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Color Harmonization in Car
Manufacturing Processes∗

A. Andriyashin, M. Benko, W. Härdle, R. Timofeev and U. Ziegenhagen

October 5, 2006

One of the major cost factors in car manufacturing is the painting of body
and other parts such as wing or bonnet. Surprisingly, the painting may be
even more expensive than the body itself. From this point of view it is clear
that car manufacturers need to observe the painting process carefully to avoid
any deviations from the desired result. Especially for metallic colors where
the shining is based on microscopic aluminium particles, customers tend to
be very sensitive towards a difference in the light reflection of different parts
of the car.

The following study, carried out in close cooperation with a partner from
car industry, combines classical tests and nonparametric smoothing tech-
niques to detect trends in the process of car painting. The localized versions
motivated by t-test, Mann-Kendall, Cox-Stuart and a change point test are
employed in this study. Suitable parameter settings and the properties of
the proposed tests are studied by simulations based on resampling methods
borrowed from nonparametric smoothing.

The aim of the analysis is to find a reliable technical solution which avoids
any interaction from a human side.

1 Introduction

Car painting is a complex combination of different layers of base coat, color and protective
finishing coat. The setup for the painting process requires the optimal adjustment of a
variety of different parameters such as humidity, temperature and the consistence of the
lacquer itself. Even small changes to one of these parameter may influence the adhesion
of the particles and their reflection behavior.

∗This research was supported by the Deutsche Forschungsgemeinschaft through the SFB 649 ’Economic
Risk’. This paper has been accepted for publication in the Journal of Applied Stochastic Models in
Business and Industry
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This applied paper arose from close cooperation with a partner from industry. Together
we have set up a series of tests that combine approaches from local, nonparametric
smoothing and classical statistical process control with the main focus to detect trends
in the underlying production process. The aim is not do to detect when the process
leaves a certain confidence band, the aim is to use statistical methods to detect changes
before the process is going out of control.

The available dataset contains 7100 cars painted in one of 20 colors that had been col-
lected during a three-week production run in August 2004 by specially trained personnel
who used specialized devices that measured the color in terms of L, a and b values.
These values describe specific colors in the so called L*a*b color space [7], standardized by
the Commission Internationale de l’Eclairage in 1976. While there are different schemes
for the representation of colors such as RGB, CMYK and HSB, L*a*b has the advantage
to include all colors visible to the human eye, moreover RGB and CMYK color spaces
are subspaces of L*a*b.

In L*a*b color space each specific color is represented by a three-dimensional vector of
luminance (the gray level), a and b values for the red-green and blue-yellow components
of the color respectively. Since each lacquer has different properties concerning the level
of refraction data have been collected at five different angles for both wing and bonnet.
At the angles 15◦ and 110◦ the dataset showed huge variations. As we assume that
the handling of the measuring device was difficult at these angles they have not been
considered during the analysis.

δ L* a* b*
15◦ 98.94 1.58 4.43
25◦ 81.35 1.17 4.20
45◦ 50.98 0.73 2.58
75◦ 32.30 0.48 1.29

110◦ 26.11 0.21 0.87

Table 1: L*a*b values for a ’silver’ car body measured at five different angles.

Table 1 shows an example for measurements of ’silver’ colored cars. It is worth mentioning
that non-metallic colors show less differences in the values across the measurement angles.

Clearly each color needs to be analyzed separately, for simplicity we focus on a ’silver’
color in the further analysis. This laquer accounts for approximately 60% of all cars
and is especially difficult to handle in the sense that even smallest differences in the
refraction behavior may be detected by customers. Furthermore the analysis focuses on
the L*-values, since this component plays the dominant role in gray and silver laquers.
Figure 1 depicts the L*-values for a sequence of 550 silver colored cars, measured at a
unique point on the bodies. Visually one might consider observation number 350 as the
starting point for a trend. The x-axis shows the index of the observation. According
to our partners there are no interdependencies between the lacquers in the production
process.
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Figure 1: Data sequence of 550 L* observations, angle 25◦

The paper has the following structure. Section 2 gives an overview of proposed tests,
introduces a localization framework and comments on the evaluation of test results. In
section 3 the behavior of proposed tests is analyzed using simulation study. Concluding
remarks are given in section 4.

