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Non-technical summary

Research Question

A key problem faced by policymakers is deciding whether and when to optimally resolve

a distressed bank whose solvency is uncertain. If it was straightforward to distinguish

whether a distressed bank is fundamentally insolvent or just illiquid, the optimal policy

would be equally straightforward: support illiquid and resolve insolvent banks. In prac-

tice, such a distinction is seldom possible without conducting a time-consuming financial

audit. Delaying intervention, however, gives uninsured creditors time to withdraw their

claims, which raises the cost of bailing out insured depositors if the bank is ultimately

resolved.

Contribution

The present paper uses a dynamic banking model to analyze a policy authority (PA)’s

decision to optimally resolve a distressed bank. The bank’s solvency becomes uncertain

due to a shock and its junior wholesale creditors begin withdrawing their funds. The

bank repays withdrawals by liquidating its assets. Wholesale withdrawals therefore drain

resources from the bank and dilute the bank’s insured depositors’ claims. Over time,

news may reveal the bank’s true solvency state. The PA maximizes aggregate output and

decides when to resolve or to support the bank with liquidity or equity injections.

Results

For the PA, delaying resolution is valuable because the PA can make a more efficient de-

cision (avoiding the resolution of a solvent bank) if news may arrive. Delaying resolution

is also costly because withdrawals raise the PA’s cost of covering deposit insurance. The

optimal resolution date trades off these costs. Through liquidity support, the PA always

avoids the inefficient resolution of a solvent bank but exposes itself to counterparty risk.

Thus, it is sometimes optimal to delay support to lower the PA’s counterpary risk ex-

posure. Outright equity injections are preferred to liquidity support if the bank’s debt

maturity structure is short or if it holds only a small amount of insured deposits.



Nichttechnische Zusammenfassung

Fragestellung

Besteht Unsicherheit über die Solvenz einer finanziell angeschlagenen Bank, muss die Auf-

sichtsbehörde entscheiden, ob und wann diese abgewickelt werden soll. Dieses Problem

ließe sich einfach lösen, wenn eindeutig entschieden werden könnte, ob das Institut bereits

insolvent oder lediglich in Liquiditätsnot geraten ist: die insolvente Bank sollte abgewi-

ckelt, die illiquide unterstützt werden. Diese Unterscheidung ist ohne eine zeitaufwändige

Buchprüfung kaum zu treffen. Währenddessen können nachrangige Gläubiger jedoch ihre

Gelder abziehen. Diese Rückzahlungen verringern die Ressourcen, die im Abwicklungsfall

zur Deckung versicherter Einlagen zur Verfügung stehen.

Beitrag

Das Papier untersucht mittels eines dynamischen Modells einer finanziell angeschlagenen

Bank die Entscheidung einer Aufsichtsbehörde über den optimalen Abwicklungszeitpunkt.

Aufgrund von Unsicherheit über die Solvenz der Bank ziehen unbesicherte (nachrangige)

Gläubiger ihre Gelder ab. Um deren Forderungen zu bedienen, veräußert die Bank Teile

ihrer Aktiva. Dadurch stehen der Einlagensicherung weniger Vermögenswerte zur Deckung

versicherter Einleger zur Verfügung. In jedem Zeitpunkt besteht die Möglichkeit, dass

öffentliche Informationen über die tatsächliche Solvenz der Bank bekannt werden. Die

Aufsichtsbehörde maximiert den gesamtwirtschaftlichen Output und entscheidet, ob und

wann sie die Bank abwickelt oder sie mit Liquidität oder Eigenkapital unterstützt.

Ergebnisse

Für die Behörde ist es vorteilhaft, die Abwicklung der Bank zu verzögern, um etwaige

Informationen über ihre tatsächliche Solvenz zu nutzen und die Abwicklung einer ei-

gentlich solventen Bank zu vermeiden. Dadurch erhalten unbesicherte Gläubiger jedoch

Zeit, ihre Gelder abzuziehen, wodurch sich die Kosten der Einlagensicherung erhöhen.

Im optimalen Interventionszeitpunkt müssen sich Grenzvorteile und -kosten gerade ent-

sprechen. Durch Gewährung von Liquiditätshilfen kann die Behörde es immer vermei-

den, fälschlicherweise eine solvente Bank abzuwickeln, geht dabei jedoch ein Gegenpar-

teirisiko gegenüber der Bank ein. Daher kann es vorteilhaft sein, Liquiditätshilfen nur

mit Verzögerung zu gewähren, um die Risikobelastung der Behörde zu minimieren. Die

Behörde bevorzugt öffentlich finanzierte Rekapitalisierungen gegenüber Liquiditätshilfen,

wenn die Bankverbindlichkeiten eine kürzere durchschnittliche Laufzeit aufweisen oder

die Bank sich nur mit einem geringen Anteil versicherter Einlagen finanziert.



Deutsche Bundesbank Discussion Paper No 10/2022

Optimal Timing of Policy Interventions in
Troubled Banks∗

Philipp J. König† Paul Mayer‡ David Pothier§

Abstract

We analyze the problem of a policy authority (PA) that must decide when to
resolve a troubled bank whose underlying solvency is uncertain. Delaying resolution
increases the chance that information arrives that reveals the bank’s true solvency
state. However, delaying resolution also gives uninsured creditors the opportunity
to withdraw, which raises the cost of bailing out insured depositors. The optimal
resolution date trades off these costs with the option value of making a more efficient
resolution decision following the arrival of information. Providing the bank with
liquidity support buys the PA time to wait for information, but increases the PA’s
losses if the bank is insolvent. The PA may therefore optimally choose to delay the
provision of liquidity support in order to minimize its losses.

Keywords: Bank Resolution, Lender of Last Resort, Banking Crises

JEL Classifications: G01, G21, G28

∗We are especially thankful to Harald Uhlig for comments and suggestions regarding the model’s
exposition. We are also grateful to Kartik Anand, Fabian Bichlmeier, Gerald Dillenburg, Falko Fecht,
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“[T]he failure of [a] bank to adjust its liquidity on the open market means that there

is at least a whiff of suspicion of insolvency.” — Goodhart (1999) —

1 Introduction

A key challenge for policymakers is judging whether a bank facing liquidity problems is

fundamentally insolvent (a gone concern), or whether it is just illiquid and could avoid

insolvency if given adequate policy support (a going concern). If this distinction was

straightforward, the optimal policy for dealing with troubled banks would be equally

straightforward: support illiquid banks and resolve insolvent ones. In practice, such

a clear distinction is seldom possible without a detailed examination of a bank’s books.

Conducting a financial audit, however, takes time and gives uninsured creditors the chance

to withdraw their claims before policymakers intervene, potentially increasing the cost of

bailing out insured depositors if the bank is ultimately resolved. Thus, a key problem of

resolution policy is deciding when to optimally resolve a troubled bank whose solvency

state is uncertain.

While resolution policies differ in their details across jurisdictions, a common feature

is that resolution authorities enjoy considerable discretion in determining whether a fi-

nancial institution has reached a point of non-viability (PONV) and should be resolved.

For example, the Federal Deposit Insurance Corporation (FDIC) explicitly states that

“under certain circumstances, [it] may delay resolution of a critically undercapitalized in-

sured depository institution if a determination is made that it is in the best interest of

the deposit insurance fund” (FDIC, 2019).1 Policymakers’ flexibility regarding the timing

of resolution raises a number of important questions. First, when (and under what con-

ditions) will a policymaker optimally resolve a troubled bank facing liquidity problems?

1In Europe, the European Banking Authority’s (EBA) guidelines for declaring a financial institution
non-viable explicitly state that they “[...] do not purport to constrain the ultimate discretion of the
competent authority and of the resolution authority in making the determination that an institution is
failing or likely to fail” (EBA, 2015).
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Second, how does the optimal resolution date (i.e., the optimal PONV) depend on the

bank’s balance sheet characteristics and broader economic conditions? Third, how is the

optimal timing of resolution affected by the availability of other commonly used policy

tools such as liquidity support and equity injections?

To answer these questions, we develop a stylized dynamic banking model in continuous

time. There is a representative bank, wholesale creditors, retail depositors and a policy

authority (PA). The bank enters the economy with a legacy asset financed by insured

retail deposits and overlapping issues of uninsured wholesale debt. At some interim date,

a verifiable shock realizes that may impair the bank’s asset. Whether the bank’s asset is

impaired by the shock is not immediately observable, which creates uncertainty about the

bank’s underlying solvency. Given this uncertainty, wholesale creditors become unwilling

to roll over their claims when they come due. To obtain the liquidity needed to repay

withdrawing wholesale creditors, the bank must sell parts of its asset.

The PA’s primary role is to choose whether and when to resolve the bank by enforcing

a complete write-down of its outstanding wholesale debt and liquidating its remaining

assets. The PA’s objective is to maximize expected aggregate output.2 The optimal

intervention decision is affected by two key frictions. First, liquidating unimpaired assets

is costly; e.g., because transferring ownership of these assets to agents other than the bank

destroys value. Second, there is a social cost to public funds; e.g., due to the distortionary

effects of taxation. Because of this social cost, bailing out insured depositors creates a

deadweight loss.

As time passes, information may arrive that reveals the bank’s solvency state. Delay-

ing intervention and waiting for information has value since it may avoid the inefficient

resolution of a solvent bank. Delaying intervention, however, also gives uninsured credi-

tors time to withdraw maturing debt, which drains resources from the bank and increases

2We are agnostic about the exact institutional identity of the policy authority in our model. It could
be a central bank, a deposit insurance fund, a chartering authority, or a combination of various different
institutions. By considering a single policy authority, we purposefully abstract from potential conflicts-of-
interest between various policy-making institutions. Doing so allows us to focus on the dynamic trade-offs
inherent to resolution policy. See Repullo (2000) and Kahn and Santos (2005) for papers studying the
optimal allocation of regulatory authority across institutions with conflicting mandates.
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the cost of bailing out insured depositors if the bank is resolved. Because debt withdrawals

circumvent the de jure seniority of insured deposits, we refer to this increase in the cost

of bailing out insured depositors as the “dilution costs” of delaying resolution.

The failure of IndyMac in July 2008 provides an illustrative example of how uncer-

tainty about a bank’s solvency can lead to costly delays in the resolution process. Very

active in the non-prime mortgage market in the years leading up to the 2007/08 financial

crisis, IndyMac’s financial conditions began to deteriorate after US house prices started to

decline. Concerned about the bank’s solvency, the Office of Thrift Supervsion (OTS) and

the FDIC decided to examine IndyMac’s books ahead of their on-site inspection schedule,

which led its CAMELS rating to be downgraded from 2 to 5 (the worst possible rating).3

Once IndyMac’s financial problems became publicly known, uninsured depositors began

to withdraw en masse and the bank’s liquidity position rapidly deteriorated. Only after-

wards did the FDIC place the bank under receivership. The IndyMac resolution proved

to be the most expensive in FDIC history, costing about 12 billion USD (FDIC, 2017).4

Just like in the Indy Mac case, the PA in our model must choose whether and when

to resolve a troubled bank. We show that this policy problem can be framed in terms

of minimizing a weighted sum of type-I errors (forcing a solvent bank into resolution)

and type-II errors (allowing an insolvent bank to continue operating), with the weights

depending on the social costs of public funds. If the social costs are sufficiently large,

the PA resolves the bank immediately after wholesale creditors begin to withdraw. The

reason is that the costs of a type-II error are so large that the PA never chooses to wait for

information. For smaller social costs, the relative weight of avoiding a type-I error increases

and the PA becomes willing to delay resolution in the hope that new information reveals

the bank to be solvent. Because the bank must meet debt withdrawals by fire-selling

3The CAMELS (Capital, Asset Quality, Management, Earnings, Sensitivity to Market Risk) rating
system is an internal supervisory tool first adopted by US regulatory institutions in 1979.

4Besides IndyMac, other prominent examples of bank failures during the 2007/08 financial crisis
include Washington Mutual in September 2008 and Wachovia in December 2008. Two common features
of these cases were the large losses the banks incurred on their (non-prime) mortgage loan portfolios and
the subsequent run-offs by uninsured depositors that were sparked by the uncertainty about the banks’
solvency once information about these losses became public (FDIC, 2017).
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assets, the value of information – i.e., the gain from avoiding a type-I error – decreases

over time. The PA therefore optimally resolves the bank once the dilution costs from

allowing wholesale debt withdrawals to continue exceed the value of information. The

optimal resolution date can be viewed as the PA’s assessment that the bank’s point of

non-viability (PONV) has been reached.

