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Abstract

Over recent years, study on risk management has been prompted by the Basel committee
for regular banking supervisory. There are however limitations of some widely-used risk
management methods that either calculate risk measures under the Gaussian distributional
assumption or involve numerical difficulty. The primary aim of this paper is to present a
realistic and fast method, GHICA, which overcomes the limitations in multivariate risk
analysis. The idea is to first retrieve independent components (ICs) out of the observed
high-dimensional time series and then individually and adaptively fit the resulting ICs in the
generalized hyperbolic (GH) distributional framework. For the volatility estimation of each
IC, the local exponential smoothing technique is used to achieve the best possible accuracy
of estimation. Finally, the fast Fourier transformation technique is used to approximate the
density of the portfolio returns.

The proposed GHICA method is applicable to covariance estimation as well. It is compared
with the dynamic conditional correlation (DCC) method based on the simulated data with
d = 50 GH distributed components. We further implement the GHICA method to calculate
risk measures given 20-dimensional German DAX portfolios and a dynamic exchange rate
portfolio. Several alternative methods are considered as well to compare the accuracy of
calculation with the GHICA one.

Keywords: multivariate risk management, independent component analysis, generalized
hyperbolic distribution, local exponential estimation, value at risk, expected shortfall
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1 Introduction

Over recent years, study on risk management has been prompted by the Basel committee
for regular banking supervisory. Given a d-dimensional portfolio, the conditionally het-
eroscedastic model is widely used to describe the movement of the underlying series:

x(t) = Σ1/2
x (t)εx(t), (1)

where x(t) ∈ IRd are risk factors of the portfolio, e.g. (log) returns of the financial instru-
ments. The covariance Σx is assumed to be predictable with respect to (w.r.t.) the past
information and εx(t) ∈ IRd is a sequence of standardized innovations with E[εx(t)|Ft−1] = 0
and E[ε2x(t)|Ft−1] = Id. There is a sizeable literature on risk management methods. Among
others, we refer to Jorion (2001) for a systematic description.

In this paper, we focus on the calculation of two risk measures, value at risk (VaR) and
expected shortfall (ES). These two risk measures are inherently related to the joint density
of x(t). The VaR is in fact the distributional quantile of loss, i.e. −x(t), at a prescribed level
over a target time horizon and the ES measures the size of loss once the loss exceeds the
VaR value. Indicated by formula (1), the joint density estimation depends on the covariance
estimation and the distributional assumption of the innovations.

The largest challenge of risk management is due to the high-dimensionality of real port-
folios. Above all, the covariance estimation is really computationally demanding as high
dimensional series, e.g. a dimension d > 10, is considered, see Härdle, Herwartz and
Spokoiny (2003). For example, the dynamic conditional correlation (DCC) model proposed
by Engle (2002), Engle and Sheppard (2001), which is one multivariate GARCH model, is
recommended due to the good performance of its univariate version. In the estimation, the
covariance matrix is approximated by the product of a diagonal matrix and a correlation
matrix, which reduces the number of unknown parameters much relative to the BEKK
specification proposed by Engle and Kroner (1995). In spite of the appealing dimensional
reduction, the mentioned estimation method is time consuming and numerically difficult to
handle given high-dimensional data.

Moreover, many widely-used risk management methods rely on the unrealistic Gaussian
distributional assumption, e.g. the RiskMetrics product introduced by JP Morgan in 1994.
In the Gaussian framework with an estimate Σ̂x(t) of Σx(t), the standardized returns ε̂x(t) =
Σ̂(−1/2)

x (t)x(t) are asymptotically independent and the joint distributional behavior can
be easily measured by the marginal distributions. However the Gaussian distributional
assumption is merely used for computational and numerical purposes and not for statistical
reasons. The conditional Gaussian marginal distributions and the resulting joint Gaussian
distribution are at odds with empirical facts, i.e. financial series are heavy tailed distributed.
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The heavy tails are typically reduced but not eliminated as the series are standardized by
the estimated volatility, see Anderson, Bollerslev, Diebold and Labys (2001).

We illustrate this effect based on two real data sets, the Allianz stock and a DAX
portfolio from 1988/01/04 to 1996/12/30. The DAX is the leading index of Frankfurt
stock exchange and a 20-dimensional hypothetic portfolio with a static trading strategy
b(t) = (1/20, · · · , 1/20)> is considered. The portfolio returns r(t) = b(t)>x(t) are analyzed
in the univariate version of (1). This simplified calculation is used in practice, but it often
suffers from low accuracy of calculation. Suppose now that the two return processes have
been properly standardized, by using a local volatility estimation technique discussed later.
The standardized returns are empirically heavy-tailed distributed, indicated by the sample
kurtoses 12.07 for the Allianz and 22.38 for the portfolio respectively.

Figure 1 displays the estimated logarithmic density curves under several distributional
assumptions. Among them, the estimate using the nonparametric kernel estimation is con-
sidered as benchmark. The comparison w.r.t. the Allianz stock shows that the GH estimate
is most close to the benchmark among others. The Gaussian estimate presents lighter tails.
To alleviate the limitation, the Student-t(6) distribution with degrees of freedom of 6 has
been recommended in practice. However this distribution is found to over-fit the heavy
tails, namely the t(6) estimate displays heavier tails relative to the benchmark. The sim-
ilar result is observed w.r.t. the DAX portfolio. It is rational to surmise that the risk
management methods under the Gaussian and t(6) distributional assumptions generate low
accurate results.

To overcome these limitations, Chen, Härdle and Spokoiny (2006) present a simple VaR
calculation approach that achieves much better accuracy than the alternative RiskMetrics
method. In their study, univariate approaches that involve more realistic but complex
procedures can be easily extended for multivariate risk measurement. To be more specific,
financial risk factors are first converted to independent components (ICs) using a linear
filtering and the univariate method is applied to identify the distributional behavior of
each IC. We name here two univariate approaches which measure the risk exposure in the
realistic distributional framework. One is the univariate VaR calculation proposed by Chen,
Härdle and Jeong (2005), which implements local constant model to estimate volatility
and fit the standardized returns under the GH distributional assumption. The other is
proposed by Chen and Spokoiny (2006), who apply the local exponential smoothing method
to estimate volatility and calculate the risk measure in the GH distributional framework.
The standardization of the Allianz and DAX returns in Figure 1 is in fact based on the
local exponential smoothing technique.

