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Abstract

This paper studies optimal monetary policy with the nominal interest rate
as the single policy instrument in an economy, where firms set prices in a stag-
gered way without indexation and real money balances contribute separately to
households’ utility. The optimal deterministic steady state under commitment
is the Friedman rule – even if the importance assigned to the utility of money
is small relative to consumption and leisure. We approximate the model around
the optimal steady state as the long-run policy target. Optimal monetary policy
is characterized by stabilization of the nominal interest rate instead of inflation
stabilization as the predominant principle.
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1 Introduction

What is the primary aim of optimal monetary policy? In the existing literature there

are two major views that deliver opposite recommendations for the optimal conduct

of monetary policy in the short and in the long run. The first branch goes back to

Friedman (1969) and evaluates monetary policy in the long run with fully flexible prices

and under perfect competition. In order to equate the private opportunity costs for

holding money to the zero social costs to produce it, the nominal interest rate should

be zero. The other view considers optimal monetary policy in the short run in the

presence of nominal rigidities and imperfect competition (e.g. Woodford, 2003a, ch.6-8;

Benigno and Woodford, 2005; Khan et al., 2003; Schmitt-Grohé and Uribe, 2004, 2005).

A key feature of this literature is that the authors consider small fluctuations around

the (almost) zero inflation steady state, implying that optimal policy nearly completely

offsets the distortions due to price dispersion – even in the presence of a monetary

friction. The predominant principle is inflation stabilization, while the nominal interest

rate should adjust relatively freely to support this principle (Woodford, 2003a).

In this paper we revisit the issue of optimal monetary policy in a sticky price model

in the presence of a transaction friction. The foremost contribution is to challenge

the conventional view that the Friedman rule loses out to the goal of price stability

once price stickiness is introduced. We show that the widely used money-in-the utility

function model (MIU) implies that Friedman’s rule is optimal even when large amounts

of price stickiness are present. This is in contrast to the key message of papers such

as Woodford (2003a), Khan, King and Wolman (2003) and Schmitt-Grohé and Uribe

(2004, 2005) and others. Second, we find that the primary aim of optimal policy in the

short run is to stabilize the nominal interest rate instead of inflation.

Our analysis is set in a dynamic stochastic general equilibrium model with imperfect

competition and Calvo’s staggered price setting (1983) without indexation. A trans-
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action friction is introduced via the textbook money-in-the-utility-function approach

(Sidrauski, 1967; Woodford, 2003a; Walsh, 2003) with consumption and real money

balances entering in a separable way. Assuming that the government has access to

lump-sum taxes, we focus on optimal monetary policy that relies on the risk-free nom-

inal interest rate as the single policy instrument. Since we allow for the existence of an

output subsidy that offsets the distortion created by monopolistic competition, the pol-

icy maker faces two distortions: price dispersion due to staggered price setting calls for

an optimal inflation of zero, implying costs of money holdings. However, the monetary

distortion can only be offset by setting the nominal interest rate to zero.

We determine the optimal deterministic steady state under commitment as the

optimal long-run target of monetary policy.1 Remarkably, we find that even for very

low values for the weight of money in the utility function relative to consumption and

leisure, it is optimal to fully offset the monetary distortion and to allow for a small degree

of price dispersion. I.e. the Friedman rule is optimal even in the presence of Calvo-style

staggered price setting. This result holds for wide a range of parameter values including

low weights for real money balances in the utility function. To understand this finding,

note that the welfare cost of price dispersion arising from long-run deflation required

by the Friedman rule is small relative to the loss from a positive nominal interest rate.

While the welfare loss due to price dispersion hinges primarily on the frequency of

price adjustment, the utility losses of a positive interest rate crucially depends on the

sensitivity of money demand to the nominal interest rate. In an MIU framework, the

latter increases strongly as interest rates fall. Thereby, the taxation of money holdings

via a positive interest rate becomes suboptimal.

We linearize the model around the optimal steady state under commitment as the

long-run optimal policy target and derive a quadratic approximation to the utility of

1To be more precise, we consider policies that are optimal from a timeless perspective (Woodford,
2003a).
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the representative household as the objective of the central bank. This welfare based

loss-function depends on three arguments: the unconditional variances of inflation, the

output gap, and on the variance of the nominal interest rate. While the weight for the

variation in the output gap relative to inflation depends exclusively on deep parameters,

the relative weight for interest rate variability hinges on steady state values, too. Re-

markably, the preference to stabilize fluctuations in the nominal interest rate increases

as optimal inflation moves towards Friedman’s rule of deflation. This increase is pri-

marily driven by the rise in the interest elasticity of money demand. Correspondingly,

the importance to account for monetary frictions depends upon the steady state chosen

for approximation: The long-run optimal policy is key for optimal policy reactions in

the short run. Since we approximate our model around a steady state implied by the

Friedman rule, the primary goal of optimal monetary policy is to stabilize variations

in the interest rate rather than in inflation. Given the high weight attached to interest

rate stabilization, optimal monetary policy requires abstaining from fluctuations in the

nominal interest rate. Instead, the nominal interest rate is literally fixed in response to

various kinds of disturbances. In that sense, the observation that central banks keep

the main refinancing rate constant over a long time horizon, e.g. the European Central

Bank from June until December 2005, can be interpreted as optimal policy according

to Friedman’s rule – even if the state of the economy has changed.

We show that choosing a long-run deflation target according to the Friedman rule

does not generally undermine the central banks ability to stabilize the welfare rele-

vant fluctuations around that target. On the contrary, the welfare loss arising from

fluctuations around the Friedman steady state can be lower than the loss arising from

fluctuations around the zero inflation steady state. Overall, we find support for the

Friedman rule even in case of a reasonable amount of nominal rigidity due to staggered

price setting a la Calvo: The Friedman rule yields higher steady state utility and can
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also improve welfare effects of fluctuations around the steady state compared to price

stability.

Regarding the lower bound on the nominal interest rate, we find that this is not a

concern for central banks in our model. We assume that the zero bound on interest rates

is not binding in expectations, i.e. the average gross nominal interest rate must be at

least slightly larger than unity. While this assumption does not exclude the possibility

of an occasionally binding constraint, the probability for this to occur is virtually zero.

The standard deviation of the nominal interest rate under optimal policy is so small

relative to the buffer between the steady state nominal rate and unity, that the lower

bound essentially never becomes binding.

Related Literature

We now turn to the related literature. Most closely related to our paper is the work

by Woodford (2003a, Chapter 6-7; Woodford, 2003b) and Schmitt-Grohé and Uribe

(2005). Woodford also studies optimal monetary policy in a money-in-the-utility func-

tion framework with staggered price setting. In contrast to our analysis, the model

is log-linearized around the zero inflation steady state without computing the optimal

steady state in a first step. This approximation point then implies very different dy-

namics for the nominal interest rate. In his analysis, the nominal interest rate reacts

rather sharply to shocks while the optimal path of inflation is relatively smooth over the

cycle (see Woodford, 2003a: 504). Our contribution is to show that the optimal policy

prescriptions differ substantially once one takes into account the interactions between

long run and short run optimal policy.

Schmitt-Grohé and Uribe (2005) and Khan et al. (2003) also analyze optimal mon-

etary policy with nominal rigidities and a monetary friction. These papers adopt a

transaction technology approach to introducing money into the model. While Khan
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(2003) use a different time dependent pricing model than we do, the economic envi-

ronment of Schmitt-Grohé and Uribe (2005) is more similar to our framework. They

analyze a medium scale model with staggered price setting a la Calvo and various ad-

ditional distortions. They find that the central bank should aim at price stability and

stabilization of inflation as the main principle. The difference between their key finding

and our results is explained as follows. The money-in-the-utility function approach we

employ has different implications for money demand at low interest rates compared to

the transactions technology in Schmitt-Grohé and Uribe. The MIU framework implies

that the interest-elasticity of money demand increases by large amounts as the nominal

interest rate approaches the lower bound. Correspondingly, welfare costs of positive

interest rates increase substantially. This is not the case for their transaction cost tech-

nology. Our contribution is to show that both the degree of price dispersion, as well as

the sensitivity of money demand with respect to nominal interest rates at low levels,

are decisive for the conduct of optimal policy.

Methodologically, this paper differs from Khan et al. (2003) and Schmitt-Grohé

(2005) by working with the linear-quadratic framework, rather than with the time in-

variant Ramsey approach. By showing that the weight on nominal interest stabilization

in the loss function depends on the steady state values under control of the central bank,

this approach helps to point out intuitively how long run optimal policy and short run

stabilization policies are interrelated. In addition, the guiding principle of optimal mon-

etary policy is directly transparent in the size of the relative weights to stabilize the

nominal interest rate, inflation, and the output gap.

The remainder of this paper proceeds as follows: in section 2 we set up the model.

In section 3 we compute the optimal steady state under commitment and derive a

quadratic approximation of the utility of the representative household. In section 4

we derive the optimal monetary policy responses in the short run for 2 policy regimes:
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the first one has Friedman’s Rule, and the other one has zero inflation as its long-run

target. The last section concludes.