Our baseline model focuses on the optimal timing of resolution. In practice, policy au-

thorities have access to other policy tools that can be employed before resolution measures

are invoked; e.g., central bank emergency facilities or treasury recapitalization programs.5

We extend the analysis by considering how the optimal timing of resolution is affected if

the PA can provide the bank with liquidity support (i.e., act as a lender of last resort) or

inject equity capital into the bank.

Enlarging the PA’s policy options to include the provision of liquidity support changes

the trade-offs faced by the PA in two important ways. First, liquidity support preserves

the value of information over time by allowing the bank to meet debt withdrawals without

fire-selling assets. Second, liquidity support exposes the PA to counterparty risk. The

reason is that by providing liquidity support the PA obtains a claim against the bank,

implying that the PA bears an additional loss if the bank’s asset turns out to be impaired.

Which of these two effects dominates depends on the social cost of public funds. If

there is no cost of public funds, the PA’s optimal policy consists of supporting the bank

immediately after wholesale creditors start withdrawing, and maintaining support until

information arrives. This policy eliminates the risk of making a type-I error: if the bank

is revealed to be solvent, wholesale creditors stop withdrawing and liquidity support is

terminated; if, instead, the bank is revealed to be insolvent, the PA resolves the bank

and makes insured retail depositors whole. Type-II errors have no effect on aggregate

output in this case since transfers from the PA do not create a deadweight loss. If the

disbursement of public funds involves a social cost, type-II errors matter for aggregate

output. The reason is that a marginal increase in the PA’s loss reduces aggregate output

5See Laeven and Valencia (2010) for an overview of policy interventions in distressed banks during the
2007/08 financial crisis, including liquidity support, government guarantees and public recapitalizations.
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by more than a marginal decrease in bank profits. As a result, the PA may choose to

delay the provision of liquidity support in order to reduce its counterparty risk exposure.

Such a policy may be optimal even though it forces the bank to engage in costly fire-sales

before liquidity support is granted.6

Instead of providing liquidity support, we also consider the effect of allowing the PA

to inject equity capital into the bank. A sufficiently large equity injection allows the bank

to refinance maturing wholesale debt by issuing new, long-term risky debt. Contrary to

liquidity support, it is never optimal to delay equity injections. The reason is that (risky)

debt refinancing allows to reallocate cash flows from the bank to the PA without requiring

the bank to engage in costly fire-sales. We show that the PA prefers equity injections over

liquidity support whenever the minimum equity injection required to enable the bank to

refinance its wholesale debt stock is smaller than the PA’s expected loss from providing

liquidity support.

Related Literature. Our paper builds on several strands of the literature. First, our

model is related to the literature on bank resolution. An early contribution by Mailath

and Mester (1994) studies a regulator’s incentive to shut down distressed banks when

banks can engage in inefficient risk-shifting and their closure involves opportunity costs.

Acharya and Yorulmazer (2007) extend their analysis to a setting with multiple banks

and systemic shocks. Other, more recent, papers study the design of resolution policies in

different contexts.7 Schilling (2019) studies how regulatory forbearance affects creditors’

withdrawal incentives. Walther and White (2020) characterize optimal bail-in rules when

regulatory interventions may signal negative information to a bank’s creditors. All of

these papers emphasize the strategic interaction between regulatory authorities and banks’

creditors. Our model, which abstracts from such strategic considerations, complements

6We show in Appendix A3 that our results are robust if the PA can charge a penalty rate above the
risk-free rate, or if the bank has cash balances that it can draw down to meet debt withdrawals.

7There also exists a recent literature studying the design of bank resolution policies in a multinational
setting, including Calzolari and Loranth (2011), Bolton and Oehmke (2019), and Segura and Vicente
(2019).
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these papers by studying the optimal timing of resolution.

Our model shares important similarities with the “real options” literature, including

McDonald and Siegel (1986) and Ingersoll and Ross (1992). These papers study the

optimal timing of a firm’s decision to invest in an irreversible project when the underlying

benefits of the project are uncertain. The problem of the PA in our model is conceptually

closely related, as it involves the PA choosing the timing of an irreversible resolution

decision when the underlying financial condition of a distressed bank is uncertain.

Our paper also contributes to the literature on the design and effects of lender of

last resort (LLR) interventions. Thornton (1802) and Bagehot (1873) were the first to

study under what conditions a LLR should lend to banks in a liquidity crisis. Rochet and

Vives (2004) provide a theoretical foundation to Bagehot’s doctrine that a LLR should

lend to solvent but illiquid banks, while Freixas, Rochet, and Parigi (2004) emphasize

the difficulty of basing policy decisions on a clear-cut distinction between insolvency and

illiquidity – a criticism previously raised by Goodhart (1999). Our model also emphasizes

the uncertainty involved in distinguishing insolvent from illiquid banks. However, unlike

most of the extant literature, we focus on the dynamic trade-offs of LLR interventions.

In this regard, our model is most closely related to Santos and Suarez (2019). The

dynamic banking model in our paper is largely inspired by theirs, but the focus is dif-

ferent. They show how regulatory liquidity requirements improve the efficiency of LLR

interventions by buying policymakers time before making an intervention decision. Two

key differences between their framework and ours that deserve to be highlighted are: (i)

we assume that bailing out insured deposits is costly, and (ii) we allow for the partial

liquidation of the bank’s assets. Even though these differences may seem innocuous, they

fundamentally change the trade-offs affecting the PA’s intervention decision. In partic-

ular, in Santos and Suarez (2019), the policy trade-off is essentially static since it only

depends on how the expected value of the bank’s asset compares to its liquidation value.

Hence, in their model, it is always optimal to delay the decision of whether to resolve or

support the bank until the bank has depleted its cash balances. In our model, in contrast,
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the policy problem is inherently dynamic, with the PA optimally trading off the value of

information against the dilution costs of delaying intervention over time.

Our model also shares common features with the dynamic banking models of He

and Xiong (2012) and He and Manela (2016). In contrast to these papers, we abstract

from coordination problems among wholesale creditors and their information acquisition

incentives and focus instead on the optimal timing of policy interventions.

The bank in our model is passive and its balance sheet is exogenously given. We

deliberately abstract from ex ante moral hazard concerns in order to highlight the ex

post trade-offs faced by policymakers.8 In particular, we show that providing liquidity

support to a troubled bank need not always be ex post optimal since it increases the cost

borne by policy authorities if the bank is ultimately revealed to be insolvent.9 Other

papers studying ex post policy interventions in troubled banks include Philippon and

Skreta (2012), Bruche and Llobet (2014) and Segura and Suarez (2020). These papers

adopt a mechanism design approach, and characterize the optimal design of bank bailouts

when banks are subject to a debt overhang problem and are privately informed about the

quality of their assets. Rather than studying the static implementation of recapitalization

programs under asymmetric information, our dynamic model focuses on the timing of

policy interventions under uncertainty.

2 The Model

We consider a model in continuous time with a representative bank, a continuum of

investors and a Policy Authority (PA). Time is denoted by t ∈ R. All agents are risk

neutral and there is no discounting.

8There exists an extensive literature studying the ex ante incentive effects of LLR interventions: e.g.,
Repullo (2005), Ratnovski (2009), and Jeanne and Korinek (2020)

9The negative effect of LLR support on the cost of bailing out depositors has been previously recognized
by economic historians, including Bordo (1989), but seems to have been largely ignored by more recent
theoretical contributions. Choi, Santos, and Yorulmazer (2021) point to another unintended consequence
of LLR operations; namely, the adverse effect on the quality of collateral in private funding markets.
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2.1 The Bank

The bank enters the economy before date 0 with a legacy asset (e.g., a loan portfolio),

financed by a mix of insured deposits (δ) and uninsured wholesale debt (D0). We normalize

the bank’s balance sheet size to 1, so that the bank’s equity is equal to E0 ≡ 1− δ −D0.

The asset is perfectly divisible. To simplify the exposition, we assume that the asset

matures at some date T →∞.10

At date 0, a verifiable shock realizes that may adversely affect the quality of the bank’s

asset (e.g., increase the fraction of non-performing loans in its portfolio). With probability

µ ∈ (0, 1), the bank’s asset is unaffected by the shock and generates a cash flow of Rg at

maturity. With converse probability 1− µ, the bank’s asset is impaired by the shock and

its cash flow at maturity is reduced to Rb < Rg. We refer to a bank with an unimpaired

asset as a good bank, and a bank with an impaired asset as a bad bank. The asset generates

no cash flow prior to maturity, but can be liquidated at any date t ≥ 0 for a value of

`i ≤ Ri, where i ∈ {g, b} denotes the bank’s type.11

Whether or not the bank’s asset is impaired by the shock is initially unobservable: i.e.,

the bank’s type is unknown at date 0. However, the probability µ is common knowledge,

which allows to calculate the asset’s expected cash flow at maturity, R ≡ µRg+(1−µ)Rb,

and the asset’s expected liquidation value, ` ≡ µ`g + (1− µ)`b.

Public information (news) about the quality of the bank’s asset randomly arrives over

time.12 For simplicity, we assume that if news arrives, it perfectly reveals the bank’s type

to all agents in the economy. News is assumed to follow a Poisson process with intensity

λ > 0. Given this Poisson process, the probability that news arrives before some date t

10Our analysis would be essentially unchanged if, instead of having infinite maturity, the asset matured
according to a Poisson process with a sufficiently small intensity, so that any other process with positive
intensity (e.g., the maturing of the bank’s debt claims) arrives earlier almost surely.

11The assumption that liquidation may destroy value is meant to reflect frictions that reduce the asset’s
liquidation value below its value in best use (Shleifer and Vishny, 1992). For example, such costs could
stem from asset buyers being less efficient at monitoring borrowers than the bank, which reduces the
value of loans if they are sold.

12We do not explicitly model where information comes from, and take the information process as
exogenous. In practice, public information about the quality of a bank’s assets comes from various
sources, including bank supervisors, credit rating agencies, financial markets, etc.
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follows an exponential distribution and is given by:

p(t) = 1− e−λt.

2.2 Investors

The bank’s debt is held by the investors. An amount D0 of this debt is uninsured and

is uniformly held across a subset of investors, which we refer to as uninsured wholesale

creditors. The remaining debt δ is insured and is held by the remaining investors, which

we refer to as insured retail depositors.

Following Santos and Suarez (2019), we assume that uninsured creditors are given the

option to “put their debt back” to the bank in exchange for a fixed repayment D > D0 at

some random exercise date.13 This assumption is akin to assuming that wholesale debt

consists of overlapping issues of zero-coupon debt with fixed maturity. Creditors’ option

to put their debt arrives according to an independent Poisson process with intensity γ > 0.

Given this Poisson process, the fraction of uninsured creditors who receive the option to

put their debt before some date t is equal to:

1− n(t) = 1− e−γt.

At any date t, uninsured creditors with the option to put their debt back to the

bank must decide whether to withdraw or roll over, given all the available information.14

Uninsured creditors make their withdraw/roll over decision in order to maximize their

expected payoff. We assume that uninsured creditors choose to stay invested in the bank

if they are indifferent between withdrawing and rolling over (e.g., due to small transaction

costs that must be incurred if they withdraw).

13The repayment D is negotiated before date 0 and is therefore determined outside the model. We
assume that the probability that the bank is hit by the shock is sufficiently small such that it was feasible
for the bank to raise financing before date 0.

14We assume that the dispersed ownership of wholesale debt, and the resulting hold up problem among
uninsured creditors, rules out the possibility of privately restructuring the bank’s wholesale debt.
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Insured deposits are a stable source of financing and are never withdrawn before

the asset matures.15 Insured depositors are senior to uninsured creditors at maturity,

or following a regulatory intervention that leads to the resolution of the bank prior to

maturity. In case the bank is unable to meet insured depositors’ claims in full, they are

made whole by a deposit insurance fund (financed by the PA). There is a social cost to

public funds φ > 0 that is incurred per unit of funds spent by the PA to make insured

depositors whole.16

Assumption 1. Asset cash flows and debt face values satisfy:

µ(Rg − δ) < D < Rg − δ and Rb = `b < `g < min{δ,D}

The assumption D < Rg−δ implies that a good bank is solvent in the absence of asset

sales. Conditional on being hit by the shock, however, the bank cannot issue new claims

since µ(Rg − δ) < D and Rb < δ. Consequently, the bank must meet debt withdrawals

by partially liquidating its asset.

The bank’s asset can be sold at any date t to deep-pocketed asset buyers at a per unit

price equal to its liquidation value given all the available information at the time of sale.