The primary aim of this paper is to present an realistic and fast multivariate risk manage-
ment method, GHICA, by implementing the IC analysis (ICA) to the high dimensional
series and adaptively fitting the ICs in the GH distributional framework. The GHICA
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Fig. 1: Density comparisons of the standardized returns in log scale based on the Al-
lianz stock (top) and the DAX portfolio (bottom) with static weights b(t) =
unit(1/20). Time interval: 1988/01/04 - 1996/12/30. The nonparamet-
ric kernel density is considered as benchmark. The GH distributional pa-
rameters are respectively GH(−0.5, 1.01, 0.05, 1.11,−0.03) for the Allianz and
GH(−0.5, 1.21,−0.21, 1.21, 0.24) for the DAX portfolio. Data source: FEDC
(http://sfb649.wiwi.hu-berlin.de).

method improves the work of Chen et al. (2006) from two aspects. The volatility estima-
tion is driven by the local exponential smoothing technique to achieve the best possible
accuracy of estimation. The fast Fourier transformation (FFT) technique is used to ap-
proximate the density of the portfolio returns. Compared to the Monte Carlo simulation
technique used in the former study, it significantly speeds up the calculation.

In addition, the proposed GHICA method is easily applicable for covariance estimation.
Relative to the widely used DCC setup, the GHICA method is fast and delivers sensitive
estimates. We demonstrate the comparison based on simulated data. Furthermore, the
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GHICA method is implemented to risk management on the base of DAX stocks and foreign
exchange rates. Several hypothetic portfolios are constructed by assigning static and dy-
namic trading strategies to the data sets. The results are compared with those calculated
using alternative methods, i.e. the RiskMetrics method, the method using the exponential
smoothing to estimate volatility and assuming the Student-t(6) distribution, and the method
using the DCC to estimate covariance in the Gaussian distributional framework. All the
results are analyzed from the viewpoints of regulatory, investors and internal supervisory.
The GHICA method, in general, produces better results than the others.

The paper is organized as follows. The GHICA method is described in Section 2, by
which the ICA method, the local exponential smoothing technique and the FFT technique
are detailed. Section 3 compares the covariance estimation using the GHICA and DCC
methods based on the simulated data with d = 50 GH components. The real data analysis
in Section 4 demonstrates the implementation of the GHICA method in risk management
based on the 20-dimensional German DAX portfolios and a dynamic exchange rate portfolio.
Several alternative methods are considered as well to compare the accuracy of calculation
with the GHICA one.

2 GHICA Methodology

Given multidimensional time series, for example prices of financial assets, s(t) ∈ IRd, the
(log) returns are calculated as x(t) = log{s(t)/s(t − 1)}. Without loss of generality, the
drift of the returns is set to be 0. Given the time homogeneous model, x(t) = Σ1/2

x εx(t)
with standardized innovations εx(t), the maximum Gaussian likelihood estimate of the time
independent covariance Σx is the sample covariance based on the whole past information.
Since the covariance is in fact time dependent, one considers the conditional heteroscedastic
model:

x(t) = Σ1/2
x (t)εx(t).

Many techniques have been used to approximate the local covariance by specifying a “local
homogeneous” interval (e.g. one year or 250 trading days). Inside the homogeneous interval,
the unknown covariance should be time-invariant and can be identified using the ML esti-
mation. Among many others, the multivariate GARCH setup such as the DCC is successful
in characterizing the clustering feature of covariance under the Gaussian distributional as-
sumption. As the dimension d increases, it however needs to estimate many parameters and
becomes numerically difficult. Moreover, the standardized returns ε̂x(t) = Σ̂−1/2

x (t)x(t) are
empirically not Gaussian distributed. Under a realistic distributional assumption, on the
other hand, by which the distributional behaviors such as asymmetry and heavy tails are
well matched, it is hard to identify the unknown distributional parameters due to complex
density form.
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The GHICA method proposes a solution to balance the numerical tractability and the
realistic distributional assumption on the risk factors. It first converts the return series
using a linear transformation and filters out ICs: y(t) = Wx(t). The transformation matrix
W is assumed to be time constant and nonsingular and y(t) is the independent vector. The
heteroscedastic model is now reformulated as:

x(t) = W−1y(t) = W−1Σ1/2
y (t)εy(t) = W−1D1/2

y (t)εy(t).

Due to the statistical property of independence, the covariance of the ICs Σy(t) is a diagonal
matrix and is denoted as Dy(t) to emphasize this feature. Its diagonal elements are the
time varying variances of the ICs. The stochastic innovations εy(t) = {εy1(t), · · · , εyd

(t)}>

are cross independent and can be individually identified in the realistic and univariate
distributional framework. By doing so, the GHICA method converts the high dimensional
analysis to univariate study and significantly speeds up the calculation.

In this section, the building blocks of the GHICA method are detailed: The FastICA
procedure is used to estimate the transformation matrix W ; The resulting ICs are indi-
vidually analyzed, by which the univariate volatility process is estimated using the local
exponential smoothing technique and the innovations are assumed to be GH distributed;
The quantile of the portfolio return is approximated using the FFT technique.

The GHICA algorithm is summarized as follows:

1. Do ICA to the given risk factors to get ICs.

2. Implement local exponential smoothing to estimate the variance of each IC

3. Identify the distribution of every IC’s innovation in the GH distributional framework

4. Estimate the density of the portfolio return using the FFT technique

5. Calculate risk measures

In addition, the GHICA method can be used to estimate the covariance matrix Σx(t).
Given the matrix estimate Ŵ in the ICA and the variance estimates of the ICs, the covari-
ance of the observed time series are: Σ̂x(t) = Ŵ−1D̂y(t)Ŵ−1>. An alternative covariance
estimation approach, the DCC, is briefly described as well. We will compare the GHICA-
based covariance estimation with the DCC estimation in the later simulation study.

