estimators to a proportion of aberrant observations is studied.

A simple example can make this clear. Suppose one has collected a sam-

ple on an individual’s income (after say 10 years of schooling) and one is

interested in estimating the mean income. If {xi}n
i=1 denotes the logarithm

of this data and we suppose that they have a cumulative distribution func-

tion (cdf) F , assumed to be N(µ, σ2), the maximum likelihood estimator

(MLE) is x̄ =
∫

udFn(u) = T (Fn), where Fn(u) = n−1
∑n

i=1 I(xi ≤ u), and

µ =
∫

udF (u) = T (F ). Qualitative robustness asks here the question: how

well will µ be estimated if the true distribution is in some neighborhood of

2



F? Quantitative robustness would concentrate on: will T (Fn) be bounded if

some observations xi → ∞? In fact, the last question is easy to answer: if

xi → ∞ for some i, T (Fn) = x̄ → ∞ as well. So we can say here in a loose

sense that x̄ is not quantitatively robust.

Formalities

In the following we present a mathematical setup that allows us to formalize

the robustness thoughts.

The notion of the sensitivity of an estimator T is put into theory by

considering a model characterized by a cdf F and its neighborhood Fε,G:

distributions (1− ε)F + εG, where ε ∈ (0, 1/2) and G is an arbitrary proba-

bility distribution, which represents data contamination. Hence, not all data

necessarily follow the pre-specified distribution, but the ε-part of data can

come from a different distribution G. If H ∈ Fε,G, the estimation method

T is then judged by how sensitive or robust are the estimates T (H) to the

size of Fε,G, or alternatively, to the distance from the assumed cdf F . Two

main concepts for robust measures analyze the sensitivity of an estimator to

infinitesimal deviations, ε → 0, and to finite (large) deviations, ε > 0, respec-

tively. Despite generality of the concept, easy interpretation and technical

difficulties often limit our choice to point-mass distributions (Dirac measures)

G = δx, x ∈ R, which simply represents an (erroneous) observation at point

x ∈ R. This simplification is also used in the following text.
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The influence of infinitesimal contamination on an estimator is charac-

terized by the influence function, which measures the relative change in es-

timates caused by an infinitesimally small amount ε of contamination at x

(Hampel et al., 1986). More formally,

IF (x; T, F ) = lim
ε→0

T{(1− ε)F + εδx} − T (F )

ε
. (1)

For each point x, the influence function reveals the rate at which the esti-

mator T changes if a wrong observation appears at x. In the case of sample

mean x̄ = T (Fn) for {xi}n
i=1, we obtain

IF (x; T, Fn) = lim
ε→0

[
(1− ε)

∫
udFn(u) + ε

∫
udδx(u)−

∫
udFn(u)

]
/ε

= lim
ε→0

[
−

∫
udFn(u) +

∫
udδx(u)

]
= x− x̄.

The influence function allows us to define various desirable properties

of an estimation method. First, the largest influence of contamination on

estimates can be formalized by the gross-error sensitivity,

γ(T, F ) = sup
x∈R

IF (x; T, F ), (2)

which under robustness considerations be finite and small. Even though such

a measure can depend on F in general, the qualitative results (e.g., γ(T, F )

being bounded) are typically independent of F . Second, the sensitivity to

small changes in data, for example moving an observation from x to y ∈ R,

can be measured by the local-shift sensitivity

λ(T, F ) = sup
x 6=y

‖IF (x; T, F )− IF (y; T, F )‖
‖x− y‖ . (3)
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Also this quantity should be relatively small since we generally do not expect

that small changes in data cause extreme changes in values or sensitivity of

estimates. Third, as an unlikely large or distant observations may represent

data errors, their influence on estimates should become zero. Such a property

is characterized by the rejection point,

ρ(T, F ) = inf
r>0
{r : IF (x; T, F ) = 0, ‖x‖ ≥ r}, (4)

which indicates the non-influence of large observations.