Thus, the asset can be sold for ` if liquidation takes place before news arrives, or for `i if

liquidation takes place after news arrives, depending on whether the bank’s type i ∈ {g, b}

is revealed to be good or bad. To simplify the exposition, we assume `g < D so that even

a good bank eventually defaults if sufficiently many uninsured creditors withdraw, and

that `g < δ so that the PA must always bail out insured depositors if the bank’s asset is

liquidated before it matures. Finally, we also assume `b = Rb so that the liquidation of

an impaired asset does not destroy value. These last three assumptions can be relaxed

without changing the qualitative nature of our results.17

15Recent empirical evidence, including Chen, Goldstein, Huang, and Vashishtha (2020), show that
insured deposits are “sticky”, in the sense that they are withdrawn slower and in smaller quantities than
uninsured deposits.

16The social cost of public funds could reflect, for example, distortions caused by taxation if additional
revenue has to be raised to pay back insured deposits (Dahlby, 2008).

17What is important is that the asset’s expected liquidation value before information arrives (`) is less
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2.3 The Policy Authority

The Policy Authority (PA) enters the economy at date 0 and decides whether to intervene

at some date t ≥ 0. Its objective is to maximize expected aggregate output, defined as:

E[Total Cash Flows + φ(Loss of the PA)].

Aggregate output equals total cash flows (i.e., bank profits plus investor income minus

any transfer from the PA) plus any loss incurred by the PA scaled by the social cost of

public funds, φ. If φ = 0, aggregate output is unaffected by how cash flows are allocated

between the bank, investors and the PA. In this case, bailing out insured depositors does

not involve a deadweight loss. If φ > 0, the allocation of cash flows matters for aggregate

output. In particular, increasing the PA’s loss by one unit reduces aggregate output by

more than reducing bank profits or investor income by one unit.

Section 3 considers the baseline model where the PA decides whether to resolve the

bank at some date t ≥ 0. If the bank is resolved, the PA enforces a complete write-down of

the bank’s outstanding uninsured debt and liquidates its remaining assets.18 Any loss to

the PA from bailing out insured depositors following resolution is scaled by the social cost

of public funds. Section 4 extends the analysis by allowing the PA to act as a lender of last

resort (LLR) and to lend funds to the bank at the (zero) risk-free rate. If the bank turns

out to be insolvent, any additional loss incurred by the PA from the provision of liquidity

support is also scaled by the social cost of public funds. Section 5 provides a discussion of

two key aspects of the model, namely: (i) how the availability of liquidity support affects

than its expected cash flow at maturity (R), but exceeds the cash flow of an impaired asset at maturity
(Rb). Similarly, what is important is that the face value of debt (D) and the face value of insured deposits
(δ) exceed the asset’s liquidation value in the absence of information (`).

18Resolution in our model reflects current regulatory practices. For example, in the United States,
the FDIC is responsible for taking a critically undercapitalized bank into receivership. The FDIC then
sells the franchise of the failing institution to another financial institution or retains the bank’s assets
and pays insured depositors directly. Similarly, in Europe, the Bank Recovery and Resolution Directive
(BRRD) enables resolution authorities to dispose of an institution’s franchise, temporarily transferring
it to a publicly owned entity, and/or writing down bail-inable debt. We abstract from differences in
resolution tools by assuming that the PA always obtains a payoff equal to the liquidation value of the
bank’s remaining assets following resolution.

11



the optimal timing of resolution; and (ii) the conditions under which liquidity support is

preferred to publicly-financed equity injections. Section 6 concludes.

3 Optimal Timing of Resolution

Before characterizing the optimal timing of the PA’s resolution decision, we first analyze

uninsured creditors’ incentives to roll over or withdraw their claims.

3.1 Creditors’ withdrawal decision

It is strictly dominant for uninsured creditors to start exercising their option to put their

debt back to the bank as soon as the opportunity arises. By withdrawing, uninsured

creditors secure repayment from the liquidation proceeds of the bank’s asset and circum-

vent the seniority of insured depositors in resolution. If they were to roll over, uninsured

creditors would run the risk of not being repaid, either because the bank’s asset turns out

to be impaired or because the PA chooses to resolve the bank before its asset matures.

The bank cannot issue new claims in the absence of information (cf., Assumption 1),

and must finance withdrawals by partially selling its asset. If withdrawals last until date

t and no news arrives in the meantime, the share of assets the bank has to sell in order

to meet withdrawals is equal to:

1− z(t) =
(1− n(t))D

`
.

The selling of assets progressively erodes a good bank’s equity value. Hence, there

exists a critical date after which even a good bank becomes insolvent. This critical date

τ is determined by the following condition:

z(τ)Rg − n(τ)D − δ = 0,
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which, given the definitions of z(t) and n(t), can be solved for τ :

τ =
1

γ
ln


(
Rg

`
− 1
)
D

δ +
(
D
`
− 1
)
Rg

 > 0,

where the inequality follows from Assumption 1.

The bank does not immediately default at date τ because it still has assets that can

be liquidated. However, since insured depositors are senior at maturity, it is strictly

dominant for uninsured creditors to continue withdrawing for all t > τ even if the bank is

revealed to be good. Similarly, it is strictly dominant for uninsured creditors to continue

withdrawing if the bank is revealed to be bad since a bad bank is always insolvent.

In the absence of intervention by the PA, wholesale debt withdrawals only stop if good

news arrives before date τ . Since a good bank is still solvent at date t ≤ τ , uninsured

creditors that roll over their claims in this case are guaranteed full repayment at maturity

providing that all other creditors do the same. We assume that uninsured creditors

coordinate on the equilibrium in which they all roll over.19

Lemma 1. It is strictly dominant for uninsured creditors to start withdrawing at date

0. Given withdrawals that last t periods, it is strictly dominant for uninsured creditors to

continue withdrawing after the arrival of bad news or if t > τ . It is weakly dominant for

uninsured creditors to stop withdrawing if good news arrives before τ .

3.2 Optimal intervention: waiting versus resolution

The PA has the option to enforce a complete write-down of the bank’s outstanding unin-

sured debt and liquidate its remaining assets at any date t ≥ 0. The PA’s problem consists

of deciding when to intervene and resolve the bank (if ever).

19This assumption can be justified by the fact that the PA would optimally bail out the bank at no
cost if uninsured creditors were to continue withdrawing following the arrival of good news before τ .
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The value of resolving the bank at date t is equal to:

L(t) = `+ φ(z(t)`− δ). (1)

The first term of Equation (1) equals the total proceeds from liquidation: i.e., the

liquidation value of the bank’s remaining assets, z(t)`, plus the cash flow from selling

assets to cover debt withdrawals before date t, (1 − z(t))`. The second term equals the

cost of bailing out insured depositors following resolution: i.e., the difference between the

liquidation value of the bank’s remaining assets less the face value of insured deposits

scaled by the social cost of public funds, φ. Since z′(t) < 0, the value from resolving

the bank strictly decreases in t: i.e., L′(t) = φn′(t)D < 0. The reason is that delaying

resolution gives uninsured creditors time to extract more resources from the bank, which

increases the cost of bailing out insured depositors following resolution. We refer to this

effect as the dilution costs of delaying resolution.

Instead of resolving the bank at date t, the PA has the option to delay its resolution

decision and wait for news. The benefit of waiting for news stems from avoiding the

inefficient resolution of a good bank, and depends on whether news arrives before or

after date τ . If good news arrives before τ , uninsured creditors stop withdrawing and

intervention becomes unnecessary. If bad news arrives before τ , the bank is revealed to

be insolvent and the PA optimally resolves the bank. Consequently, expected aggregate

output conditional on news arriving at date t′ ≤ τ is:

V (t′) = z(t′)R + (1− z(t′))`+ (1− µ)φ(z(t′)Rb − δ), ∀t′ ≤ τ. (2)

The first term of Equation (2) equals the expected value of the bank’s remaining assets.

The second term equals the liquidation proceeds used to pay back debt withdrawn before

date t′. The last term equals the PA’s expected loss from bailing out insured depositors

if the bank is revealed to be bad (insured depositors do not have to be bailed out if the

bank is revealed to be good since a good bank is still solvent at date t′ ≤ τ).
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Figure 1: Timing of the PA’s intervention decision.

If news arrives after date τ , wholesale creditors continue withdrawing regardless of

whether the bank is revealed to be good or bad (cf., Lemma 1). Since the arrival of

good news does not stop the costly fire-selling assets to meet debt withdrawals, the PA

optimally resolves the bank regardless of its type. Expected aggregate output conditional

on information arriving at date t′ > τ is therefore V (t′) = L(t′) for all t′ > τ .

Figure 1 summarizes the timing of the PA’s intervention decision. At every date t,

the PA must choose whether to resolve the bank or to delay resolution for an arbitrarily

small interval of time ∆. Given the Poisson process driving information arrival, the PA

expects news to arrive with probability λ∆ if it delays resolution. If news arrives, expected

aggregate output is equal to V (t + ∆). With complementary probability 1 − λ∆ news

does not arrive, in which case the PA must again choose at date t+ ∆ whether to resolve

the bank for a value of L(t+ ∆) or to continue waiting for news.

An optimal intervention policy consists of a threshold date tr such that the PA resolves

the bank at date tr if news does not arrive before. Given this policy rule, the value of

delaying resolution at date t as ∆→ 0 is equal to:20

W (t; tr) =

∫ tr−t

0

V (t+ k)dp(k) + (1− p(tr − t))L(tr). (3)

20See Lemma A1 in the Appendix for a formal derivation of the PA’s value function.
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Differentiating Equation (3) with respect to tr, it follows that any interior optimal reso-

lution date t∗r ∈ (0, τ) must satisfy the following first-order condition:

λ
(
V (t∗r)− L(t∗r)

)
+ L′(t∗r) = 0. (4)

The difference V (t∗r) − L(t∗r) corresponds to the value of information at the optimal

resolution date. This difference measures the net gain from choosing the optimal policy

action following the arrival of information compared to resolving the bank. The first term

of Equation (4), which equals the value of information multiplied by the arrival rate of

news λ, captures the benefit of delaying resolution for an arbitrarily short period of time

at date t∗r. The second term, L′(t∗r), equals the dilution costs from allowing wholesale debt

withdrawals to continue for a similarly short period of time at date t∗r.

Before date τ , the value of information can be positive or negative, depending on

the value of φ. After date τ , in contrast, the value of information is always zero since

V (t′) = L(t′) for all t′ > τ . Thus, it is never optimal for the PA to delay resolution to

after date τ : i.e., t∗r ≤ τ .21 In order for the PA to sometimes choose an interior optimal

resolution date, t∗r ∈ (0, τ), we impose the following assumption.22

Assumption 2.

µλδ < γ(D − `). (5)

Assumption 2 implies that marginally delaying resolution increases the PA’s expected

loss. The left-hand side of condition (5) equals the reduction in the PA’s expected loss

from marginally delaying resolution: i.e., the instantaneous probability that good news

arrives multiplied by the face value of insured deposits. The right-hand side equals the

increase in dilution costs from marginally delaying resolution: i.e., the fraction of debt

withdrawals per unit of time multiplied by the reduction in the bank’s equity value due

to asset sales.

21See the proof of Proposition 1 in Appendix A1 for a formal proof of this claim.
22In Appendix A2, we discuss what happens if Assumption 2 is violated and show that the optimal

resolution date in this case is either t∗r = 0 or t∗r = τ , depending on the value of φ.
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Proposition 1. Given Assumption 2, there exist threshold values, φ and φ, such that the

PA’s optimal intervention decision in the absence of news satisfies:

• If φ < φ: The PA resolves the bank at date t∗r = τ .

• If φ ∈ [φ, φ): The PA resolves the bank at date t∗r ∈ (0, τ).

• If φ ≥ φ: The PA resolves the bank at date t∗r = 0.

If bad news arrives before t∗r, the bank is immediately resolved. If good news arrives before

t∗r, uninsured creditors stop withdrawing and the PA never intervenes.

When deciding whether or not to intervene, the PA trades off the value of information

with the dilution costs of delaying resolution. On the one hand, delaying resolution

reduces the likelihood of a type-I error: i.e., the risk that the PA mistakenly chooses

to resolve a solvent bank. On the other hand, delaying resolution allows wholesale debt

withdrawals to continue and reduces the resources the PA can seize after resolution. Not

liquidating the bank today therefore increases the cost of a type-II error: i.e., the PA’s

loss from bailing out insured depositors in case the bank is ultimately resolved.

