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Occupational safety in a frictional labor market

Martin Kerndler∗

March 16, 2022

Abstract

This paper studies the provision of occupational safety when the labor market is subject
to search frictions. While safety measures are costly for firms, they reduce workers’ mor-
tality. We show that the presence of search frictions decreases the socially optimal level of
occupational safety relative to a frictionless labor market, leading to excess mortality. In
a decentralized setting where wages and safety measures are bargained at the firm level,
matching externalities and a labor supply externality may further reduce safety provision.
We obtain conditions under which these externalities are internalized by firms and workers,
and discuss the role of policy for promoting occupational safety. Calibrating the model to
the US, we find that search frictions explain 8%–14% of the work-related mortality rate,
which indirectly makes them the third largest cause of work-related death.

Keywords: occupational safety, mortality, search frictions, Nash bargaining
JEL classification: J17, J28, J32, J38, J64

1 Introduction

According to the European Agency for Safety and Health at Work (2017a,b), an annual number
of 2.8 million deaths worldwide can be attributed to work-related injuries and diseases, amount-
ing to 67.8 million years of life lost. Additionally, non-fatal work-related injuries and diseases
cause 55.5 million years lived in disability. Valued by the average production of a worker, the
estimated economic costs of fatal and non-fatal incidents equal 3.9% of global GDP. These
costs are also sizeable in high income countries, where cancer, musculoskeletal disorders, and
circulatory diseases are the most prevalent work-related health issues.1

Consequently, safety and health at the workplace have been identified as key for prolong-
ing working lives and healthy aging, resulting in broad policy initiatives like those of the

∗Institute of Statistics and Mathematical Methods in Economics, TU Wien, Wiedner Hauptstraße 8/105-3,
1040 Vienna, Austria; martin.kerndler@tuwien.ac.at. Thanks to Johannes Gärtner for spurring my interest in
the topic, and Alexia Fürnkranz-Prskawetz, Miguel Sánchez-Romero, Nawid Siassi, as well as the other members
of the ECON research unit for valuable comments.

1In the EU-28, the costs are estimated at 3.3% of GDP (European Agency for Safety and Health at Work,
2017a). Country-specific studies that use more granular cost estimation models report GDP shares of 1% for the
UK, 1.8% for the US, 2.9% for Finland, 3.2% for Singapore, 3.5% for Germany and the Netherlands, 4.8% for
Australia, 6.3% for Italy, and 10.2% for Poland, see Tompa et al. (2021) and references therein. The large range
of estimates is partly due to different cost categories considered.
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European Commission (2021a,b) as well as actions specifically targeted at protecting workers
from COVID-19 (Biden, 2021). From a normative perspective, policy intervention in occupa-
tional safety provision2 can be socially desirable since the level of safety measures arising from
the interplay of firm and worker incentives is likely to be inefficient (Henderson, 1983). This is
due to the presence of asymmetric information about health risks, psychological biases in the
individual perception of risk, as well as externalities on co-workers and society that individual
firms and workers do not take into account (Pouliakas and Theodossiou, 2013).

Another source of inefficiencies that so far has received little attention in the context of
occupational safety, are labor market frictions in the matching of unemployed to job openings.
Stronger frictions increase the time that unemployed need to find and take up a job. The less
frequent they get the opportunity to work, the higher will be their willingness to accept jobs
with low safety standards. On the other hand, frictions also increase the time that firms need
to fill a vacancy. The longer it takes them to find an applicant for an open position, the higher
is their incentive to safeguard worker health once a match is formed. Due to these opposing
effects, the impact of search frictions on occupational safety is a priori not clear.

This paper studies the provision of occupational safety in the presence of search frictions as
featured in the workhorse model of modern labor economics, the Diamond-Mortensen-Pissarides
(DMP) model. Since occupational safety ultimately affects workers’ mortality, we extend the
basic DMP model (Pissarides, 2000, Ch. 1) for mortality shocks. The mortality rate of employed
individuals is endogenously determined and our main variable of interest. We solve three ver-
sions of our model to identify (i) the mortality effect of search frictions and (ii) the mortality
effect of externalities relating to matching and bargaining.

By solving the planner’s problem with and without frictions, we find that search frictions
unambiguously increase the socially optimal mortality rate. The planner essentially compares
the current costs of safety measures with their long-term benefits. The latter accrue from a
worker’s higher life expectancy, which translates into higher lifetime production and utility.
Search frictions cause phases of involuntary unemployment, which reduce lifetime production
and utility, and therefore lower the long-term benefits of safety measures. This makes lower
safety levels optimal, leading to higher mortality.

If safety measures are not centrally mandated but determined bilaterally between workers
and firms, mortality may be even higher due to two externalities. First, private agents may
not take into account that a worker dying due to occupational risks is not only lost for its
former employer but for the economy as a whole. We observe that whether this externality on
aggregate labor supply is internalized depends on the structure of bargaining. Second, even if
the labor supply externality is internalized, the mortality rate is still affected by the matching
externalities common to the DMP framework. In this regard, any deviation from the Hosios
(1990) condition is found to further increase workers’ mortality rates. From a policy perspective,
we discuss how taxes can be used to internalize the two externalities, and show how to design
tax schemes that increase occupational safety, while keeping the potentially resulting loss in

2Throughout the paper, we understand occupational safety as protecting workers against both work-related
injuries and work-related diseases.
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aggregate output at a minimum.
Calibrating the model to the US, we find that at least 8% of the work-related mortality is

explained by the presence of search frictions. This indirectly makes them the third largest cause
of work-related death after cancers (57%) and circulatory diseases (23%), exceeding the shares
of respiratory diseases (6%), accidents (5%), and mental disorders (4%) reported by Takala
et al. (2014). We find that a 7% tax on firm-level output is able to undo the effects of search
frictions on the mortality rate and observe that the adverse labor market effects of this policy
are negligible.

The paper proceeds as follows. Section 2 solves the planner’s problem for the socially
optimal mortality rate in a frictionless labor market. Section 3 introduces the search frictions
and solves the planner’s problem once again, before turning to the decentralized economy in
Section 4. Section 5 presents quantitative results. Section 6 concludes. All mathematical proofs
are delegated to the appendix.

2 Frictionless labor market

2.1 Demography and production

To assess the impact of search frictions on mortality, we first solve the social planner’s problem
in a frictionless labor market. Each period, the planner can freely allocate the mass N of living
individuals to employment or unemployment. The mass of employed and unemployed is denoted
by L and U , respectively. While unemployed die at an exogenous rate mU , the mortality rate of
employed, m, is endogenously chosen by the planner. Assuming an exogenous mass of newborns
B, the population size evolves according to3

Ṅ = B − mL − mU U. (1)

Every unemployed generates a flow of home production of z > 0. The production of an
employed individual is measured in terms of the flow of effective output y(m), which captures
output minus the costs of safety measures. These costs can be direct, like regular maintenance
of machines or purchasing safety equipment, as well as indirect through lower productivity due
to shorter work shifts or time spent on safety routines. The properties of the effective output
function are summarized in Assumption 1.

Assumption 1. For m ≥ 0, effective output y(m) is twice continuously differentiable and
satisfies

(i) monotonicity and concavity, y′(m) > 0, y′′(m) < 0, with lim
m→∞

y′(m) = 0,

(ii) for some m > 0, individuals produce more on a job than at home in present discounted
value terms, y(m)

r+m > z
r+mU

,

3We generally omit time indices to simplify notation. We do not model individual mortality as a state variable
in order to keep the model tractable.
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(iii) but this is not the case at m = 0, y(0)
r ≤ z

r+mU
.

By property (i), the current effective output of an employment relation can be increased by
allowing higher mortality as this reduces prevention costs. Concavity implies that these output
gains become smaller with increasing mortality. Equivalently, reducing mortality becomes more
and more costly the lower it already is. This reflects that an initial drop in mortality can be
achieved by relatively cheap measures such as buying safety gloves or glasses, while further
reductions in mortality require increasingly expensive measures.4

Property (ii) and (iii) are technical. Essentially, property (ii) guarantees that employment
is positive in optimum. Property (iii) ensures that the optimal mortality rate of employed
individuals is strictly positive, as reducing the mortality rate to 0 would be too costly, making
market production inferior to home production.

2.2 Social planner solution

Assuming that all agents have linear utility, the planner’s objective is to find time paths of
(m, U, L) that maximize the present discounted value of aggregate output,5∫ ∞

0
[y(m(t))L(t) + zU(t)]e−rt dt,

subject to the aggregate population dynamics (1) as well as L+U = N and U ∈ [0, N ]. Ignoring
the constraint on U for the moment and substituting L = N−U , the current value Hamiltonitian
of the planner’s problem reads

H = y(m)(N − U) + zU + ν[B − m(N − U) − mU U ],

where ν is the costate to N .
Assuming U < N , the first order condition with respect to m is

∂H
∂m

= 0 ⇔ y′(m) = ν. (2)

By condition (2), the optimal mortality rate equates the marginal gain of mortality in terms of
effective output, y′(m), to the marginal cost of mortality, which equals the economic value of a

4Since our model is in continuous time, the worker is assumed to finish production y(m(t)) before he eventually
dies with rate m(t) at the next instant. In discrete time, depending on the duration of a period, a unimodal
effective production function may be more realistic, as it allows to capture that the worker may die during the
period t production process. In fact, all results of this paper continue to hold if Assumption 1(i) is replaced by
the property that y(m) attains a unique maximum at m > 0 and that it is concave for m < m.