2 Tests

The first test considered here is motivated by standard slope coefficient test (t-test) in
the linear regression model. Clearly linearity cannot be assumed globally for the whole
dataset, see figure 1). Therefore a local version of this test, an approach borrowed from
smoothing methods in nonparametric regression is proposed, for details see [2]. As it will
be seen in the following text, the localization of this test depends on the window size
(also called bandwidth or smoothing parameter). In order to relax this dependence, a
modification (called ’slope’-test) is proposed, where for each point the significance of the
local slope (first derivative of the mean function) is tested using three different window
sizes.

Both of these tests focus on the significance of the slope. Focusing directly on the
detection of jumps (discontinuity point), local versions of Cox-Stuart, change point and
Mann-Kendall test were used in addition.
The following model is assumed:

yi = m(xi) + εi E(εi) = 0, var(εi) < ∞ (1)

with the conditional mean function E(yi|xi) = m(xi) and the error term εi. yi denotes
the dependent variable measured at the point xi.

Strictly speaking, in the car painting application the data were measured and collected
car-by-car without considering the exact time point of measurement.
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Hence the following notation would be sufficient:

yi = mi + εi E(εi) = 0, var(εi) < ∞ (2)

with the mean function E(yi) = mi and the error term εi. yi denotes the observed variable
(L* value). However notation in the form of (1) is more convenient for introducing the
localization framework. Note that the equation (2) can be represented in the form of (1)
simply by setting xi = i.

2.1 t-test

The basic idea behind the t-test is to test whether the slope β1 of the linear model:

m(x) = β0 + β1x

is significantly different from zero.
Estimators of the linear regression line are obtained by minimizing the sum of squares:

(β̂0, β̂1) = arg min
β0,β1

n∑
i=1

(yi − β0 − β1xi)2. (3)

Under the null hypothesis β1 = 0 the test statistics follows the t-distribution with n− 2
degrees of freedom.

Strictly speaking the t-distribution of the test statistics relies on normality assumption
of the dependent variables yi, however it is known that the t-test is relatively robust
towards slight violation of this assumption.

Local t-test While formula (3) shows the global setup for t-test, local versions allowing
to relax the assumptions on the conditional mean function m in (2) are employed for all
tests in this study.

Referring to [1] for technical details, one can motivate the localized setup as follows. In-
stead of assuming the linearity of m globally, i.e. assuming m(x) = β0+β1x, x ∈ [x0, xn],
one point x is fixed and one essentially assumes that m can be approximated sufficiently
well in the small neighborhood (window) around x. Alternatively this approach can be
motivated by allowing the coefficients β0, β1 to change, depending on the point x, i.e.
β0,x, β1,x.

In the car painting application the localization is performed on the set of (design)
points xl = x0 + l∆, l = 1, . . . , n/L. For each point xl the β0,xl

, β1,xl
are calculated using

observations from window of L cases only. More formally, (3) is modified to:

(
β̂0,xl

, β̂1,xl

)
= arg min

β0,β1

n∑
i=1

(yi − β0 − β1xi)2I(xi ∈ Ll) (4)

where I denotes the indicator function and Ll = [x0 + (l − 1) ·∆, x0 + (l − 1) ·∆ + L],
l = 1 . . . n/L. Please note that the car painting application is a quality control problem,
therefore only the left neighborhood (history w.r.t. point xl) can be used to signal a
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significant trend, see construction of the interval Ll above. In the classical local smoothing
the localization window is typically centered around the point xl.

The approach can be generalized by additional weighting of the points in the localiza-
tion window, e.g. the weights can be set smaller for observations that are far away from
point xl and consequently higher for points close to xl. This can be done by introduction
of the kernel function K(·), see [2] for details. The estimation procedure can be rewritten
as:

(
β̂0,xl

, β̂1,xl

)
= arg min

β0,β1

n∑
i=1

(yi − β0 − β1xi)2K
(

xi − xl

h

)
1
h

. (5)

Typically the kernel function is a symmetric (in classical regression problems) density
function with compact support, Gaussian probability density function is also a popular
choice. The parameter h is a so called bandwidth and can be regarded as the half of the
localization window.

It is a well known fact that the bandwidth h has a crucial influence on the result.
Large values of h yield a smooth but possibly highly biased estimator while small values
of h lead to less biased but also less smooth results. For broader discussion of the local
polynomial smoothing properties and optimal bandwidth choice refer to [1].
Note that t-test relies on the assumption that the errors (εi) are not correlated. To verify
this condition Durbin-Watson test for three different windows with different localization
windows was conducted. At the 95% confidence level the hypothesis of autocorrelation
of the errors was rejected.