Alternatively, behavior of the estimator T can be studied for any finite

amount ε of contamination. The most common property looked at in this

context is the estimator’s bias b(T, H) = EH{T (H)} − EF{T (F )}, which

measures a distance between the estimates for clean data, T (F ), and con-

taminated data, T (H), H ∈ Fε,G. The corresponding maximum-bias curve

measures the maximum bias of T on Fε,G at any ε:

B(ε, T ) = sup
x∈R

b{T, (1− ε)F + εδx}. (5)

Although the computation of this curve is rather complex, Berrendero and

Zamar (2001) provide general methodology for its computation in the context

of linear regression.

The maximum-bias curve is not only useful on its own, but allows us

to define further scalar measures of robustness. The most prominent is the

breakdown point (Hampel, 1971), which is defined as the smallest amount ε
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of contamination that can cause an infinite bias:

ε∗(T ) = inf
ε≥0
{ε : B(ε, T ) = ∞}. (6)

The intuitive aim of this definition specifies the breakdown point ε∗(T ) as

the smallest amount of contamination that makes the estimator T useless.

Note that in most cases ε∗(T ) ≤ 0.5 (He and Simpson, 1993). This definition

and the upper bound however apply only in simple cases, such as location

or linear regression estimation (Davies and Gather, 2005). The most general

definition of breakdown point formalizes the idea of “useless” estimates in the

following way: an estimator is said to break down if, under contamination,

it is not random anymore, or more precisely, it can achieve only a finite

set of values (Genton and Lucas, 2003). This definition is based on the

fact that estimates are functions of observed random samples and are thus

random quantities themselves unless they fail. Although the latter definition

includes the first one, the latter one may generally depend on the underlying

model F , for example in time-series context.

2 Estimation approaches

Denote by Fn an empirical distribution function (edf) corresponding to a

sample {xi}n
i=1 ∈ R drawn from a model based on probability distribution F .

Most estimation methods can be defined as an extremum problem, minimiz-

ing a contrast
∫

h(z, θ)dF (z) over θ in a parameter space, or as a solution
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of an equation,
∫

g(z, θ)dF (z) = 0 in θ. The estimation for a given sam-

ple utilizes finite-sample equivalents of these integrals,
∫

h(z, θ)dFn(z) and
∫

g(z, θ)dFn(z), respectively.

Consider the pure location model Xi = µ+σεi, i = 1, . . . , n, with a known

scale σ and ε ∼ F . The cdf of X is then F{(x − µ)/σ}. With a quadratic

contrast function h(x, θ) = (x − θ)2, the estimation problem is to minimize
∫

(x− θ)2dF{(x−µ)/σ} with respect to θ. For known F , this leads to θ = µ

and one sees that, without loss of generality, one can assume µ = 0 and σ = 1.

For the sample {xi}n
i=1 characterized by edf Fn, the location parameter µ is

estimated by

µ̂ = arg min
θ

∫
(x− θ)2dFn(x) = n−1

n∑
i=1

xi = x̄.

Note that for g(x, θ) = x−θ, the parameter µ is the solution to
∫

g(x, θ)dF (x) =

0. The estimator may therefore be alternatively defined through µ = T (F ) =
∫

udF (u).

As indicated in the introduction, this standard estimator of location per-

forms unfortunately rather poorly under the sketched contamination model.

Estimating a population mean by the least squares (LS) or sample mean

7



x̄ = T (Fn) has the following properties. First, the influence function (1)

IF (x; T, F ) = lim
ε→0

T{(1− ε)F + εδx} − T (F )

ε

= lim
ε→0

{(1− ε)
∫

udF (u) + εx} − ∫
udF (u)

ε

= lim
ε→0

ε−1{−ε

∫
udF (u) + εx}

= x−
∫

udF (u) = x− T (F ).

Hence, the gross-error sensitivity (2) γ(T, F ) = ∞, the local-shift sensitivity

(3) λ(T, F ) = 0, and the rejection point (4) ρ(T, F ) = ∞. Second, the

maximum-bias (5) is infinite for any ε > 0 since

sup
x∈R

‖T{(1− ε)F + εδx} − T (F )‖ = sup
x∈R

‖ − εT (F ) + εx‖ = ∞.