2.1 Independent component analysis (ICA) and FastICA approach

The aim of ICA is to retrieve, out of high dimensional time series, stochastically ICs through
a linear transformation: y(t) = Wx(t), where the transformation matrixW = (w1, · · · , wd)>
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is nonsingular. It is essential to use high order moments in the ICA. In the Gaussian
framework, high order moments are however fixed such as skewness with value of 0 and
kurtosis with value of 3. Therefore the ICs are assumed to be nongaussian distributed.
Furthermore, the ICA transformation has scale identification problem, i.e. the equation
holds true by simultaneously multiplying the same constants to the unknown terms y(t)
and W : {cy(t)} = {cW}x(t). To avoid this problem, it is natural to standardize the
dependent series and assume that every IC has unit variance E(yj) = 1 with j = 1, · · · , d.
The Mahalanobis transformation x̃(t) = Σ̃−1/2

x x(t) helps to standardize the return series
and the resulting series are considered:

y(t) = W̃ x̃(t),

where Σ̃x is the sample covariance based on the available data. It is easy to show that
after the standardization the transformation matrix W̃ turns to be an orthogonal matrix
with unit norm. The corresponding matrix w.r.t. the return series is W = W̃ Σ̃−1/2

x . For
notational simplification, we eliminate the mark ·̃ in the following text in this section.

Various ideas have been proposed to estimate the transformation matrix W . Among
others, one intuitive ICA estimation is motivated by the definition of mutual information.
The mutual information is a natural measure of independence. It is defined as the difference
of the sum of marginal entropy and the mutual entropy:

I(y) =
d∑

j=1

H(yj)−H(y) (2)

where H(yj) = −
∫
fyj (u) log fyj (u)du

The mutual information is nonnegative and goes to 0 if the vector y is cross independent,
see Cover and Thomas (1991). Hence for a candidate transformation W , one can minimize
the mutual information to achieve independence. Based on the linear transformation of the
ICA, the mutual information in (2) can be reformulated as:

I(W, y) =
d∑

j=1

H(yj)−H(x)− log |det(W )|.

Notice that the entropy of the return series H(x) is a fixed value and does not depend on the
ICs, and the last term in the equation is 0 due to the orthogonality of the transformation
matrix W . The optimization problem is: minW

∑d
j=1H(yj) and can be further simplified

to d optimization problems according to the inequality:

min
W

d∑
j=1

H(yj) ≥
d∑

j=1

min
wj

H(yj)

8



This simplification leads to some loss in the W estimation but it extensively speeds up
the estimation procedure by merely considering d elements of W every time. Equivalently,
one can formulate the optimization problem concerning negentropy J(yj) = H(y0)−H(yj)
since the entropy and the negentropy are in one-to-one correspondence, where y0 ∼ N(0, 1)
is a standard Gaussian vector and H(y0) is merely a constant. The negentropy is always
nonnegative since the Gaussian random variable has the largest entropy given the same
variance, see Hyvärinen (1998).

ŵj = argminH(yj) = argmaxJ(wj , yj).

In the estimation, the approximation of negentropy is used to construct the optimization
object function w.r.t. the j-th row of the transformation matrix W :

ŵj = argminH(yj) = argmaxJ(yj)

J(yj) ≈ const.{E[G(y)]− E[G(y0)]}2

= const.{E[G(w>j x)]− E[G(y0)]}2

G(yj) = log cosh(yj) (3)

This optimization problem is solved by using the symmetric FastICA algorithm, see
Hyvärinen, Karhunen and Oja (2001):

1. Initialization: Choose initial vectors ŵ(1)
j for W = {w1, · · · , wd}> with j = 1, · · · , d,

each has a unit norm.

2. Loop:

• At step n, Calculate ŵ(n)
j = E

[
x>(t)g

{
ŵ

(n−1)>
j x(t)

}]
−E

[
g′
{
ŵ

(n−1)>
j x(t)

}]
ŵ

(n−1)
j ,

where g is the first derivative of G(y) in form (3) and g′ is the second derivative.
The expectation E[·] is approximated by the sample mean.

• Do a symmetric orthogonalization of the estimated transformation matrix Ŵ (n):

Ŵ (n) = {Ŵ (n)Ŵ (n)>}−1/2
Ŵ (n)

• If not converged, i.e. det{Ŵ (n) − Ŵ (n−1)} 6= 0, go back to 2. Otherwise, the
algorithm stops.

3. Final result: the last (converged) estimate is the final estimate Ŵ .
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2.2 Local exponential smoothing and dynamically conditional correlation

Suppose that the ICs and the transformation matrix W are given. The covariance matrices
of the ICs and the original return series are respectively:

Dy(t) = diag{σ2
y1

(t), · · · , σ2
yd

(t)}

Σx(t) = W−1Dy(t)W−1> (4)

where σyj (t) is the heteroscedastic volatility of the j-th IC with j = 1, · · · , d. Recall that
(4) has a similar decomposition structure as the often-used principal component analysis
(PCA), by which the covariance is decomposed as: Σx = ΓΛΓ> with the eigenvector matrix
Γ and the diagonal eigenvalue matrix Λ, see Flury (1998). Among other distinctions, the
PCA method orders the resulting PCs whereas the ICs have equal importance. In the
estimation of the unknown variance, the local exponential smoothing method is used.

Local exponential smoothing: Given the univariate conditional heteroscedastic model:
yj(t) = σyj (t)εyj (t) with E[εyj (t)|Ft−1] = 0 and E[ε2yj

(t)|Ft−1] = 1, we now focus on the
adaptive estimation of the volatility σyj for j = 1, · · · , d. For notational simplification, the
subscripts yj in σyj and j in yj are eliminated here.

Suppose that a finite set {ηk, k = 1, · · · ,K} of values of smoothing parameter is given.
Every value ηk leads to a localizing weighting scheme {ηt−s

k } for s ≤ t to the local Gaussian
MLE σ̃(k)(t)

σ̃(k)(t) =

[
{
∞∑

m=0

ηm
k y

2(t−m− 1)}/{
∞∑

m=0

ηm
k }
]1/2

In practice, one truncates the smoothing window at Mk such that ηMk+1
k ≤ c→ 0:

σ̃(k)(t) =

{ Mk∑
m=0

ηm
k y

2(t−m− 1)}/{
Mk∑

m=0

ηm
k }

1/2

where the Gaussian log-likelihood function given ηk is:

L(ηk, σ̃
(k)(t)) = −Nk

2
log (2π{σ(k)(t)}2)− 1

2{σ(k)(t)}2

Mk∑
m=0

ηm
k y

2(t−m− 1)

where Nk =
Mk∑

m=0

ηm
k (5)
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The fitted log-likelihood ratio L
(
ηk, σ̃

(k)(t), σ(t)
)

reads as:

L
(
ηk, σ̃

(k)(t), σ(t)
)

= L
(
ηk, σ̃

(k)(t)
)
− L(ηk, σ(t))

The idea of local exponential smoothing is to aggregate all the local likelihood estimate to
achieve the best possible accuracy of estimation. In this sense, the local MLEs σ̃(k)(t) are
referred as “weak” estimates.