2.2 Slope Test

In order to reduce the influence of the bandwidth selection problem, a modification of t-
test where the slope is tested at each point xl using three different bandwidths (widths of
the localization window) simultaneously is proposed. The idea of using different smooth-
ing parameters in the testing problems, to authors best knowledge was first proposed by
[6] and referred to as ’significant trace’.

For simplicity reasons this procedure is presented using the first setup of the test from
equation (4), i.e. uniform kernel function (identity function). The generalization to an
arbitrary kernel function is straightforward.

The slope test refines the idea of t-test by using 3 different window sizes for each
point xl with lengths 1/3 · L, 2/3 · L and L, see figure 2. For each of these three intervals
denoted by L1, L2 and L3 the t-statistics is computed, and a significant trend for the
window L is imputed if all the three test procedures show a significant deviation from
zero simultaneously. Due to the simultaneousness of three procedures an adjustment of
the significance level α in the form of Bonferroni correction is required: αi = α/3 where
α is the (overall) desired confidence level for a test (e.g. 5%) and αi is the confidence
level of each of three t-subtests.
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Figure 2: Basic idea of slope test

2.3 Change Point Test

The following three tests (change point, Mann-Kendall and Cox-Stuart) will be intro-
duced only in the global setup, however all of them are localized in the same way as the
t-test described above.

While t-test and slope test detect trends focusing on the slope of the underlying process,
these tests may be inappropriate in situations where the change in the production process
is not reflected by a change of the slope but instead by a sudden jump (discontinuity
point). Therefore a test that examines the means of subgroups inside the dataset is
added to the portfolio of tests.

The change point test processes the data in the following way: The observations are
divided into two intervals L1 and L2. The number of observation in L1 is denoted by n1,
the number of observations in L2 by n2.
For each of the two intervals the sample mean is calculated:

µ̂j = n−1
j

nj∑
i=1

yi for yi ∈ Lj , j ∈ {1, 2}.

The null hypothesis of equality of the true means µ1 = µ2 versus the alternative hypoth-
esis µ1 6= µ2 in the intervals is tested. The resulting test statistics V has an asymptotic
χ2 distribution with one degree of freedom.

V =
n1 · n2

n1 + n2

(µ̂1 − µ̂2)2

σ̃2

L−→ χ2(1)
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The unknown standard error of the residuals σ̃ is estimated by the sample variance of the
residuals from nonparametric regression (see [4]). The residual ri,h equals the difference
of the observed value yi and the estimated value m̂h(xi).

ri,h = yi − m̂h(xi) (6)

with m̂h(xi) denoting the Nadaraya-Watson estimator:

m̂h(xi) =

∑
j K

(
xj−xi

h

)
yj∑

j K
(

xj−xi

h

)
with kernel function K. The bandwidth h is computed using cross-validation, for details
refer to [4].

2.4 Mann-Kendall Test

This classical approach for trend detection compares the differences of subsequent obser-
vation and makes a statement on the trend using the proportion of positive differences
among all computed differences. The test statistics is given by:

S =
n∑

i=2

i−1∑
j=1

sign(yi − yj) (7)

Tabulated critical values are given in [5], for n →∞ the distribution of the test statistics
converges to the standard normal distribution.

S∗ =
S√

n(n−1)(2n+5)
18

L−→ N(0, 1) (8)

2.5 Cox-Stuart Test

While the Mann-Kendall test analyzes the differences of subsequent observations, the
Cox-Stuart test uses two partitions of the underlying sample to detect trends. From the
sequence of observations y1, . . . , yn the dividing observation m is calculated as following:

m =

{
n
2 if n is even

n+1
2 if n is odd (9)

Using m one can set up the two groups and calculate the differences di of the observations
from the two partitions.

di = (yi+m − ym) for

{
1, . . . ,m if n is even
1, . . . ,m− 1 if n is odd (10)

The test statistics T is then obtained as the number of all positive di, the null hypothesis
H0 of ’no trend’ is rejected if:

7



T < 1/2

(
l − z1−α/2

√
l
)

or T > l − 1/2

(
l − z1−α/2

√
l
)

(11)

with l being the number of non-zero di and z1−α/2 as the 1 − α/2 quantile of standard
normal distribution.