5Besides maximizing agents’ utilities, a planner could pursue additional goals, such as minimizing the death
toll. Such considerations would naturally lead the planner’s solution to differ from the decentralized equilibrium,
which we therefore abstain from. We also abstract from individuals themselves having non-pecuniary costs
of mortality. Extending the model in this direction is straightforward and largely equivalent to appropriately
adjusting the effective output function.
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life lost, ν. In an optimum, the latter variable evolves over time according to

∂H
∂N

= −ν̇ + rν ⇔ ν̇ = (r + m)ν − y(m). (3)

From this point onwards we focus on stationary solutions, ṁ = 0, which by (2) implies ν̇ = 0
and reduces (3) to

ν = y(m)
r + m

. (4)

Hence the value of a life lost equals the present discounted value of foregone production. Com-
bining this with (2), the optimal mortality rate solves

y′(m) = y(m)
r + m

. (5)

It is easy to see that at the optimal mortality rate, the value of a worker given in (4) is maximized.
Proposition 1 establishes uniqueness of the planner’s solution and verifies that the associated
optimal level of unemployment is zero. Correspondingly, the population size is N = L = B

m in
steady state.6

Proposition 1. Without search frictions, the social planner’s problem has a unique stationary
solution with U∗∗ = 0 and mortality rate m∗∗ > 0 characterized by (5).

Condition (5) reveals that the socially optimal mortality rate m∗∗ depends on the discount
rate r as well as on the effective production function. The higher r, the less the planner
values the future output gains relative to the current output costs of occupational safety, and
the higher is the optimal mortality rate. To illustrate the dependence on the shape of the
production function, assume y(m) = Amα with A > 0 and α ∈ (0, 1). This is a special case
of the function used in Section 5. It is easy to verify m∗∗ = α

1−αr. Hence the tighter the link
between mortality and effective output, the higher is the optimal mortality rate. For α → 0,
a reduction in mortality has no detrimental effect on output and thus m∗∗ → 0. For α → 1,
reducing mortality becomes increasingly costly and m∗∗ → ∞.7

3 Frictional labor market

3.1 Labor flows

From now on, assume that the labor market dynamics are subject to the search and matching
frictions typical in the DMP framework. Each period, the mass of unemployed U and the mass

6The prediction of full employment is due to our agents being ex ante homogeneous. If Assumption 1(ii)
applied only to a fraction of the individuals (e.g. due to heterogeneity in z or mU ), the model would feature
voluntary unemployment. While this is not the point of the paper, it is interesting to note from (5) that as long
as the effective production function does not differ, any employed individual faces the same mortality rate.

7Note that the model does not take a stance whether the mortality of employed exceeds the mortality of
unemployed. Depending on the parameterization, both outcomes can be achieved. Empirically, mortality rates
of unemployed are higher than those of employed workers in most occupations (Paglione et al., 2020).
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of vacancies V are brought together by a constant returns to scale matching function M(U, V ).
The rate at which vacancies are filled is denoted by q(θ) := M(U,V )

V = M(1
θ , 1) where θ := V

U is
the labor market tightness. The rate at which unemployed find a job is p(θ) := M(U,V )

U = q(θ)θ,
and the elasticity of the matching function with respect to unemployment is η(θ) := ∂ ln M(U,V )

∂ ln U =
− q′(θ)θ

q(θ) . These objects satisfy the standard properties of Assumption 2.

Assumption 2. The job-finding rate p(θ) and the vacancy-filling rate q(θ) are continuously
differentiable with

(i) lim
θ→0

p(θ) = 0, lim
θ→∞

p(θ) = ∞, p′(θ) > 0,

(ii) lim
θ→0

q(θ) = ∞, lim
θ→∞

q(θ) = 0, q′(θ) < 0,

(iii) η(θ) is non-decreasing.

Everybody is assumed to participate in the labor market, such that N = L + U . The
population dynamics are governed by the differential equations

L̇ = −(m + s)L + p(θ)U, (6)

U̇ = B + sL − (p(θ) + mU )U, (7)

Ṅ = B − mL − mU U. (8)

The dynamics of the aggregate population (8) are as above. The evolution of the mass of
employed and unemployed are described by (6) and (7), respectively. Each period, unemployed
find a job at rate p(θ), while employed move into unemployment at an exogenous rate s. As
before, employed individuals die at rate m, while unemployed individuals face an exogenous
mortality rate mU . Newborns start their economic lives without a job.

In a stationary economy with constant inflows, Ḃ = 0, equations (6)–(8) yield

L = p(θ)
p(θ)m + mU (m + s)B, U = m + s

p(θ)m + mU (m + s)B, N = m + s + p(θ)
p(θ)m + mU (m + s)B.

The steady state unemployment rate is U
N = m+s

m+s+p(θ) .

3.2 Social planner solution

If the planner is not bound by the matching frictions and can freely move individuals between
employment and unemployment, the analysis is as in Section 2.2. The typical assumption in the
matching literature, however, is that the planner cannot overcome the matching frictions and
must work through the matching function (Pissarides, 2000, Ch. 8). In contrast to Section 2, the
planner then cannot control U directly but only indirectly via creating vacancies V . Assuming
a flow cost c > 0 per vacancy, the planner maximizes∫ ∞

0
[y(m(t))L(t) + zU(t) − cV (t)]e−rt dt

6



subject to the population dynamics (6)–(8) as well as L + U = N and U ∈ [0, N ]. While the
planner essentially chooses time paths for (m, V ), it is convenient to reformulate the problem in
terms of (m, θ) by writing V = θU . Furthermore, we substitute L = N −U and omit (6) as well
as the static constraint on U from the maximization problem. The current value Hamiltonian
then reads

H = y(m)(N − U) + zU − cθU + µ[B + s(N − U) − (p(θ) + mU )U ] + ν[B − m(N − U) − mU U ],

where µ and ν are the costates to U and N , respectively.
Assuming 0 < U < N , the first order conditions for an interior optimum read

∂H
∂m

= 0 ⇔ y′(m) = ν, (9)

∂H
∂θ

= 0 ⇔ c = −p′(θ)µ = −(1 − η(θ))q(θ)µ. (10)

Condition (9) coincides with (2), while condition (10) balances the costs of an additional vacancy
with the benefits of lower unemployment through increased job-finding. In an optimum, the
dynamics of the costate variables are

∂H
∂U

= −µ̇ + rµ ⇔ µ̇ = (r + s + mU + p(θ))µ + y(m) − z + cθ − ν(m − mU ), (11)

∂H
∂N

= −ν̇ + rν ⇔ ν̇ = (r + m)ν − y(m) − sµ. (12)

From this point onwards, we again focus on stationary solutions, ṁ = θ̇ = 0. By the first order
conditions, this implies ν̇ = µ̇ = 0. Equation (12) gives the economic value of a lost worker as

ν = y(m) + sµ

r + m
. (13)

Similar to (4), ν equals the present discounted value of a worker’s forgone production in case
of death. Yet, it now takes into account that the worker may have become unemployed in the
future due to a separation shock. Combining (9) and (13) yields

y′(m) = y(m) + sµ

r + m
. (14)

Comparing this condition to (5) reveals that while the search frictions do not affect the marginal
gain of mortality, they lower its marginal costs, since unemployment reduces a worker’s lifetime
production in present discounted value terms (note that µ < 0 by (10)). As a result, search
frictions increase the optimal mortality rate, see Section 3.3 for further discussion.

Substituting (10) and (13) into (11) to replace c and ν, the steady state value of an additional
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unemployed becomes

µ = − (r + mU )y(m) − (r + m)z
[r + mU + p(θ)η(θ)](r + m) + s(r + mU ) . (15)

The value of µ corresponds to the change in the present discounted value of output if a worker
switches from employment to unemployment. In optimum, this is negative by (10), such that
frictional unemployment lowers aggregate output.