In our study, we concern the heavy-tailedness of financial time series and assume the
normal inverse Gaussian (NIG) distribution, one subclass of the GH distribution, see Section
2.3 for more details. Since the NIG distributional parameters of the innovations are unknown
at this stage, we use the quasi ML estimation instead of estimating the variance based on
the NIG density form. The quasi ML estimation is applicable if the exponential moment of
the squared innovations E[exp{ρε2(t)}] exists. A power transformation guarantees that:

yp(t) = sign{y(t)}|y(t)|p

θ(t) = Var{yp(t)|Ft−1} = E{y2
p(t)|Ft−1} = E{|y(t)|2p|Ft−1}

= σ2p(t) E |ε(t)|2p = σ2p(t)Cp (6)

where Cp = E(|ε(t)|2p|Ft−1) is a constant and only relies on 0 ≤ p < 1/2. Notice that the
power transformed variable θ(t) is one-to-one correspondence to the variance σ2(t) and can
be estimated on the base of the transformed observations |y(t)|2p:

θ̃(k)(t) = {
Mk∑

m=0

ηm
k |y(t−m− 1)|2p}/Nk

Here the smoothing parameter ηk is designed to run over a wide range from values close
to zero to one, so that the variability of the unknown process θ(t) reduces and at least one
of the resulting MLEs is good in the sense of small estimation bias. Polzehl and Spokoiny
(2006) show that the inverse of Nk in (5) is positively related to the variation of the MLEs.
This result is used to construct the sequence of the smoothing parameter {ηk}:

Nk+1

Nk
≈ 1− ηk

1− ηk+1
= a > 1, (7)

where the coefficient a controls the decreasing speed of the variations.

The procedure is sequential and starts with the estimate θ̃(1)(t) that has the largest
variability but small bias, i.e. we set θ̂(1)(t) = θ̃(1)(t). At every step k ≥ 2, the new
estimate θ̂(k)(t) is constructed by aggregating the next “weak” estimate θ̃(k)(t) and the
previously constructed estimate θ̂(k−1)(t). Following to Belomestny and Spokoiny (2006),
the aggregation is done in terms of the parameter v = −1/(2θ) so that the variable y(t)
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belongs to the exponential distributional family with a density form: p(y, v) = p(y) exp{yv−
d(v)}:

v̂(k)(t) = γkṽ
(k)(t) + (1− γk)v̂(k−1)(t)

or equivalently, θ̂(k)(t) =

(
γk

θ̃(k)(t)
+

1− γk

θ̂(k−1)(t)

)−1

The mixing weights {γk} are computed on the base of the fitted log-likelihood ratio by
checking that the previously accepted estimate θ̂(k−1)(t) is in agreement with the next
“weak” estimate θ̃(k)(t), i.e. the difference between these two estimates is bounded by
critical values zk:

γk = Kag

{
L
(
ηk, θ̃

(k)(t), θ̂(k−1)(t)
)
/zk

}

The aggregation kernel Kag guarantees that the mixing coefficient γk is one if there is no
essential difference between θ̃(k)(t) and θ̂(k−1)(t), and zero if the difference is significant.
The significance level is measured by the critical value ζk. In the intermediate case, the
mixing coefficient γk is between zero and one. The procedure terminates after step k if
γk = 0 and we define in this case θ̂(m)(t) = θ̂(k−1)(t) for all m ≥ k.

The critical values {ζk} are calculated by using Monte Carlo simulation. We briefly
summarize the procedure here. Since the NIG distributional parameters of the innovations
are unknown and the transformed variable is close to Gaussian variable, we start from the
Gaussian assumption. To be more specific, we generate y(t) = σ∗ε(t) with ε(t) ∼ N(0, 1) and
σ∗

def= 1. The “weak” estimates are calculated given the sequence of {ηk}. For k = 2, . . . ,K
with ζ1,∞, · · · ,∞, the value ζ1 is selected as the minimal one to fulfill

Eθ∗ |L
(
ηk, θ̃

(k)(t), θ̂(k)
ζ1

(t)
)
|r ≤ ατr

K − 1
, (8)

where τr = 2r
∫
ζ≥0 ζ

r−1e−ζdζ = 2rΓ(r), and r = 0.5 and α = 1 have been suggested
in Chen and Spokoiny (2006). Consequently for l = k + 1, . . . ,K with the parameters
ζ1, . . . , ζk,∞, . . . ,∞, we select ζk as the minimal value which fulfills

Eθ∗ |L
(
ηl, θ̃

(l)(t), θ̂(l)
ζ1,...,ζk

(t)
)
|r ≤ kατr

K − 1
. (9)

As said before, the transformed variable is close to Gaussian variable, we use the gener-
ated critical values under the Gaussian assumption to estimate the volatility. The constant
Cp is calculated based on the estimates θ̂(t) such that the innovation is standardized, i.e.
Var{ε̂(t)} = Var

[
y(t){Ĉp/θ̂(t)}

1
2p

]
= 1. One then estimates the NIG distributional pa-

rameters of ε̂(t) = y(t)/σ̂(t) where σ̂(t) = {θ̂(t)/Ĉp}
1
2p . To get more accurate results, one
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generates NIG innovations with the estimated distributional parameters and recalculates
the critical values as in the Gaussian case.

The local exponential smoothing algorithm is described as follows:

1. Initialization: θ̂(1)(t) = θ̃(1)(t).

2. Loop: for k ≥ 2,

θ̂(k)(t) = (
γk

θ̃(k)(t)
+

1− γk

θ̂(k−1)(t)
)−1

where the aggregating parameter γk is computed as:

γk = Kag(L(ηk, θ̃
(k)(t), θ̂(k−1)(t))/ζk−1) (10)

If γk = 0 then terminate by letting θ̂(k)(t) = . . . = θ̂(K)(t) = θ̂(k−1)(t).