2 The model

We consider an economy that consists of a continuum of infinitely lived households

indexed with j ∈ [0, 1]. It is assumed that households have identical initial asset

endowments and identical preferences. Household j acts as a monopolistic supplier of

labor services lj. Lower (upper) case letters denote real (nominal) variables. At the

beginning of period t, households’ financial wealth comprises money Mjt−1, a portfolio

of state contingent claims on other households yielding a (random) payment Zjt, and

one period nominally non-state contingent government bonds Bjt−1 carried over from

the previous period. Assuming complete financial markets let qt,t+1 denote the period

t price of one unit of currency in a particular state of period t + 1 normalized by the

probability of occurrence of that state, conditional on the information available in period

t. Then, the price of a random payoff Zt+1 in period t + 1 is given by Et[qt,t+1Zjt+1].

The budget constraint of the representative household reads

Mjt+Bjt+Et[qt,t+1Zjt+1]+Ptcjt ≤ Rt−1Bjt−1+Mjt−1+Zjt+Ptwjtljt+

∫ 1

0

Djitdi−PtTt,

(1)

where ct denotes a Dixit-Stiglitz aggregate of consumption with elasticity of substitution

θ, Pt the aggregate price level, wjt the real wage rate for labor services ljt of type j,

Tt a lump-sum tax, Rt the gross nominal interest rate on government bonds, and Dit

dividends of monopolistically competitive firms. Further, households have to fulfill the

no-Ponzi game condition, limi→∞ Etqt,t+i(Mjt+i + Bjt+i + Zjt+1+i) ≥ 0. The objective
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of the representative household is

Et0

∞∑
t=t0

βt{u(cjt, ζt)− v(ljt) + z(Mjt/Pt)}, β ∈ (0, 1), (2)

where β denotes the subjective discount factor and Mjt/Pt = mjt end-of-period real

money balances. Note that our specification of utility is consistent with recent findings

by Andrés, López-Salido and Vallés (2006) for the Euro area and by Ireland (2004) for

the US. They estimate the role of money for the business cycle of the Euro area and

the US and find that preferences are separable between consumption and real money

balances.

We assume that households’ utility can be affected by a disturbance term ζt with

mean 1 that can alter the utility of consumption. To avoid additional complexities, we

set ucζ = uc at the deterministic steady state. For each value of ζ, the instantaneous

utility function is assumed to be non-decreasing in consumption and real balances,

decreasing in labor time, strictly concave, twice continuously differentiable, and to

fulfill the Inada conditions. We assume that z(mjt) implies satiation in real money

balances at a finite positive level. The derivatives zm, zmm have finite limiting values as

m approaches the satiation level from below. In particular, the limiting value of zmm

from below is negative (see Woodford, 2003a, Assumption 6.1).

Households are wage-setters supplying differentiated types of labor lj which are

transformed into aggregate labor lt with l
(εt−1)/εt

t =
∫ 1

0
l
(εt−1)/εt

jt dj. We assume that the

elasticity of substitution between different types of labor, εt > 1, varies exogenously over

time. The time variation in this markup parameter introduces a so called cost-push

shock into the model that gives rise to a stabilization problem for the central bank. Cost

minimization implies that the demand for differentiated labor services ljt, is given by

ljt = (wjt/wt)
−εtlt, where the aggregate real wage rate wt is given by w1−εt

t =
∫ 1

0
w1−εt

jt dj.
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Maximizing (2) subject to (1) and the no-Ponzi game condition for given initial values

Mt0−1 > 0, Z0, Bt0−1, and Rt0−1 ≥ 0 leads to the following first order conditions

for consumption, money, the real wage rate for labor type j, government bonds, and

contingent claims:

λjt = uc(cjt, ζt), vl(ljt) = wjtλjt/µ
w
t , (3)

λjt − zm(mjt) = βEt
λjt+1

πjt+1

, qt,t+1 =
βλjt+1

πt+1λjt

, λjt = βRtEt
λjt+1

πt+1

(4)

where λjt denotes a Lagrange multiplier, πt the inflation rate πt = Pt/Pt−1, and µw
t =

εt/(εt−1) the stochastic wage mark-up with mean µ̄w > 1. The first order condition for

contingent claims holds for each state in period t+1, and determines the price of one unit

of currency for a particular state at time t+1 normalized by the conditional probability

of occurrence of that state in units of currency in period t. Arbitrage-freeness between

government bonds and contingent claims requires Rt = 1/Etqt,t+1. The optimum is

further characterized by the budget constraint (1) holding with equality and by the

transversality condition limi→∞ Etβ
iλjt+i(Mjt+i + Bjt+i + Zjt+1+i)/Pjt+i = 0.

The final consumption good Yt is an aggregate of differentiated goods produced

by monopolistically competitive firms indexed with i ∈ [0, 1] and defined as y
θ−1

θ
t =

∫ 1

0
y

θ−1
θ

it di, with θ > 1. Let Pit and Pt denote the price of good i set by firm i and the price

index for the final good. The demand for each differentiated good is yd
it = (Pit/Pt)

−θ yt,

with P 1−θ
t =

∫ 1

0
P 1−θ

it di. A firm i produces good yi using a technology that is linear in

the labor bundle lit = [
∫ 1

0
l
(εt−1)/εt

jit dj]εt/(εt−1): yit = atlit, where lt =
∫ 1

0
litdi and at is a

productivity shock with mean 1.

Labor demand satisfies: mcit = wt/at, where mcit = mct denotes real marginal costs

independent of the quantity that is produced by the firm.
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We allow for a nominal rigidity in form of a staggered price setting as developed

by Calvo (1983). Each period firms may reset their prices with the probability 1 − α

independently of the time elapsed since the last price setting. The fraction α ∈ [0, 1) of

firms are assumed to keep their previous period’s prices, Pit = Pit−1, i.e. indexation is

absent. Firms are assumed to maximize their market value, which equals the expected

sum of discounted dividends Et

∑∞
T=t qt,T DiT , where Dit ≡ Pityit(1− τ)−Ptmctyit and

we used that firms also have access to contingent claims. Here, τ denotes an exogenous

sales tax introduced to offset the inefficiency of steady state output due to markup

pricing (Rotemberg and Woodford, 1999). In each period a measure 1−α of randomly

selected firms set new prices P̃it as the solution to max ePit
Et

∑∞
T=t α

T−tqt,T (P̃ityiT (1 −
τ) − PT mcT yiT ), s.t. yiT = (P̃it)

−θP θ
T yT . The first order condition for the price of

re-optimizing producers is for α > 0 given by

P̃it

Pt

=
θ

θ − 1

Ft

Kt

, (5)

where Kt and Ft are given by the following expressions:

Ft = Et

∞∑
T=t

(αβ)T−tuc(cT , ζ
(1)
T )yT

(
PT

Pt

)θ

mcT (6)

and

Kt = Et

∞∑
T=t

(αβ)T−tuc(cT , ζ
(1)
T )(1− τ)yT

(
PT

Pt

)θ−1

. (7)

Aggregate output is given by yt = lt/∆t, where ∆t =
∫ 1

0
(Pit/Pt)

−θdi ≥ 1 and thus

∆t = (1 − α)(P̃t/Pt)
−θ + απθ

t ∆t−1. The dispersion measure ∆t captures the welfare

decreasing effects of staggered price setting. If prices are flexible, α = 0, then the first

order condition for the optimal price of the differentiated good reads: mct = (1−τ) θ−1
θ

.

The public sector consists of a fiscal and a monetary authority. The central bank as
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the monetary authority is assumed to control the short-term interest rate Rt. The fiscal

authority issues risk-free one period bonds, has to finance exogenous government expen-

ditures PtGt, receives lump-sum taxes from households, transfers from the monetary au-

thority, and tax-income from an exogenous given constant sales tax τ , such that the con-

solidated budget constraint reads: Rt−1Bt−1+Mt−1+PtGt = Mt+Bt+PtTt+
∫ 1

0
Pityitτdi.

The exogenous government expenditures Gt evolve around a mean Ḡ, which is restricted

to be a constant fraction of output, Ḡ = ȳ(1 − sc). We assume that tax policy guar-

antees government solvency, i.e., ensures limi→∞ (Mt+i + Bt+i)
∏i

v=1 R−1
t+v = 0. Due to

the existence of the lump-sum tax, we consider only the demand effect of government

expenditures and focus exclusively on optimal monetary policy.

We collect the exogenous disturbances in the vector ξt = [ζt, at, Gt, µ
w
t ]. It is as-

sumed that the percentage deviation of each of the elements of the vector from their

means evolve according to autonomous AR(1)-processes with autocorrelation coeffi-

cients ρζ , ρa, ρG, ρµ ∈ [0, 1). The innovations are assumed to be i.i.d..

The recursive equilibrium is defined as follows:

Definition 1 Given initial values, Mt0−1 > 0, Pt0−1 > 0 and ∆t0−1 ≥ 0, a monetary

policy and a ricardian fiscal policy Tt ∀ t ≥ t0, a sales tax τ , a rational expectations

equilibrium (REE) for Rt ≥ 1, is a set of sequences {yt, ct, lt, mct, ∆t, Pt, P̃it, mt,

mct, Rt}∞t=t0
satisfying the firms’ first order condition mct = wt/at, (5) with P̃it =

P̃t, and P 1−θ
t = αP 1−θ

t−1 + (1 − α)P̃ 1−θ
t , the households’ first order conditions uc(yt −

Gt, ζt)wt = vl(lt)µ
w
t , uc(yt − Gt, ζt)/Pt = βRtEtuc(yt+1 − Gt+1, ζt+1)/Pt+1, zm(mt) =

uc(yt −Gt, ζt)(Rt − 1)/Rt, the aggregate resource constraint yt = lt/∆t, clearing of the

goods market ct + Gt = yt and the transversality condition, for {ξt}∞t=t0
.