The timing of the PA’s resolution decision critically depends on the social costs of

public funds. If there are no social costs (φ = 0), the dilution costs are absent. While

uninsured debt withdrawals reduce the resources the PA can seize after resolution, they do

not create a deadweight loss since they just transfer resources from the PA to uninsured

creditors. In this case, it is always optimal to delay resolution until date τ . Such a policy

maximizes the likelihood that uninsured creditors stop withdrawing following the arrival

of good news, thereby minimizing the risk that the PA inefficiently resolves a solvent

bank. By continuity, it follows that if the social costs are sufficiently small, the PA never

liquidates the bank before date τ (unless bad news arrives before).

If the social costs are large (φ ≥ φ), the PA resolves the bank immediately after

wholesale creditors start withdrawing: i.e., at date 0. In this case, the dilution costs from

allowing wholesale debt withdrawals to continue always exceed the value of information.

Waiting for good news simply doesn’t pay.
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For intermediate values φ ∈ [φ, φ), the PA optimally delays resolution to after date

0 but chooses to resolve the bank at some date t∗r < τ if news does not arrive before.

Rather than resolving the bank immediately after withdrawals start, the PA is willing to

wait in the hope that good news arrives tomorrow. As time passes, however, the dilution

costs from allowing wholesale debt withdrawals to continue become too large compared

to the value from avoiding the inefficient resolution of a solvent bank. The reason is

that the bank must meet debt withdrawals by fire-selling assets, which leads the value of

information to decrease over time. The PA therefore optimally resolves the bank strictly

before date τ .

3.3 Implications for the optimal timing of resolution

In this subsection, we show how the optimal resolution date is affected by changes in

broader economic conditions (the arrival rate of information, λ, and the marketability of

the bank’s asset, `) and the bank’s liability structure (the share of insured deposits, δ,

and the intensity of debt withdrawals, γ).

Corollary 1 (Broader Economic and Regulatory Environment). For φ ∈ (φ, φ), the

optimal resolution date t∗r:

1. strictly increases in the the arrival rate of information, ∂t∗r
∂λ

> 0;

2. can increase or decrease in the marketability of bank assets, ∂t∗r
∂`

≷ 0.

Arrival rate of information. A higher arrival rate of information, λ, increases the

value of information but has no effect on the dilution costs from delaying resolution.

Hence, increasing λ leads the PA to optimally delay its resolution decision. Figure 2a

provides a numerical example of the effect of an increase in λ on the optimal resolution

date. The figure plots the value of information (black lines) and the dilution costs (red

line) as functions of time. The optimal resolution date, t∗r, lies at the intersection of the

two curves. A higher value of λ leads to a rightward shift in the value of information
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(black dashed line), while leaving the dilution costs unchanged. As a consequence, the

optimal resolution date increases from t∗r to t∗
′
r .

A higher value of λ can be interpreted as reflecting more efficient information collection;

e.g., due to improvements in institutional processes or technological developments. Exam-

ples of the former include the harmonization of recovery and resolution frameworks in the

European Union with the goal to increase the speed of resolution activities (EU, 2014), or

the adoption of common principles that improve coordinated resolution of multinational

banks (FSB, 2014). A recent example of technological developments that facilitate reg-

ulatory information collection is the development and implementation of a global legal

identifier system that enhances regulators’ surveillance powers (FSB, 2019).

Asset marketability. Changes in the liquidation value, `, have an ambiguous effect

on the optimal resolution date. The ambiguity stems from two countervailing effects of `

on the value of information (as with changes in λ, changes in ` do not affect the dilution

costs from delaying resolution). First, an increase in asset marketability implies that the

bank needs to sell less assets in order to meet a given amount of debt withdrawals. Larger

values of ` therefore increase expected aggregate output conditional on information, V (t),

which raises the value of information. Second, an increase in asset marketability increases

the value from resolution, L(t), because the PA obtains a higher price from liquidating

the bank’s assets. This effect lowers the value of information. Hence, depending on which

of these two effect dominates, the optimal resolution date can either increase or decrease

if the marketability of the bank’s asset improves.

Corollary 2 (Bank Liability Structure). For φ ∈ (φ, φ), the optimal resolution date t∗r:

1. strictly increases in the the share of insured deposits, ∂t∗r
∂δ
> 0;

2. can increase or decrease in the intensity of debt withdrawals, ∂t∗r
∂γ

≷ 0.

Share of insured deposits. An increase in the amount of insured deposits, δ, leads

the PA to resolve the bank later. The reason is that a higher share of insured deposits
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Figure 2: Comparative statics of γ and λ.
The figure shows the expected value of information (black lines), λ(V (t∗r)−L(t∗r)), and the dilution costs

(red lines), L′(t∗r). The optimal resolution date t∗r is at the intersection of the curves. Baseline parameter

values: λ = 0.05, γ = 0.99, µ = 0.25, φ = 0.01, D = 0.75, δ = 0.25, Rg = 1.1, `g = 0.2, Rb = `b = 0.18.

(a) Increase in λ: An increase in the arrival rate
of information, λ, from 0.05 to 0.0516 increases
the optimal resolution date.

(b) Increase in γ: An increase in the intensity of
debt withdrawals, γ, from 0.999 to 1.024 reduces
the optimal resolution date.

increases the benefit of avoiding a type-I error since more insured deposits have to be

bailed out if a solvent bank is inefficiently resolved. Graphically, the effect of an increase

in insured deposits (and a corresponding decrease in initial equity) is akin to the effect

of a higher arrival rate of information: i.e., the value of information shifts to the right,

while the dilution costs remain unaffected (see Figure 2a).23 This result suggests that

regulatory authorities will be more inclined to resolve troubled banks later if these are

financed by a higher share of insured deposits, compared to otherwise similar banks with

fewer insured deposits.

Intensity of debt withdrawals. The ratio 1/γ can be interpreted as the average ma-

turity of the bank’s wholesale debt, with a higher value of γ corresponding to a shorter

debt maturity structure. Increasing γ has an ambiguous effect on the PA’s optimal res-

olution date. First, a shorter debt maturity structure reduces the value of information

because fewer assets are left on the bank’s balance sheet once news arrives. Taken on its

23Qualitatively, the result that an increase in insured deposits increases the optimal resolution date is
independent of whether the increase in δ is matched by a reduction in bank equity or in the amount of
wholesale debt. However, if the increase in insured deposits is matched by a reduction in wholesale debt,
the dilution costs also decrease, which leads the PA to delay resolution even more compared to the case
where higher insured deposits are matched by a reduction in bank equity.
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own, this effect incentivizes the PA to resolve the bank earlier. Second, a shorter debt

maturity structure has two opposing effects on the dilution costs. On the one hand, the

dilution costs increase because a larger fraction of outstanding debt is expected to be

withdrawn if intervention is marginally delayed. This flow effect reinforces the effect of

γ on the value of information. On the other hand, the bank’s stock of outstanding debt

at any given date declines if γ increases. This stock effect reduces the dilution costs and

incentivizes the PA to delay resolution.

The numerical example in Figure 2b illustrates a case where the flow effect outweighs

the stock effect, so that a shorter debt maturity structure leads to a rightward shift in

dilution costs (red curves) and an earlier optimal resolution date. This numerical result

suggests that regulatory measures that incentivize banks to use more stable sources of

funding (e.g., Basel III’s net stable funding ratio) optimally lead regulatory authorities

to delay the resolution of troubled banks.

4 Optimal Intervention with Liquidity Support

In this section, we analyze how the optimal timing of the PA’s resolution decision is

affected if the PA can also act as a lender of last resort (LLR) by lending funds to the

bank at the (zero) risk-free rate.

4.1 Value from liquidity support

By lending funds to the bank, the PA allows the bank to cover debt withdrawals without

having to sell assets. Liquidity support, however, affects neither the assets’ cash flow

nor the face value of the bank’s debt liabilities. Consequently, liquidity support does not

change wholesale creditors’ withdrawal incentives and Lemma 1 continues to apply.

In exchange for the funds supplied by the PA, the bank provides the PA with (se-

nior) claims against its future cash flows.24 Liquidity support therefore exposes the PA

24We can interpret the seniority of the PA’s claim as akin to a collateral requirement in an emergency
lending operation. As in practice, if the central bank obtains a senior (or collateralized) claim, it reduces
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to counterparty risk: if the bank turns out to be bad, the PA must not only bail out in-

sured depositors but also makes an additional loss on any unpaid claims it holds against

the bank. Thus, compared to delaying resolution and waiting for news to arrive, liquid-

ity support preserves the value of information over time by avoiding the liquidation of

unimpaired assets but also increases the PA’s loss conditional on the bank being insolvent.

Consider a policy whereby the PA initiates liquidity support at date ts ≥ 0 and

continuously maintains support until news arrives at some date t′ > ts. The value of such

a policy depends on whether liquidity support is initiated before or after date τ . We show

in the Appendix that the PA will never choose to initiate liquidity support after date τ .25

Hence, in what follows, we focus on the case where ts ≤ τ .

If the PA initiates support before date τ and the bank is revealed to be good, with-

drawals stop and the PA does not incur any loss. In contrast, if the bank is revealed to be

bad, the PA resolves the bank and incurs a loss from bailing out insured depositors and

from any unpaid claims it holds against the bank. Expected aggregate output conditional

on information arriving at date t′ > ts is therefore:

Vs(t
′; ts) = V (ts)− (1− µ)φ(n(ts)− n(t′))D, ∀ts ≤ τ. (6)

Since the provision of liquidity support allows the bank to pay back withdrawing

creditors without selling assets, the bank’s total cash flow and the cost of bailing out

insured depositors of a bad bank remain unchanged between date ts (when support is

initiated) and date t′ (when news arrives). The second term of Equation (6) equals the

PA’s additional loss from granting liquidity support if the bank turns out to be bad and

reflects the claims the PA holds against the bank by the time news arrives, which amount

to (n(ts) − n(t′))D. The following assumption imposes an upper bound on the PA’s

additional loss from providing liquidity support.26

the resources that are left to cover insured deposits in case the bank defaults. In our model, since all
losses are ultimately borne by the PA, it is irrelevant whether losses originate from liquidity provision or
from covering insured deposits.

25See Lemma A6 in Appendix A1 for a formal proof of this claim.
26Assumption 3 implies an upper bound ¯̀< δ. We discuss what happens if Assumption 1 is violated
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Assumption 3.

(1− µ)
γ

λ+ γ
D < µ(δ − `). (7)

The left-hand side of condition (7) equals the expected value of wholesale debt with-

drawals from a bad bank before news arrives, which corresponds to the PA’s expected

counterparty risk exposure from providing liquidity support at date 0. Assumption 3

states that this additional liability from providing liquidity support is strictly less than

the benefit from not having to bail out insured depositors of a good bank conditional on

liquidity support being maintained until news arrives.

4.2 Optimal intervention policy

Optimal intervention policies with liquidity support can be summarized by two thresholds,

ts and tr ≥ ts, where ts denotes the date at which the PA initiates liquidity support (if

ever) and tr denotes the date at which the PA resolves the bank (if ever).27 Given this

policy rule, the PA’s value function (3) becomes:

S(t; ts, tr) =

∫ ts−t

0

V (t+ k)dp(k) +

∫ tr−t

ts−t
Vs(t+ k; ts)dp(k) + (1− p(tr − t))L(tr). (8)

The first term of Equation (8) equals expected aggregate output if the PA delays

intervention after date 0 and news arrives before liquidity support is initiated or the

bank is resolved. The second term equals expected aggregate output if news arrives after

liquidity support is initiated at date ts. The last term equals aggregate output if the bank

is resolved at date tr and news does not arrive before. Maximizing Equation (8) with

respect to ts and tr yields the PA’s optimal intervention policy.

Proposition 2. Given Assumption 3, there exist threshold values, φ∗ and φ∗∗, such that

the PA’s optimal intervention decision in the absence of news satisfies:

in Appendix A2 and show that the PA in this case will never choose to delay liquidity support.
27We show in the proof of Proposition 2 that restricting attention to monotone policies is without loss

of generality: i.e., the PA will never choose to terminate liquidity support without resolving the bank.

23



• If φ < φ∗: The PA provides liquidity support immediately at date 0 and maintains

support until news arrives: i.e., t∗s = 0 and t∗r =∞.

• If φ ∈ [φ∗, φ∗∗): The PA delays liquidity support until date τ and then maintains

support until news arrives: i.e., t∗s = τ and t∗r =∞.

• If φ ≥ φ∗∗: The PA resolves the bank at date 0: i.e., t∗s = t∗r = 0.