Consequently, the breakdown point (6) of the sample mean x̄ = T (Fn) is

zero, ε∗(T ) = 0.

Thus, none of robustness measures characterizing the change of T under

contamination of data (even infinitesimally small) is finite. This behavior,

typical for LS-based methods, motivated alternative estimators that have the

desirable robust properties. In this section, the M -estimators, S-estimators,

and τ -estimators are discussed as well as some extensions and combination

of these approaches. Even though there is a much wider range of robust esti-

mation principles, we focus on those already studied and adopted in various

areas of econometrics.
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2.1 M-estimators

To achieve more flexibility in accommodating requirements on robustness,

Huber (1964) proposed the M-estimator by considering a general extremum

estimator based on
∫

ρ(z, θ)dF (z), thus minimizing
∫

ρ(z, θ)dFn(z) in finite

samples. Providing that the first derivative ψ(z, θ) = ∂ρ(z, θ)/∂θ exists, an

M -estimator can be also defined by an implicit equation
∫

ψ(z, θ)dFn(z) = 0.

This extremely general definition is usually adopted to a specific estima-

tion problem such as location, scale, or regression estimation. In a univariate

location model, F (z) can be parametrized as F (z − θ) and hence one limits

ρ(z, θ) and ψ(z, θ) to ρ(z − θ) and ψ(z − θ). In the case of scale estimation,

F (z) = F (z/θ) and consequently ρ(z, θ) = ρ(z/θ) and ψ(z, θ) = ψ(z/θ).

In linear regression, z = (x, y) and a zero-mean error term ε = y − x>θ.

Analogously to the location case, one can then consider ρ(z, θ) = ρ(y− x>θ)

and ψ(z, θ) = ψ(y − x>θ)x, or more generally, ρ(z, θ) = ρ(y − x>θ, x) and

ψ(z, θ) = ψ(y − x>θ, x) (GM -estimators). Generally, we can express ρ(z, θ)

as ρ{η(z, θ)}, ψ{η(z, θ)}, where η(z, θ) ∼ F .

Some well-known choices of univariate objective functions ρ and ψ are

given in Table 1; functions ρ(t) are usually assumed to be non-constant, non-

negative, even, and continuously increasing in |t|. This documents flexibility

of the concept of M -estimators, which include LS and quantile regression as

special cases.

On the other hand, many of the ρ and ψ functions in Table 1 depend
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Table 1: Examples of ρ and ψ functions used with M -estimators.

ρ(t) ψ(t)

Least squares t2 2t

Least absolute deviation |t| sign(t)

Quantile estimation {τ − I(x < 0)}x τ − I(x < 0)

Huber: for |t| ≤ c t2 2t

for c < |t| c|t| c sign(t)

Hampel: for |t| ≤ a t2 2t

for a < |t| ≤ b a|t| a sign(t)

for b < |t| ≤ c ac
c−b

t− a
c−b

t2 sign(t) a(c− |t|)/(c− b)

for c < |t| a|t| 0

Biweight (Tukey) −(c2 − t2)3I(|t| ≤ c)/6 t(c2 − t2)2I(|t| ≤ c)

Sine (Andrews) −c cos(x/c)I(|t| ≤ πc) sin(x/c)I(|t| ≤ πc)
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on one or more constants a, b, c ∈ R. If an estimator T is to be invariant

to the scale of data, one can apply the estimator to rescaled data, that is,

to minimize
∫

ρ{(z − θ)/s}dFn(z) or to solve
∫

ψ{(z − θ)/s}dFn(z) = 0 for

a scale estimate s like the median absolute deviation (MAD). Alternatively,

one may also estimate parameters θ and scale s simultaneously by considering

ρ(z, {θ, s}) = ρ{(z − θ)/s} or

ψ(z, {θ, s}) = {ψl(z, {θ, s}), ψs(z, {θ, s})}.