We will address the issue of the lower bound in the following way. First, we compute

the optimal steady state under the assumption that the expected nominal interest rate
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is positive. This is equivalent to a postulated expected inflation rate slightly larger

than the discount factor, Eπt ≥ β + ε, with ε as a small positive scalar. Then we

approximate our model around the optimal steady state given a value for ε and solve

for the optimal policy outcome in the short run. Computing the unconditional variance

for the nominal interest rate allows us to quantify the probability – in case of a shock

– that the nominal interest rate will reach the lower bound for a particular ε-steady

state.

3 The Linear-Quadratic Optimal Policy Problem

In a first step we compute the steady state that is “optimal from a timeless perspective”

(Woodford, 2003a). I.e. we assume that at t = t0 the central bank has been in charge

for an infinite number of periods and that it respects commitments made in the past.

This optimal steady state is our point of expansion for the log-linear approximation of

the model’s equilibrium conditions as well as for the derivation of the purely quadratic

welfare measure. As we will see, long run and short run optimal policy are closely

interrelated. Throughout we assume that the steady state is rendered efficient by an

appropriate setting of the tax rate.

3.1 The Optimal Steady State

In this section we compute the optimal steady state under commitment. Since we

consider policies that are optimal from a timeless perspective, the associated optimality

conditions will be time invariant which marks the difference to a standard commitment

approach. In particular, the optimality conditions in the initial period do not differ

from those in later periods. The nonlinear optimization problem for the central bank is
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to maximize the utility of the representative household through choice of output, the

dispersion measure, inflation, the nominal interest rate and the denominator (Kt) and

the numerator (Ft) of the optimal pricing condition for the firm:

maxL = Et0

∞∑
t=t0

βt−t0{u(yt −Gt, ζt)− v(∆tyt/at) + z(m(Rt, yt −Gt, ζt))}, (8)

subject to the firms’ optimal pricing condition, the recursive formulation of the functions

Kt and Ft, the evolution of the dispersion measures and the euler equation:

ρ(πt)
1

1−θ Kt =
θ

θ − 1
Ft (9)

Kt = uc(yt −Gt, ζt)(1− τ)yt + βαEtKt+1π
θ−1
t+1 (10)

Ft = vl(yt∆t/at)ytµ
w
t + αβEtFt+1π

θ
t+1 (11)

∆t = (1− α)ρ(πt)
θ

θ−1 + α∆t−1π
θ
t (12)

and

uc(yt −Gt, ζt) = βRtEt
uc(yt+1 −Gt+1, ζt+1)

πt+1

, (13)

with ρ(πt) ≡ (1− απθ−1
t )(1− α)−1. In addition, optimality from a timeless perspective

requires a certain degree of of prior commitment. The optimum can be described by

the constraints (9)-(13) and the first order necessary conditions for the choice of yt, ∆t,

Kt, Ft, Rt and πt (details see appendix 6.1).

To simplify the analysis and to solve for the optimal steady numerically, we assume

that households’ utility is given by the usual CRRA specification:

c1−σc

1− σc

− a2
l1+ω

1 + ω
+ a1

m1−σm

1− σm

, (14)
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σc, σm positive and ω non-negative. Here, a1 ≥ 0 denotes the weight for the util-

ity stemming from real money balances relative to the utility of consumption and a2

the corresponding relative weight for the disutility of labor.2 As mentioned above we

assume that the zero-bound on the interest rate is not binding in expectations. In the

deterministic steady state this is equivalent to assuming that expected inflation is at

least Eπt ≥ β + ε. The reason for this assumption is twofold. Economically, the result-

ing buffer allows the central bank to adjust its instrument downward as response to a

shock (at least to a small amount). Technically, the CRRA preferences do not display

a satiation point for real money balances at a finite level. However, by imposing a

lower bound on the nominal interest defined by the small parameter ε > 0, real money

balances are still bounded – even if inflation equals β + ε. The derivatives zm and zmm

exhibit finite limiting values as real money balances approach the level associated with

the ε lower bound from below.

σc σm ω β a1 a2 sc = c̄/ȳ µ̄w θ α ε

2 2.5 0.5 0.99 1/99 25 0.8 7/6 6 0.66 0.0001

Table 1: Baseline calibration

In our baseline calibration we set θ = 6 and α = 0.66, where the latter can be found

for example in Walsh (2005) or Woodford (2003a). The parameter a2 is set such that

agents work 1/3 of their available time in the steady state.

We calibrate the money demand block of our model to be in line with the existing

literature and U.S. times series data. In particular, we set the annual interest semi-

elasticity of money demand, ∂ log m/∂R = −[R(R−1)σm]−1 equal to - 4.47 at an annual

interest rate of R = 1.083. This is in line with Lucas (2000) and Woodford (2003a). In

calibrating this elasticity we have assumed an average annual inflation rate of 4 per cent

2The first conditions and the constraints of the Ramsey problem in the deterministic steady state
for the assumed CRRA preferences can be found in appendix 6.3.
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together with a real interest rate of 4.3 per cent such that R = 1.083. It then follows

that σm = 2.5. Note that the semi-elasticity and the elasticity of money demand,

ηR(R) ≡ [(R − 1)σm]−1 > 0, increases (in absolute terms) as interest rates decrease.3

We assume a degree of relative risk aversion σc = 2. This implies an output elasticity

of money demand σc/(scσm) = 1. Furthermore, we set the parameter a1 = 1/99 such

that at a nominal interest rate of R = 1.083 the annual ratio of M1 over nominal GDP

equals 0.2. This value is consistent with postwar U.S. data and similar to the one used

by Schmitt-Grohé and Uribe (2004, 2005).

Then the following numerical result for the ε steady state holds:

Result 1 (Optimal Steady State) If a1 ≥ 1/3513 and the other parameters are

given by the baseline calibration, optimal inflation in the deterministic steady state

π is β + ε = 0.9901. The associated optimal price dispersion ∆̄ is 1.0014, while the

optimal nominal interest rate R̄ is 1.0001 > 1.

Details of the computation can be found in appendix 6.2.4 Under the baseline calibra-

tion, we find that the optimal steady value for inflation is the lower bound, π = β + ε,

i.e. it involves deflation. Correspondingly, the nominal interest rate is almost zero.

We obtain this result even if when assuming a low weight for the utility of real money

balances. Basically, Schmitt-Grohé and Uribe (2004, 2005) and Khan et al. (2003) find

that the optimal inflation rate is close but not identical to unity, where the welfare

function has slope zero, the interior solution (see Figure 1). In this steady state, the

predominant aim of policy is to minimize price dispersion. However, if the weight as-

signed to the utility of real money balances is large enough – larger than 1/3513 – this

3Note that this is not due to the fact that we use a separable MIU formulation. In case of a
non-separable MIU specification, u(c, m); ucm > 0, which is equivalent to a shopping-time or real
resource costs of transactions model (Feenstra, 1986), the corresponding elasticity becomes ηR(R) =
[(R− 1)(σm + εcm)]−1, εcm = ucmm/uc.

4To simplify the notation, steady state values in the following are denoted without a time subscript.
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Figure 1: Welfare and Inflation in the steady state

optimum becomes a local maximum only, while the global optimum is the Friedman

Rule.

Since a1 is an unobserved preference parameter, it is difficult to assess whether the

critical value a1 = 1/3513 implies a large or small role for money in the utility function.

However, the annual steady state ratio of M1 over nominal GDP implied by this critical

value is 0.048. Hence, even if the importance of money in transactions - as measured

by this ratio - falls by 76% from its baseline value of 0.2, the Friedman rule would still

be optimal. Therefore, the Friedman rule is optimal in our model even when money

provides a very small flow of utility.

Why does the Friedman rule turn out to be optimal even when the importance of

real money balances in the utility function is very low? Optimal monetary policy seeks

to minimize two distortions created by price dispersion and the transaction friction,

since the monopolistic distortion is eliminated by an output subsidy.5 Price dispersion

5The output subsidy of τ = 1− (1− αβπθ−1)µwθρ(π)1/(θ−1)[(1− αβπθ)(θ − 1)]−1 < 0 depends on
steady state deflation. However, this feature does not favor the Friedman Rule in the steady state. If
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calls for an inflation rate of zero, while the monetary friction requires deflation. Corre-

spondingly, we expect our optimal gross inflation rate to be found between β and unity.

First, while studies such as Kiley (2002) and Ascari (2004) have shown that relatively

small amounts of trend inflation are associated with relatively large welfare costs under

Calvo pricing, this is not the case for long run deflation. Figure 4 in the appendix

shows that the price dispersion arising from long run deflation is relatively small. The

second reason for the optimality of Friedman’s rule is an adaption of a general principle

of optimal taxation in public finance. Since the interest rate acts like a tax on money

holdings, it should be low due to the fact that money demand is elastic with respect to

interest under price stability.

