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Abstract

This paper analyzes empirical market utility functions and pricing kernels
derived from the DAX and DAX option data for three market regimes. A
consistent parametric framework of stochastic volatility is used. All empirical
market utility functions show a region of risk proclivity that is reproduced by
adopting the hypothesis of heterogeneous individual investors whose utility
functions have a switching point between bullish and bearish attitudes. The
inverse problem of finding the distribution of individual switching points is
formulated in the space of stock returns by discretization as a quadratic opti-
mization problem. The resulting distributions vary over time and correspond
to different market regimes.

JEL classification: G12, G13, C50

Keywords: Utility function, pricing kernel, behavioral finance, risk aversion,
risk proclivity, Heston model



1 Introduction

Numerous attempts have been undertaken to describe basic principles on
which the behaviour of individuals are based. Expected utility theory was
originally proposed by J. Bernoulli in 1738. In his work J. Bernoulli used such
terms as risk aversion and risk premium and proposed a concave (logarithmic)
utility function, see Bernoulli (1956). The utilitarianism theory that emerged
in the 18th century considered utility maximization as a principle for the
organisation of society. Later the expected utility idea was applied to game
theory and formalized by von Neumann and Morgenstern (1944). A utility
function relates some observable variable, in most cases consumption, and an
unobservable utility level that this consumption delivers. It was suggested
that individuals’ preferences are based on this unobservable utility: such
bundles of goods are preferred that are associated with higher utility levels.
It was claimed that three types of utility functions – concave, convex and
linear – correspond to three types of individuals – risk averse, risk neutral
and risk seeking. A typical economic agent was considered to be risk averse
and this was quantified by coefficients of relative or absolute risk aversion.
Another important step in the development of utility theory was the prospect
theory of Kahneman and Tversky (1979). By behavioural experiments they
found that people act risk averse above a certain reference point and risk
seeking below it. This implies a concave form of the utility function above
the reference point and a convex form below it.

Besides these individual utility functions, market utility functions have
recently been analyzed in empirical studies by Jackwerth (2000), Rosenberg
and Engle (2002) and others. Across different markets, the authors observed
a common pattern in market utility functions: There is a reference point
near the initial wealth and in a region around this reference point the market
utility functions are convex. But for big losses or gains they show a concave
form – risk aversion. Such utility functions disagree with the classical utility
functions of von Neumann and Morgenstern (1944) and also with the findings
of Kahneman and Tversky (1979). They are however in concordance with
the utility function form proposed by Friedman and Savage (1948).

In this paper, we analyze how these market utility functions can be ex-
plained by aggregating individual investors’ attitudes. To this end, we first
determine empirical pricing kernels from DAX data. Our estimation proce-
dure is based on historical and risk neutral densities and these distributions
are derived with stochastic volatility models that are widely used in indus-
try. From these pricing kernels we construct the corresponding market util-
ity functions. Then we describe our method of aggregating individual utility
functions to a market utility function. This leads to an inverse problem for
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the density function that describes how many investors have the utility func-
tion of each type. We solve this problem by discrete approximation. In this
way, we derive utility functions and their distribution among investors that
allow to recover the market utility function. Hence, we explain how (and
what) individual utility functions can be used to form the behaviour of the
whole market.

The paper is organized as follows: In section 2, we describe the theoretical
connection between utility functions and pricing kernels. In section 3, we
present a consistent stochastic volatility framework for the estimation of both
the historical and the risk neutral density. Moreover, we discuss the empirical
pricing kernel implied by the DAX in 2000, 2002 and 2004. In section 4, we
explain the utility aggregation method that relates the market utility function
and the utility functions of individual investors. This aggregation mechanism
leads to an inverse problem that is analyzed and solved in this section. In
section 5, we conclude and discuss related approaches.

2 Pricing kernels and utility functions

In this section, we derive the fundamental relationship between utility func-
tions and pricing kernels. It describes how a representative utility function
can be derived from historical and risk-neutral distributions of assets. In the
following sections, we estimate the empirical pricing kernel and observe in
this way the market utility function.

First, we derive the price of a security in an equilibrium model: we con-
sider an investor with a utility function U who has as initial endowment
one share of stock. He can invest into the stock and a bond up to a final
time when he can consume. His problem is to choose a strategy that maxi-
mizes the expected utility of his initial and terminal wealth. In continuous
time, this leads to a well known optimization problem introduced by Merton
(1973) for stock prices modelled by diffusions. In discrete time, it is a basic
optimization problem, see Cochrane (2001).