If the PA supports the bank and good news arrives, wholesale debt withdrawals stop and

the PA ends its liquidity support. If bad news arrives, the bank is immediately resolved.

Figure 3 provides a graphical illustration of Proposition 2. As in Section 3, it is

useful to consider the benchmark case where there are no social costs to public funds. If

φ = 0, the optimal intervention policy consists of providing liquidity support at date 0

and maintaining support until news arrives. Granting immediate liquidity support ensures

that unimpaired assets are never sold and eliminates the risk of a type-I error. Without

the social costs, there is no deadweight loss from bailing out insured deposits of a bad

bank, and hence no costs associated with making a type-II error.

When φ > 0, the optimal policy depends on the liquidation value of the bank’s asset.

For small values of `, the PA never resolves the bank in the absence of news, regardless

of the value of φ. The only decision the PA has to make is whether to support the bank

at date 0 (if φ < φ∗) or to delay the provision of liquidity support to date τ (if φ ≥ φ∗).

Liquidity support in this case not only avoids costly fire-sales, it also lowers the PA’s

expected loss compared to resolution. Consequently, the PA always prefers to support

the bank.

Delaying liquidity support has two opposing effects on aggregate output when ts ≤ τ .

On the one hand, delaying support forces the bank to cover debt withdrawals by fire-selling

assets, which lowers the bank’s profits if it turns out to be good. On the other hand,

delaying support reduces the PA’s expected loss. The reason is that delaying support

lowers the PA’s loss from unpaid claims it holds against the bank in case the bank turns

out to be bad. When φ ≥ φ∗, the gain from reducing the PA’s counterparty risk exposure
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Figure 3: Intervention regimes in φ− ` space.
The graph plots the two thresholds, φ∗(`) and φ∗∗(`), as functions of ` and shows the different policy

regions in φ−` space. The dark-shaded region corresponds to parameter values where providing liquidity

support at date 0 is optimal. The unshaded region corresponds to parameter values where delaying

liquidity support until date τ is optimal. The light shaded region corresponds to parameter values where

resolving the bank at date 0 is optimal.

exceeds the loss from fire-selling assets for all ts ≤ τ . Hence, the PA optimally delays

liquidity support to date τ . Further delaying the provision of liquidity support is never

optimal because a good bank has negative equity if it covers debt withdrawals by selling

assets beyond date τ . As a result, any reduction in the bank’s cash flow from selling

assets after date τ is ultimately borne by the PA.

For large values of `, resolving the bank immediately at date 0 may be optimal. In this

case, the provision of liquidity support entails a trade-off: i.e., it avoids costly fire-sales

but increases the PA’s expected loss compared to immediate resolution. If φ > φ∗∗, the

PA’s additional loss from providing liquidity support is too great compared to the value of

avoiding a type-I error. Thus, the PA optimally resolves the bank at date 0. Contrary to

the case without liquidity support, resolving the bank after date 0 in the absence of news
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is never optimal. The reason is that liquidity support preserves the value of information

over time, implying that liquidity support always dominates delaying resolution.

4.3 Interpreting the frictions

The parameters φ and ` parameterize the two key frictions in our model: i.e., the social

cost of public funds and the deadweight loss from liquidating unimpaired assets. Although

these frictions enter our model in reduced form, variations in these parameters provide

insights as to how systemic externalities or changes in macroeconomic conditions affect

the PA’s optimal intervention decision.

First, the social cost of public funds may be lower for systemically important banks

(e.g., due to spillovers that the bailout of depositors of such banks imposes on other

financial institutions). The failure of systemically important banks may also generate

large fire-sale externalities due to the size of their balance sheets. Hence, banks can be

ordered according to their systemic relevance along a positively sloped ray in Figure 3,

with more systemically relevant banks at the lower end of the ray. Our model implies that

regulatory authorities will optimally provide immediate liquidity support to systemically

important banks and choose to resolve less systemically relevant ones.

Second, the social cost of public funds may be larger during economic recessions when

the opportunity cost of public funds is particularly high (e.g., due to other government

interventions such as unemployment programs or fiscal support to non-financial corpora-

tions). Market liquidity may also be impaired during recessions because of widespread

asset sales and weakened balance sheets. The macroeconomic environment can therefore

be mapped along a negatively sloped ray in Figure 3, with recessions characterized by

small values of ` and large values of φ. Our model implies that regulatory authorities will

optimally delay the provision of liquidity support during bad economic times and make

more speedy resolution and support decisions during booms.
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5 Discussion

This section provides a discussion of two key aspects of the model. First, we discuss how

the presence of liquidity support affects the optimal timing of resolution. Second, we

analyze the conditions under which liquidity support is preferred to policies whereby the

PA directly injects equity capital into the bank.

5.1 Liquidity support and the timing of resolution

Comparing the optimal intervention decision with and without liquidity support (i.e.,

Propositions 1 and 2) shows how liquidity support affects the optimal timing of resolution.

Proposition 3. The presence of liquidity support implies that:

• If φ < φ∗∗, the PA never resolves the bank unless it is revealed to be insolvent.

• The PA becomes less inclined to resolve the bank at date 0: i.e., φ̄ < φ∗∗.

Without liquidity support, the PA chooses to resolve the bank at or before date τ ,

unless good news arrives before. Delaying resolution beyond date τ is never optimal since

wholesale debt withdrawals do not stop following the arrival of good news after that date.

With liquidity support, in contrast, the PA only resolves the bank if news arrives and

reveals the bank’s asset to be impaired. The reason is that liquidity support prevents

debt withdrawals from eroding a good bank’s equity value. The PA can therefore avoid

the insolvency of a good bank by providing liquidity support before date τ and maintaining

support until news arrives. In other words, liquidity support buys the PA time before

having to make an irreversible resolution decision, thereby eliminating the risk that the

PA mistakenly chooses to resolve a solvent bank.

If the social cost of public funds is sufficiently high, the PA resolves the bank at date

0, regardless of whether liquidity support is available. The critical cost threshold that

triggers the resolution of the bank, however, is strictly larger when liquidity support is

available: i.e., φ∗∗ > φ. The reason is that, with liquidity support, the value of information
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remains constant over time since the bank does not have to sell assets to meet debt

withdrawals. As a consequence, the cost threshold that makes the PA just indifferent

between resolving the bank at date 0 and delaying intervention to a later date is strictly

larger when liquidity support is available.

5.2 Liquidity support vs. equity injections

The key benefit of liquidity support is that it preserves the value of information over time

by avoiding the fire-selling of unimpaired assets. An alternative policy that avoids costly

asset sales is to directly inject equity into the bank so as to incentivize wholesale creditors

to refinance their claims.

This subsection analyzes the effect of such equity injections. We consider a policy

whereby the PA injects equity capital E into the bank at some date te ≥ 0 in exchange

for (preferred) stock that is junior to wholesale debt but senior to the bank’s inside equity.

Given this equity injection, the bank seeks to refinance all of its outstanding wholesale

debt with new long-term debt maturing at T → ∞ with face value F . We assume that,

following the equity injection, the PA can force the bank to refinance its wholesale debt

as long as it leaves the bank with non-negative profits. Thus, in order for debt refinancing

to be feasible, the face value F must satisfy the bank’s limited liability condition:

µ
(
z(te)Rg − δ − n(te)F

)
≥ 0, (9)

and wholesale creditors’ break-even condition:

µmin

{
F,
z(te)Rg − δ + E

n(te)

}
+ (1− µ) min

{
F,

(z(te)Rb − δ + E)+
n(te)

}
≥ D, (10)

where (·)+ ≡ max{·, 0}. The PA’s optimal equity injection maximizes expected aggregate

28



output at date te:

E∗(te) = arg max
E

{
z(te)R + (1− z(te))`− (1− µ)φmax{E, δ − z(te)Rb}

}
,

subject to the constraints (9) and (10).

Lemma 2. The optimal equity injection at date te is:

E∗(te) =
δ + n(te)D − z(te)R

(1− µ)
.

Expected aggregate output at any date t following an equity injection of E∗(te) at

date te equals:

Vb(te) = V (te)− φ
(
n(te)D − µ(z(te)Rg − δ)

)
. (11)

Just like the case with liquidity support, the bank’s total cash flow and the cost of

bailing out insured depositors of a bad bank remain fixed at their date te-level if the PA

injects equity. The reason is that equity injections allow the bank to avoid costly asset

sales by eliminating the maturity mistmatch on the bank’s balance sheet. The second

term of Equation (11) equals the PA’s additional loss from equity injections: i.e., the

difference between the value of outstanding wholesale debt at date te and the bank’s

remaining cash flow net of insured deposits.

Proposition 4. It is never optimal to delay equity injections to after date 0: i.e., t∗e = 0.

The PA strictly prefers to provide liquidity support compared to injecting an amount of

equity E∗(0) at date 0 if and only if:

(1− µ)
γ

λ+ γ
D < D − µ(Rg − δ). (12)

Contrary to liquidity support, it is never optimal to delay equity injections. The value

from delaying liquidity support stems from the fact that it lowers the PA’s loss from

unpaid claims it holds against the bank in case the bank turns out to be bad. Reducing
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the PA’s counterparty risk exposure, however, comes at the cost of requiring the bank

to meet debt withdrawals by fire-selling assets before liquidity support is granted, which

lowers the profits of a good bank. Equity injections allow to implement this reallocation of

cash flows from the bank to the PA without incurring the deadweight loss from fire-selling

assets. In particular, the optimal equity injection E∗(0) reduces the bank’s profits to zero

by forcing the bank to refinance its outstanding wholesale debt with face value D with

(risky) long-term debt with face value F = Rg − δ. Such a policy minimizes the amount

of equity the PA must inject in order for debt refinancing to be feasible, and thereby

minimizes the PA’s additional loss in case the bank defaults.

Whether equity injections are preferred to liquidity support depends on the amount of

equity the PA must inject in excess of the amount needed to bail out insured depositors

of a bad bank: i.e., (1−µ)(E∗(0)− (δ−Rb)) = D−µ(Rg− δ). This transfer corresponds

to the additional loss the PA must incur in order for wholesale creditors to be willing to

refinance their claims. If this transfer is greater than the PA’s counterparty risk exposure

from providing liquidity support at date 0 – the left-hand side of condition (12) – the PA

always prefers liquidity support over equity injections. Otherwise, if condition (12) fails

to hold, equity injections dominate liquidity support at date 0.

Corollary 3. The PA is more inclined to provide the bank with liquidity support rather

than injecting equity at date 0 when: (i) the intensity of debt withdrawals (γ) is low; (ii)

the arrival rate of information (λ) is high; (iii) the share of insured deposits (δ) is high.

Corollary 3 follows directly from condition (12). The PA tends to prefer liquidity

support over equity injections if the intensity of debt withdrawals is low, or if the arrival

rate of news is high, because these factors reduce the PA’s counterparty risk exposure

from providing liquidity support. More specifically, a low value of γ and high value of λ

imply that only few wholesale creditors withdraw their claims before information arrives.

The PA also prefers liquidity support over equity injections if the share of insured deposits

is high. The reason is that a higher value of δ increases the minimum amount of equity

the PA has to inject in order for the bank to be able to refinance its wholesale debt.
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6 Conclusion

Our paper proposes a positive theory of the optimal timing of policy interventions in

troubled banks, emphasizing the role of two key frictions: (i) the costly fire-selling of

bank assets, and (ii) the social cost of public funds. The policy trade-off in our model

can be framed in terms of minimizing a weighted sum of type-I errors (resolving a solvent

bank) and type-II errors (keeping an insolvent bank afloat). Delaying resolution creates

value by lowering the likelihood of inefficiently resolving a solvent bank but also gives

uninsured creditors time to withdraw maturing debt, which increases the cost of bailing

out insured depositors if the bank is ultimately resolved.

Our results provide insights into the effects and timing of LLR interventions. We show

that liquidity support, by preventing costly asset sales, buys the policy authority time to

make a more efficient resolution decision. The reduction in the risk of making a type-I

error, however, comes at the expense of increasing the cost of a type-II error because

liquidity support raises the policy authority’s loss if the bank turns out to be insolvent.

As a consequence, the policy authority may sometimes optimally delay the provision of

liquidity support. We show that liquidity support is preferred to outright equity injections

if the bank has a relatively long debt maturity structure, or if a significant share of the

bank’s debt liabilities consists of insured deposits.