While the choice for ε is arbitrary, our results are not very sensitive to the magnitude

of ε (see Figure 5 in the appendix). The graph plots optimal annual inflation against

the degree of price dispersion α. Remarkably, our threshold levels for the optimality

of Friedman’s rule differ substantially from the results obtained by Schmitt-Grohé and

Uribe (2005, Figure 1). While the Friedman rule in our model is optimal until the

degree of price dispersion is below 0.81, Schmitt-Grohé and Uribe find a considerably

lower breaking point of approximately 0.46 (see the vertical line in Figure 5), since the

welfare costs of positive interest rates are lower in their transaction costs specification.

Which parameters influence the lower bound on a1, i.e. the minimum weight for

money in the utility function that renders the Friedman rule optimal? Put differently,

which structural features work in favor for the Friedman rule and when does price dis-

persion become the main focus of monetary policy? To gain intuition for this question,

we compare the outcomes of the Friedman rule and a zero inflation policy and derive an

we were to apply the subsidy under zero-inflation, τ = 1− µwθ/(θ − 1), the Friedman Rule would be
optimal for even smaller relative weights of money in the utility function. The reason is as follows.
First, note that steady state output is lower when the subsidy does not depend on trend deflation.
Note further that the utility loss that households suffer due to a positive steady state price dispersion
is weighted with the steady state output.
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analytical expression of the threshold for which the former dominates the latter policy.

Proposition 1 (Friedman’s Rule and Zero Inflation) Assume that preferences are

of the separable CRRA type and logarithmic, σm = σc = 1, and a2 = 1. Then the Fried-

man Rule steady state, πFR = β + ε, yields higher utility than the zero inflation steady

state, πZERO = 1, if and only if

a1 > a1 ≡
∆FR−1
(1+ω)sc

+ ω
1+ω

ln[∆FR]

ln[RFRηR,FR(RZEROηR,ZERO)−1]− ω/(1 + ω) ln[∆FR]

with ∆FR as the price dispersion associated with π = β+ε and RFRηR,FR(RZEROηR,ZERO)−1 =

(1− β)(1 + β−1ε)/β−1ε.

Proof see appendix 6.4.

RZERO = β−1 and RFR = 1 + β−1ε denote the gross nominal interest rate under zero

inflation and Friedman’s rule. Evidently, the Friedman rule performs better than a zero

inflation regime, when the degree of price dispersion associated with the Friedman rule,

∆FR is small. But at least equally important is the sensitivity of money demand with

respect to interest rates under Friedman’s rule, ηR,FR, compared to the corresponding

elasticity if zero inflation applies, ηR,ZERO. If these elasticities differ substantially,

the amount and utility of real money balances in both regimes differs too. As will

become clear below, this elasticity heavily influences the possible welfare losses due

to positive interest rates. Furthermore, a large fraction of private consumption, sc,

favors the Friedman rule. The intuition is as follows. Consider a value for a1 such that

the Friedman rule delivers the same steady state welfare as the zero inflation policy.

If the fraction of government expenditures decreases, people have to work less since

less output has to be produced. Due to price dispersion, people work more under the

Friedman Rule, such that their marginal disutility of labor is always higher than under

the zero inflation regime. Correspondingly, a one percent decrease in labor in both
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regimes leads to relatively larger utility gains in the Friedman Rule regime.

It is important to point out that the Friedman rule is optimal only under com-

mitment, but never under discretion. The intuition for this result is that the nominal

interest rate as the opportunity cost of money holdings depends on expected inflation.

When the central bank acts under discretion, it cannot influence inflation expectations.

Hence, the Friedman rule is not optimal under discretion. To see this more formally,

consider the optimality condition of the planner’s choice for inflation in the determin-

istic steady state under commitment:

λ1K
α

1− α
πθ−2ρ

θ
1−θ + λ2αK(θ − 1)πθ−2 + λ3αFθπθ−1

+λ4[θαπθ−2ρ
1

θ−1 − αθπθ−1∆]− λ5R
uc

π2

.
= 0. (15)

Here, the multipliers λ4 > 0 and λ5 > 0 measure the severeness of price dispersion and

the transaction friction in terms of utility. A necessary requirement for the Friedman

rule to qualify as an optimum is that (15) is non-positive for π → β. Otherwise, it is

always possible to increase welfare by increasing inflation. Therefore, a high value of

λ5 relative to λ4 for all inflation rates between β and 1 favors the lower bound as the

optimum. While λ4 is mainly driven by the degree of price stickyness α, λ5 crucially

depends on the elasticity of money demand with respect to the nominal interest rate,

λ5 = mzmηR. In order not to distort behavior money holdings should not be taxed

with positive interest rates if they are demanded elastically. Note that this reasoning is

based on an expectation argument, which does not arise if the central bank acts under

discretion. In that case, the central bank does not consider the impact of its actions on

expected inflation. Hence, the first order condition for inflation

λ1K
α

1− α
πθ−2ρ

θ
1−θ + λ4[θαπθ−2ρ

1
θ−1 − αθπθ−1∆], (16)
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is not affected by the multiplier λ5, i.e. by considerations that seek to eliminate the

monetary distortion. Under discretion, the multiplier λ5 does not appear since it is

associated with future inflation. Correspondingly, the following proposition states that

under discretion the Friedman rule is not optimal in our economy – independent of the

size of the relative weight for the utility of real money balances.

Proposition 2 (Optimal Steady State under Discretion) Consider the optimiza-

tion under discretion and suppose that a1 and sc are finite. If the preferences are of

the separable CRRA type and σcsc
−1 ≥ 1, then the Friedman Rule is not optimal in the

deterministic steady state.

Proof see appendix 6.5.

In the following subsection we consider optimal monetary policy in the short run, as-

suming the baseline calibration, such that β + ε is the optimal inflation rate from a

timeless perspective.

3.2 Approximating the model around the optimal steady state

The model is log-linearized around the optimal deterministic steady state π = β+ε < 1,

i.e. under trend deflation and closely follows the approximation around trend inflation

(Ascari, 2004). The rational expectations equilibrium for the log-linear-approximate

model is then a set of sequences {ŷt, π̂t, m̂t, R̂t, F̂t}∞t=t0
consistent with the following set

of equilibrium conditions6

σ(Etŷt+1 − ŷt + gt − gt+1) = R̂t − π̂t+1, (17)

m̂t =
σ

σm

(ŷt − gt)− ηR,FRR̂t, (18)

6The derivation of the aggregate supply curve can be found in appendix 6.6.
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π̂t = βEtπ̂t+1 + κ∗(ω + σ)(ŷt − ŷz
t ) +

κ∗(π̄ − 1)

1− αβπθ
[(σ − 1)ŷt + F̂t] (19)

F̂t = (1− αβπθ)[(1 + ω)ŷt + µ̂w
t − (1 + ω)ât)] + αβπθEt(θπ̂t+1 + F̂t+1), (20)

where ηR,FR = [σm(RFR − 1)]−1, sc = c/y, σc = −uccc/ucc > 0, σ = σcsc
−1, ω =

vlll/vl > 0, gt = (Gt − G)/y + σ−1ζ̂t, κ∗ = (1 − απθ−1)(1 − βαπθ)/(απθ), disturbances

are collected in ŷz
t = ((1 + ω)ât + σgt − µ̂w

t )/(ω + σ), σm = −zmm(m̄)m̄/zm(m̄) >

0, the transversality condition, for a monetary policy, a sequence {ξ̂t}∞t=t0
, and given

initial values Mt0−1 and Pt0−1. Further ẑt denotes the percent deviation of a generic

variable zt from its steady state value z. In addition we assume that the bounds on the

fluctuations of the shock vector ‖ log ξt‖ are sufficiently tight, such that ξt remains in

the neighborhood of its steady state value.

3.3 The Quadratic Policy Objective

In this section we derive a purely quadratic welfare measure for the utility of the average

household as the relevant objective for optimal monetary policy in the short run.

We assume that the welfare-relevant objective is the expected and discounted aver-

age utility level of all households, which is given by

Uto ≡ Et0

∞∑
t=t0

βt−t0{u(ct, ζt)−
∫ 1

0

v(ljt)dj + z(Mt/Pt)}. (21)

Our aim is to derive a quadratic loss function that yields an accurate second order

approximation of the average utility of all households. We seek to evaluate the ap-

proximated level of utility by using the log-linearized conditions (17)-(20) describing

the competitive equilibrium – that is, we set up the familiar linear-quadratic optimal

policy problem. A correct welfare ranking of alternative policies requires a second-order

approximation of utility that involves no linear terms – at least in expectations (see
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Woodford, 2003a, ch.6).

The existence of a non-zero linear term in the utility approximation crucially relies

on the distortions of the steady state output relative to the efficient output level as con-

sequences of price and wage-setting power, distortionary taxation and trend deflation

that are represented in φ:

1− φ = ρ(π)
1

1−θ (1− τ)
θ − 1

µwθ

1− αβπθ

1− αβπθ−1
=

vl

uc

. (22)

If this inefficiency gap is zero or only of first order in φ, the linear term in the second

order approximation vanishes. Following Rotemberg and Woodford (1997) we assume

that the sales tax plays a role of an output subsidy that offsets exactly the steady state

output distortion. Since we assume separability between consumption and real money

balances, this implies that real balance effects do not contribute to this inefficiency

measure.