2.6 Evaluation of Test Results

For the evaluation of the test results the following heuristics is proposed – a persistent
trend should cause not just a single signal but a series of subsequent signals. To formalize
this idea a summation measure is proposed. While a test generates a signal with a
respective inverse p-value (i.e. 1 − p where p is the p-value), the summation measure
sums up significant (inverse) p-values sequentially. Significant means that 1− p ≥ 1− α
or equivalently p ≤ α where α is the confidence level.

As an example of such setup consider an example for t-test on figure 3 where a sequence
of 550 observations is used. The window size L is 75 observations, the stepsize ∆ of this
window is set to 1, the significance level is 5%.

The lower part of figure 3 contains the observations and a slope line for each significant
test, these lines are colored with red.

Figure 3: t-test results of the dataset

At this point one has to think carefully about the treatment of blanks (non-significant
p-values) in sequences of p-values. What if there is a cluster of 10 significant p-values with
a single insignificant one inside – should then the summation measure stop at every first
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absence of signal or be more flexible allowing some noise inside? If so, to what extent?
The other question is what the minimum number of consequent significant p-values is to
form a trend message, because one or two indications may be false alarms?
Therefore two additional parameters are introduced to address this issue. Let τ denote
the minimum number of subsequent signals (significant p-values) that is eligible for cre-
ation of non-zero summation measure and κ be the maximum number of tolerated blanks
(insignificant p-values).

Although the general idea of aggregation of the information from the individual test is
now available, a critical value to indicate a persistent trend is clearly needed. It is worth
pointing out that this value is certainly dependent on both τ and κ.

Let us refer to an example of on figure 4 where summation measure is computed with
κ = 3 and τ = 10.

Figure 4: Summation measure for the t-test results from figure 3

Looking at the summed inverse p-values depicted in figure 4 (the dashed line at the
upper part), one can assume the existence of a persistent trend if the height of the
sum breaks a certain limit, a threshold value η. Clearly the heuristical approach of the
summation method makes it difficult to determine the critical value. After discussion
with industry the following rule of thumb was used for the threshold value – 50% of the
maximum value of the summation measure. In practice this value is surely inappropriate
since the maximum value of the sum is not known in advance, whereas it serves quite
well for the estimation of internal test localizing parameters (see below).
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Figure 4 shows an example of the threshold value. Summed values that exceed 50%
threshold are marked using vertical red bars on figure 5.

Figure 5: Generated signals for the t-test results from figure 3 using the summation
measure.

3 Simulation

The main goal of this section is to perform simulations, essentially to study the detection
power of the available tests. Our analysis is based on pseudo-residual resampling. In
addition the simulations have also been used to determine the internal test parameters.

For the comparison of the different tests simulated datasets are used. The basic struc-
ture of each dataset consists of 550 observations, the first 300 observations have no trend
(slope = 0), beginning from observation number 301 an artificial trend with slope of
angle γ is added. The quality of performed test is measured by the delay - the number
of observations after observation 300 until the trend has been detected.

One can argue that the residuals εi, see (2), can be modeled as normally i.i.d. However,
it will be shown in the following paragraph that this does not coincide with the data set
observed in the car painting application.

The residuals εi are estimated by ri,h, see (6), i.e. as the differences between original
and smoothed data, see figure 6.
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Figure 7 shows the nonparametric estimate of the density estimated from ri,h, i =
1, . . . , N and the normal density estimated from the same sample. The nonparametric
estimate is obtained by the kernel density estimator, see [2]. To be able to compare these
parametric and nonparametric estimates the same level of bias needs to be achieved.
Hence the normal density is additionally smoothed with the same settings for kernel and
bandwidth as in the nonparametric estimate (for further discussion see [3]). Figure 7
shows the clear difference between these two densities.

Using the Jarque-Bera and Kolmogorov-Smirnov tests, the residuals were examined
for normality. Since both tests rejected the normality hypothesis at the 95% confidence
level, it is inappropriate to generate simulated data using normally distributed residuals.
Although one could use a broader class of parametric density functions to fit the residuals,
it was decided to employ a resampling method to obtain datasets with the same random
residual structure as the original data.

Simulated data noise was constructed by sampling with replacement from the estimated
residuals ri,h. The drawn residual was returned back to the pool so that there is a positive
probability of choosing the same residual more than one time.

0 1 2 3 4 5
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32
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L
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Figure 6: Original data (black points) and smoothed curve (blue solid curve).