From this result, we can derive the asset pricing equation

P0 = EP [ψ(ST )MT ]

for a security on the stock (St) with payoff function ψ at maturity T . Here,
P0 denotes the price of the security at time 0 and EP is the expectation with
respect to the real/historical measure P . The stochastic discount factor MT

is given by

MT = βU ′(ST )/U ′(S0) (1)
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where β is a fixed discount factor. This stochastic discount factor is actually
the projection of the general stochastic discount factor on the traded asset
(St). The stochastic discount factor can depend on more variables in general.
But as discussed in Cochrane (2001) this projection has the same interpre-
tation for pricing as the general stochastic discount factor.

Besides this equilibrium based approach, Black and Scholes (1973) de-
rived the price of a security relative to the underlying by constructing a
perfect hedge. The resulting continuous delta hedging strategy is equivalent
to pricing under a risk neutral measure Q under which the discounted price
process of the underlying becomes a martingale. Hence, the price of a se-
curity is given by an expected value with respect to a risk neutral measure
Q:

P0 = EQ [exp(−rT )ψ(ST )]

If p denotes the historical density of ST (i.e. P (ST ≤ s) =
∫ s

−∞ p(x) dx) and

q the risk neutral density of ST (i.e. Q(ST ≤ s) =
∫ s

−∞ q(x) dx) then we get

P0 = exp(−rT )

∫
ψ(x)q(x)dx

= exp(−rT )

∫
ψ(x)

q(x)

p(x)
p(x)dx

= EP

[
exp(−rT )ψ(ST )

q(ST )

p(ST )

] (2)

Combining equations (1) and (2) we see

β
U ′(s)

U ′(S0)
= exp(−rT )

q(s)

p(s)
.

Defining the pricing kernel by K = q/p we conclude that the form of the
market utility function can be derived from the empirical pricing kernel by
integration:

U(s) = U(S0) +

∫ s

S0

U ′(S0)
exp(−rT )

β

q(x)

p(x)
dx

= U(S0) +

∫ s

S0

U ′(S0)
exp(−rT )

β
K(x)dx

because S0 is known.
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As an example, we consider the model of Black and Scholes (1973) where
the stock follows a geometric Brownian motion

dSt/St = µdt+ σdWt (3)

Here the historical density p of St is log-normal, i.e.

p(x) =
1

x

1√
2πσ̃2

exp

{
−1

2

(
log x− µ̃

σ̃

)2
}
, x > 0

where µ̃ = (µ−σ2/2)t+logS0 and σ̃ = σ
√
t. Under the risk neutral measure

Q the drift µ is replaced by the riskless interest rate r, see e.g. Harrison and
Pliska (1981). Thus, also the risk neutral density q is log-normal. In this
way, we can derive the pricing kernel

K(x) =

(
x

S0

)−µ−r

σ2

exp{(µ− r)(µ+ r − σ2)T/(2σ2)}.

This pricing kernel has the form of a derivative of a power utility

K(x) = λ

(
x

S0

)−γ

where the constants are given by λ = e
(µ−r)(µ+r−σ2)T

2σ2 and γ = µ−r
σ2 . This gives

a utility function corresponding to the underlying (3)

U(ST ) = (1− µ− r

σ2
)−1 S

(1−µ−r

σ2 )

T

where we ignored additive and multiplicative constants. In this power utility
function the risk aversion is not given by the market price of risk (µ− r)/σ.
Instead investors take the volatility more into account. The expected return
µ− r that is adjusted by the riskfree return is related to the variance. This
results in a higher relative risk aversion than the market price of risk.

A utility function corresponding to the Black-Scholes model is shown in
the upper panel of figure 1 as a function of returns. In order to make different
market situations comparable we consider utility functions as functions of
(half year) returns R = S0.5/S0. We chose the time horizon of half a year
ahead for our analysis. Shorter time horizons are interesting economically
and moreover the historical density converges to the Dirac measure so that
results become trivial (in the end). Longer time horizons are economically
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Figure 1: up: Utility function in the Black Scholes model for T = 0.5 years
ahead and drift µ = 0.1, volatility σ = 0.2 and interest rate r = 0.03. down:
Market utility function on 06/30/2000 for T = 0.5 years ahead.
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more interesting but it is hardly possible to estimate the historical density
for a long time ahead. It neither seems realistic to assume that investors have
clear ideas where the DAX will be in e.g. 10 years. For these reasons we use
half a year as future horizon. Utility functions Ũ of returns are defined by:

Ũ(R) := U(RS0), R > 0

where S0 denotes the value of the DAX on the day of estimation. Because of
U ′ = cK for a constant c we have Ũ ′(R) = cK(RS0)S0 and we see that also
utility functions of returns are given as integrals of the pricing kernel. The
change to returns allows us to compare different market regimes indepen-
dently of the initial wealth. In the following we denote the utility functions
of returns by the original notation U . Hence, we suppress in the notation
the dependence of the utility function U on the day of estimation t.

The utility function corresponding to the model of Black and Scholes
(1973) is a power utility, monotonically increasing and concave. But such
classical utility functions are not observed on the market. Parametric and
nonparametric models that replicate the option prices all lead to utility func-
tions with a hump around the initial wealth level. This is described in detail
later but is shown already in figure 1. The upper panel presents the utility
function corresponding to Black-Scholes model with a volatility of 20% and
an expected return of 10%. The function is concave and implies a constant
relative risk aversion. The utility function estimated on the bullish market
in summer 2000 is presented in the lower panel. Here, the hump around the
money is clearly visible. The function is no more concave but has a region
where investors are risk seeking. This risk proclivity around the money is
reflected in a negative relative risk aversion.

3 Estimation

In this section, we start by reviewing some recent approaches for estimating
the pricing kernel. Then we describe our method that is based on estimates
of the risk neutral and the historical density. The risk neutral density is
derived from option prices that are given by an implied volatility surface and
the historical density is estimated from the independent data set of historical
returns. Finally, we present the empirical pricing kernels and the inferred
utility and relative risk aversion functions.
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3.1 Estimation approaches for the pricing kernel

There exist several ways and methods to estimate the pricing kernel. Some
of these methods assume parametric models while others use nonparametric
techniques. Moreover, some methods estimate first the risk neutral and sub-
jective density to infer the pricing kernel. Other approaches estimate directly
the pricing kernel.

Ait-Sahalia and Lo (1998) derive a nonparametric estimator of the risk
neutral density based on option prices. In Ait-Sahalia and Lo (2000), they
consider the empirical pricing kernel and the corresponding risk aversion
using this estimator. Moreover, they derive asymptotic properties of the es-
timator that allow e.g. the construction of confidence bands. The estimation
procedure consists of two steps: First, the option price function is deter-
mined by nonparametric kernel regression and then the risk neutral density
is computed by the formula of Breeden and Litzenberger (1978). Advantages
of this approach are the known asymptotic properties of the estimator and
the few assumptions necessary.

Jackwerth (2000) analyses risk aversion by computing the risk neutral
density from option prices and the subjective density from historical data
of the underlying. For the risk neutral distribution, he applies a variation
of the estimation procedure described in Jackwerth and Rubinstein (1996):
A smooth volatility function derived from observed option prices gives the
risk neutral density by differentiating it twice. The subjective density is
approximated by a kernel density computed from historical data. In this
method bandwidths have to be chosen as in the method of Ait-Sahalia and
Lo (1998).

Rosenberg and Engle (2002) use a different approach and estimate the
subjective density and directly (the projection of) the pricing kernel. This
gives the same information as the estimation of the two densities because the
risk neutral density is the product of the pricing kernel and the subjective
density. For the pricing kernel, they consider two parametric specifications
as power functions and as exponentials of polynomials. The evolution of
the underlying is modelled by GARCH processes. As the parametric pricing
kernels lead to different results according to the parametric form used this
parametric approach appears a bit problematic.

Chernov (2003) also estimates the pricing kernel without computing the
risk neutral and subjective density explicitly. Instead of assuming directly a
parametric form of the kernel he starts with a (multi dimensional) modified
model of Heston (1993) and derives an analytic expression for the pricing
kernel by the Girsanov theorem, see Chernov (2000) for details. The ker-
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nel is estimated by a simulated method of moments technique from equity,
fixed income and commodities data and by reprojection. An advantage of
this approach is that the pricing kernel is estimated without assuming an
equity index to approximate the whole market portfolio. But the estimation
procedure is rather complex and model dependent.