As Carlstrom and Fuerst (2004) point out, the inclusion of money demand funda-

mentally changes optimal monetary policy responses even in case if one assumes – as

we do – real balances do not effect the dynamic evolution of inflation and output in

the competitive equilibrium. The reason is that variations in the nominal interest rate

contribute to the relevant distortions the policy maker seeks to stabilize. As we will

show below, the relative weight of variations in the interest rate that enters the welfare

measure is substantially increased if we approximate around the optimal steady state.

In the following proposition we derive a quadratic Taylor-series approximation to (21).

Proposition 3 (Quadratic Approximation to Utility) If the fluctuations in yt around

y, Rt around R, ξt around ξ, πt around π are small enough, π and ∆ are close enough

to 1, and if the steady state distortions φ vanish due to the existence of an appropriate
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subsidy τ , the utility of the average household can be approximated by:

Ut0 = −ΩEt0

∞∑
t=t0

βt−t0 [λx(ŷt − ŷ∗t )
2 + π̂2

t + λRR̂2
t ] + t.i.s.p. +O(‖ξ̂t, ς‖3), (23)

where t.i.s.p. indicate terms independent of stabilization policy, κ = (1−α)(1−αβ)(ω+

σ)/α, Ω = ucyθ(ω+σ)
2κ

,

λx =
κ

θ
, (24)

λR =
ηR,FRλx

v(ω + σ)
, (25)

and

ŷ∗t =
σgt + (1 + ω)ât

ω + σ
, (26)

where v = y/m > 0.

Proof see appendix 6.7.

Under the conditions given in proposition 3, the relative weights of inflation, output

gap and the nominal interest rates correspond to the results in Woodford (2003a). Our

analysis differs from Woodford (2003a), because the steady state values relate to the

lower bound and no longer to price stability as in his analysis. A crucial feature for the

validity of the quadratic approximation above is that price dispersion in the optimal

deterministic steady state (involving deflation) is not too large. Since the dispersion

measure is lower for deflation than for inflation (see Figure 4 in the appendix) this is

more likely to be fulfilled when the model is approximated around a deflationary steady

state.7

Remarkably, only the weight to stabilize fluctuations in the nominal interest rate

7In addition, we checked the accuracy of the results by comparing them to the optimal solution
implied by the procedure proposed by Khan et al. 2003. We thank Andrew Levin for providing us
with the MATLAB codes that solve the Ramsey problem in Levin et. al. (2005)
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depends on steady state values, v and ηR,FR. Since we approximate our model around

the deterministic steady state consistent with the Friedman Rule, the value for the

former is small and even more importantly the value for the latter is large, implying

a high preference to stabilize variations in the opportunity costs to hold money: For

π → β, this preference becomes even infinitely large. Notably, the dependence of the

stabilization weights on the approximation point is absent in cashless economies: The

weights for inflation (1) and output gap stabilization (κ/θ) do not hinge on steady

state values. To set up the optimal policy problem, we need to rewrite the relevant

constraints, i.e. the Euler-equation, the law of motion for F̂t and the aggregate supply

curve in terms of the welfare-relevant output gap, xt = ŷt − ŷ∗t :

R̂t = π̂t+1 + σ(Etxt+1 − xt) + nt, (27)

F̂t = (1− αβπ̄θ)(1 + ω)xt + ut + αβπ̄θEt(θπ̂t+1 + F̂t+1) (28)

and

π̂t = βEtπ̂t+1 + η4xt +
κ∗(π̄ − 1)

1− αβπ̄θ
F̂t + st. (29)

Here, nt, ut, st denote linear combinations of the elements of ξ̂t and η4 is a constant,

which are defined in appendix 6.8. Note, that the money demand condition does not

enter the set of relevant constraints of the policy problem. Nevertheless it influences

the optimal decision via the quadratic loss function, in which it plays an important role

in determining the relative weight of interest rate variations.
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4 Optimal short-run policy from a timeless perspec-

tive

We are interested in the optimal policy from a timeless perspective (Woodford, 2003a)

in a linear quadratic framework. We showed that the optimal policy in the long run is to

follow the Friedman rule. In this section we consider the implications for optimal policy

in the short run, if deflation – instead of zero inflation – is chosen as the optimal long

target. In particular, we consider the optimal reaction to various kinds of disturbances

and evaluate the resulting stabilization loss of both regimes.

4.1 Optimal response to shocks

This subsection discusses the optimal response to shocks in the economy. We present the

impulse responses under optimal policy under commitment and distinguish two cases.

In the first case, our set of equilibrium conditions is log-linearized around the optimal

steady state in which the inflation rate is equal to β+ε. In the second case, we follow the

conventional procedure and approximate around a steady state of zero inflation. The

choice of a point of expansion for the log-linearization affects both the loss function and

equilibrium conditions. Log-linearizing round the Friedman rule increases the relative

weight on the stabilization of the nominal interest rate and affects the coefficients in

the Phillips curve.

When we log-linearize around the optimal steady state corresponding to the Fried-

man rule, we find that the central bank essentially keeps the nominal interest rate

fixed in response to any of the shocks present in our model. Consider first the optimal

response to a technology shock displayed in Figure 2.

A Taylor expansion around zero inflation suggests that central bank should lower

the annualized nominal rate by roughly 12 basis points and then gradually return to
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Figure 2: Responses to technology shock

the steady state. However, linearization around the Friedman rule implies that the

nominal rate is literally fixed. In line with this finding, the approximation around

the Friedman rule implies more volatile response of inflation and the output gap than

what is suggested by linearization around the zero inflation steady state. A stronger

stabilization of the nominal interest rate necessarily implies that the other arguments

in the loss function can only be stabilized less.

Impulse responses to the other shocks deliver a similar message: Linearization

around the Friedman steady state implies that the nominal interest rate is literally fixed.

Inflation and output gap fluctuate by more than when the linearization is performed

around the zero inflation steady state. The reason for why the interest rate does not

respond under optimal policy is that stabilization of the interest rate is the main prin-

ciple (see Table 2). Intuitively, the interest elasticity of money demand, [σm(R− 1)]−1

becomes very large as R approaches its lower bound. For our baseline calibration this

elasticity is roughly -4000 at R = 1 + ε. Despite the fact that the marginal utility of
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Figure 3: Responses to wage markup shock

real balances is close to zero (such that v is small), this large elasticity explains why

the central bank wishes to hold the nominal rate constant under the Friedman rule.

4.2 Welfare Analysis

In this subsection we compare the welfare implications of the two policy regimes –

the long run deflation target according to the Friedman rule vs. zero inflation as the

long run target. Using (23) a second-order accurate approximation to the utility of the

average household is given by:

Ut0 = Et0

∞∑
t=t0

βt−t0Ut ≈ 1

1− β
Ū − ΩEt0

∞∑
t=t0

βt−t0λx(ŷt − ŷ∗t )
2 + π̂2

t + λRR̂2
t . (30)

The first part, the discounted steady state utility, is shown to be higher if the Friedman

rule is optimal. The second part, the stabilization loss, that relates to the optimal policy

reaction in the short run, is not necessarily lower under the Friedman rule regime than
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under zero inflation. Which of those two parts dominates depends on the calibration of

the model, e.g. increasing the variances of the innovations amplifies the welfare loss due

to short run fluctuations. In line with the spirit of the timeless perspective, we do not

compute welfare conditional on a particular initial state vector at time t0. Our short

run stabilization loss is given by the discounted and weighted sum of unconditional

variances:

SL = − 1

1− β
Ω{var(π̂) + λxvar(x) + λRvar(R̂)} = − 1

1− β
ΩL, (31)

Here L is proportional to the unconditional expectation of period utility. In table

2 below we list the relative loss differences under the two policy regimes for a range

of relative weights for the utility of real money balances given our baseline calibration

for other parameters. For this purpose we calibrate the stochastic shock processes to

match the standard deviations of real private consumption and government spending

of U.S. data during the post-Volcker period.8 All exogenous processes are assumed

to be autocorrelated with coefficient 0.9. We have chosen a standard deviation of

the innovations to the taste shock of 0.0001, for the markup shock 0.00015, for the

government spending shock 0.0075 and for the technology shock 0.0096.

8The quarterly data is logged and detrended via the Hodrick-Prescott filter with a smoothing
parameter of 10,000. The obtained standard deviation of private consumption is 0.0123, for government
expenditures we obtain 0.0172.
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a1 λZERO
R λFR

R 100 ∗ (LZERO − LFR)/LFR 100 ∗ dU/U σFR σZERO

1/20 2.3426 1472 32.40 0.75 317 41
1/50 1.6238 1020 20.36 0.49 220 31
1/99 1.2355 777 10.24 0.35 167 25
1/150 1.0463 658 3.72 0.28 142 23
1/189 0.9539 600 0.00 0.25 129 21
1/250 0.8530 536 −4.55 0.21 116 20
1/500 0.6464 406 −15.97 0.14 88 17
1/1000 0.4899 308 −27.24 0.08 66 15

Table 2: Welfare Analysis: ε = 0.0001

The results in Table 2 reveal that the larger the preference parameter of the house-

holds’ for the Friedman rule steady state a1 the larger is the willingness of the central

bank to stabilize the nominal interest rate λFR
R . This implies that optimal long run and

short run monetary policy are closely interrelated in case of a transaction friction9.