Substituting (15) back into (10) yields

(1 − η(θ)) (r + mU )y(m) − (r + m)z
[r + mU + p(θ)η(θ)](r + m) + s(r + mU ) = c

q(θ) . (16)

Like in the basic DMP model, this equation determines optimal job creation. To pin down the
optimal mortality rate, use (15) to eliminate µ from (14), which after some algebra yields

y′(m) = [r + mU + p(θ)η(θ)]y(m) + sz

[r + mU + p(θ)η(θ)](r + m) + s(r + mU ) . (17)

With search frictions, a solution to the planner’s problem satisfies (16)–(17).
As in the frictionless economy, it can be shown that the optimal mortality rate maximizes the

value of a worker, ν, on the right-hand side of (17). Additionally, it turns out that the optimal
mortality rate minimizes µ.8 This observation is key to our proof of existence and uniqueness of
a solution, which solely focuses on the planner’s job creation curve θ∗(m) defined by (16). By
Lemma 2 in the appendix, this curve is hump-shaped, which reflects that the planner creates
fewer vacancies if the mortality of employed workers is very high (as the expected duration
of matches is short) but also if mortality is very low (as the required safety measures depress
effective output). Since µ = − c

(1−η(θ))q(θ) by (10), µ is minimized when the tightness θ is
maximized. Hence the planner’s solution corresponds to the unique peak of the job creation
curve as postulated by Proposition 2. The planner therefore seeks to make the effect of the
frictions on the job-finding rate p(θ) as small as possible.

Proposition 2. With search frictions, the social planner’s solution (m∗, θ∗) is unique and
corresponds to the peak of the job creation curve θ∗(m) defined by (16).

This result is graphically illustrated in Figure 1, where JC corresponds to the hump-shaped
job creation curve defined by (16). The job destruction curve JD is defined by (17) and
downwards sloping. Intuitively, a higher tightness θ increases the job-finding rate and thus
µ, as the expected output loss in case of unemployment decreases. By (13), this increases
the valuation of a worker’s life, ν, and thus the marginal cost of mortality. Therefore, the
optimal mortality rate is decreasing in θ along the JD curve. The planner’s optimum lies at
the intersection of the two curves, which by Proposition 2 coincides with the peak of the JC

curve.
8Notice that (17) is equivalent to ∂µ

∂m
= 0 with µ given in (15), and that ∂2µ

∂m2 > 0 at the optimal m.
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Figure 1. Planner’s solution (m∗, θ∗) in the presence of search frictions

3.3 The impact of search frictions on mortality

Since the job-finding rate p(θ) enters the right-hand side of (17), the presence of labor market
frictions affect the optimal mortality rate. Hence, in the presence of search frictions, the solution
to the planner’s problem m∗ is only constrained efficient.

The difference in the optimality conditions for mortality (5) and (17) arises from the altered
value of ν, which measures the value of a life lost in terms of foregone output. Since workers
are more productive in jobs than at home (µ < 0), the presence of frictional unemployment
decreases a worker’s expected lifetime production and thus decreases the marginal costs of
mortality. This implies that the optimal mortality rate is higher in the presence of labor market
frictions.

The unambiguous increase in mortality was not to be expected, since ceteris paribus, a lower
m can ameliorate frictional unemployment and reduce the expenditures for vacancy posting.
However, Proposition 2 reveals that in the output-maximizing strategy, the planner directly
addresses the ultimate source of the welfare losses, which is the depressed job-finding rate. It
turns out that the job-finding rate depends on m only through the value of an employed worker.9

It thus reaches its highest level when ν is maximized, which leads to condition (17).
Proposition 3 shows that the excess mortality caused by the search frictions increases with

the severity of the frictions.

Proposition 3. Let ϕ := s
r+mU +p(θ)η(θ) . The constrained efficient mortality rate m∗ determined

by (17) is strictly increasing in ϕ. For ϕ → 0, the frictionless mortality rate m∗∗ given in (5)
is attained.

It is straightforward to see from (17) that the optimal mortality rate depends on the labor
market frictions only via the fraction given in Proposition 3. With decreasing frictions, p(θ) →

9This is evident from θ being negatively related to µ via (10), and (10)–(12) implying µ = − (r+mU )ν−z
r+mU +p(θ)η(θ) .
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∞, the fraction approaches zero, such that m∗ → m∗∗. Ceteris paribus, the excess mortality
caused by the frictions is higher, the higher the separation rate and the lower the job-finding
rate or the less elastic the matching function responds to changes in unemployment.10 The fact
that m∗ > m∗∗ is also evident from Figure 1. Proposition 3 implies that the job destruction
curve JD approaches the vertical line m = m∗∗ for θ → ∞ and is located right of this line for
any finite θ. The intersection with the JC curve must thus necessarily lie to the right of m∗∗.

4 Decentralized frictional labor market

Having understood the planner’s incentives with and without search frictions, we now decen-
tralize the economy studied in the previous section. Mortality is no longer centrally mandated
but bargained between firms and workers together with wages. The attained labor market equi-
librium may differ from the planner’s solution (m∗, θ∗) due to a range of externalities that are
present in the model.

The classical matching externalities may lead the equilibrium tightness to deviate from θ∗

(Pissarides, 2000, Ch. 8). This is because an individual firm does not take into account that
opening an additional vacancy lowers the vacancy-filling probability of all firms, while on the
workers’ side, an additional job-seeker reduces the job-finding probability for all other job-
seekers. Additionally, our model features an externality that directly affects the mortality rate.
As safety measures are bilaterally negotiated between a firm and a worker, the fact that a
worker’s death not only terminates the current employment relation but permanently lowers
the production capacity of the economy is in general not taken into account.

4.1 Value functions

Each firm consists of one job that can either be filled or vacant. Assuming stationarity, the
value of a filled and vacant job are, respectively,

rJ = y(m) − w − (s + m)(J − V ),

rV = −c + q(θ)(J − V ).

A filled job generates a flow profit y(m) − w and is destroyed by an exogenous separation at
rate s and by death of the worker at rate m. A vacancy generates a flow cost c and is filled at
rate q(θ). Assuming free market entry of firms, the value of a vacancy is zero in equlibrium,
V = 0, implying J = c

q(θ) .

10While exogenous in our model, the severity of search frictions may also change the mortality rate of unem-
ployed mU through their increased risk of long-term unemployment (Browning and Heinesen, 2012). Since the
marginal cost of mortality on the right-hand side of (17) is decreasing in mU , capturing this interaction would
amplify the negative effect of search frictions on the provision of occupational safety. Intuitively, a worker’s
expected lifetime production then not only drops due to the presence of unemployment spells, but also because
the mortality experienced while unemployed increases in the expected duration of these spells.

10



The value of employment and unemployment for the worker are, respectively,

rW = w − s(W − U) − mW,

rU = z + p(θ)(W − U) − mU U.

An employed worker consumes the wage w, moves to unemployment at rate s and dies at rate
m. Unemployed consume their home production z, find a job at rate p(θ) and die at rate mU .
The value of death is zero, since the individual’s consumption permanently drops to zero.

4.2 Bargaining

Each period, firm and worker choose a wage w and a mortality rate m that jointly maximize
the generalized Nash product

Ψ = (W − U)γ(J − V )1−γ ,

where γ ∈ (0, 1) is the bargaining power of the worker.11 From above, observe that V = 0,
J = y(m)−w

r+m+s , and W = w+sU
r+m+s . The value of unemployment U is an equilibrium object and

taken as given in the bargaining process.
Assuming W > U and J > 0, the first order conditions are

∂Ψ
∂w

= 0 ⇔ γJ = (1 − γ)(W − U), (18)

∂Ψ
∂m

= 0 ⇔ y′(m) = J + γJ

(1 − γ)(W − U)W. (19)

Condition (18) gives rise to the familiar Nash sharing rule, W − U = γS and J = (1 − γ)S
where S = J + W − U = y(m)−(r+m)U

r+m+s is the joint surplus of the match. Substituting this into
(19) yields

y′(m) = J + W = y(m) + sU

r + m + s
. (20)

Similarly to the planner’s conditions, the left-hand side of (20) measures the marginal benefit
of higher mortality in terms of effective output. The right-hand side captures the marginal cost
of higher mortality, which in the decentralized economy amounts to losing the joint value of the
match, J + W . This value comprises the expected output generated on the current job, y(m)

r+m+s ,
and (via U) the worker’s expected income earned on future jobs and during unemployment
spells. The negotiating parties internalize the labor supply externality if and only if U is such
that (20) coincides with (17), compare Section 4.4 for a discussion.