Let us now turn to the question how the choice of functions ρ and ψ deter-

mines the robust properties of M -estimators. First, the influence function of

an M -estimator can generally depend on several quantities such as its asymp-

totic variance or the position of explanatory variables in the regression case,

but the influence function is always proportional to function ψ(z, b). Thus,

the finite gross-error sensitivity, γ(T, F ) < ∞, requires bounded ψ(t) (which

is not the case of LS). Similarly, the finite rejection point, ρ(T, F ) < ∞, leads

to ψ(t) being zero for all sufficiently large t (the M -estimators defined by such

a ψ-function are called redescending). Hampel et al. (1986) shows how, for

a given bound on γ(T, F ), one can determine the most efficient choice of ψ

function (e.g., the skipped median, ψ(t) = sign(t)I(|t| < K), K > 0, in the

location case).

More formally, the optimality of M -estimators in the context of qualita-

tive robustness can be studied by the asymptotic relative efficiency (ARE)
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of an estimator θ̂1 relative to another estimator θ̂2:

ARE(θ̂1, θ̂2) =
as. var(θ̂1)

as. var(θ̂2)
. (7)

For example, at the normal distribution with θ̂1 and θ̂2 being the least ab-

solute deviation (LAD) and LS estimators, ARE equals 2/π ≈ 0.64. Under

the Student cdf t5, the ARE of the two estimators climbs up to ≈ 0.96. For

Huber’s M-estimator, we see that its limit cases are the median for c → 0

and the mean for c →∞. At the normal distribution and for c = 1.345, we

have ARE of about 0.95. This means that this M -estimator is almost as effi-

cient as MLE, but does not lose so drastically in performance as the standard

mean under contamination because of the bounded influence function.

Whereas the influence function of M -estimators is closely related to the

choice of its objective function, the global robustness of M -estimators is in

a certain sense independent of this choice. Maronna et al. (1979) showed in

linear regression that the breakdown point of M -estimators is bounded by

1/p, where p is the number of estimated parameters. As a remedy, several

authors proposed one-step M-estimators that are defined, for example, as

the first step of the iterative Newton-Raphson procedure, used to minimize
∫

ρ(z, θ)dF (z), started from initial robust estimators θ̂0 of parameters and

ŝ0 of scale (see Welsh and Ronchetti, 2002, for an overview). Possible initial

estimators can be those discussed in Sections 2.2 and 2.3. For example for

an M -estimator of location θ̂ defined by a function ψ(x, θ) = ψ(x − θ), its
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one-step counterpart can be defined at sample {xi}n
i=1 by

θ̂ = θ̂0 + ŝ0

n∑
i=1

ψ

(
xi − θ̂0

ŝ0

)/
n∑

i=1

ψ′
(

xi − θ̂0

ŝ0

)
,

where θ̂0 and ŝ0 represent initial robust estimators of location and scale

like the median and MAD, respectively. Such one-step estimators, under

certain conditions on the initial estimators, preserve the breakdown point

of the initial estimators, and at the same time, have the same first-order

asymptotic distribution as the original M -estimator (Simpson et al., 1992,

and Welsh and Ronchetti, 2002). Further development of such ideas include

an adaptive choice of parameters of function ψ in the iterative step (Gervini

and Yohai, 2002).

2.2 S-estimators

An alternative approach to M -estimators achieving high breakdown point

(HBP) was proposed by Rousseeuw and Yohai (1984). The S-estimators are

defined by minimization of a scale statistics s2(z, b) = s{η(z, b)} defined as

the M -estimate of scale,

∫
ρ[η(z, b)/s{η(z, b)}]dFn(z) = K =

∫
ρ(t)dF (t),

at the model distribution F ; the functions ρ and η are those defining M -

estimators in Section 2.1. More generally, one can define S-estimators by

means of any scale-equivariant statistics s2, that is, s{cη(z, b)} = |c|s{η(z, b)}.
Under this more general definition, S-estimators include as special cases LS
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and LAD estimators. Further, they encompass several well-known robust

methods including least median of squares (LMS) and least trimmed squares

(LTS): whereas the first defines the scale statistics s2{η(z, b)} as the me-

dian of squared residuals η(z, b), the latter used the scale defined by the sum

of h smallest residuals η(z, b). In order to appreciate the difference to M -

estimators, it is worth pausing for a moment and to present LMS, the most

prominent representative of S-estimators, in the location case:

arg min
θ

med{(x1 − θ)2, . . . , (xn − θ)2}.