In a recent paper, Barone-Adesi et al. (2004) price options in a GARCH
framework allowing the volatility to differ between historical and risk neutral
distribution. This approach leads to acceptable calibration errors between
the observed option prices and the model prices. They estimate the histori-
cal density as a GARCH process and consider the pricing kernel only on one
day. This kernel is decreasing which coincides with standard economic the-
ory. But the general approach of changing explicitly the volatility between
the historical and risk neutral distribution is not supported by the standard
economic theory.

We estimate the pricing kernel in this paper by estimating the risk neu-
tral and the subjective density and then deriving the pricing kernel. This
approach does not impose a strict structure on the kernel. Moreover, we
use accepted parametric models because nonparametric techniques for the
estimation of second derivatives depend a lot on the bandwidth selection al-
though they yield the same pricing kernel behaviour over a wide range of
bandwidths. For the risk neutral density we use a stochastic volatility model
that is popular both in academia and in industry. The historical density is
more difficult to estimate because the drift is not fixed. Hence, the estima-
tion depends more on the model and the length of the historical time series.
In order to get robust results we consider different (discrete) models and dif-
ferent lengths. In particular, we use a GARCH model that is the discrete
version of the continuous model for the risk neutral density. In the following,
we describe these models, their estimation and the empirical results.

3.2 Estimation of the risk neutral density

Stochastic volatility models are popular in industry because they replicate
the observed smile in the implied volatility surfaces (IVS) rather well and
moreover imply rather realistic dynamics of the surfaces. Nonparametric
approaches like the local volatility model of Dupire (1994) allow a perfect fit
to observed price surfaces but their dynamics are in general contrary to the
market. As Bergomi (2005) points out the dynamics are more important for
modern products than a perfect fit. Hence, stochastic volatility models are
popular.

We consider the model of Heston (1993) for the risk neutral density be-

8



cause it can be interpreted as the limit of GARCH models. The Heston
model has been refined further in order to improve the fit, e.g. by jumps in
the stock price or by a time varying mean variance level. We use the original
Heston model in order to maintain a direct connection to GARCH processes.
Although it is possible to estimate the historical density also with the Heston
model e.g. by Kalman filter methods we prefer more direct approaches in or-
der to reduce the dependence of the results on the model and the estimation
technique.

The stochastic volatility model of Heston (1993) is given by the two
stochastic differential equations:

dSt

St

= rdt+
√
VtdW

1
t

where the variance process is modelled by a square-root process:

dVt = ξ(η − Vt)dt+ θ
√
VtdW

2
t

and W 1 and W 2 are Wiener processes with correlation ρ and r is the risk free
interest rate. The first equation models the stock returns by normal inno-
vations with stochastic variance. The second equation models the stochastic
variance process as a square-root diffusion.

The parameters of the model all have economic interpretations: η is called
the long variance because the process always returns to this level. If the
variance Vt is e.g. below the long variance then η − Vt is positive and the
drift drives the variance in the direction of the long variance. ξ controls the
speed at which the variance is driven to the long variance. In calibrations,
this parameter changes a lot and makes also the other parameters instable.
To avoid this problem, the reversion speed is kept fixed in general. We follow
this approach and choose ξ = 2 as Bergomi (2005) does. The volatility of
variance θ controls mainly the kurtosis of the distribution of the variance.
Moreover, there are the initial variance V0 of the variance process and the
correlation ρ between the Brownian motions. This correlation models the
leverage effect: When the stock goes down then the variance goes up and vice
versa. The parameters also control different aspects of the implied volatility
surface. The short (long) variance determines the level of implied volatility
for short (long) maturities. The correlation creates the skew effect and the
volatility of variance controls the smile.

The variance process remains positive if the volatility of variance θ is
small enough with respect to the product of the mean reversion speed ξ and
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the long variance level η (i.e. 2ξη > θ2). As this constraint leads often to
significantly worse fits to implied volatility surfaces it is in general not taken
into account and we follow this approach.

The popularity of this model can probably be attributed to the semiclosed
form of the prices of plain vanilla options. Carr and Madan (1999) showed
that the price C(K,T ) of a European call option with strike K and maturity
T is given by

C(K,T ) =
exp{−α ln(K)}

π

∫ +∞

0

exp{−iv ln(K)}ψT (v)dv

for a (suitable) damping factor α > 0. The function ψT is given by

ψT (v) =
exp(−rT )φT{v − (α+ 1)i}
α2 + α− v2 + i(2α+ 1)v

where φT is the characteristic function of log(ST ). This characteristic func-
tion is given by

φT (z) = exp{ −(z2 + iz)V0

γ(z) coth γ(z)T
2

+ ξ − iρθz
}

×
exp{ ξηT (ξ−iρθz)

θ2 + izTr + iz log(S0)}

(cosh γ(z)T
2

+ ξ−iρθz
γ(z)

sinh γ(z)T
2

)
2ξη

θ2

(4)

where γ(z)
def
=

√
θ2(z2 + iz) + (ξ − iρθz)2, see e.g. Cizek et al. (2005).