The resulting stabilization loss, when approximating around the Friedman rule

steady state LFR is superior to the stabilization loss around zero inflation LZERO if

a1 is large enough. The (technical) intuition for this is a trade off effect between pre-

dictability and possible welfare losses in the neighborhood of the steady state of each

regime. If the Friedman rule is the expansion point, then the reduced form involves 4

jump variables, R̂t, xt, π̂t and F̂t, as well as 3 endogenous state variables, the multipliers

on the relevant constraints, (27)-(29). If zero inflation is chosen as the approximation

point, the reduced form does not involve F̂t and exhibits only the two multipliers as-

sociated with the aggregate supply curve and the euler equation as endogenous state

variables. On the one hand, the state space is increased in the Friedman regime, im-

plying higher prediction power by reducing the error variances of inflation, output gap

and the nominal interest rate.10 On the other hand, however, possible welfare losses

9Table 3 in the appendix gives the corresponding results for ε = .000001, i.e. if the assumed lower
bound is closer to the zero bound.

10Note however, that the models are not structurally nested, since in the Friedman regime more
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in the neighborhood of the zero inflation steady state are lower, steady state utility is

”flatter” around π = 1 (see Figure 1). If the relative weight of real money balances

decreases, the additional state variable loses prediction power, while possible welfare

losses around the zero inflation steady state decrease. Intuitively, the prediction effect

is larger, if the endogenous state variables carry the main relevant information from

previous periods, i.e. if the disturbances are only weakly autocorrelated. While there

is a cut-off value in terms of stabilization loss, overall utility composed of steady state

utility minus stabilization loss, is higher under the Friedman rule than under zero in-

flation though the relative differences are small. The second but last column of Table

2 depicts this overall difference in utility under the Friedman regime minus the zero

inflation regime expressed as percentages.

The entries σFR and σZERO shed light on how likely it is that the lower bound on

the nominal interest rate binds if the economy fluctuates around the Friedman rule

ε steady state or around price stability. We calculate the standard deviation of the

nominal interest rate under the optimal policy implied by both policy regimes. The

term σFR then expresses the size of the interval from R = 1.0001 to the lower bound

R = 1 in terms of this standard deviation. The entry σZERO also expresses this interval

in terms of standard deviations of the nominal rate, but now the approximation is

computed around a zero inflation steady state. Hence, larger values for σFR or for

σZERO imply that the lower bound is less likely to be binding. Note that our results

imply a low probability that the nominal interest rate hits the lower bound, i.e. Rt = 1.

Even for a small relative weight of real money balances, a1 = 1/1000, the resulting

standard deviation for the nominal interest rate is small relative to ε, such that a

symmetric confidence interval around R = 1.0001 of up to 66 standard deviations could

be constructed until the lower bound is included. If we decrease ε, i.e. if the assumed

jump variables must be pinned down.
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lower bound moves closer to zero, the corresponding number of standard deviations

increases to 418 (see table 3 in the appendix). This implies that the effect to stabilize

the nominal interest even more (higher relative weight λFR
R ) dominates the effect of

the smaller distance to the zero bound. Correspondingly, if zero inflation is chosen as

the expansion point, the probability to hit the lower bound is even higher (see the last

column).

5 Conclusion

We study optimal monetary policy in an economy without capital, where firms set

prices in a staggered way without indexation and real money balances are assumed

to provide utility. Accounting for a sizeable degree of nominal rigidity, the optimal

deterministic steady state from a timeless perspective is to follow the Friedman rule,

even if the importance assigned to the utility of money is small relative to consumption

and leisure.

We approximate the model around the optimal steady state under commitment

as the long-run policy target and derive a second order approximation to households’

utility. Optimal interest rate policy is shown to abstain from reacting sharply to changes

in the state of the economy. Instead of stabilizing inflation, the primary goal of the

central bank is to stabilize fluctuations in the nominal interest rate. In that light,

the well observed tendency of central banks to keep the main refinancing instrument

literally fixed over a long time can be interpreted as optimal behavior according to

Friedman’s rule, even if the state of the economy has changed. Since optimal policy

stabilizes fluctuations in interest to a large amount, the lower bound on the nominal

interest rate is unlikely to be binding.

We stress that our model is not about direct and quantitative advice on optimal
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monetary policy. It is too stylized for this purpose. The foremost contribution of this

paper is to challenge the conventional view that the Friedman rule loses out to the

goal of price stability once price stickiness is introduced. We show that the widely

used money-in-the utility function model implies that the Friedman rule is optimal

even when large amounts of price stickiness are present. When the economy fluctuates

around the Friedman rule steady state, central bankers should keep the nominal interest

stable over the business cycle. This result is explained by the large interest elasticity

of money demand that obtains in the MIU model when the nominal rate is close to

zero. There is little empirical evidence on the behavior of money demand in the major

industrialized countries for very low interest rates. This is unfortunate as the interest

elasticity at low interest rates is a key difference between our MIU framework and

the transactions technology employed in other papers that come to different policy

prescriptions. Hence, future research on optimal policy in sticky price models benefits

from a better understanding of money demand in such low interest rate environments.

6 Appendix

6.1 The optimal deterministic state from a timeless perspec-

tive

The standard commitment approach would be to choose state contingent path for

∆t, Rt, πt and yt for each t ≥ t0, to maximize (8) for a given degree of initial price

dispersion an initial nominal interest rate. Without any precommitment, this approach

would suffer of time inconsistency. Woodford (2003) proposes a certain degree of initial

commitment, to bring about the optimal equilibrium. In our case, we need to assume,
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that Ft0 = F , Kt0 = K and yt0 = y ,i.e. the initial values for these variables are identical

their optimal steady state values. The optimal deterministic steady state is a solution

to the problem defined in the text, that involves constant values for all variables and

each of the disturbances identical to their means. Basically we are looking for an initial

degree of price dispersion ∆t0−1 and an initial interest rate Rt0−1, and precommitment

Ft0 = F , Kt0 = K and yt0 = y, such that Rt = R, πt = π, Ft = F , Kt = K, yt = y, for

each period, and ∆, R are equal to the initial price dispersion an the initial nominal

interest rate. Using the time-invariant form for the Lagrangian, the first order necessary

conditions with respect to yt, ∆t, Kt, Ft, Rt and πt for all t ≥ t0 are given by:

uc(t)−∆tvl(t) + zm(t)mc(t) + λ2t(1− τ)[ucc(t)yt + uc(t)]

+λ3tµ
w
t [vll(t)∆tyt + vl(t)]− λ5tucc(t) + λ5t−1

ucc(t)Rt−1

πt

.
= 0 (32)

−ytvl(t) + λ3tvll(t)y
2
t µ

w
t + λ4t − λ4t+1βαπθ

t+1
.
= 0 (33)

λ1tρ(t)
1

1−θ − [λ2t − απθ−1
t λ2t−1]

.
= 0 (34)

− θ

θ − 1
λ1t − [λ3t − απθ

t λ3t−1]
.
= 0 (35)

zm(t)mR(t) + λ5tβ
uc(t + 1)

πt+1

.
= 0 (36)

and

λ1tKt
α

1− α
πθ−2

t ρ(t)
θ

1−θ + λ2t−1αKt(θ − 1)πθ−2
t + λ3t−1αFtθπ

θ−1
t

+λ4t[θαπθ−2
t ρ(t)

1
θ−1 − αθπθ−1

t ∆t−1]− λ5t−1Rt−1
uc(t)

π2
t

.
= 0. (37)

Note that λ2t0−1, λ3t0 and λ5t0−1 are the multipliers associated with the initial commit-

ment.
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6.2 Description of the numerical procedure to calculate the

optimal steady state

We solved for the optimal deterministic steady state numerically. Thereby we used the

specific CRRA utility function given in the text.

The procedure works in the following way: We solve for y, R, F , K and ∆ each as

a function of steady state inflation exclusively – using the constraints (9)-(13). That is,

for a given inflation rate, the values for the other variables are given by these functions.

To check for the robustness of out results, we use two different procedures: The first

one involves the exploitation of the first order conditions, the second one the direct

evaluation of utility in the steady state.11

The first procedure is applied in the program stcommit.m. We use the values given

by the constraints and solve for the lagrangian multipliers λ1-λ5 uniquely by exploiting

the 5 first order conditions for output, interest, dispersion, F and K. Then we use these

values and substitute them in the first order condition for inflation, fc(π), to check for

optimality of the given inflation rate. Thereby several cases are possible. For example,

if this condition is globally negative (positive) over the grid of steady state inflation

rates, then the optimal inflation is the lower (upper) bound. If however, the first order

condition crosses the zero line, the optimum can be an interior solution. Suppose that

fc(π) is positive at the lower bound, monotonically decreasing and crosses the inflation

axis at some inflation rate, π1 ∈ (β + ε, upper bound). Then π1 is the optimal inflation.

If instead, fc is negative at the lower bound, monotonically increasing and crosses the

zero value for π2, then π2 can’t be the optimum – either the lower bound or the upper

bound is the optimum. Obviously – in principle – several cases are possible and even

multiple solutions can arise. Once, the optimal inflation rate is found, the values for

11The MATLAB programs to compute the optimal steady state, and the Toolkit code to calculate
the IRFs and the results in table 2 are available on request.
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the variables and the lagrangian multipliers are implied by the constraints or the first

order conditions.