Due to its definition, the S-estimators have the same influence function

as the M -estimator constructed from the same function ρ. Contrary to M -

estimators, they can achieve the highest possible breakdown point ε∗ = 0.5.

For example, this is the case of LMS and LTS. For Gaussian data, the most

efficient (in the sense of ARE (7) among the S-estimators with ε∗ = 0.5 is

however the one corresponding to K = 1.548 and ρ being the Tukey biweight

function, see Table 1. Given the HBP of S-estimators, their maximum-bias

behavior is of interest too. Although it depends on the function ρ and con-

stant K (Berrendero and Zamar, 2001), Yohai and Zamar (1993) proved that

LMS minimizes maximum bias among a large class of (residual admissible)

estimators, which includes most robust methods.

An important shortcoming of HBP S-estimation is however its low ARE:

under Gaussian data, efficiency relative to LS varies from 0% to 27%. Thus,

S-estimators are often used as initial estimators for other, more efficient
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methods. Nevertheless, if an S-estimator is not applied directly to sam-

ple observations, but rather to the set of all pairwise differences of sample

observations, the resulting generalized S-estimator exhibits higher relative

efficiency for Gaussian data, while preserving its robust properties (Croux et

al., 1994; Stromberg et al., 2000).

2.3 τ-estimators

The S-estimators improve upon M -estimators in terms of their breakdown-

point properties, but at the cost of low Gaussian efficiency. Although one-

step M -estimators based on an initial S-estimate can remedy this deficiency

to a large extent, their exact breakdown properties are not known. One of

alternative approaches, proposed by Yohai and Zamar (1988), extend the

principle of S-estimation in the following way. Assuming that ρ1 and ρ2

are non-negative, even, and continuous functions, the M -estimate s2(z, θ) =

s2{η(z, θ)} of scale can be defined as in the case of S-estimation,

∫
ρ1[η(z, θ)/s{η(z, θ)}]dFn(z) = K =

∫
ρ1(t)dF (t).

Next, the τ -estimate of scale is defined by

τ 2(z, θ) = s2{η(z, θ)}
∫

ρ2[η(z, θ)/s{η(z, θ)}]dFn(z)

and the corresponding τ -estimator of parameters θ is then defined by mini-

mizing the τ -estimate of scale, τ 2(z, θ).
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As a generalization of S-estimation, the τ -estimators include S-estimators

as a special case for ρ1 = ρ2 because then τ 2(z, θ) = θs2(z, θ). On the other

hand, if ρ2(t) = t2, τ 2(z, θ) =
∫

η2(z, θ)dFn(z) is just the standard deviation

of model residuals. Compared to S-estimators, the class of τ estimators can

improve in terms relative Gaussian efficiency because its breakdown depends

only on function ρ1, whereas its asymptotic variance is function of both ρ1

and ρ2. Thus, ρ1 can be defined to achieve the breakdown point equal to 0.5

and ρ2 consequently adjusted to reach a pre-specified relative efficiency for

Gaussian data (e.g., 95%).

3 Methods of robust econometrics

The concepts and methods of robust estimation discussed in Sections 1 and 2

are typically proposed in the context of a simple location or linear regression

models, assuming independent, continuous, and identically distributed ran-

dom variables. This however rarely corresponds to assumptions typical for

most econometric models. In this section, we therefore present an overview of

developments and extensions of robust methods to various econometric mod-

els. As the M -estimators are closest to the commonly used LS and MLE,

most of the extensions employ M -estimation. The HBP techniques are not

that frequently found in the economics literature (Zaman et al., 2001; Sapra,

2003) and are mostly applied only as a diagnostic tool.