3. Aggregation estimate: θ̂(t) = θ̂(K)(t).

4. Final estimate: σ̂(t) = {θ̂(t)/Cp}
1
2p , where the constant Cp is computed such that

the residuals ε̂(t) = y(t)/σ̂(t) have a unit variance as assumed in the heteroscedastic
model.

Consequently, the covariance matrices Dy(t) and Σx(t) are calculated.

Dynamic conditional correlation (DCC) model: Alternatively, the covariance of the
return series can be estimated by the DCC model:

Σx(t) = Dx(t)Rx(t)Dx(t)>.

This technique first identifies the elements of the diagonal matrix Dx(t) in the GARCH(1,1)
setup and adaptively specifies the correlation matrix as:

Rx(t) = R̃x(1− θ1 − θ2) + θ1{εx(t− 1)εx(t− 1)>}+ θ2Rx(t− 1),

where R̃x is the sample correlation of the risk factors, εx ∈ IRd are the standardized returns,
i.e. risk factors divided by the univariate GARCH(1,1) volatilities, or equivalently by the
squared diagonal elements in Dx(t). The standardized returns are assumed to be Gaussian
distributed. The parameters θ1 and θ2 are identified by the ML estimation.

2.3 Normal inverse Gaussian (NIG) distribution and fast Fourier

transformation (FFT)

The estimated ICs are assumed to be NIG distributed. The NIG is a subclass of the
GH distribution with a fixed value of λ = −1/2, see Eberlein and Prause (2002). With 4
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distributional parameters, the NIG distribution is flexible to well match the behavior of real
data. Compared to many other subclasses of GH distribution, the NIG distribution has a
desirable property, saying that the scaled NIG variable belongs to the NIG distribution as
well. The density of NIG random variable has a form of:

fNIG(y;α, β, δ, µ) =
αδ

π

K1

{
α
√
δ2 + (y − µ)2

}
√
δ2 + (y − µ)2

exp{δ
√
α2 − β2 + β(y − µ)},

where the distributional parameters fulfill µ ∈ IR, δ > 0 and |β| ≤ α. The modified Bessel
function of the third kind Kλ(·) with an index λ = 1 has a form of:

Kλ(y) =
1
2

∫ ∞

0
yλ−1 exp{−y

2
(y + y−1)} dy

The characteristic function of the NIG variable is:

ϕy(z) = exp
[
izµ+ δ{

√
α2 − β2 −

√
α2 − (β + iz)2}

]
Proof: The characteristic function of the GH random variable has a form of:

ϕy(z) = exp(izµ)

{
α2 − β2

α2 − (β + iz)2

}λ/2
Kλ{δ

√
α2 − (β + iz)2}

Kλ(δ
√
α2 − β2)

Using the representation of the modified Bessel function with a fixed index λ = −1/2 derived
in Barndorff-Nielsen and Blæsild (1981):

Kλ(y) =
√

2
π
y−1/2e−y,

it is straightforwardly to show that the assertion holds. 2

One desirable feature of the NIG distribution is its explicit scaling transformation. Mul-
tiplying the random variable by c, the resulting variable y′ = cy belongs to the NIG distri-
bution as well:

fNIG(y′;α′, β′, δ′, µ′) = fNIG(cy;α/|c|, β/c, |c|δ, cµ). (11)

Proof: It is easy to show the result by using the Jacobian transformation, see Härdle and
Simar (2003). Given the density of y and let α′ = α/|c|, β′ = β/c, δ′ = |c|δ and µ′ = cµ,
the density of y′ = cy has a form of:

f(y′) =
1
|c|
fy(

y

c
) =

α′δ′

π

K1

{
α′
√
δ′2 + (y′ − µ′)2

}
√
δ′2 + (y′ − µ′)2

exp{δ′
√
α′2 − β′2 + β′(y′ − µ′)}

= fNIG(y′;α′, β′, δ′, µ′).
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2

To calculate risk measures, it requires the identification of the portfolio returns’ density.
Based on the GHICA model, the portfolio returns are calculated as:

r(t) = b(t)>W−1Dy(t)1/2εy(t)

where b(t) is the trading strategy. Notice that the linear transformation of the NIG variable
is not necessarily NIG distributed. In other words, the density of the return is unknown
although the marginal densities are clear. On the meanwhile its characteristic function is
explicitly writable. This is the same case as approximating the α-stable distribution in
Menn and Rachev (2004), by which the Fourier transformation is used to approximate the
density of the variable based on its characteristic function. This motivates us to use the
technique to approximate the density of the return in the GHICA procedure.

Set a = (a1, · · · , ad) = b(t)>W−1Dy(t)1/2, the variable ζj = ajεj is NIG distributed with
j = 1, · · · , d, according to (11):

ζj ∼ NIG(ζj , ᾰj , β̆j , δ̆j , µ̆j) = NIG(ζj , αj/|aj |, βj/aj , |aj |δj , ajµj).

The characteristic function of the return r =
∑d

j=1 ζj at time t is:

ϕr(z) =
d∏

j=1

ϕζj
(z) = exp

iz d∑
j=1

µ̆j +
d∑

j=1

δ̆j{
√
ᾰ2

j − β̆2
j −

√
ᾰ2

j − (β̆j + iz)2}


The density function is approximated by the Fourier transformation:

f(r) =
1
2π

∫ +∞

−∞
exp(−itr)ψ(z)dt ≈ 1

2π

∫ s

−s
exp(−itr)ψ(z)dt

The procedure of quantile estimation is summarized as follows:

• Implement the discrete fast Fourier transformation (DFT) to approximate the density
of r at every time point t:

1. LetN = 2m withm ∈ IN and define an equidistance grid over the integral interval
[−s, s] by setting h = 2s

N and the grid points zj = −s+ j ∗ h with j = 0, · · · , N .

2. Calculate the input of the DFT: yj = (−1)jψ(z∗j ) with z∗j = 0.5(zj + zj+1) are
the middle points. Notice that the characteristic function is time dependent.

3. The density f(r) = 1
2πCkDFT(y)k with Ck = 2s

N (−1)k exp(− ikπ
N )i with k =

0, · · · , N − 1. We refer to Borak, Detlefsen and Härdle (2005) and Menn and
Rachev (2004) for more details. The corresponding values of r = −Nπ

2a + πk
a .