Our model was motivated by the practical difficulties involved in distinguishing insol-

vent from illiquid banks, but it may also be applied to regulatory authorities’ decision

to forbear during banking crises. More specifically, delaying intervention and waiting for

good news to arrive can be interpreted as a regulator “gambling” for the resurrection of

a distressed bank in order to avoid expending public funds in resolving or supporting it.

We show that such gambling behavior can be optimal, even if the face value of a bank’s

debt liabilities is known to exceed the expected cash flow of its assets.
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Appendix

A1 Proofs

Proof of Proposition 1. The proof is based on a number of auxiliary lemmas.

Lemma A1. Consider a policy whereby the PA waits until date tr and then, absent news, resolves the

bank. At date t ≤ tr, the value of this policy is

W (t; tr) =

∫ tr−t

0

X(t+ k)dp(k) +

∫ ∞
tr−t

L(tr)dp(k),

where L(t) is defined in Equation (1) and

X(t+ k) =


V (t+ k) if t ≤ τ ,

L(t+ k) if t > τ .

Proof of Lemma A1. To derive W (t; tr), note that, conditional on news arriving before date τ , the PA

optimally resolves the bank if news is bad, and does not intervene if news is good (because withdrawals

stop in this case). If information arrives after date τ , the PA resolves the bank regardless of whether

news is good or bad. Thus, expected output conditional on news arriving at date t+ k is X(t+ k).

If news has not arrived before date t < tr and the PA waits for a small time interval ∆, then news

arrives with probability λ∆ in which case aggregate output is X(t + ∆). With converse probability,

1− λ∆, no news arrives and the PA continues to wait. If news does not arrive before date tr, the bank

is resolved and information becomes irrelevant: i.e., expected output conditional on information arriving

equals L(tr) for all t > tr. Thus, the value from waiting at date t is:

W (t; tr) = λ∆K(t+ ∆) + (1− λ∆)W (t+ ∆; tr),

where

K(t) =


X(t) if t < tr,

L(tr) if t ≥ tr.

Re-arranging the previous equation yields:

W (t+ ∆; tr)−W (t; tr)

∆
+ λK(t+ ∆)− λW (t+ ∆; tr) = 0.

Taking the limit ∆ → 0, it follows that the value of the policy to wait until tr and then to resolve the
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bank absent news is determined by the solution to the first-order non-homogeneous differential equation:

W ′(t)− λW (t) + λK(t) = 0.

Its stable (forward) solution is given by (see Takayama (1985) or Arnold (1992))

W (t) = λ

∫ ∞
t

e(t−k)λK(k) dk + Ceλt. (A1)

We set the constant C = 0 in order to guarantee convergence of the solution since λ > 0. Using the

piecewise function K(t), one obtains the value function Equation (3) in the text.

For any t, the optimal resolution date t∗r maximizes W (t; t∗r). We first show that t∗r ≤ τ . To see this,

suppose that tr > τ . Using the definition of X(t), it follows that

W (t; tr) =

∫ τ−t

0

V (t+ k)dp(k) +

∫ tr−t

τ−t
L(t+ k)dp(k) +

∫ ∞
tr−t

L(tr)dp(k).

Differentiating W (t; tr) with respect to tr yields:

∂W (t; tr)

∂tr
= (1− p(tr − t))L′(tr) < 0, ∀tr > τ.

Since the value from marginally delaying resolution after date τ is negative, the PA always resolves the

bank at or before date τ absent news. We can therefore restrict attention to resolution dates tr ∈ [0, τ ].

Differentiating W (t; tr) for tr ∈ [0, τ ] yields

∂W (t; tr)

∂tr
≡ F (tr) = (1− p(tr − t))λ (V (tr)− L(tr)) + (1− p(tr − t))L′(tr).

Lemma A2. Define φ̂ ≡
λ
λ+γ (R−`)

`−(1−µ) λ
λ+γRb

and let t∗r denote the value of tr such that F (tr) = 0. Any

interior solution t∗r maximizes W (t; tr) for all t ∈ [0, τ ] if and only if φ < φ̂.

Proof of Lemma A2. Consider t∗r such that F (t∗r) = 0. In order for t∗r to constitute a maximum we must

have F ′(t∗r) < 0. Differentiating F (tr) yields:

F ′(tr) = − λF (tr) + (1− p(tr − t)) (λ(V ′(tr)− L′(tr)) + L′′(tr))

= − λF (tr) − (1− p(tr − t)) (λ+ γ)n′(tr)
D

`

(
`− (1− µ)

λ

λ+ γ
Rb

)(
φ− φ̂

)
.
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Evaluating the latter at t∗r yields:

F ′(t∗r) = −(1− p(t∗r)) (λ+ γ)n′(t∗r)
D

`

(
`− (1− µ)

λ

λ+ γ
Rb

)(
φ− φ̂

)
< 0 ⇔ φ < φ̂,

since n′(t) < 0 and ` ≥ Rb.

Lemma A3. Given Assumption 2, there exist threshold values φ and φ, with φ < φ, such that W (t; tr)

admits an interior maximum t∗r ∈ (0, τ) if and only if φ ∈ (φ, φ).

Proof of Lemma A3. Define Φ(tr) as the value of φ such that F (tr) = 0. Explicitly:

Φ(tr) =
z(tr)(R− `)

z(tr)`− µδ − (1− µ)z(tr)Rb + γ
λn(tr)D

.

By definition of Φ(tr), we have that F (tr) < 0 if and only if φ > Φ(tr). Note that

Φ′(tr) ∝ z′(tr)
(
z(tr)`− µδ − (1− µ)z(tr)Rb +

γ

λ
n(tr)D

)
− z(tr)

(
z′(tr)(`− (1− µ)Rb) +

γ

λ
n′(tr)D

)
= − n′(tr)D

`

(
µδ − γ

λ
(D − `)

)
< 0 ⇔ λµδ < γ(D − `),

where the last inequality holds due to Assumption 2.

Define φ ≡ Φ(τ) and φ ≡ Φ(0) and note that (φ, φ) 6= ∅ because Φ′(tr) < 0. Suppose φ ∈ (φ, φ),

implying that F (0) > 0 and F (τ) < 0. Since F (tr) is continuous, by the intermediate value theorem

there exists a t∗r such that F (t∗r) = 0. To show that t∗r constitutes a maximum it suffices to show that

φ < φ̂ (viz. Lemma A2), which is equivalent to:

`− (1− µ)
λ

λ+ γ
Rb <

λ

λ+ γ

(
`− µδ − (1− µ)Rb +

γ

λ
D
)
⇔ λµδ < γ(D − `),

which, again, is always satisfied due to Assumption 2.

Lemma A4. Suppose that φ < φ, then W (t; tr) is maximized at t∗r = τ for all t. Suppose that φ < φ,

then W (t; tr) is maximized at t∗r = 0 for all t.

Proof of Lemma A4. Suppose that φ < φ. Because φ < Φ(tr) for all tr < τ , it follows that φ < Φ(tr) for

all tr ≤ τ , implying that F (tr) > 0 for all tr ≤ τ . Hence, the marginal value from delaying intervention

is strictly positive for all tr ≤ τ . As a consequence, the PA optimally resolves the bank at date t∗r = τ .

A similar argument shows that the PA optimally resolves the bank at t∗r = 0 if φ > φ.

The proof of Proposition 1 follows by combining Lemmas A2-A4.
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Proof of Corollaries 1 and 2. The proof follows by applying the implicit function theorem to the first-

order condition F (t∗r) = 0. Since F ′(t∗r) < 0, the sign of the respective derivatives is given by the sign

of the derivatives of F (t∗r) with respect to the different parameters. We can decompose the effect of the

parameters on F (t∗r) into the effects on the value of information, λ(V (t∗r)−L(t∗r)), and the dilution costs,

L′(t∗r). Thus, for λ, ` and δ:

∂t∗r
∂λ
∝ ∂(λ(V (t∗r)− L(t∗r))

∂λ
= V (t∗r)− L(t∗r) > 0,

∂t∗r
∂`
∝ ∂(λ(V (t∗r)− L(t∗r))

∂`
=
∂z(t∗r)

∂`
(R− `+ φ((1− µ)Rb − `))︸ ︷︷ ︸

> 0 since φ < φ̂

− φz(t∗r)︸ ︷︷ ︸
>0

≷ 0,

∂t∗r
∂δ
∝ ∂(λ(V (t∗r)− L(t∗r))

∂δ
= µφ > 0,

and for γ:

∂t∗r
∂γ
∝ ∂(λ(V (t∗r)− L(t∗r))

∂γ
+

∂L′(t∗r)

∂γ

=
∂z(t∗r)

∂γ
(R− `+ φ((1− µ)Rb − `))︸ ︷︷ ︸

< 0 since φ < φ̂

+ φγn(t∗r)D

(
t∗r −

1

γ

)
︸ ︷︷ ︸

≷0

≷ 0.

Proof of Proposition 2. The proof is based on a number of auxiliary lemmas. We begin by specifying the

PA’s optimal action conditional on news arriving.

Lemma A5. Suppose the PA prefers to initiate liquidity support at date ts in the absence of news. Then:

1. If bad news arrives at date t′ ≷ ts, the PA resolves the bank.

2. If good news arrives at date t′ ≥ ts, the PA either stops support if ts ≤ τ or maintains support

until all wholesale debt is withdrawn if ts > τ .

3. If good news arrives at date t′ < ts, withdrawals either stop if t′ ≤ τ or the PA initiates support

and maintains support until all wholesale debt is withdrawn if t′ > τ .

Proof of Lemma A5.

1. The claim follows immediately from the fact that liquidating bad assets is costless: i.e., `b = Rb.

2. If good news arrives at t′ ≥ ts and ts ≤ τ , debt withdrawals stop since a good bank is solvent.

Hence, the PA terminates liquidity support. If ts > τ , the run does not stop because a good

bank is insolvent. To prove the claim that the PA optimally maintains support until all wholesale
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debt is withdrawn, suppose towards a contradiction that the PA instead resolves the bank after

the arrival of good news. Expected aggregate output conditional on news arriving in this case

would equal L(t′). Since L′(t) < 0, this implies that the PA is better off resolving the bank at

date ts rather than initiating support, contradicting the assumption that the PA prefers to initiate

liquidity support at date ts in the absence of news.

3. If good news arrives at t′ < ts and t′ ≤ τ , debt withdrawals stop since a good bank is solvent.

Hence, the PA never initiates liquidity support. From above, we know that the PA prefers main-

taining support to resolving the bank if good news arrives at t′ ≥ ts whenever ts > τ , which implies

the following inequality:

z(ts)Rg + φ(z(ts)Rg − δ − n(ts)D) ≥ z(ts)`g + φ(z(ts)`g − δ − (n(ts)− n(t′))D)

⇔ (1 + φ)(Rg − `g) ≥ φ
n(t′)

z(ts)
D, ∀ t′ ≥ ts. (A2)

For the PA to prefer initiating liquidity support if good news arrives at date t′ < ts, we must have:

z(t′)Rg + φ(z(t′)Rg − δ − n(t′)D) ≥ z(t′)`g + φ(z(t′)`g − δ)

⇔ (1 + φ)(Rg − `g) ≥ φ
n(t′)

z(t′)
D, ∀ t′ < ts. (A3)

The claim follows because condition (A2) implies condition (A3). To see this, note that since

condition (A2) must hold for all t′ ≥ ts, it must hold in particular at t′ = ts when n(t′) takes on

its largest value. Hence, it is sufficient to show that:

n(ts)

z(ts)
>

n(t′)

z(t′)
⇔ n(t′)(D − `) > n(ts)(D − `), ∀t′ < ts,

where the inequality follows from D > ` by Assumption 1 and n(t′) > n(ts) for all t′ < ts.

We use Lemma A5 to derive the PA’s value function with liquidity support. Consider the policy of

delaying intervention until date ts and then, absent news, initiating liquidity support until date tr and

then, again absent news, resolving the bank. We show below that restricting attention to this policy

space is without loss of generality: i.e., the PA will never stop liquidity support in the absence of news.

Using the PA’s optimal actions conditional on news as specified in Lemma A5, expected aggregate
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output conditional on news arriving at date t′ < ts is:

Vw(t′) =


V (t′) if t′ ≤ τ

V (t′) + µφ(z(t′)Rg − δ − n(t′)D) if t′ > τ

and expected aggregate output conditional on news arriving at date t′ ≥ ts is:

Vs(t
′; ts) =


V (ts)− (1− µ)φ(n(ts)− n(t′))D if ts ≤ τ

V (ts)− (1− µ)φ(n(ts)− n(t′))D + µφ(z(ts)Rg − δ − n(ts)D) if ts > τ

The PA’s value function can then be written as:

S(t; ts, tr) =

∫ ts−t

0

Vw(t+ k)dp(k) +

∫ tr−t

ts−t
Vs(t+ k; ts)dp(k) +

∫ ∞
tr−t

L(tr)dp(k) (A4)

Lemma A6. The PA never delays liquidity support to after date τ : i.e., t∗s ≤ τ .