In the rest of this section, robust estimation is first discussed in the
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context of models with discrete explanatory variables, models with time-

dependent observations, and models involving multiple equations. Later,

robust alternatives to general estimation principles, such as MLE and gen-

eralized method of moments (GMM), are discussed. Before doing so, let

us mention that dangers of data contamination are not only studied only

from the theoretical point of view. There is a number of studies that check

the presence of outliers in real data and their influence on estimation meth-

ods. For example, there is evidence of data contamination and its adverse

effects on LS and MLE in the case of macro economic time series (Balke and

Fomby, 1994; Atkinson, Koopman, and Shephard, 1997), in financial time

series (Sakata and White, 1998; Franses, van Dijk, and Lucas, 2004), mar-

keting data (Franses, Kloek, and Lucas, 1999), and many other areas. These

adverse effects include biased estimates, masking of structural changes, and

creating seemingly nonlinear structures, for instance.

3.1 Discrete variables

To achieve a HBP, many robust methods such as LMS often eliminate a

large portion of observations from the calculation of their objective function.

This can cause non-identification of parameters associated with categorical

variables. For example, having data on income {yi}n
i=1 of men and women,

where gender is indicated by {di}n
i=1 ∈ {0, 1}, one can estimate the mean

income of men and women by a simple regression model yi = a + bdi. If
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a HBP method such as LMS or LTS is used to estimate the model and it

eliminates a large portion of observations from the calculation (e.g., one half

of them), the remaining data could easily contain only income of men or only

income of women, and consequently, the mean income of one of the groups

could not be then identified. Even though this seems unlikely in our simple

example, it becomes more pronounced as the number of discrete variables

grows, see Hubert and Rouseeuw (1997) for an example.

A common strategy employs a robust estimator with a HBP for a model

with only continuous variables, and using this initial estimate, the model with

all variables is estimated by an M -estimator. Such a combined procedure

preserves the breakdown point of the HBP estimator: even though a mis-

classified values of categorical explanatory variables can bias the estimates,

this bias will be bounded in common models as the categorical variables are

bounded as well. See Hubert and Rousseeuw (1997) and Maronna and Yohai

(2000), who combine an initial S-estimator with an M -estimator.

3.2 Time series

In time series, there are several issues not addressed by the standard the-

ory of robust estimation because of time-dependency of observations. First,

the asymptotic behavior of various robust methods has to be established;

see Koenker and Machado (1999), Koenker and Xiao (2002) for L1 regres-

sion, Künsch (1984) and Bai (1997) for M -estimators and Sakata and White

18



(2001), Zinde-Walsh (2002), and Č́ıžek (2005) for various S-type estimators.

In these cases, the results are usually established for general nonlinear mod-

els.

Second, the effects of data contamination are more complex and wide

spread due to time-dependency: an error in one observation is transferred,

by means of a model, to other ones close in time. The possible effects of

outliers in time series are elaborated by Chen and Liu (1993) and Tsay et al.

(2000), for instance. The first work also offers a sequential identification of

outliers (an alternative procedure based on τ -estimators is offered by Bianco

et al., 2001). Consequently, the robust properties in time series differ from

those experienced in cross-sectional data. For example, the breakdown point

is asymptotically zero in the case of M -estimators (Sakata and White, 1995)

and can be much below 0.5 for various S-estimators (Genton and Lucas,

2003).

A further issue specific to time series is testing for stationarity of a series.

Effects of outliers are in this respect similar to those of neglected struc-

tural changes. To differentiate between random outliers and real structural

changes, robust tests for change-point detection were proposed by Gagliar-

dini et al. (2005), Fiteni (2002), and Fiteni (2004); the last paper uses τ -

estimation. The asymptotics of M -estimators under unit-root assumption

and the corresponding tests were established, for example, by Lucas (1995),

Koenker and Xiao (2004), and Haldrup et al. (2005). An early reference is
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Franke et al. (1984).

3.3 Multivariate regression

An important application of robust methods in economics concerns the mul-

tivariate regression case. This is relatively straightforward with exogenous

explanatory variables only, see Koenker and Portnoy (1990), Bilodeau and

Duchesne (2000), and Lopuhaä (1992) for the M -, S-, and τ -estimation, re-

spectively. Estimating general simultaneous equations models has to mimick

either three-stage LS or full information MLE (Marrona and Yohai, 1997).