Notice that the bargaining outcome can be interpreted sequentially. Anticipating that each
11The view that workers and firms bargain over a compensation package that includes non-wage components,

has, for instance, been adopted in Dey and Flinn (2005), where the worker’s coverage by health insurance is
negotiated together with the wage. We study alternative determination schemes for wages and occupational
safety in Section 4.6.
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party will receive a fixed share of the joint surplus, m is chosen to maximize S. This is evident
from (20) being equivalent to ∂S

∂m = 0, which will be central to the analysis of the equilibrium
below.12

4.3 Equilibrium

By the Nash sharing rule, the equilibrium value of unemployment satisfies (r + mU )U = z +
p(θ)γS. Substituting this into the definition of S gives equilibrium surplus

S = (r + mU )y(m) − (r + m)z
(r + mU + p(θ)γ)(r + m) + (r + mU )s. (21)

The corresponding equilibrium value of unemployment is

U = p(θ)γy(m) + (r + m + s)z
(r + mU + p(θ)γ)(r + m) + (r + mU )s. (22)

Plugging (21) into the free entry condition, noting J = (1 − γ)S, yields

(1 − γ) (r + mU )y(m) − (r + m)z
(r + mU + p(θ)γ)(r + m) + (r + mU )s = c

q(θ) , (23)

while substituting (22) into (20) gives, after some algebra,

y′(m) = (r + mU + p(θ)γ)y(m) + sz

(r + mU + p(θ)γ)(r + m) + (r + mU )s. (24)

A labor market equilibrium (m̂, θ̂) is characterized by equations (23)–(24). Similar to the
planner’s solution in Section 3.2, it can be verified that the labor market equilibrium corresponds
to the peak of the job creation curve θ̂(m), which is now defined by (23). This is due to the
fact that m̂ maximizes (21) for θ = θ̂. Imposing the free entry condition, maximizing (21) is
equivalent to maximizing θ along the job creation curve since S = c

(1−γ)q(θ) .

Proposition 4. The equilibrium (m̂, θ̂) is unique and corresponds to the peak of the job creation
curve θ̂(m) defined by (23).

Thus, the equilibrium looks qualitatively identical to the planner’s solution in Figure 1.
To gain further economic insights, let us conduct a small comparative static analysis of the
equilibrium with respect to the main model variables. Increasing the slope of y(m) around m̂

increases joint surplus (21) and hence θ̂(m) for m > m̂. The peak then moves to the right,
resulting in a higher equilibrium mortality rate. The same happens if z or p(θ) are lowered
(for all θ), since surplus increases relatively more for large m. Thus, ceteris paribus, higher
mortality rates should be observed in jobs in which safety measures are very costly, and for
workers whose outside options are poor. As shown in Section 4.4.2, the relationship between
equilibrium mortality and the bargaining power γ is not monotonic.

12Formally, max(m,w) (W − U)γJ1−γ = maxm

{
maxw (W − U)γJ1−γ

}
= γγ(1 − γ)1−γ maxm S. In Section 4.6

we discuss the generality of this result.
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4.4 The impact of externalities on mortality

4.4.1 The labor supply externality

The fact that a diseased worker reduces aggregate labor supply is internalized in the firm-level
negotiations if the private costs of mortality equal the social costs of mortality. In this case,
conditions (14) and (20) coincide, which proofs equivalent to

U = y(m) + (r + m + s)µ(m, θ)
r + m

(25)

where µ(m, θ) is the shadow price that a planner assigns to an additional unemployed for a
given pair (m, θ). This shadow price can be obtained from (11)–(12) and equals

µ(m, θ) = − (r + mU )y(m) − (r + m)(z − cθ)
(r + mU + p(θ))(r + m) + s(r + mU ) . (26)

Next, note that free entry and Nash bargaining imply cθ = θq(θ)(1−γ)S = (1−γ)p(θ)y−(r+m)U
r+m+s .

Substituting this into (26) and plugging the resulting expression into (25) after some algebra
yields (22). This proofs that the labor supply externality is internalized in the labor market
equilibrium. Even though private agents do not explicitly take into account that a dead worker
reduces labor supply on aggregate, in equilibrium this is accurately reflected in the worker’s
outside option considered in bargaining.

The observation that the labor supply externality is internalized in equilibrium hinges on
a particular property of the bargaining scheme proposed in Section 4.2. As mentioned there,
the negotiated mortality rate maximizes the joint surplus of firm and worker. This is essential,
since the production potential outside the firm is only taken into account by the worker, but
not by the firm. In Section 4.6 we investigate alternative schemes to determine occupational
safety, and their ability to internalize the labor supply externality.

4.4.2 Matching externalities

Even though the labor supply externality is internalized in equilibrium, the mortality rate m̂

may differ from the planner’s m∗. It may still be distorted by the presence of externalities that
arise from the matching process and affect the equilibrium value of U given in (20). Indeed, we
observe that the equilibrium conditions (23)–(24) coincide with the planner’s conditions (16)–
(17) if and only if γ = η(θ), which corresponds to the familiar Hosios (1990) condition. In this
case, the labor market equilibrium is constrained efficient and attains the mortality rate m∗.
Proposition 5 shows that any deviation from the Hosios condition increases the mortality rate
above its constrained efficient level m∗. Hence both a too low and a too high bargaining power
of workers strengthens the negative effects of search frictions on occupational safety.

Proposition 5. The equilibrium attains the constrained efficient mortality rate m∗ if and only
if γ = η(θ∗). Otherwise, the equilibrium mortality rate exceeds m∗.
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Figure 2. Equilibrium mortality rate m̂ as a function of γ

The result of Proposition 5 is illustrated in Figure 2. The relation between bargaining power
and equilibrium mortality is U-shaped. While it seems intuitive that workers with little bargain-
ing power (and correspondingly small wage) are willing to take more risk to raise their income,
observing the same behavior for workers with high bargaining power is perhaps surprising. It
arises from the fact that their high wage reduces their job-finding rate, which reinforces the
search frictions and increases the negotiated mortality level. Technically, the equilibrium mor-
tality rate is inversely related to the equilibrium value of unemployment U by (20). Lemma 3 in
the appendix shows that U attains its highest value for γ = η(θ∗), such that mortality achieves
its minimum at this point, where it equals the constrained efficient rate m∗.13 Even if all ex-
ternalities are internalized, the mortality rate is still higher than in a frictionless labor market,
where it equals m∗∗. While appropriately designed policies can reduce mortality below m∗, this
comes with a loss in aggregate output as discussed in the next section.

4.5 Policy

Suppose that there is a government who seeks to maximize aggregate output while keeping the
equilibrium mortality rate below some m̄. For m̄ ≥ m∗, it is clear from Section 3.2 that the
desired pair is the planner’s solution (m∗, θ∗). By Proposition 5, this is attained as equilibrium
if the Hosios condition is satisfied, such that the government should focus on establishing the
right bargaining weights.

For m̄ ≥ m∗, we know from the analysis of Section 3.2 that the optimal mortality rate is m̄,
and the associated tightness θ̄ lies on the planner’s job creation curve (16) illustrated by the solid
line in Figure 3. To decentralize (m̄, θ̄) as an equilibrium, we propose a mortality-dependent

13The property that the equilibrium value of unemployment is maximized under the Hosios condition is in-
herited from the basic DMP model, see Pissarides (2000, p.187). Endogenous mortality does not destroy this
property since ∂U

∂m
= ∂S

∂m
= 0 for any given γ.
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Figure 3. Labor market equilibrium with and without policy

tax on firms, which changes effective output from y(m) to y(m) − ∆(m). In equilibrium, all
tax revenue is equally distributed among all living individuals by a lump sum transfer t. To
pin down the function ∆, let us assume for now that the Hosios condition holds and that the
matching elasticity is constant, i.e. η(θ) ≡ η = γ. With the policy, the job creation curve in
the decentralized economy (23) becomes

(1 − η)(r + mU )(y(m) − ∆(m) + t) − (r + m)(z + t)
(r + mU + p(θ)η)(r + m) + (r + mU )s = c

q(θ) .

For the equilibrium to lie on the planner’s job creation curve (16), the terms arising from the
policy must cancel, i.e. (r + mU )∆(m̄) = (mU − m̄)t. Additionally, a balanced budget in steady
state requires

∆(m̄)L = tN ⇔ p(θ̄)∆(m̄) = (m̄ + s + p(θ̄))t.

Combining the two equations reveals t = ∆(m̄) = 0, such that in equilibrium the size of the
intervention should be zero. Furthermore, the policy changes equation (24) to

y′(m) − ∆′(m) = (r + mU + p(θ)η)(y(m) − ∆(m) + t) + s(z + t)
(r + mU + p(θ)η)(r + m) + (r + mU )s .

Evaluating this in equilibrium, using t = ∆(m̄) = 0, yields

∆′(m̄) = y′(m̄) − (r + mU + p(θ̄)η)y(m̄) + sz

(r + mU + p(θ̄)η)(r + m̄) + (r + mU )s
. (27)

For m̄ < m∗, the right-hand side of (27) is positive, implying ∆′(m̄) > 0. Hence, although the
tax is zero in equilibrium, the tax schedule is upwards sloping, which increases the marginal
cost of mortality. The gradient of the tax schedule must be such that the marginal costs and
the marginal benefits of mortality are equalized at m̄.
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Note that the above conditions only pin down ∆ and ∆′ at m = m, but not at other points.
The specific shape of ∆ in fact does not matter as long as no additional equilibrium arises. This
is granted if the altered effective output function y(m) − ∆(m) satisfies Assumption 1. One tax
schedule with this property is

∆(m) = λ[y(m) − y(m̄)],

with which the government captures a share λ of the production gain that arises from producing
with a mortality rate above its target. By construction, ∆(m̄) = 0, while ∆′(m̄) = λy′(m̄).
Substituting this into (27) pins down λ as

λ = 1 − (r + mU + p(θ̄)η)y(m̄) + sz

[(r + mU + p(θ̄)η)(r + m̄) + (r + mU )s]y′(m̄)
.