Proof of Lemma A6. To prove the claim, it suffices to show that S(t; ts, tr) is decreasing in ts for ts > τ .

Differentiating Equation (A4) with respect to ts for ts > τ yields:

∂S(t; ts, tr)

∂ts
= p′(ts − t) (Vw(ts)− Vs(ts; ts))︸ ︷︷ ︸

=0

+

∫ ∞
ts−t

∂Vs(t+ k; ts)

∂ts
dp(k)

= (1− p(ts − t))(1 + φ)(R− `)n
′(ts)D

`
< 0, ∀ts > τ,

where the inequality follows from n′(ts) < 0. Hence, we must have t∗s ≤ τ .

Lemma A7. The PA either resolves the bank at date 0 or never resolves the bank in the absence of

information: i.e., t∗r ∈ {0,∞}.

Proof Lemma A7. To show that the PA never resolves the bank after granting liquidity support in the

absence of information, fix ts ≥ 0 and assume towards a contradiction that the PA optimally resolves the

bank at some date tr ∈ (ts,∞) in the absence of information. This optimal resolution date must satisfy

the following first-order condition:

∂S(t; ts, tr)

∂tr

∣∣∣∣
tr=t∗r

= (1− p(t∗r − t))
(
λ(Vs(t

∗
r ; ts)− L(t∗r)) + L′(t∗r)

)
= 0. (A5)

The claim follows from the fact that the value function S(t; ts, tr) is convex in tr at any interior solution
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to (A5). To see this, differentiate (A5) with respect to tr and evaluate the derivative at t∗r :

∂2S(t; ts, tr)

∂t2r

∣∣∣∣
tr=t∗r

= (1− p(t∗r − t))
(
λ

(
∂Vs(tr; ts)

∂tr

∣∣∣∣
tr=t∗r

− L′(t∗r)

)
+ L′′(t∗r)

)
> 0.

The inequality follows from the fact that ∂Vs(t;ts)
∂t −L′(t) = −µφn′(t)D > 0 and that L′′(t) = φn′′(t)D > 0.

Hence, any interior solution to condition (A5) must be a minimum, and we must have t∗r ∈ {ts,∞}.

To show that the PA never resolves the bank after date 0 in the absence of information, notice that

since S(t; ts, tr) is convex in tr, a sufficient condition for the PA to find it optimal to initiate liquidity

support rather than resolving the bank at date ts is:

∂S(t; ts, tr)

∂tr

∣∣∣∣
tr=ts

> 0 ⇔ φ < Φ(ts),

From the proof of Proposition 1, we know that W (t; ts) > 0 for all φ < Φ(ts). To prove the claim, suppose

the PA prefers to resolve the bank at some date ts > 0 in the absence of information. In order for the

PA to prefer waiting until date ts instead of resolving the bank before, we must have φ < Φ(ts). But

then, it must be that the PA prefers granting liquidity support rather than resolving the bank at date

ts, contradicting the supposition. Hence, we must have t∗r ∈ {0,∞}.

Lemma A8. Define φ∗(`) ≡ R−`
(1−µ)(`−Rb) .

1. If φ < φ∗(`), it is never optimal to delay liquidity support. Otherwise, delaying liquidity support

until date τ is always preferred to initiating liquidity support before date τ : i.e., t∗s ∈ {0, τ}.

2. If the PA initiates liquidity support at date t∗s ≤ τ , the PA never stops liquidity support in the

absence of news.

3. φ∗(`) is strictly decreasing and convex in `.

Proof of Lemma A8.

1. From Lemma A6, we know that it is never optimal for the PA to delay liquidity support to after

date τ . The claim then follows because, for ts ≤ τ , S(t; ts, tr) is strictly decreasing in ts if and

only if φ < φ∗. To show this, differentiate Equation (A4) with respect to ts for ts ≤ τ :

∂S(t; ts, tr)

∂ts
= (1− p(ts − t))z′(ts)

(
(R− `)− (1− µ)φ(`−Rb)

)
< 0 ⇔ φ < φ∗.

where the inequality follows from z′(ts) < 0. Hence, we must have t∗s ∈ {0, τ}.

2. From Lemma A7, we know that if the PA introduces liquidity support it never resolves the bank in

the absence of information. We also know from Proposition 1 that the PA always prefers resolution

38



to waiting at date τ , implying that the PA will never stop liquidity support initiated at date τ in

the absence of news. To show that the PA never stops liquidity support initiated before date τ in

the absence of news, consider the following alternative policy: suppose the PA delays intervention

until date ts < τ and then, absent news, initiates liquidity support at date ts until date t1 and

then, again absent news, stops liquidity support without resolving the bank. If the PA continues

to wait for news at date t1, expected aggregate output conditional on news arriving at date t′ is:

V̂ (t; ts, t1) = ẑ(t; ts, t1)R+ (1− z(t; ts, t1))`+ (1− µ)φ (ẑ(t; ts, t1)Rb − δ + (n(t1)− n(ts))D) ,

where:

ẑ(t; ts, t1) =

(
z(ts)−

(n(t1)− n(t))D

`

)
.

The claim follows because the derivative of the PA’s value function with respect to t1 is strictly

increasing if and only if φ < φ∗(`):

∂Ŝ(t; ts, t1)

∂t1
= p′(t1 − t)

(
Vs(t1; ts)− V̂ (t1; ts; t1)

)
︸ ︷︷ ︸

=0

+

∫ ∞
t1−t

∂V̂ (t; ts, t1)

∂t1
dp(k)

= −(1− p(t1 − t)(1− µ)(`−Rb)(φ∗(`)− φ)
n′(t1)D

`
> 0,

where the inequality follows because n′(t1) < 0. Hence, it is never optimal to stop liquidity support

that is initiated before date τ .

3. Differentiating φ∗(`) with respect to ` yields:

dφ∗

d`
= − (R−Rb)

(1− µ) (`−Rb)2
< 0,

d2φ∗

d`2
=

2 (R−Rb)
(1− µ) (`−Rb)3

> 0.

Lemmas A7 to A8 jointly characterize the set of candidate policy solutions. In particular, they imply

that we can restrict attention to three alternative policies: (i) resolve the bank at date 0 (t∗s = t∗r = 0); (ii)

initiate liquidity support at date 0 and maintain liquidity support until news arrives (t∗s = 0, t∗r =∞); (iii)

or delay intervention until date τ and then provide liquidity support until news arrives (t∗s = τ, t∗r =∞).

Lemma A9. Define ` ≡ µδ + (1− µ)Rb − (1− µ) γ
γ+λD and φ0(`) ≡ R−`

`−` :

1. If ` ≤ `, the PA prefers liquidity support over resolution at date 0 for all values of φ.

2. If ` > `, the PA prefers liquidity support over resolution at date 0 if and only if φ ≤ φ0.

3. φ0(`) is strictly decreasing and convex in `.
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Proof of Lemma A9.

1. The difference between initiating liquidity support at date 0 (and then maintaining liquidity sup-

port until news arrives) and resolving the bank at date 0 is:

S(0; 0,∞)− S(0; 0, 0) =

∫ ∞
0

Vs(k; 0)dp(k)− L(0)

=R− `− φ
(
µ(`− δ) + (1− µ)

(
`−Rb +

γ

λ+ γ
D

))
=R− `− φ(`− `).

Since R > `, it follows that S(0; 0,∞) > S(0; 0, 0) for all values of φ whenever ` < `.

2. If ` > `, then it follows from above that S(0; 0,∞) > S(0; 0, 0) if and only if:

φ < φ0(`) ≡ R− `
`− `

=
R− `

`− µδ − (1− µ)Rb + (1− µ) γ
λ+γD

.

3. The properties of φ0(`) are:

dφ0
d`

= −
R−

(
µδ + (1− µ)Rb − (1− µ) γ

λ+γD
)

(
`−

(
µδ + (1− µ)Rb − (1− µ) γ

λ+γD
))2 < 0,

d2φ0
d`2

=
2
(
R−

(
µδ + (1− µ)Rb − (1− µ) γ

λ+γD
))

(
`−

(
µδ + (1− µ)Rb − (1− µ) γ

λ+γD
))3 > 0.

Lemma A10. Assumption 3 implies an upper bound for `, given by ¯̀≡ δ − (1−µ)
µ

γ
λ+γD:

1. The interval (`, `) is non-epmty.

2. There exists ˆ̀∈ (`, `) such that:

(a) If ` < ˆ̀, the PA prefers delaying intervention until date τ and then, absent news, initiating

liquidity support rather than resolving the bank at date 0 for all values of φ.

(b) If ` ≥ ˆ̀, the PA prefers delaying intervention until date τ and then, absent news, initiating

liquidity support rather than resolving the bank at date 0 if and only if

φ < φ1 ≡

(∫ τ
0
z(k)dp(k) +

∫∞
τ
z(τ)dp(k)

)
(R− `)(

`− µδ − (1− µ)
(∫ τ

0
z(k)dp(k) +

∫∞
τ
z(τ)dp(k)

)
Rb + (1− µ)

∫∞
τ

(n(k)− n(τ))Ddp(k)
) .
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3. φ∗ < φ0 < φ1 if and only if ` < ¯̀.

Proof of Lemma A10.

1. ` < ` is equivalent to

µδ + (1− µ)Rb − (1− µ)
γ

λ+ γ
D < δ − (1− µ)

µ

γ

(γ + λ)
D ⇔ µ(δ −Rb) > (1− µ)

γ

(γ + λ)
D,

which is satisfied by Assumption 3.

2. The PA prefers delaying intervention until date τ and then initiating liquidity support compared

to resolving the bank at date 0 if and only if:

S(0; τ,∞)− S(0; 0, 0) =

∫ τ

0

V (k)dp(k) +

∫ ∞
τ

Vs(k; τ) dp(k)− L(0) > 0

⇔ φ < φ1 ≡

(∫ τ
0
z(k)dp(k) +

∫∞
τ
z(τ)dp(k)

)
(R− `)(

`− µδ − (1− µ)
(∫ τ

0
z(k)dp(k) +

∫∞
τ
z(τ)dp(k)

)
Rb + (1− µ)

∫∞
τ

(n(k)− n(τ))Ddp(k)
) .

Using the definitions of φ0 and φ1, it follows that φ0 < φ1 is equivalent to:

`− µδ + (1− µ)(1− p(τ))n(τ)
γ

λ+ γ
D < (p(τ)ξ(τ) + (1− p(τ))z(τ))

(
`− µδ + (1− µ)

γ

λ+ γ
D

)
,

where ξ(τ) ≡
∫ τ
0
z(k)dp(k). Note that:

p(τ)ξ(τ) + (1− p(τ))z(τ) = 1− (1− (1− p(τ))n(τ))
γ

γ + λ

D

`
.

Rewriting the inequality φ0 < φ1 accordingly, it follows that:

φ0 < φ1 ⇔ ` < ¯̀≡ δ − (1− µ)

µ

γ

λ+ γ
D.

Since lim`↓` φ0 = ∞ and φ1 > φ0 for ` ∈ (`, ¯̀), it follows by continuity of φ0 and φ1 that there

exists an ˆ̀∈ (`, ¯̀) such that lim`↓ˆ̀φ1 = ∞. For ` < ˆ̀, S(0; τ,∞) > S(0; 0, 0) for all values of φ,

while for ` ≥ ˆ̀ we have that S(0; τ,∞) > S(0; 0, 0) if and only if φ < φ1.

3. From above it follows that φ0 < φ1 if and only if ` < ¯̀. Note further that φ∗ < φ0 is equivalent to

`− µδ − (1− µ)Rb + (1− µ)
γ

γ + λ
D < (1− µ)(`−Rb)⇔ ` < ¯̀≡ δ − (1− µ)

µ

γ

γ + λ
D.

Hence, φ∗ < φ0 < φ1 if and only if ` < ¯̀.
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To complete the proof, we distinguish between two different cases, depending on the value of `:

1. ` ≤ ˆ̀: For φ < φ∗, Lemmas A8 and A9 imply S(0; 0, 0) < S(0; τ,∞) < S(0; 0,∞). Thus, the PA

supports the bank at date 0 and maintains support until news arrives. If φ ≥ φ∗, Lemmas A8 and

A9 imply S(0; 0, 0) < S(0; 0,∞) < S(0; τ,∞). Hence, the PA prefers to delay liquidity support

until date τ and then maintains support until news arrives.