Whereas Koenker and Portnoy (1990) follow with the weighted LAD the first

approach, Krishnakumar and Ronchetti (1997) use M -estimation together

with the second strategy.

3.4 General estimation principles

There are naturally many more model classes, for which one can construct

robust estimation procedures. Since most econometric models can be esti-

mated by means of MLE or GMM, it is however easier to concentrate on

robust counterparts of these two estimation principles. There are other esti-

mation concepts, such as nonparametric smoothing, that can employ robust

estimation (Härdle, 1982), but they go beyong the scope of this chapter.

First, recent contributions to robust MLE can be split to two groups.

One simply defines a weighted maximum likelihood, where weights are com-
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puted from an initial robust fit (Windham, 1995; Markartou et al., 1997).

Alternatively, some erroneous observations can be excluded completely from

the likelihood function (Clarke, 2000; Marazzi and Yohai, 2004). This ap-

proach requires existence of an initial robust estimate, and thus, it is not

useful for models, for which there are no robust methods available. The

second approach is motivated by the S-estimation, namely LTS, and defines

the maximum trimmed likelihood as an estimator maximizing the product of

the h largest likelihood contribution; that is, those corresponding only to h

most likely observations (Hadi and Luceno, 1997). This estimator was stud-

ied mainly in the context of generalized linear models (Müller and Neykov,

2003), but its consistency is established in a much wider class of models

(Č́ıžek, 2004).

Second, more widely used GMM also attracted attention from its robust-

ness point of view. A special case, instrumental variable estimation, was stud-

ied, for example, by Wagenvoor and Waldman (2002) and Kim and Muller

(2006). See also Chernozhukov and Hansen (2006) for instrumental variable

quantile regression. More generally, Ronchetti and Trojani (2001) proposed

an M -estimation-based generalization of GMM, studied its robust properties,

and design corresponding tests. This work became a starting point for others,

who extended the methodology of Ronchetti and Trojani (2001) to robustify

simulation-based methods of moments (Genton and Ronchetti, 2003; Ortelli

and Trojani, 2005).
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[37] Lopuhaä, H. (1992). Multivariate τ -estimators. Canadian Journal of

Statistics 19, 307–321.

[38] Lucas, A. (1995). An outlier robust unit root test with an application to

the extended Nelson-Plosser data. Journal of Econometrics 66, 153–173.

[39] Marazzi, A., and Yohai, V. J. (2004). Adaptively truncated maximum

likelihood regression with asymmetric errors. Journal of Statistical Plan-

ning and Inference 122, 271–291.

26



[40] Markatou, M., Basu, A., and Lindsay, B. (1997). Weighted likelihood

estimating equations: the discrete case with applications to logistic re-

gression. Journal of Statistical Planning and Inference 57(2), 215–232.

[41] Maronna, R. A., Bustos, O. H., and Yohai, V. J. (1979). Bias- and

efficiency-robustness of general M -estimators for regression with random

carriers. In T. Gasser and M. Rossenblatt (eds.) Smoothing Techniques

for Curve Estimation. Springer, Berlin, 91–116.

[42] Maronna, R. A., and Yohai, V. J. (1997). Robust estimation in simul-

taneous equations models. Journal of Statistical Planning and Inference

57(2), 233–244.

[43] Maronna, R. A., and Yohai, V. J. (2000). Robust regression with both

continuous and categorical predictors. Journal of Statistical Planning

and Inference 89, 197–214.

[44] Müller, C. H., and Neykov, N. (2003). Breakdown points of trimmed

likelihood estimators and related estimators in generalized linear models.

Journal of Statistical Planning and Inference 116(2), 503–519.

[45] Ortelli, C., and Trojani, F. (2005). Robust efficient method of moments.

Journal of Econometrics 128, 69–97.

[46] Ronchetti, E., and Trojani, F. (2001). Robust inference with GMM es-

timators. Journal of Econometrics 101, 37–69.

27



[47] Rousseeuw, P. J., and Leroy, A. M. (1984). Robust regression by means

of S-estimators. In J. Franke, W. Härdle, and R. D. Martin (eds.) Robust
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