The resulting job creation curve is illustrated by the dashed line JC ′ in Figure 3. To
implement (m̄, θ̄) as an equilibrium, the policy must ensure that the job creation curve of the
decentralized economy peaks at this point, compare Proposition 4. While mortality is lower
in the new equilibrium, the additional safety measures lead to lower job creation and lower
aggregate output (which is maximized at m∗).

If the Hosios condition is not satisfied, γ ̸= η, and the government cannot directly affect the
bargaining weights, the tax scheme presented above can be modified to take this into account.
The required tax is then no longer zero in equilibrium, but accounts for the deviation between
γ and η. The tax on firms will be positive if the workers’ bargaining power is too low, γ < η.
Otherwise, the tax is negative in equilibrium. Since this intervention alters the marginal costs
of mortality, the slope of the tax schedule is no longer given by (27), but includes an additional
term relating to γ − η.

4.6 Alternative determination schemes for occupational safety

As demonstrated in Section 4.4.1, joint bargaining of wages and safety measures internalizes the
labor supply externality in equilibrium. This result holds also if safety levels are determined
differently, as long as the outcome maximizes the joint surplus of the match. Consider, for
instance, that only the wage is bargained, while m is unilaterally set by the firm before the
wage negotiation. Since firms anticipate that the joint surplus will be shared according to the
Nash rule (18), they solve

max
m

J = (1 − γ)S ⇔ max
m

S

at the first stage. Therefore, the equilibrium obtained with this bargaining protocol coincides
with the equilibrium of Section 4.3. The same applies if m is unilaterally set by the worker or
if it were the result of yet another bargain, as long as wages are negotiated afterwards.

Results may change if the level of safety measures is determined after wages. To see this,
assume that firms can unilaterally choose m after a wage w has been set. Their optimal choice
maximizes J subject to W ≥ U for the given wage. The first order condition for an interior
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optimum is

y′(m) = J = y(m) − w

r + m + s
.

The marginal cost of mortality on the right-hand side of this equation is now only the firm’s
private cost J . The cost of the worker is not taken into account. Comparison with (20) reveals
that, irrespective of the wage, mortality is higher than in the equilibrium of Section 4.3.

This observation implies that in the equilibrium of Section 4.3, firms have an incentive to
deviate from the negotiated level of m and underinvest into safety measures to increase their
profit ex post. The bargaining outcome of Section 4.2 thus does not materialize if firms lack
commitment and courts cannot verify the implemented level of safety measures. However, a
small change in the bargaining setup can avoid ex post deviations. Suppose that instead of a
pair (m, w), firm and worker negotiate a wage level w as well as a wage gradient w′ that specifies
the worker’s compensation for additional risk-taking. Presented with such a contract, the firm
sets m according to the condition y′(m) − w′ = J , which defines a function m(w, w′). It is
easy to see that ∂m(w,w′)

∂w′ < 0, such that a higher wage gradient reduces the optimal mortality
rate chosen by the firm. This insight can be used to show that the Nash bargaining problem
for (w, w′) subject to m = m(w, w′) leads to the conditions (18)–(19). These yield a pair
(w, m), from which the wage gradient that establishes m as the firm’s optimal mortality rate
is easily constructed as w′ = y′(m) − J . This way, the firm’s incentive for ex post deviations is
eliminated, and the equilibrium of Section 4.3 can be attained even if firms can only commit to
wage contracts.

The provision of occupational safety may also be inhibited by the classical hold-up problem,
which arises when safety measures are implemented before wages are set, and part of the safety
costs are irretrievable.14 This changes a firm’s threat point in the bargain as it would incur a
loss if the worker walked away. Assuming sunk costs d(m) > 0, the bargaining problem becomes

max
w

(W − U)γ(J + d(m))1−γ ,

since the firm’s outside option is now −d(m). The solution implies J = (1 − γ)S − γd(m).
Assuming that the firm unilaterally chooses the level of safety measures before wages are nego-
tiated, the first order condition for m is ∂S

∂m = γ
1−γ d′(m). If higher safety measures require more

upfront costs, d′(m) < 0, the firm chooses a point on the downwards sloping part of the surplus
curve, ∂S

∂m < 0. Therefore, joint surplus is no longer maximized. Furthermore, the optimality
condition for m can be written

y′(m) − γ

1 − γ
d′(m)(r + m + s) = y(m) + sU

r + m + s
,

which shows that the firm’s marginal gain of mortality increases because part of the additional
expenditures on safety measures cannot be shared with the worker. Even if d′(m) = 0, the

14See Malcomson (1997) for a summary of this literature.
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presence of sunk costs affects the mortality rate via U , as the worker effectively receives a higher
share in surplus. In any case, a policy along the lines of Section 4.5 can be used to redistribute
a part of the firm’s upfront expenditures to the households to restore efficient safety provision.

While in a bargaining setting, hold-up and matching externalities can lead to suboptimal
equilibrium outcomes, efficiency may always arise if the labor market is organized differently.
Suppose that firms post and commit to contracts (m, w), to which workers apply in the manner
of directed search (Moen, 1997; Wright et al., 2021).15 The directed search equilibrium can be
characterized as solution to

max
(m,w,θ)

p(θ)(W − U) s.t. q(θ)J = c.

It is easy to verify that the equilibrium conditions boil down to planner’s conditions (16)–(17).
Additionally to internalizing the externalities, directed search gets around the hold-up problem
(Acemoglu and Shimer, 1999).

5 Quantitative illustration

5.1 Calibration

We complement the above theoretical insights with a small quantitative illustration. To this
purpose, we calibrate the decentralized equilibrium to the US economy. The calibration of
the labor market variables follows Shimer (2005). The interest rate is r = 0.012, reflecting an
annual rate of approximately 4%. The separation rate is s = 0.1. The matching function is
Cobb-Douglas, M(U, V ) = AUηV 1−η with an elasticity of η = 0.72. Normalizing the equilibrium
labor market tightness to unity, θ̂ = 1, the matching efficiency is set to achieve a job-finding
rate of 1.355, which requires A = 1.355. The value of home production is z = 0.4, and the
bargaining power equals γ = η, such that the equilibrium is constrained efficient.

The equilibrium mortality rate, m̂, and the mortality rate of unemployed, mU , are calibrated
jointly. For the latter, we assume mU = 1.75m̂ based on Paglione et al. (2020) who conducted
a longitudinal study on working age individuals in Rome. While a comparable study does not
seem to be available for the US, the reported figure is also backed by Sullivan and Von Wachter
(2009), who estimate that mortality increases by 75%-95% in the first year after an exogenous
job displacement, see their Table IV. Taking this into account, m̂ is chosen such that the life
expectancy of an individual equals 59.4, which Arias and Xu (2019) report as the average life
expectancy at age 20 for the US in 2017. In our model, the life expectancy x can be obtained
from (6)–(7), setting B = 0. Starting from U0 = 1, L0 = 0, these equations give the probabilities
of being employed and unemployment at age t. The life expectancy is then computed as
x =

∫ ∞
0 tNt dt∫ ∞
0 Nt dt

. Our calibration implies the quarterly mortality rates m̂ = 4.0028 ∗ 10−3 and

mU = 7.0049 ∗ 10−3. The inflow of newborns is set such that population size in steady state
15If the actual level of job security provided by the firm is not verifiable by a court, the contracts can equivalently

be written over (w, w′) similar to the discussion above.
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parameter symbol value
interest rate r 0.012
separation rate s 0.1
matching elasticity η 0.72
matching efficiency A 1.355
bargaining power γ 0.72
home production z 0.4
mass of newborns B 4.2097
mortality rate of unemployed (in 1000) mU 7.0049
baseline mortality (in 1000) m 3.8212
curvature of marginal output σ free
scale of marginal output C 58.0942 · m̂σ

w

Table 1. Parameters set by our calibration.

equals 1000.
In the overall population, the majority of deaths occurs due to biological rather than work-

related reasons. We treat only the latter part as endogenous and determined in the bargaining
process, while the remaining mortality risk is exogenous. In practice, there is some ambiguity
in identifying whether a fatal event can be traced back to work activities, especially since some
potentially work-related diseases such as cancer are diagnosed much later in life. Nurminen
and Karjalainen (2001) estimate the attributable fraction of work-related mortality to 4% in
Finland. The same figure can be obtained by relating the 203,571 fatal work-related injuries
and diseases reported by the European Agency for Safety and Health at Work (2017a) for the
EU-28 to the 5,233,861 deaths in the relevant age group (20+) reported by Eurostat in the
same year.16 Since in steady state the mass of deaths equals the mass of newborns, we set
the work-related mortality rate m̂w through m̂wL

B = 0.04, which yields m̂w = 0.1816 ∗ 10−3.17

The baseline mortality rate that cannot be affected by occupational safety measures is thus
m = m̂ − m̂w = 3.8212 ∗ 10−3. This figure implies that, holding the job-finding rate constant,
eliminating all work-related risk increases life expectancy by 2.5 years.18

To arrive at a plausible effective output function y(m), we assume that the marginal output
gain of mortality decreases in work-related mortality at a constant rate σ = −y′′(m)

y′(m) mw where
mw = m − m. This is tantamount to a σ% increase in the marginal cost of prevention for each
percent by which work-related mortality is reduced. Integrating and normalizing equilibrium
output to y(m̂) = 1 yields a CRRA form for effective output,

y(m) = 1 + C
(m − m)1−σ − (m̂ − m)1−σ

1 − σ
.