2. ` ∈ (ˆ̀, `]: If φ < φ∗, the PA supports the bank at date 0 and maintains support until news arrives.

If φ ∈ [φ∗, φ1), the PA delays liquidity support until date τ and maintains support until news

arrives. Finally, if φ ≥ φ1, then Lemma A10 implies S(0; 0,∞) < S(0; τ,∞) < S(0; 0, 0). Hence,

the PA resolves the bank at date 0.

To finish, we set φ∗∗ ≡ φ1.

Proof of Proposition 3. The first part of the proposition follows from Proposition 2. To prove the second

part, note that:

φ < φ0 ⇔ (1− µ)
γ

λ+ γ
< 1.

From Lemma A10, φ0 < φ1 ≡ φ∗∗ and therefore φ < φ∗∗. Hence, for φ ∈ (φ, φ∗∗), the PA resolves the

bank at date 0 if liquidity support is not available, but does not if liquidity support is available.

Proof of Lemma 2. Notice that aggregate output with equity injections is strictly decreasing in E. Thus,

the optimal equity injection is the minimum value of E that simultaneously satisfies conditions (9) and

(10). There are two cases to consider, depending on whether E ≷ δ − z(te)Rb.

Consider first the case where E ≤ δ− z(te)Rb. In this case, in order for wholesale creditors to accept

to refinance, the face value F must be such that F ≥ D/µ. However, since D > µ(Rg − δ) and ` < D by

Assumption 1, this violates the bank’s limited liability constraint (9). To see this, notice that:

z(te)Rg − δ − n(te)
D

µ
= n(te)

(
Rg − δ −

D

µ

)
+ (1− n(te))

(
Rg

(
1− D

`

)
− δ
)
< 0.

Consider next the case where E > δ− z(te)Rb. In this case, in order for wholesale creditors to accept

to refinance, the face value F must be such that:

n(te)F ≥ min

{
n(te)D,

n(te)D − (1− µ)(z(te)Rb − δ + E)

µ

}
,
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which is decreasing in E. From the bank’s limited liability constraint (9), it follows that we must also have

n(te)F ≤ z(te)Rg − δ. Hence, the minimum value of E that simultaneously satisfies conditions (9) and

(10) is E∗. To complete the proof, notice that E∗ > δ−z(te)Rb is equivalent to n(te)D > µ(z(te)Rg− δ),

which always holds by Assumption 1.

Proof of Proposition 4. The optimal timing of equity injections maximizes the following value function:

B(t; te) =

∫ te−t

0

Vw(t+ k)dp(k) +

∫ ∞
te−t

Vb(t0)dp(k). (A6)

Without loss of generality, we restrict attention to equity injections at dates te ≤ τ . The reason is

that after date τ , the PA strictly prefers liquidity support to injecting equity (see below). Differentiating

Equation (A6) with respect to te ≤ τ yields:

∂B(t; te)

∂te
= (1− p(te − t))

(
λφ(n(te)D − µ(z(te)Rg − δ)) + (1 + φ)(R− `)n′(te)

D

`

)
. (A7)

To prove that the PA never delays equity injections after date 0, we show that the value function (A6)

is convex in te at any interior solution to (A7). To see this, let t∗e ∈ (0, τ) denote the critical point such

that
∂B(t;t∗e)
∂te

= 0. Differentiating (A7) with respect to te and evaluating the derivative at t∗e ∈ (0, τ):

∂2B(t; te)

∂t2e

∣∣∣∣
t∗e∈(0,τ)

= (1− p(t∗e − t))
(
λφ(`− µRg)n′(t∗e)

D

`
− γ(1 + φ)(R− `)n′(t∗e)

D

`

)
.

Using the first-order condition (A7), it follows that:

∂2B(t; te)

∂t2e

∣∣∣∣
t∗e∈(0,τ)

= (1− p(t∗e − t))λγφ
(

(µRg − `)n(t∗e)
D

`
+ (n(t∗e)D − µ(z(t∗e)Rg − δ)

)
= −(1− p(t∗e − t))λγφµ

(
Rg

(
1− D

`

)
− δ
)
> 0.

where the inequality follows because D > ` by Assumption 1. Hence, any interior solution to (A7) must

be a minimum, implying that t∗e ∈ {0, τ}.

Note further that the PA strictly prefers liquidity support over equity injections at dates t > τ . To

see this, suppose that the PA has waited until date te > τ . The value from injecting equity at this date

is strictly smaller than the value from initiating liquidity support:

B(te; te) = V (te)−φ
(
µ(n(te)D + δ − z(te)Rg)+(1−µ)n(te)D

)
< S(te; te, te) = V (te)−φ(1−µ)

γ

λ+ γ
n(te)D,

where the inequality follows from the fact that µ(n(te)D+δ−z(te)Rg) < 0 for all te > τ by the definition

of τ . Thus, the optimal date for injecting equity must be t∗e = 0.
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The PA prefers equity injections at date 0 to providing immediate liquidity support whenever:

B(0; 0)− S(0; 0,∞) > 0 ⇔ D − µ(Rg − δ) < (1− µ)

∫ ∞
0

(1− n(k))Ddp(k).

Solving the integral yields condition (12).
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A2 Violation of Assumptions 2 and 3

A2.1 Violation of Assumption 2

The following proposition shows the consequences of violating Assumption 2 for the optimal timing of

resolution. Suppose instead that:

λµδ > γ(D − `). (A8)

Proposition A1. Suppose condition (A8) holds. The PA optimally resolves the bank at date t∗r ∈ {0, τ}.

Specifically, there exists φ such that t∗r = 0 if and only if φ < φ and t∗r = τ otherwise.

Proof of Proposition A1. We can still restrict attention to resolution dates tr ∈ [0, τ ] because, for any

tr > τ , the marginal value from delaying resolution is strictly negative (viz. proof of Proposition 1).

Given condition (A8), it follows from the proof of Proposition 1 that Φ(tr) is strictly increasing in tr and

φ̂ < φ. Thus, φ̂ < φ < φ. As a consequence, whenever φ < φ, the marginal value from delaying resolution

is positive: i.e., F (tr) > 0 for all tr ∈ [0, τ ]. Thus, the PA resolves the bank at date τ . Conversely, if

φ > φ, F (tr) < 0 for all tr ∈ [0, τ ] and the PA resolves the bank at date 0. Consider φ ∈ (φ, φ), which

also implies φ > φ̂. In this case, any interior solution F (tr) = 0 minimizes W (t; tr). Thus, depending on

whether W (0; 0) ≷W (0; τ), the PA either resolves the bank at date 0 or date τ . The value φ is such that

W (0; 0) = W (0; τ).

A2.2 Violation of Assumption 3

The following proposition shows the consequences of violating Assumption 3 for the optimal intervention

policy with liquidity support. Suppose that Assumption 3 fails to hold, that is:

` > ` ≡ δ − (1− µ)

µ

γ

(γ + λ)
D. (A9)

Proposition A2. Suppose condition (A9) holds. The PA never delays liquidity support to after date 0.

The PA provides liquidity support at date 0 if and only if φ < φ0. Otherwise, if φ ≥ φ0, the PA resolves

the bank at date 0.

Proof of Proposition A2. From Lemma A10, it follows that if ` > `, then φ1 < φ0 < φ∗. Lemmas A8,

A9 and A10 then imply that if φ < φ0 we must have max{S(0; 0, 0), S(0; τ,∞)} < S(0; 0,∞). If φ ≥ φ0,

then S(0; 0, 0) > max{S(0; 0,∞), S(0; τ,∞)}. Hence, if φ < φ0, the PA supports the bank at date 0 and

maintains support until news arrives. Conversely, if φ ≥ φ0, the PA resolves the bank at date 0.

Figure A1 illustrates Proposition A2.
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``

φ

Support at t = 0

Resolution at t = 0φ∗∗

δ

Figure A1: Intervention regimes in φ− ` space.
If Assumption 3 is violated, the only relevant threshold is φ0 ≡ φ∗∗ which divides the areas into support

at date 0 and resolution at date 0.

A3 Extensions

In this Appendix, we discuss two extensions of the model with liquidity support. First, we allow the PA

to provide liquidity support at a mark-up over the risk-free rate (a so-called “penalty rate”). Second, we

consider how the PA’s optimal policy changes if the bank holds liquid assets that can be used to cover

debt repayments without fire-selling assets. We show that our main results and the policy trade-offs are

robust to these extensions of the model.

A3.1 Penalty rates

Granting liquidity support at date 0 implies that the bank benefits from a subsidy since the PA offers

funding at a time when a good bank still has positive profits. The PA can reduce this subsidy by charging

a mark-up over the risk-free rate, or a “penalty rate”, on funds drawn down by the bank. Charging a

penalty rate, however, does not affect total cash flows nor does it lower the loss incurred by the PA if the

bank turns out to be bad since the penalty rate is only paid if the bank is good. Thus, offering liquidity

support at a penalty rate has no effect on expected aggregate output and, consequently, does not affect

the PA’s optimal intervention decision.
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Proposition A3. The charging of a penalty rate does not affect the PA’s decision to grant liquidity

support, nor its decision to delay the provision of liquidity support.

A3.2 Liquidity holdings

Suppose that, in addition to its long-term asset, the bank holds liquid assets such as cash or central bank

reserves. Given the normalization of the bank’s balance sheet to unity, we assume that the bank holds a

share m ∈ (0,m) of its total assets in cash and the remaining share 1−m in the long-term asset.28

Without liquidity support, the bank covers debt withdrawals by first depleting its cash holdings

before fire-selling assets. In the absence of news, the bank’s cash balances are depleted at date:

τm =
1

γ
ln

(
D

D −m

)
.

The bank begins to sell its long-term asset if withdrawals continue after date τm and, in the absence of

either news or liquidity support, a good bank becomes insolvent at some date τ̂ (which depends on m).

Similar to the provision of liquidity support, using cash holdings to cover debt withdrwawals prevents

the deadweight loss from fire sales. Running down cash balances, however, does not avoid the dilution

costs from delaying resolution since the repayment of wholesale creditors reduces the resources the PA

can seize if it resolves the bank.

Proposition A4. The PA is indifferent between providing liquidity support or delaying support and

letting the bank cover debt repayments by running down its cash balances.

Proof of Proposition A4. Expected aggregate output when the PA lets the bank run down its cash bal-

ances and then provides liquidity support at date τm is:

∫ τm

0

(
R(1−m) +m+ (1− µ)φ ((1−m)Rb +m− (1− n(k))D − δ)

)
dp(k)

+

∫ ∞
τm

(
R(1−m) +m+ (1− µ)φ

(
(1−m)Rb −

(
1− m

D
− n(k)

)
D − δ

))
dp(k)

=

∫ ∞
0

(
R(1−m) +m+ (1− µ)φ ((1−m)Rb +m− (1− n(k))D − δ)

)
dp(k)

where the first line is expected aggregate output from waiting until the bank’s cash balances are exhausted

(at date τm), and the second line is expected aggregate output when liquidity support is introduced at

date τm and the bank’s outstanding wholesale debt is n(τm)D = (1−m/D)D = D−m. It is immediate

to see that the third line equals expected aggregate output under a policy of immediate liquidity support

28The upper bound m̄ follows by maintaining an assumption equivalent to Assumption 1. That is:

Rg(1−m) +m > D + δ, which implies m <
Rg−D−δ
Rg−1 and thus m̄ = min

{
1,

Rg−D−δ
Rg−1

}
.
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when the bank holds a share (1 − m) of its balance sheet in long-term assets and m in cash balances

(viz. proof of Proposition 2).

Aside from letting the bank meet debt withdrawals before date τm by running down its cash balances,

the PA’s optimal intervention decision is qualitatively the same as in Proposition 2. For sufficiently large

social costs above some threshold φ∗∗m , the PA liquidates the bank at date 0. For sufficiently small

social costs below some other threshold φ∗m, the PA is indifferent between offering immediate support at

date 0, or delaying liquidity support until date τm and then providing support until news arrives. For

intermediate social costs between φ∗m and φ∗∗m , the bank draws down its cash holdings and (provided that

news does not arrive before) starts to fire-sell assets at date τm, while the PA delays the provision of

liquidity support until the good bank has zero equity at some date τ̂ .
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