The program ssrand31.m uses a direct evaluation of steady state utility by substi-

tuting for each given inflation rate, the values of output, interest, F , K and dispersion

into the utility function. Afterwards one maximizes over the resulting utility function

and picks the optimal inflation rate and the optimal values for the variables are implied

by the constraints of the optimal policy problem.

6.3 Constraints and CRRA preferences in the steady state

Suppose that the utility function is of the CRRA form. Given an output subsidy that

renders the steady state efficient, constraints (9)-(13), and the money demand equation

can be combined to solve for ∆, y, c, l, R and m in terms of inflation.

∆ =
(1− α)ρ

θ
θ−1

1− απθ
, (38)

with ρ = (1− απθ−1)/(1− α),

y = [
1

a2∆ωscσc
]

1
σc+ω , (39)

c = ysc, (40)

l = y∆ (41)

R =
π

β
, (42)

m = [R/(R− 1)yσca1sc
σc ]1/σm . (43)
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6.4 Proof proposition 1

Consider first the steady state utility if the inflation rate is zero. Correspondingly,

gross inflation and price dispersion are 1, such that yZERO = lZERO. Using (39)-

(43), one can compute yZERO = 1/sc1/(1+ω) = lZERO, cZERO = scω/(1+ω) and mZERO =

RZEROηR,ZEROa1sc
ω/(1+ω). Then the period steady state utility of the average household

is given by

uZERO = (1 + a1)
ω

1 + ω
ln(sc)− 1

(1 + ω)sc
− a1 ln(1− β) + a1 ln(a1). (44)

If π = β+ε, then price dispersion is ∆FR > 1, and output equals yFR = 1/(sc∆ω
FR)1/(1+ω) <

yZERO, while lFR = (∆FR/sc)1/(1+ω) > lZERO. Consumption and real money balances

are then given by cFR = (sc/∆FR)ω/(1+ω) < cZERO and mFR = RFRηR,FRa1(sc/∆FR)ω/(1+ω) >

mZERO. In this case, the period steady state utility is

uFR = (1+a1)
ω

1 + ω
ln(sc)− ω

1 + ω
(1+a1) ln(∆FR)− ∆FR

(1 + ω)sc
+a1 ln(

1 + β−1ε

β−1ε
)+a1 ln(a1).

(45)

Comparing (44) and (45), the Friedman rule yields higher utility as long as a1 > a1. ¥

6.5 Proof proposition 2

This proof is per contradiction. If the Friedman rule is optimal, then necessarily (16)

must be non-positive. Under the assumed CRRA preferences, real money balances in

the deterministic steady state are given by (43), implying that they converge to infinity

for R → 1, given that a1 and sc are finite and positive. The lagrangian multiplier

λ5 = m/(Rσm) converges to infinity, too, while λ1 under discretion is given by:

λ1 =
uc −∆vl + zmmc − λ5ucc

−ρ1/(1−θ)(1− τ)(uccy + uc) + θ/(θ − 1)µ̄w(vll∆y + vl)
.
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This multiplier is positive for λ5 → ∞ and σsc−1 ≥ 1 such that uccy + uc < 0. Since

K = sc−σc(1− τ)y1−σc/[1−αβπθ−1] and ρ = (1−απθ−1)/(1−α) are positive for π < 1,

the first expression in (16) is positive, implying, that the optimality of the Friedman

rule requires the second expression to be negative. Note that the lagrangian multiplier

λ4 =
−λ3y

2µ̄wvll + vly

1− αβπθ

is positive, since λ3 = −θ/(θ − 1)λ1 < 0. Therefore, in order to qualify the Friedman

rule as optimal under discretion

θαπθ−2ρ
1

θ−1 < αθπθ−1∆

must hold. This boils down to

π−1ρ1/(θ−1) <
(1− α)ρθ/(θ−1)

1− απθ
(46)

⇐⇒ π−1 <
(1− απθ−1)

(1− απθ)

⇐⇒ π−1 < 1,

which is a contradiction, since π < 1 holds under the Friedman rule. ¥

6.6 Derivation of the aggregate supply curve in case of trend

deflation

The first order condition for firms is given by (5), which reads in loglinearized terms:

̂̃
Pit

Pt

= F̂t − K̂t. (47)
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Using the definition of the price level, Pit/Pt = [(1 − απθ−1
t )/(1 − α)]1/(1−θ), the left

hand side of (47) can be approximated to first order with

απ̄θ−1

1− απ̄θ−1
π̂t, (48)

while the expression on the right-hand side can be approximated by (using the recursive

form of Ft and Kt):

F̂t = (1− αβπ̄θ)[ ̂uc(yt −Gt, ζt) + ŷt + m̂ct] + αβπ̄θEt(θπ̂t+1 + F̂t+1) (49)

and

K̂t = (1−αβπ̄θ−1)[ ̂uc(yt −Gt, ζt)+ ŷt + ̂(1− τt)]+αβπ̄θ−1Et((θ−1)π̂t+1 + K̂t+1). (50)

Note that under trend deflation αβπ̄ < 1, while convergence has to be assumed, if one

approximates around trend inflation (Ascari, 2004). Therefore the difference F̂t− K̂t is

given by:

F̂t − K̂t = αβπ̄θ−1(π̄ − 1)θEtπ̂t+1 + αβπ̄θ−1Etπ̂t+1 + αβπ̄θ−1Et(π̄F̂t+1 − K̂t+1)

+ αβπ̄θ−1(1− π̄)( ̂uc(yt −Gt, ζt) + ŷt) + (1− αβπ̄θ)m̂ct − (1− αβπ̄θ−1) ̂(1− τt).

Adding and subtracting αβπ̄θ−1EtF̂t+1, then using (47) to substitute for Et(F̂t+1−K̂t+1),

F̂t − K̂t and then for F̂t+1 with (20), results in:

π̂t = βEtπ̂t+1 + κ∗m̂ct + F̂tκ
∗ (π̄ − 1)

1− αβπ̄θ

+ κ∗( ̂uc(yt −Gt, ζt) + ŷt)
1− π̄

1− αβπ̄θ
− κ∗

1− αβπ̄θ−1

1− αβπ̄θ
̂(1− τt).
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Using that ̂uc(yt −Gt, ζt) = −σŷt + σgt, and m̂ct = −(1 + ω)ât + σŷt + ωŷt + µ̂w
t − σgt,

results in

π̂t = βEtπ̂t+1 + F̂tκ
∗ (π̄ − 1)

1− αβπ̄θ
+ κ∗ŷt[σ + ω +

(1− π̄)(1− σ)

1− αβπ̄θ
]

+ κ∗σgt[
1− π̄

1− αβπ̄θ
− 1] + κ∗[µ̂w

t − (1 + ω)ât + wτ
1− αβπ̄θ−1

1− αβπ̄θ
τ̂t].

Applying the definition of ŷn
t and making use of τ̂t = 0 in this setting, results in (19)

in the text.

6.7 Proof proposition 3

The period utility function of the average household in equilibrium is given by:

∫ 1

0

[u(yt −Gt, ζt)− v(ljt) + z(mt)]dj = u(yt −Gt) + z(mt)−
∫ 1

0

v(ljt)dj.

To derive (23) we need to impose, that in the optimal steady state real money balances

are sufficiently close to satiation (see Woodford, 2003, Assumption 6.1), the price dis-

persion associated with optimal inflation is sufficiently small, as well as that optimal

inflation is close enough to one.

The first summand can be approximated to second order by:

u(yt −Gt, ζt) = u + uc(yt − y) + 0.5ucc(yt − y)2 + ucG(yt − y)(Gt −G) + ucζ(yt − y)(ζt − ζ)

+ 0.5uGG(Gt −G)2 + 0.5uζζ(ζt − ζ)2 +O(‖ξ̂t, ŷt‖3)

= uc(ŷt + 0.5ŷ2
t )y + 0.5ucc(ŷt + 0.5ŷ2

t )
2y2 + ucŷtẑty

− uccy(Gt −G)ŷt + t.i.s.p. +O(‖ξ̂t, ŷt‖3)

= ucy[ŷt +
(1− σ)

2
ŷ2

t + σgtŷt] + t.i.s.p. +O(‖ξ̂t, ŷt‖3), (51)
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where we used that (xt−x) = x(x̂t+0.5x̂2
t )+O(‖x̂t‖3), t.i.s.p denotes terms independent

of stabilization policy, ucζ = uc, ζ = 1, σ = σcsc
−1, Ĝt = (Gt − G)/y, and that

gt = Ĝt + σ−1ζ̂t. The utility of real money balances can be approximated by:

z(m) = ucy[
zmm

ucy
m̂t + 0.5

zmm

ucy
(1− σm)m̂2

t ] + t.i.s.p. +O(‖m̂t‖3).

Following Woodford (2003a), we treat (R− 1)/R as an expansion parameter, implying

that zm/uc − 0 = (R − 1)/R − 0 is at least of first order. Since we expand our model

at a point near the zero bound, since means, that real money balances are near the

satiation level.