16https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=demo_magec, accessed Feb. 15, 2022
17This figure is also backed by Takala et al. (2014), who estimate the number of work-related fatal injuries and

diseases in the US to 101,300, corresponding to a work-related mortality rate of 0.1778 ∗ 10−3.
18Since there is substantial uncertainty in the fraction of work-related mortality and epidemiological estimates

are rather conservative, we also solved our model for an attributable fraction of 8%. In response, the changes in
life expectancies and output reported in Tables 2-4 scaled by a factor of two. The share of work-related mortality
attributed to the search frictions (column 3 in Tables 3 and 4) remained virtually unchanged.
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Assuming σ ∈ (0, 1), the effective output function satisfies

y(m) − y(m) = C
(m − m)1−σ

1 − σ
,

which makes it apparent that a 1% increase in occuptional mortality raises output by (1 − σ)%
relative to its baseline level y(m). Given σ, the scaling factor C is pinned down by (24). Since
y(m̂) = 1, the vacancy posting cost c can be directly computed from (23). Table 1 summarizes
the calibrated parameters.

The output elasticity σ is purposefully kept a free parameter in our calibration due to lack
of a direct empirical counterparts. To determine a plausible range for this parameter, notice
that the most immediate way to increase output is by demanding workers to work longer hours.
Empirical evidence demonstrates that this increases the probability of work-related injuries or
illnesses, see for instance Hänecke et al. (1998), Nachreiner et al. (2000), and Dembe et al.
(2005). In a meta-analysis of this literature, Folkard and Lombardi (2006) and Fischer et al.
(2017) show that the risk starts to increase exponentially after 8 hours of work. Figure 2
in Fischer et al. (2017) implies that a 1% increase in shift length increases the relative risk
of an accident by around 4.8%. Restricting this to fatal accidents, we compute an increase
of 2.4%.19 Assuming a proportional link between working hours and output, this implies an
output elasticity with respect to work-related risk in the range of 1%

4.8% = 0.21 to 1%
2.4% = 0.42,

and therefore σ ∈ [0.58, 0.78]. If diminishing returns to hours are assumed (compare Pencavel,
2018), the values of σ become slightly higher. In the quantitative exercises below, we vary σ

between 0.5 and 0.9 to illustrate the sensitivity of this parameter on our results.

5.2 The costs of eliminating work-related mortality

We first compare the calibrated equilibrium to a counterfactual economy with search frictions
where the planner imposes the baseline mortality, i.e. m = m. Notice that it is not possible to
completely eliminate work-related mortality in a decentralized equilibrium since our functional
form implies y′(m) = ∞.

Reducing mortality requires prevention measures, which lower a worker’s effective output.
The output response to a marginal change in work-related mortality is pinned down by our
calibration and independent of σ. Expressed in terms of life expectancy, an additional quarter
costs the firm about 0.11% of effective output. Extrapolating this result to the 2.5 year reduc-
tion in life expectancy attributable to work-related factors, completely eliminating work-related
mortality would cost the firm 1.1% of its output.

This cost estimate may be much too low, however. It is based on a first order approximation
of the cost-benefit link and thus fails to capture its curvature. While an initial mortality
reduction may be achieved rather cheaply, the concavity of the effective output function implies
that further reductions become increasingly expensive. Table 2 gives the full costs of eliminating

19Nachreiner (2000) is the only considered study that specifically looks at fatal accidents. The relative risk for
each work hour computed from this study is reported in the online supplement to Fischer et al. (2017). We use
their method to convert this into a relation between risk and shift length.
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σ ∆y(m) (%) ∆Y (%) ∆U (%)
0.5 −2.11 1.99 −1.05
0.6 −2.63 1.43 −1.58
0.7 −3.52 0.51 −2.46
0.8 −5.27 −1.32 −4.22
0.9 −10.55 −6.84 −9.47

Table 2. Change in effective output at the firm level y(m), aggregate steady state output Y , and lifetime
utility U , when work-related mortality is eliminated, for different values of σ.

work-related mortality, assuming different levels of σ. It compares the calibrated equilibrium
to the counterfactual economy where m = m is imposed. For σ = 0.5, which forms our lower
bound on plausible values for σ, the estimated cost is 2.11% and hence almost twice as large as
the naive cost estimate. With increasing σ, the effective output function becomes more curved,
which makes large mortality reductions increasingly expensive. At the upper bound of our
plausible set, σ = 0.9, eradicating all work-related risk reduces firm level production already by
10.55%. As σ → 1, costs increase exponentially and eventually become infinite.

The third column of Table 2 gives the change in aggregate steady state output, which is
defined as Y = Ly(m)+Uz−cθU .20 We see that on aggregate, abolishing work-related mortality
can result in a sizeable increase in GDP. At σ = 0.5, we calculate a 2% gain in steady state
output. This policy is nevertheless not welfare enhancing because lifetime utility, measured
by the value of an unemployed worker U , decreases by 1.05%. While individuals live longer,
the lower firm output negatively affects their wages as well as their job-finding rate. At the
aggregate level, the larger workforce overcompensates the lower output per worker until around
σ = 0.75, beyond which aggregate output decreases as well.

Note that the GDP effects of eliminating work-related mortality in column 3 of Table 2
cannot be compared to any of the cost-estimations stated in Footnote 1. These only consider the
counterfactual gains from higher employment, without taking into account additional prevention
costs. In our framework, this corresponds to reducing m to m while keeping effective output
unchanged, ∆y(m) = 0. The resulting change in aggregate output is 4.21%. Assuming that
half of the costs of work-related diseases and injuries are due to fatal incidents (as suggested
by European Agency for Safety and Health at Work (2017a)), this figure lies towards the upper
range of empirical cost estimates.21 Our exercise demonstrates that the additional costs that
are necessary to eliminate work-related mortality may substantially reduce its predicted gains.22

20Notice that for r > 0, the planner maximizes the present discounted value of output, rather than its steady
state level. Hence deviations from m∗ can indeed increase Y .

21Notice that since effective output has been fixed in computing this figure, it is unaffected by the choice of σ.
22In this regard, it is important to notice that our calibrated equilibrium is constrained efficient. Hence imposing

lower work-related mortality necessarily lowers welfare and potentially output. Starting from an equilibrium with
inefficiently high mortality, reducing mortality will initially have positive effects. Once mortality falls below the
constrained efficient rate, however, these effects start to reverse.
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5.3 The mortality costs of search frictions

We now determine what fraction of work-related mortality is attributable to search frictions.
To this reason, we compare the calibrated equilibrium to a counterfactual economy with search
frictions where the planner imposes the mortality rate of the frictionless economy m = m∗∗. The
same result can be achieved in a decentralized setting with a policy as suggested in Section 4.5,
which we will discuss at the end of this section.

Before turning to the quantitative analysis, let us develop some intuition. Since the Hosios
condition is satisfied in our calibration, the equilibrium mortality rate satisfies y′(m̂) = ν by (9),
where ν is the economic value of a worker’s life. As pointed out in Section 3.3, search frictions
affect mortality via a decrease in ν. Differentiation reveals y′′(m̂)dm̂ = dν and therefore

dm̂

dν

ν

m̂w
= 1

y′′(m̂)
y′(m̂)
m̂w

= − 1
σ

.

Hence the sensitivity of work-related mortality mw to variations in ν is inversely related to
the sensitivity of marginal output with respect to work-related mortality σ. Consequently, we
should expect that the excess mortality caused by search frictions decreases in σ. Intuitively, if
lowering mw comes with a rapid decline in effective output (corresponding to a high σ), even a
planner who is not constrained by search frictions will consider high mortality optimal.