For the calibration we minimize the absolute error of implied volatilities
based on the root mean square error:

ASEt
def
=

√√√√ n∑
i=1

n−1{IV mod
i (t)− IV mar

i (t)}2

where mod refers to a model quantity, mar to a quantity observed on the
market and IV (t) to an implied volatility on day t. The index i runs over
all n observations of the surface on day t.

It is essential for the error functional ASEt which observed prices are used
for the calibration. As we investigate the pricing kernel for half a year to
maturity we use only the prices of options that expire in less than 1.5 years.
In order to exclude liquidity problems occurring at expiry we consider for the
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calibration only options with more than 1 month time to maturity. In the
moneyness direction we restrict ourselves to strikes 50% above or below the
spot for liquidity reasons.

The risk neutral density is derived by estimation of the model parameters
by a least squares approach. This amounts to the minimization of the error
functional ASEt. Cont and Tankov (2004) provided evidence that such error
functionals may have local minima. In order to circumvent this problem we
apply a stochastic optimization routine that does not get trapped in a local
minimum. To this end, we use the method of differential evolution developed
by Storn and Price (1997).

Having estimated the model parameters we know the distribution of
XT = logST in form of the characteristic function φT , see (4). Then the
corresponding density f of XT can be recovered by Fourier inversion:

f(x) =
1

2π

∫ ∞

−∞
eitxφT (t)dt,

see e.g. Billingsley (1995). This integral can be computed numerically.
Finally, the risk neutral density q of ST = exp(XT ) is given as a trans-

formed density:

q(x) =
1

x
f{log(x)}.

This density q is risk neutral because it is derived from option prices and
options are priced under the risk neutral measure. This measure is applied
because banks replicate the payoff of options so that no arbitrage conditions
determine the option price, see e.g. Rubinstein (1994). An estimated risk
neutral density is presented in figure 2. It is estimated from the implied
volatility shown in figure 3 for the day 24/03/2000. The distribution is right
skewed and its mean is fixed by the martingale property. This implies that
the density is low for high profits and high for high losses. Moreover, the dis-
tribution is not symmetrical around the neutral point where there are neither
profits nor losses. For this and all the following estimations we approximate
the risk free interest rates by the EURIBOR. On each trading day we use the
yields corresponding to the maturities of the implied volatility surface. As
the DAX is a performance index it is adjusted to dividend payments. Thus,
we do not have to consider dividend payments explicitly.

3.3 Estimation of the historical density

While the risk neutral density is derived from option prices observed on the
day of estimation we derive the subjective density from the historical time

11



0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

return

Figure 2: Risk neutral density on 24/03/2000 half a year ahead.

0.5
1

1.5
20.5

0.75
1

1.25

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

time to maturityreturn

im
p

lie
d

 v
o

la
ti
lit

y

Figure 3: Implied volatility surface on 24/03/00.
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model time period
GARCH in mean 2.0y
discrete Heston 2.0y
observed returns 1.0y

Table 1: Models and the time periods used for their estimation.

series of the index. Hence, the two data sets are independent in the sense
that the option prices reflect the future movements and the historical time
series the past.

The estimation of the historical density seems more difficult than the
estimation of the risk neutral density because the drift is not fixed and it de-
pends in general on the length of the time series. Because of these difficulties
we use different models and time horizons for the historical density: First,
we estimate a GARCH in mean model for the returns. Returns are generally
assumed to be stationary and we confirmed this at least in the time intervals
we consider. The mean component in the GARCH model is important to
reflect different market regimes. We estimate the GARCH model from the
time series of the returns of the last two year because GARCH models require
quite long time series for the estimation in order to make the standard error
reasonably small. We do not choose longer time period for the estimation
because we want to consider special market regimes. Besides this popular
model choice we apply a GARCH model that converges in the limit to the
Heston model that we used for the risk neutral density. As this model is also
hard to estimate we use again the returns of the last 2 years for this model.
Moreover, we consider directly the observed returns of the last year. The
models and their time period for the estimation are presented in table 1. All
these models give by simulation and smoothing the historical density for half
a year ahead.