Applying an first order approximation to the money demand equation results in

m̂t = σ/σm(ŷt − gt) − [(R − 1)σm]−1R̂t + O(‖ξ̂t‖2). Therefore, the coefficient σ/σm =

uccy(R− 1)/(Rzmmm) is of first order in (R− 1)/R. Defining sm = zmm/(ucy), which

is of first order in (R− 1)/R, so that smσ/σm is of second order, the approximation of

z(m) can be rewritten as:

z(mt) = ucy[sm(
σ

σm

(ŷt − gt)− R̂t

(R− 1)σm

) + 0.5sm(
σ

σm

(ŷt − gt)− R̂t

(R− 1)σm

)2

− 0.5smσm(
σ

σm

(ŷt − gt)− R̂t

(R− 1)σm

)2] + t.i.s.p. +O(‖ξ̂t, ŷt, R̂t‖3)

= ucy[−sm(
R̂t

(R− 1)σm

)− 0.5
(R− 1)σm

y/m
(

R̂t

(R− 1)σm

)2] + t.i.s.p. +O(‖ξ̂t, ŷt, R̂t‖3)

= −ucy
1

2σm(R− 1)v
(R̂t + (R− 1)/R)2 + t.i.s.p. +O(‖ξ̂t, ŷt, R̂t‖3)

= −ucy
1

2σm(R− 1)v
R̂2

t + t.i.s.p. +O(‖ξ̂t, ŷt, R̂t‖3). (52)

In the first step we used that the second term in the first line is of third order. In
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addition we used that

− 1

(R− 1)σm

=
uc

zmmm
(1− R− 1

R
) =

uc

zmmm
,

if (R− 1)/R is small. Then it follows that,

−0.5smσm = 0.5
zmm

ucy

zmmm

zm

= 0.5
zmmm

uc

1
y
m

= −0.5
(R− 1)σm

v
.

The last step follows, if one takes into account that (R − 1)/R − 0 is of second order,

implying that the linear term drops out in the quadratic approximation. In equilibrium,

each household supplies the identical amount of labor, since not a special type of labor,

but a bundle of labor types is used as an input factor in production:

∫ 1

0

v(ljt)dj =

∫ 1

0

v(lt)dj = v(

∫ 1

0

litdi) = v(
yt∆t

at

) = v(yt, ∆t, at).

This term can be approximated to second order by:

v(
yt∆t

at

) = v + vy(yt − y) + 0.5vyy(yt − y)2 + vy∆(yt − y)(∆t −∆) + vya(yt − y)(at − a)

+ 0.5vaa(at − a)2 + v∆(∆t −∆) + va∆(at − a)(∆t −∆) + 0.5v∆∆(∆t −∆)2 +O(‖ξ̂t, ŷt, ∆̂t‖3).

In accordance with our numerical results we assume that (Pi/P )−θ = (P̆ /P )−θ − 1 =

O(‖ς‖3). Here P̆ denotes the average long-term individual price and we collect in ς

the distortions of the relative price due to price dispersion in the optimal steady state.

Therefore, a second order approximation of (Pit/Pt)
−θ in ln(Pit/Pt) = p̂it results in:

(
Pit

Pt

)−θ = 1 +O(‖ς‖3)− θ(1 +O(‖ξ̂t, ς‖3))p̂it + θ20.5(1 +O(‖ξ̂t, ς‖3))p̂it
2 +O(‖p̂it‖3)

= 1− θp̂it + θ20.5p̂it
2 +O(‖p̂it, ξ̂t, ς‖3).
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Integrating this expression across all firms leads to

∆t = 1− θEip̂it + θ2Eip̂
2
it.

Note that a first second order approximation of the price level in p̂it results in Eip̂it =

θ−1
2

Eip̂it
2. Using this the dispersion measure can be written as:

∆t = 1 +
θ

2
vari ln(Pit) +O(‖p̂it, ξ̂t, ς‖3), (53)

and is of second order. That implies, since ∆t−∆ = ∆t−1+O(‖ς‖3) = ∆∆̂t+O(‖∆̂2
t‖),

that ∆̂t is of second order, too. It follows that the second order approximation of v(lt)

can be rewritten as:

v(lt) = vyy[ŷt +
1 + ω

2
ŷ2

t − (1 + ω)âtŷt + ∆̂t] + t.i.s.p. +O(‖ξ̂t, ŷt, ∆̂
0.5
t , ς‖3), (54)

vyy = v∆∆ = vll. Note that we can connect (51),(52) and (54) by the relationship

vy/uc = amc/µw = (1− φ), with

φ = 1− ρ(π)
1

1−θ (1− τ)
θ − 1

µwθ

1− αβπθ

1− αβπθ−1
.

This results in:

U(ct, lt,mt) = −ucy[−φŷt +
σ + ω − φ(1 + ω)

2
ŷ2

t − ŷt(σgt + (1− φ)(1 + ω)ât)

+ (1− φ)
θ

2
vari ln(Pit) +

1

2σm(R− 1)v
R̂2

t ] + t.i.s.p. +O(‖ξ̂t, ς‖3)

Using the sales tax as a sales subsidy by setting

1− τ = [ρ(π)
1

1−θ
θ − 1

µwθ

1− αβπθ

1− αβπθ−1
]−1
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, the linear term in the welfare approximation above vanishes, so that we get indeed a

welfare measure accurate to second order of the true non-linear optimal solution using

only linear approximations to the model’s structural equations (Woodford, 2003):

U(t) = −ucy

2
[(σ + ω)(ŷt − σgt + (1 + ω)ât

σ + ω
)2 + θvari ln(Pit) +

R̂2
t

σm(R− 1)v
] + t.i.s.p. +O(‖ξ̂t, ς‖3)

= −ucy

2
[(σ + ω)(ŷt − ŷ∗t )

2 + θvari ln(Pit) +
1

σm(R− 1)v
R̂2

t ] + t.i.s.p. +O(‖ξ̂t, ς‖3). (55)

The variance of ln(Pt(i)) follows:

vari(ln Pit) = αvari(ln Pit−1) +
α

1− α
[ln

Pt

Pt−1

]2 +O(‖ξ̂t‖3)

= αvari ln(Pit−1) +
α

1− α
[ln(πt)− ln(π)][π̂t + 2 ln(π)] + t.i.s.p. +O(‖ξ̂t‖3)

= αvari ln(Pit−1) +
α

1− α
[π̂2

t + 2 ln(π)π̂t] + t.i.s.p. +O(‖ξ̂t‖3)

= αvari ln(Pit−1) +
α

1− α
π̂2

t + t.i.s.p. +O(‖ξ̂t, ς
2/3‖3),

where we assumed that ln(π) = 0 + O(‖ς‖2). Iterating the equation above forward

starting from any vari ln(Pit0−1) in the period before policy applies, for t ≥ t0 results

in :

vari ln(Pit) =
t∑

s=t0

αt−s α

1− α
π̂2

s + t.i.s.p. +O(‖ξ̂t, ς
2/3‖3),

where we used that the initial price dispersion vari ln(Pit0−1) is t.i.s.p.

Discounting this expression with β and summing up gives

∞∑
t=t0

βt−t0vari(ln Pit) =
α

(1− α)(1− αβ)

∞∑
t=t0

βt−t0 π̂2
t + t.i.s.p. +O(‖ξ̂t, ς‖3).

Applying this result to (55) gives (23) in proposition 3.
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6.8 Definition of the disturbances nt, ut and st

The exogenous fluctuations are defines as:

nt = η2Et(ât+1 − ât)− η1σEt(gt+1 − gt),

ut = η3ât + (1− αβπ̄θ)µ̂w
t + η3σgt

and

st = η5ât + η6σgt + κ∗µ̂w
t .

The constants ηi, i = 1, ..6 are defined as:

η1 =
ω

ω + σ
,

η2 =
σ(1 + ω)

ω + σ
,

η3 = (1− αβπ̄θ)(1 + ω)
1− σ

ω + σ
,

η4 = κ∗[ω + σ +
(1− π̄)(1− σ)

1− αβπ̄θ
],

η5 =
η4(1 + ω)

ω + σ
− κ∗(1 + ω)

and

η6 =
η4

ω + σ
+ κ∗(

1− π̄

1− αβπ̄θ
− 1).
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Additional figures and tables
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Figure 4: Steady state price dispersion as a function of inflation.

0 0.2 0.4 0.6 0.8 1

−4

−3

−2

−1

0

1

α

A
nn

ua
l O

pt
im

al
 In

fla
tio

n 
in

 %

 

 

ε=0.001
ε=0.0001
ε=0.000001

Figure 5: Optimal annual inflation and Calvo parameter α. The vertical line denotes
the critical value in Schmitt-Grohe and Uribe (2005) for which the Friedman rule ceases
to be optimal.
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a1 λZERO
R λFR

R 100 ∗ (LZERO − LFR)/LFR 100 ∗ dU/U σ(FR) σ(ZERO)

1/20 2.3426 928920 32.29 0.80 1999 41
1/50 1.6238 643870 20.25 0.53 1386 31
1/99 1.2355 488930 10.12 0.38 1054 25
1/150 1.0463 414910 3.60 0.27 893 23
1/189 0.9539 378270 −0.12 0.23 814 21
1/250 0.8530 338230 −4.68 0.15 728 20
1/500 0.6464 256330 −16.10 0.09 552 17
1/1000 0.4899 19460 −27.38 0.02 418 15

Table 3: Welfare Analysis: ε = 0.000001
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