The second column in Table 3 gives the mortality rate in the frictionless economy, which
necessarily lies between m = 3.8212 ∗ 10−3 and m̂ = 4.0028 ∗ 10−3. The third column shows
the reduction in work-related mortality relative to the calibrated economy. For σ = 0.5, search
frictions are responsible for 14% of work-related mortality, which translates into a 5 month
drop in life expectancy. Even for the highest level of σ, search frictions still account for 8% of
work-related mortality and reduce life expectancy by 3 months. Even this conservative value
indirectly makes search frictions the third largest cause of work-related mortality in industrial-
ized countries, after cancers (57%) and circulatory diseases (23%), and followed by respiratory
diseases (6%), accidents (5%), and mental disorders (4%).23

σ m∗∗ × 103 ∆mw (%) ∆x (years) ∆Y (%) ∆U(%)
0.5 3.9780 −13.66 0.33 0.40 −0.0052
0.6 3.9819 −11.52 0.28 0.34 −0.0044
0.7 3.9847 −9.96 0.24 0.29 −0.0038
0.8 3.9869 −8.77 0.21 0.26 −0.0034
0.9 3.9886 −7.83 0.19 0.23 −0.0030

Table 3. Optimal mortality rate of the same economy without search frictions m∗∗, for different values of
σ. Change in work-related mortality mw, life expectancy x, steady state output Y , and lifetime utility
U when m∗∗ is implemented.

In a decentralized setting, m∗∗ can be implemented as equilibrium through a mortality-
specific tax as suggested in Section 4.5. We find that irrespective of σ, the required tax rate
is around λ = 0.071. This means that the government can undo the mortality effects of search

23See Figure 3 in Takala et al. (2014).
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frictions by seizing about 7% of any deviation of the firm’s output from the desired output
y(m∗∗). As evident from the last columns of Table 3, this policy not only lengthens lifetimes
but also brings a modest increase in steady state output, while individual welfare is virtually
unchanged. The latter is due to the observation that the reduction in the labor market tightness
that results from the lower mortality rate is negligibly small. The reason for this is that m∗∗ is
very close to m̂, and the job-creation curve visualized in Figure 1 is flat at m̂ = m∗. The labor
market response to the change in mortality therefore constitutes a second order effect.

5.4 Ameliorating search frictions

Instead of a mortality-dependent tax, work-related mortality can also be reduced by ameliorat-
ing the search frictions themselves. Here we consider a 25% increase in the matching efficiency
A. Table 4 shows that depending on the value of σ, this reduces work-related risk by 1.5% to
2.8%. Comparing to Table 3, this corresponds to a 20% reduction in the excess mortality that
was attributed to search frictions in our calibrated equilibrium.

∆x (months)
σ m̂ × 103 ∆mw(%) total allocational behavioral

0.5 3.9978 −2.76 7.65 6.83 0.82
0.6 3.9986 −2.30 7.52 6.83 0.68
0.7 3.9992 −1.98 7.42 6.83 0.59
0.8 3.9996 −1.73 7.35 6.83 0.51
0.9 4.0000 −1.54 7.29 6.83 0.46

Table 4. Effect of a 25% increase in the matching technology A on the equilibrium mortality m̂, and life
expectancy x for varying levels of σ. The allocational effect is the change in life expectancy assuming an
unchanged m. The behavioral effect is the residual.

Individual life expectancy is affected by the higher matching efficiency through two channels.
The first channel is a mechanical allocation effect. Since mU > m̂ and lower frictions reduce the
lifetime spent in unemployment, life expectancy increases. The second channel is the behavioral
effect stipulated by Proposition 3. Lower frictions increase the value of a worker’s life and thus
incentivize lower work-related mortality.

We find that irrespective of the value of σ, the steady state unemployment rate decreases
from 7.11% to 5.76%. The lower risk of being exposed to unemployment leads to an increase in
life expectancy of 6.8 months (column 5 of Table 4). The size of the additional behavioral effect
reported in the last column of Table 4 varies between 0.5 and 0.8 months, depending on the
level of σ. This again corresponds to about 20% of the total loss in life expectancy attributed
to search frictions in Table 3. Therefore, while policies that ameliorate search frictions do have
a positive side-effect on workplace safety, these gains seem to be less than proportional,

∆mw/m̂w

∆A/A
≈ 0.20

0.25 = 0.8.

This may be a conventional estimate, however, since empirical work suggests a link between
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the mortality of unemployed and their chances to find a job. Browning and Heinesen (2012)
estimate that among workers loosing their job due to a plant closure, the hazard ratio increases
to 2.28 in the first year after displacement when local unemployment is above average, but only
to 1.43 if local unemployment is below average. Therefore, a reduction in search frictions may
also reduce mU . The figures reported by Browning and Heinesen (2012) and own calculations
suggest that a one percentage point higher unemployment rate increases mU /m by 0.17.24 The
drop in unemployment observed above should thus reduce the hazard ratio from our calibrated
value of 1.75 to 1.52.

To account for this, in Table 5 we repeat the above experiment but at the same time
implement mU = 6.0843×10−3, which in the calibrated economy reflects a hazard ratio mU /m̂ =
1.52. We observe that the additional reduction in mU further reduces work-related mortality
relative to Table 4, which is due to the higher value of life. Together with the drop in A, about
25% of the excess mortality attributed to search frictions are undone, such that ∆mw/m̂w

∆A/A ≈ 1.

∆x (months)
σ m̂ × 103 ∆mw(%) total allocational behavioral

0.5 3.9967 −3.36 16.34 15.32 1.02
0.6 3.9977 −2.81 16.18 15.32 0.85
0.7 3.9984 −2.42 16.06 15.32 0.73
0.8 3.9990 −2.12 15.96 15.32 0.64
0.9 4.9994 −1.88 15.89 15.32 0.57

Table 5. Effect of a 25% increase in the matching technology A combined with a change in the mortality
of unemployed, mU = 1.52m̂, on the equilibrium mortality m̂, and life expectancy x for varying levels
of σ. The allocational effect is the change in life expectancy assuming an unchanged m. The behavioral
effect is the residual.

6 Conclusion

This paper studied the provision of occupational safety in a labor market with search frictions.
To this purpose, the basic Diamond-Mortensen-Pissarides model was extended for mortality
shocks with endogenous arrival rate. The presence of search frictions was found to increase the
socially optimal mortality rate by lowering safety levels. While the marginal costs of safety mea-
sures are unaffected by the frictions, periods of involuntary unemployment decrease a worker’s
expected lifetime production and utility, and hence the long-run gains of safety measures.

In a decentralized setting, externalities related to matching and bargaining may lead to a
further increase in mortality. Exploring a wide scope of determination schemes for wages and
occupational safety, we found that the negotiating parties generally internalize the labor supply
externality, i.e. the effect of a higher mortality rate on aggregate labor supply. This is far from
obvious, since none of the parties explicitly takes the aggregate effects of their decisions into

24Since Browning and Heinesen (2012) only report the mean local unemployment rate (9%) but not its varia-
tion, we downloaded the unemployment rates of the 16 Danish counties for 1986–2006 from Statistics Denmark
(statbank.dk, code AARD). Splitting the sample in observations below and above 9%, we compute an average
unemployment rate of 6.1% and 11.2%, respectively, implying ∆(mU /m)/∆u = 16.67.
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account. Yet, in equilibrium, the worker’s outside option turns out to reflect the correct “price”
of mortality. Even if the labor supply externality is internalized, the Hosios (1990) condition
is required for the equilibrium mortality rate to equal the rate chosen by a planner who is
constrained by the search frictions. Any deviation from the Hosios condition leads to higher
mortality due to a further drop in workers’ expected lifetime production.

Policy initiatives like those of the European Commission and the US government aim to
increase occupational safety. This can be welfare improving if the social costs of work-related
injuries and diseases exceed the costs considered by private agents. In our model, the only
distortions of private incentives were due to labor supply and matching externalities, which
could be avoided by giving workers an appropriate bargaining weight in firm-level negotiations.
In practice, additional factors such as asymmetric information, cognitive biases, and other
externalities may further distort the private provision of occupational safety (Pouliakas and
Theodossiou, 2013). While suitable to correct these distortions, policies that focus primarily
on occupational safety seem much less suited to address the excessive mortality caused by the
search frictions themselves. As we demonstrated, once all externalities have been internalized, a
further reduction in mortality inevitably lowers welfare. To ameliorate the detrimental mortality
effects of search frictions, these must be addressed more directly. Accelerating the matching of
unemployed to job openings, for example, at the same time increases equilibrium safety levels
and aggregate output. Along these lines, the rise in long-term unemployment resulting from the
pandemic may inhibit the success of the recent policy initiatives to boost occupational safety if
labor market frictions remain elevated.25

The model presented in this paper was purposefully kept simple to identify the main mech-
anisms that affect the provision of occupational safety in a labor market with search frictions.
We believe that these mechanisms will remain of central importance in more complex versions
of the model. Indeed, our model is general enough to be extended in many directions. For
instance, premature death of a worker is the most extreme implication of low occupational
safety. Many adverse economic effects already occur during the worker’s lifetime in the form
of chronic diseases or permanent disability.26 In modern welfare states, a big chunk of health
expenditures are born by the public and are thus not reflected in private decision-making. This
creates an externality absent in the presented model. Furthermore, we abstracted from model-
ing education, which ultimately determines the characteristics of an individual’s potential jobs.
Distortions in the provision of occupational safety are likely to distort schooling decisions and
occupational choices as well. We also neglected life-cycle features. Individual attitudes towards
health hazards may vary over a worker’s lifetime depending on age, health, and socioeconomic
factors. This may call for policies targeted at particular subpopulations. These and further
questions are left for future research.