• The cumulative density function and the quantile are then approximated based on
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Fig. 2: Structure shifts of the generated covariance through time. Notice that there are
shifts among matrices not up-and-down movements.

the resulting density.

3 Covariance estimation with simulated data

In this section, the GHICA versus the DCC, are implemented to estimate covariance of
simulated data. The dimension is set to be d = 50. The simulation study is designed
to include structure shifts of covariance. To be more specific, the designed covariance
changes among three matrices over time, one is an identity matrix denoted as Σ1, meaning
uncorrelatedness, and two symmetric and semi-positive defined matrices Σ2 and Σ3. (Here
we first generate d ∗ d matrix U1 whose elements are uniform random variables for Σ2

and standard Gaussian variables for Σ3, then calculate a new matrix U2 = U1 ∗ U ′1 to
guarantee the semi-positiveness. The elements Σ(i, j) of the target matrix are calculated as
Σ(i, j) = U2(i, j)/

√
U2(i, i)U2(j, j).) The eigenvalues of these two matrices are distributed

in [5.92e−004, 3.779] (Σ2) and [0.002, 3.573] (Σ3) respectively. The off-diagonal values span
over [−0.433, 0.468] in the first self-correlated matrix (Σ2) and [−0.447, 0.464] in the second
one (Σ3). Temporal stationarity is assumed to be long for 400 time units and short for 100
units. The structure shifts of the generated covariance are illustrated in Figure 2. The level
of the shifts is either small with a shift from one self-correlated matrix (Σ2 or Σ3) to the
identity matrix or contrariwise, e.g. at the point 700, or large with a shift between the two
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self-correlated matrices, e.g. at the point 1800.

Furthermore, two distributional parameters µ and β of the standardized NIG innovations
εx(t) are set to be 0, meaning that the innovations are centered around 0 and symmetric
distributed, see Barndorff-Nielsen and Blæsild (1981). By doing so, the mean and variance
of the NIG innovations only depend on α and δ:

E(εx) = µ+
βδ√

α2 − β2
= 0

Var(εx) =
δ√

α2 − β2
+

β2

δ3
√
α2 − β2

=
δ

α
= 1

This result is used to generate the standardized innovations, by which α ∼ U [1, 2] is sug-
gested by our experience on real data analysis and δ = α.

In the Monte Carlo simulation, we generate d = 50 NIG variables with the designed
covariance and distributional parameters:

x(t) = Σ1/2
x (t)εx(t).

The sample size is T = 1900 and the scenarios are repeated N = 100 times. The covariance
matrix is estimated using the GHICA procedure and the DCC method respectively.

The GHICA method first converts the underlying series to ICs by a linear transforma-
tion:

x(t) = W−1y(t) = W−1D1/2
y (t)εy(t),

by which the elements of Dy(t) on the diagonal are estimated using the local exponential
smoothing method. In the local exponential smoothing estimation, we set the involved
parameters c = 0.01, a = 1.25 and p = 0.25. The sequence of the smoothing parameters
{ηk} are 0.600, · · · , 0.982 with K = 15, based on the condition (1−ηk)/(1−ηk+1) = a in (7).
The first 300 observations are reserved as training set for the very beginning estimations,
since the largest smoothing parameter used in this study corresponds to a window with 259
observations.

The covariance of x(t) is calculated by the basic statistical property:

Σx(t) = W−1Dy(t)W−1>

The DCC method assumes that the underlying series are Gaussian distributed. It de-
composes the covariance matrix to a product of diagonal variance matrix and correlation
matrix:

Σx(t) = Dx(t)Rx(t)Dx(t)>.
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Fig. 3: Realized estimates of Σ(2, 5) based on the GHICA and DCC methods. The generated
data consists of 50 NIG distributed components.

where Dx(t) consists of the variances of x(t) on the diagonal that are estimated in the
GARCH(1,1) setup.

Figure 3 displays one realization of Σ(2, 5), i.e. the covariance of the second and fifth
risk factors x2(t) and x5(t), based on one simulation data. The true values are 0.365 in
Σ2 and −0.124 in Σ3. As expected, the GHICA estimates are sensitive to structure shifts
through time. The DCC estimates, on the contrary, are over-smooth and slowly follow the
shifts. Given more often shifts around the last hundreds of time points, the DCC estimates
deliver less information on the movements. Recall that 100 points correspond to 4 months
observations of daily returns. It is rational to surmise that structure shifts happen so
often in the active financial markets, see Merton (1973). The similar estimation results are
observed in the other elements of the covariance, which are eliminated here.

To measure the accuracy of estimation, ratio of absolute estimation error (RAE) of the
estimates w.r.t. the true covariance are calculated pointwise.

RAE(i, j) =

∑T
t=301 |Σ̂GHICA

(i,j) (t)− Σ(i,j)(t)|∑T
t=301 |Σ̂DCC

(i,j) (t)− Σ(i,j)(t)|

If RAE(i, j) ≤ 1, it means that the GHICA method reaches higher accuracy in the estima-
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1(RAE(i,j)≤1)

d×d for i, j = 1, · · · , d. Here d = 50 and
the proportions on the base of 100 simulations are considered.

tion of Σ(i, j) than the DCC. To compare the general performance of these two methods in
covariance estimation, we check the proportion of the RAEs among the 2500 (d∗d) elements

that are smaller or equal to one, i.e.
∑

i

∑
j
1(RAE(i,j)≤1)

d×d for i, j = 1, · · · , d. Notice that
the proportion with value of 0.5 indicates that half elements are better estimated by using
the GHICA and the other half are better done by the DCC. In other words, the considered
methods have a comparable accuracy of estimation. Figure 4 displays the boxplot of the
100 proportions. The mean of the proportion is 0.4904 among the 100 simulations. It states
that the DCC method performs a little bit better than the GHICA in the sense of accuracy.
On the meanwhile, the GHICA method is much fast and sensitive to structure shifts.