During the simulations three angles were employed to create artificial datasets: tan γ =
0.002 (0.1145◦, see figure 8), tan γ = 0.005 (0.2864◦) and tan γ = 0.05 (2.8624 ◦).

Table 2 summarizes the simulation results for internal test parameter estimation. For
each set of parameters 50 simulations were performed. Let mean delay be defined as an
average delay for 5 performed tests: t-test, slope test, change point test, Mann-Kendall
test and Cox-Stuart test. For tan γ = 0.05 (Tables 4) the parameters L and κ had no
significant influence on the mean delay, bigger values for τ gave smaller average delays.
For the two small angles tan γ = 0.002 and tan γ = 0.005 (Tables 2 and 3) some of the
tests gave inconsistent results, that can be traced back to the dependance of the threshold
value η from κ and ∆.
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Figure 7: Kernel density estimation for the original dataset

Mean delay (5 tests)
L 25 50 75
κ 3 5 3 5 3 5

τ

3 110 140 120 150 185 175
5 204 128 145 150 100 125
10 Failed Failed Failed Failed 120 140

Table 2: Test efficiency for simulated data with tan γ = 0.002

Since for each test a big number of simulations was conducted, aggregated results of test
efficiency are provided in Figure 9. Each boxplot was built independently for each test
over all performed simulations across different parameter values γ, L, κ, τ .

Apart from mean delay evidence, it is of great interest to investigate the behaviour of
proposed tests in respect to false alarms. As before 50 simulations for each of five tests
were conducted, where the average false alarm statistics for a given set of parameters
was calculated.

Recall that in our simulations first 300 observations contain no trend while the last 250
observations constitute a trend with a given slope γ. Any signal before the observation
number 300 generated by a procedure is acknowledged as a false alarm. Note, however,
that there is no further need to compute this statistics for differrent slope angles since
by definition false alarms can only occur before the beginning of the trend. In the table
below, an averaged number of false alarms is provided, where averaging was performed
over the number of simulations and the number of tests.

12



Figure 8: Simulated data with angle tan γ = 0.002

Mean delay (5 tests)
L 25 50 75
κ 3 5 3 5 3 5

τ

3 130 170 150 120 215 225
5 160 125 100 115 145 145
10 Failed Failed 130 120 90 95

Table 3: Test efficiency for simulated data with tan γ = 0.005

Mean number of false alarms
L 25 50 75
κ 3 5 3 5 3 5

τ

1 2.3 1.9 2.1 1.7 1.1 0.5
2 1.2 0.6 1.0 0.4 0.3 0
3 0 0 0 0 0 0
5 0 0 0 0 0 0
10 0 0 0 0 0 0

Table 5: False alarm statistics for simulated data
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Mean delay (5 tests)
L 25 50 75
κ 3 5 3 5 3 5

τ

3 110 140 120 150 185 175
5 204 128 145 150 100 125
10 Failed Failed Failed Failed 120 140

Table 4: Test efficiency for simulated data with tan γ = 0.05

Figure 9: Boxplots for test delays of five performed tests

The main conclusion one can draw from this table is that proper adjusted integration
measure parameters (τ and κ) can effectively avoid false alarms. In case when τ = 1 the
integration measure is in fact no longer employed. Enough big τ and κ make it possible
to eliminate single false signals and therefore the proposed procedures work effectively
in this regard.

4 Conclusions

The best performance has been shown by t-test, change-point test and slope test, there-
fore we recommended the simultaneous use of these three tests to our partner. The
detection power of Mann-Kendall and Cox-Stuart test was below the power of the first
three tests so this pair was not recommended for usage in a given situation.
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The t-test showed good results in most of the simulation runs, also it is fast to compute.
For outliers and small window sizes L it proved to be inefficient, because it is based on
the linear regression model.

The change point tests showed the best results on average. The drawback of this test is
that it is slow and difficult in computation, since σ̂ has to be computed from the data and
it tends to generate single false signals, therefore the test parameters need to be adjusted
carefully. But due to the employment of summation measure, single false signals are not
transformed into false alarms. Therefore the majority of false alarms could be avoided.

All tests showed a dependence on the setup for L, κ and τ , values for L = 75, κ = 5
and τ = 3 showed good results.

Further research has to provide suitable ranges for the threshold value, the used 50%
of the maximum summation measure value was only employed as initial proposal.
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