25Compare the blog entry by Pissarides (2020) on the potential persistent increase in long-term unemployment
due to the COVID-induced acceleration of automation.

26The European Agency for Safety and Health at Work (2017a) calculates that fatal and non-fatal work-related
injuries and diseases account for an approximately equal share of GDP loss.
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A Mathematical appendix

This section contains auxiliary results and proofs to the propositions stated in the main text.
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A.1 Auxiliary results

Lemma 1. The function ϕ(m) := y(m)
r+m satisfies lim

m→∞
ϕ(m) = 0. It is unimodal with a single

peak m > 0, which satisfies y(m)
r+m > z

r+mU
.

Proof. Assumption 1(i) implies lim
m→∞

ϕ(m) = 0 by L’Hopital’s rule. The derivative is ϕ′(m) =
1

r+m [y′(m) − y(m)
r+m ]. At any point that satisfies ϕ′(m) = 0, the second derivative is y′′(m)

r+m < 0.
Hence any local optimum of ϕ is a maximum. Assumption 1(ii) guarantees an m̃ > 0 such
that ϕ(m̃) > z

r+mU
≥ 0. As ϕ asymptotically approaches 0, it either has a single peak m > 0

or is monotonically decreasing. The latter is ruled out by Assumption 1(iii), which implies
ϕ(0) < ϕ(m̃). Finally, ϕ(m) ≥ ϕ(m̃) > z

r+mU
, since m maximizes ϕ.

Lemma 2. Equation (16) defines a function θ∗(m) with the following properties:

(i) the domain of θ∗ is a non-empty interval M = (m, m) ⊂ R+ whose boundaries satisfy
y(m)
r+m = z

r+mU
,

(ii) the sign of dθ∗

dm is the opposite of ∂µ
∂m , where µ is given in (15),

(iii) the function is unimodal with a single peak and approaches zero at the boundaries of M .

Proof. Property (i): Since q(θ) is positive for any finite θ by Assumption 2(ii), a solution to
(16) can only exist if µ < 0, which requires m ∈ M := {m ≥ 0 : y(m)

r+m > z
r+mU

}. On the other
hand, for any m ∈ M , the properties of Assumption 2 ensure that (16) has a unique solution
θ∗(m) > 0. Hence the domain of θ∗ is M , which by Assumption 1(iii) does not include zero.
The unimodality result of Lemma 1 implies that M is a non-empty open interval.

Property (ii): Applying the implicit function theorem to (16) gives

dθ∗

dm
=

−(1 − η(θ)) ∂µ
∂m

(1 − η(θ))∂µ
∂θ − η′(θ)µ − c

q(θ)2 q′(θ)

with µ given in (15). Since µ < 0, ∂µ
∂θ > 0, and Assumption 2, the denominator is strictly

positive. Furthermore, 1 − η(θ) = p′(θ)θ
p(θ) > 0, such that the sign of dθ∗

dm equals the sign of − ∂µ
∂m .

Property (iii): At the boundaries of M , y(m)
r+m → z

r+mU
and thus c

q(θ) → 0. By Assump-
tion 2(ii), this implies θ → 0. Since θ(m) > 0 for m ∈ M , θ must attain a local maximum on
M . This maximum is unique provided that no inner local minimum exists. Property (ii) of this
Lemma implies that dθ∗

dm = 0 if and only if ∂µ
∂m = 0. Every such point is a local maximum of θ∗,

since d2θ∗

dm2 becomes proportional to − ∂2µ
dm2 = ry′′(m)

(r+mU +p(θ)η(θ))(r+m)+s(r+mU ) < 0. By continuity,
dθ∗

dm cannot change sign more than once, such that the maximum is unique.

Lemma 3. The equilibrium value of unemployed U is unimodal in γ and peaks at γ = η(θ).

Proof. Differentiating (22) with respect to γ gives dU
dγ = ∂U

∂m
dm
dγ + ∂U

∂[p(θ)γ]
d[p(θ)γ]

dγ . It is straight-
forward to show ∂U

∂m = 0 and ∂U
∂[p(θ)γ] = r+m+s

(r+mU +p(θ)γ)(r+m)+(r+mU )sS. Hence the sign of dU
dγ

coincides with the sign of d[p(θ)γ]
dγ , which is shown to equal the sign of η(θ) − γ in the proof of

Proposition 5. The rest of the proof is analogous to there.
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A.2 Proofs of propositions

Proof of Proposition 1. We first show that (5) defines a unique mortality rate. Note that (5)
corresponds to the first order condition of maxm

y(m)
r+m . By Lemma 1, the objective function is

unimodal with a single peak, such that (5) is satisfied by exactly one m.
Next, note that (5) was obtained assuming U < N . The maximized value of the Hamiltonian

is H∗∗ = ry(m∗∗)
r+m∗∗ (N −U)+zU + y(m∗∗)

r+m∗∗ [B −mU U ]. To determine the optimal value of U , observe
∂H∗∗

∂U = z− r+mU
r+m∗∗ y(m∗∗). As m∗∗ maximizes y(m)

r+m , the derivative is strictly negative by Lemma 1.
Therefore, U∗∗ = 0, and the initial assumption is satisfied.

Proof of Proposition 2. By Lemma 2, θ∗(m) has a unique peak characterized by ∂µ
∂m = where

∂µ

∂m
= r + mU

[r + mU + p(θ)η(θ)](r + m) + s(r + mU )

{
[r + mU + p(θ)η(θ)]y(m) + sz

[r + mU + p(θ)η(θ)](r + m) + s(r + mU ) − y′(m)
}

.

Hence the point (m, θ) that maximizes θ∗(m) solves the planner’s problem because it satisfies
(16)–(17). On the other hand, any solution satisfies ∂µ

∂m = 0 and therefore corresponds to an
interior extremum of θ∗(m). Since θ∗(m) is unimodal, the only interior extremum is the unique
global maximum.

Proof of Proposition 3. Equation (17) can be rewritten y′(m) = y(m)+ϕz
r+m+ϕ(r+mU ) . For ϕ = 0, the

condition simplifies to (5). The implicit function theorem yields dm
dϕ = µ

y′′(m)[r+m+ϕ(r+mU )] ,
which is positive since y′′(m) < 0 and µ < 0.

Proof of Proposition 4. The result immediately follows from Lemma 2 and Proposition 2 by
setting η(θ) = γ and noting µ = −S.

Proof of Proposition 5. I first verify that like in the basic DMP model, the equilibrium tightness
is strictly decreasing in γ. Consider the total derivative of (23),[

(1 − γ)∂S

∂γ
− S

]
dγ +

[
(1 − γ)∂S

∂θ
+ c

q′(θ)
q2(θ)

]
dθ + (1 − γ) ∂S

∂m
dm = 0,

where all expressions are evaluated in equilibrium and S is given in (21). Since m maximizes
S, the last term is zero and evaluating the remaining terms yields

dθ

dγ
= − (r + mU + p(θ))(r + m) + (r + mU )s

[p(θ)γ + η(θ)(r + mU )](r + m) + η(θ)(r + mU )s · θ

1 − γ
< 0.

Second, observe from (24) that the equilibrium mortality rate depends on γ only via the
joint term p(θ)γ. The implicit function theorem reveals

∂m

∂[p(θ)γ] = y(m) − y′(m)(r + m)
y′′(m)[(r + mU + p(θ)γ)(r + m) + (r + mU )s] < 0.
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The sign follows from y′′ < 0 and substituting (24), by which y(m) > y′(m)(r+m). Furthermore,

d[p(θ)γ]
dγ

= p(θ) + p′(θ)γ dθ

dγ
= p(θ)

[
1 + (1 − η(θ)) dθ

dγ

γ

θ

]
.

Substituting dθ
dγ from above and collecting terms yields

d[p(θ)γ]
dγ

= p(θ) (r + γp(θ))(r + m) + rs

[γp(θ) + η(θ)r](r + m) + η(θ)rs

η(θ) − γ

1 − γ
.

Putting things together, the sign of dm
dγ = ∂m

∂[p(θ)γ]
d[p(θ)γ]

dγ equals the sign of γ − η(θ). Since
dθ
dγ < 0 and η′ ≥ 0, it follows that γ − η(θ) is strictly increasing in γ. Therefore, m has a unique
minimum, which satisfies γ = η(θ).
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