4 Risk management with real data

In this section, we implement the proposed GHICA method to calculate risk measures
using real data sets: 20-dimensional German DAX portfolio and 7-dimensional exchange
rate portfolio. The results are compared with those based on alternative risk management
models. The data sets have been kindly provided by the financial and economic data center
(FEDC) of the Collaborative Research Center 649 on Economic Risk of the Humboldt-
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Universität zu Berlin (http://sfb649.wiwi.hu-berlin.de). Before giving detailed description
of the data sets, we analyze the risk measures from the viewpoints of regulatory, investors
and internal supervisory.

Regulatory requirement: Financial institutions generally face market risk that arises
from the uncertainty due to changes in market prices and rates such as share prices, foreign
exchange rates and interest rates, the correlations among them and their levels of volatility,
see Jorion (2001). The market risk is the main risk source and has a great negative influence
on the development of economic. The famous example is the stock crashes in the autumn
1929 and 1987 which caused a violent depression in the United States and some other
countries, with the collapse of financial markets and the contraction of production and
employment. To alleviate the down influence of market risks, regulation on banking and
other financial institutions has been strengthened since the mid-1990s. The goals of the
regulation are to restrict the happening of extremely large losses and require banks to
reserve adequate capital. In 1998 the Basel accord officially allowed financial institutions
to use their internal models to measure market risks. Among others, Value at Risk (VaR)
has been considered as industry standard risk measure:

VaRt,pr = −quantilepr{r(t)}.

where pr is the h = 1-day or h = 5-day forecasted probability of the portfolio returns.
Internal models for risk management are verified in accordance with the “traffic light” rule
that counts the number of exceptions over VaR at 1% probability spanning the last 250
days and identifies the multiplicative factor Mf in the market risk charge calculation, see
Franke, Härdle and Hafner (2004):

Risk charget = max

(
Mf

1
60

60∑
i=1

VaRt−i,1%,VaRt,1%

)

The multiplicative factor Mf has a floor value 3. It increases corresponding to the number
of exceptions, see Table 1. For example, if an internal model generates 7 exceptions at 1%
probability over the last 250 days, the model is in the yellow zone and its multiplicative
factor is Mf = 3.65. Financial institutions whose internal model is located in the yellow or
red zone, with a very high probability, are required to reserve more risk capital than their
internal-model-based VaRs. Notice that the increase of risk charge will reduce the ratio of
profit since the reserved capital can not be invested. On the meanwhile, an internal model
is automatically accepted if the number of exceptions does not exceed 4. This regulatory
rule in fact suggests banks to control VaR at 1.6% (i.e. 4/250) instead of 1% probability. It
is clear that 1.6%-VaR is smaller than 1%-VaR. Therefore an internal model is particularly
desirable by financial institutions if its empirical probability is smaller or equal to 1.6%,
and simultaneously requires risk charge as small as possible. Here a simplified calculation
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No. exceptions Increase of Mf Zone

0 bis 4 0 green
5 0.4 yellow
6 0.5 yellow
7 0.65 yellow
8 0.75 yellow
9 0.85 yellow

More than 9 1 red

Tab. 1: Traffic light as a factor of the exceeding amount, cited from Franke, Härdle and
Hafner (2004).

on the average value of VaRs is used as risk charge for comparison:

Risk charge (RC) = mean
(
VaRt,pr

)
Investor: It is known that VaR is inappropriate for the measurement of capital adequacy,
since it controls only the probability of default, i.e. the frequency of losses, but not the size
of losses in the case of default. For this reason, investors concern expected shortfall (ES)
more than VaR to measure and control their risks.

ES = E{−r(t)| − r(t) > VaRt,pr}

Investors suffer loss once bankruptcy happens. Even in the “best” situation, their loss
equals to the difference between the total loss and the reserved risk capital, i.e. the value
of ES. Generally risk-averse investors care the amount of loss and thus prefer an internal
model with small value of ES. Risk-seeking investors, on the other hand, care profit and
hence the small value of risk charge favors their requirement.

Internal supervisory: It is important for internal supervisory to exactly measure the
market risk exposures before risk controlling. For this reason, internal supervisory prefers
the model delivering accurate probability prediction, i.e. the empirical probability p̂r is as
close to the expected values as possible:

p̂r =
No. exceptions

No. total observations

Given two models with the same empirical probability, the model has a smaller value of
ES is considered better than the other. Here two extreme probabilities are considered, i.e.
pr = 1% for regulatory reason and pr = 0.5% used by financial institutions with AAA
rating.
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4.1 Data analysis 1: DAX portfolio

The primary target of the real data analysis is to compare the forecasting ability of the
GHICA method with two alternatives, the RiskMetrics method under the Gaussian dis-
tributional assumption and a modification with the Student-t(6) distributional assumption
(abbreviated as t(6) method) in the market. The comparison is demonstrated based on 20
DAX stocks over a long time period, starting on 1974/01/02 and ending on 1996/12/30
(5748 observations). The return series are all centered around 0 and have heavy tails
(kurtosis> 3), the smallest correlation coefficient is 0.3654. Hypothetical German DAX
portfolios are constructed with two static trading strategies b(t) = b(1) = (1/d, · · · , 1/d)>

and b(t) = b(2) ∼ U [0, 1]d. Such a simple portfolio construction eliminates the influence
of strategy adjustments on the calculation. The portfolio returns are analyzed using the
RiskMetrics or the t(6) method. Here the unknown volatility process of the portfolio is
estimated using the exponential smoothing method with η = 0.94:

r(t) = b>x(t) = σr(t)εr(t)

σ2
r (t) = {

M∑
m=0

ηmr2(t−m− 1)}/(
M∑

m=0

ηm)

where the truncated value M fulfills the condition η(M+1) ≤ 0.01. Notice that given a
dynamic trading strategy, this simplification needs to repeatedly estimate the density of
the time varying hypothetical portfolio returns, and it often suffers from a low accuracy of
estimation.

Figure 5 depicts the one day log-returns of the DAX portfolio with the static trading
strategy b(t) = b(1). The VaRs from 1975/03/17 to 1996/12/30 at pr = 0.5% are displayed
w.r.t. three methods, the GHICA, the RiskMetrics and the t(6). The most volatile time
period over t ∈ [3300, 4300] is detailed in the bottom diagram. Recall that on the Monday,
19 October 1987, the worldwide downward jump of stocks happened. Dow Jones Industrial
Average for example dropped by over 500 points. At this market quiver around t = 3446, the
GHICA method exactly achieves the locations of extreme losses whereas the RiskMetrics and
t(6) methods over-react to them. Such over reactions induce large risk charges unnecessarily.
On the other hand, it is observed that these two alternative methods give close forecasts to
some extreme losses, e.g. around time points 4000 and 4500. As a result, the associating
values of ES are small and satisfy the requirement of risk-averse investors.

Table 2 reports the risk measures based on the three methods. In general, the Risk-
Metrics is successful in fulfilling the minimal requirement of regulatory. The t(6) method
is preferred by investors who consider risk happened with 1% probability. The GHICA
method performs better than the other two for internal supervisory and requirement of
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Fig. 5: One day log-returns of the DAX portfolio with the static trading strategy b(t) = b(1).
The VaRs are from 1975/03/17 to 1996/12/30 at pr = 0.5% w.r.t. three methods,
the GHICA, the RiskMetrics and the t(6). Part of the VaR time plot is enlarged
and displayed on the bottom.
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GHICA RiskMetrics N(µ, σ2) Exponential smoothing t(6)

h b(t) pr p̂r RC ES p̂r RC ES p̂r RC ES

1 b(1) 1% 0.55% 0.0264 0.0456 1.18%s 0.0229r 0.0279 0.40% 0.0292 0.0269i

b(1) 0.5% 0.44%s 0.0297 0.0472i 0.75% 0.0254 0.0317 0.23% 0.0345 0.0506

b(2) 1% 0.59% 0.0265 0.0448 1.03%s 0.0231r 0.0288 0.38% 0.0294 0.0406i

b(2) 0.5% 0.42%s 0.0298 0.0476i 0.71% 0.0256 0.0315 0.21% 0.0347 0.0514

5 b(1) 1% 0.83% 0.0550 0.0841 1.15%s 0.0481r 0.0602 0.19% 0.0665 0.0833i

b(1) 0.5% 0.51%s 0.0612 0.0939i 0.64% 0.0536 0.0683 0.09% 0.0784 0.1067

b(2) 1% 0.83%s 0.0554 0.0828i 1.18% 0.0488r 0.0613 0.16% 0.0673 0.0852

b(2) 0.5% 0.50%s 0.0617 0.0943i 0.63% 0.0543 0.0676 0.07% 0.0794 0.1218

Tab. 2: Risk analysis of the DAX portfolios with two static trading strategies. The con-
cerned forecasting interval is h = 1 or h = 5 days. The best results to fulfill
the regulatory requirement are marked by r. The method preferred by investor is
marked by i. For the internal supervisory, the method marked by s is recommended.

risk-averse investors who care the extreme risk happened with 0.5% probability.

4.2 Data analysis 2: Foreign exchange rate portfolio

In financial markets, traders adjust trading strategy according to information obtained.
The GHICA is easily applicable to dynamic portfolios. We consider here 7 actively traded
exchange rates, Euro (EUR), the US dollar (USD), the British pounds (GBP), the Japanese
yen (JPY) and the Singapore dollar (SGD) from 1997/01/02 to 2006/01/05 (2332 obser-
vations). The foreign exchange rate (FX) market is the most active and liquid financial
market in the world. It is realistic to analyze a dynamic portfolio with daily time varying
trading strategy b(3)(t). The strategy at time point t relies on the realized returns at t− 1,
the proportions of which w.r.t the sum of returns:

b(3)(t) =
x(t− 1)∑d

j=1 xj(t− 1)

where x(t) = {x1(t), · · · , xd(t)}>. Among these data sets, the returns of the EUR/SGD
and USD/JPY rates are least correlated with the correlation coefficient 0.0071 whereas
the returns of the EUR/USD and EUR/SGD rates are most correlated with the coefficient
0.6745. The resulting portfolio returns span over [−0.7962, 0.7074].

The GHICA method is compared with an alternative method, abbreviated as DCCN,
that applies the DCC covariance estimation under the Gaussian distributional assumption.

r(t) = b(t)>x(t) = b(t)>Σ(1/2)
x (t)εx(t)

where εx ∼ N(µ,Σε) with the diagonal covariance matrix Σε. Notice that the quantile
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GHICA DCCN

h b(t) pr p̂r RC ES p̂r RC ES

1 b(3)(t) 1% 1.28%s 0.0453r 0.0778 1.59% 0.0494 0.0254i

b(3)(t) 0.5% 0.59%s 0.0493 0.1944i 0.94% 0.0547 0.0289

5 b(3)(t) 1% 1.53%s 0.0806r 0.2630i 4.17% 0.0993 0.1735
b(3)(t) 0.5% 0.79%s 0.1092 0.2801i 3.44% 0.1100 0.1389

Tab. 3: Risk analysis of the dynamic exchange rate portfolio. The best results to fulfill the
regulatory requirement are marked by r. The recommended method to the investor
is marked by i. For the internal supervisory, we recommend the method marked by
s.

vector with pr-quantiles of individual innovations does not necessarily correspond to the
pr-quantile of the portfolio return. Under the Gaussian distributional assumption, the
standardized DCCN returns are theoretically cross independent and the Gaussian quantiles
of the portfolio can be easily calculated. The dynamic mean, variance of the portfolio’s
returns have values of:

E{r(t)} = b(t)>Σ(1/2)
x (t) E{εx(t)}

Var{r(t)} = b(t)>Σ(1/2)
x (t)Var{εx(t)}Σ(1/2)>

x (t)b(t)

The GHICA method in general presents better results than the DCCN. Except the value
of ES at 1% level, the GHICA fulfills the requirements of regulatory, internal supervisory
and investors, see Table 3. For h = 1 day forecasts, the DCCN gives although a closer VaR
value to 1.6%, i.e. the ideal probability for regulatory, its risk charge with a value of 0.0494
is larger than that based on the GHICA, 0.0453. Therefore the GHICA is more favored in
fulfilling the minimal regulatory requirement.

The two real data studies show that the GHICA method fulfills the minimal regulatory
requirement by controlling the risk inside 1.6% level and requiring small risk charge, in
particular satisfies the internal supervisory requirement by precisely measuring risk level as
expected and favors the investors’ requirement by delivering small size of loss. In summary,
the GHICA method is not only a realistic and fast procedure given either static or dy-
namic portfolios but also produces better results than several alternative risk management
methods.
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