The GARCH estimations are based on the daily log-returns

Ri = log(Sti)− log(Sti−1
)

where (St) denotes the price process of the underlying and ti, i = 1, 2, . . .
denote the settlement times of the trading days. Returns of financial assets
have been analyzed in numerous studies, see e.g. Cont (2001). A model that
has often been successfully applied to financial returns and their stylized facts
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is the GARCH(1,1) model. This model with a mean is given by

Ri = µ+ σiZi

σ2
i = ω + αR2

i−1 + βσ2
i−1

where (Zi) are independent identically distributed innovations with a stan-
dard normal distribution, see e.g. Franke et al. (2004). On day tj the model
parameters µ, ω, α and β are estimated by quasi maximum likelihood from
the observations of the last two years, i.e. Rj−504, . . . , Rj assuming 252 trad-
ing days per year.

After the model parameters have been estimated on day tj from historical
data the process of logarithmic returns (Ri) is simulated half a year ahead,
i.e. until time tj + 0.5. In such a simulation µ, ω, α and β are given and the
time series (σi) and (Ri) are unknown. The values of the DAX corresponding
to the simulated returns are then given by inverting the definition of the log
returns:

Sti = Sti−1
exp(Ri)

where we start with the observed DAX value on day tj. Repeating the
simulation N times we obtain N samples of the distribution of Stj+0.5. We
use N = 2000 simulations because tests have shown that the results become
robust around this number of simulations.

From these samples we estimate the probability density function of Stj+0.5

(given (Stj−126
, . . . , Stj)) by kernel density estimation. We apply the Gaus-

sian kernel and choose the bandwidth by Silverman’s rule of thumb, see e.g.
Silverman (1986). This rule provides a trade-off between oversmoothing – re-
sulting in a high bias – and undersmoothing – leading to big variations of the
density. We have moreover checked the robustness of the estimate relative
to this bandwidth choice. The estimation results of a historical density are
presented in figure 4 for the day 24/03/2000. This density that represents a
bullish market is has most of its weight in the profit region and its tail for
the losses is relatively light.

As we use the Heston model for the estimation of the risk neutral density
we consider in addition to the described GARCH model a GARCH model
that is a discrete version of the Heston model. Heston and Nandi (2000)
show that the discrete version of the square-root process is given by

Vi = ω + βVi−1 + α(Zi−1 − γ
√
Vi−1)

and the returns are modelled by

Ri = µ− 1

2
Vi +

√
ViZi
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Figure 4: Historical density on 24/03/2000 half a year ahead.

where (Zi) are independent identically distributed innovations with a stan-
dard normal distribution. Having estimated this model by maximum likeli-
hood on day tj we simulate it half a year ahead and then smooth the samples
of Stj+0.5 in the same way as in the other GARCH model.

In addition to these parametric models, we consider directly the observed
returns over half a year

R̃i = Sti/Sti−126
.

In this way, we interpret these half year returns as samples from the distribu-
tion of the returns for half a year ahead. Smoothing these historical samples
of returns gives an estimate of the density of returns and in this way also an
estimate of the historical density of Stj+0.5.

3.4 Empirical pricing kernels

In contrast to many other studies that concentrate on the S&P500 index we
analyze the German economy by focusing on the DAX, the German stock
index. This broad index serves as an approximation to the German economy.
We use two data sets: A daily time series of the DAX for the estimation of
the subjective density and prices of European options on the DAX for the
estimation of the risk neutral density.
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Figure 5: DAX, 1998 - 2004.

1.0y 2.0y
03/2000 1.63 1.57
07/2002 0.66 0.54
06/2004 1.11 0.98

Table 2: Market regimes in 2000, 2002 and 2004 described by the return
S0/S0−∆ for periods ∆ = 1.0y, 2.0y.

In figure 5, we present the DAX in the years 1998 to 2004. This figure
shows that the index reached its peak in 2000 when all the internet firms
were making huge profits. But in the same year this bubble burst and the
index fell afterwards for a long time. The historical density is estimated from
the returns of this time series. We analyze the market utility functions in
March 2000, July 2002 and June 2004 in order to consider different market
regimes. We interpret 2000 as a bullish, 2002 as a bearish and 2004 as a
unsettled market. These interpretations are based on table 2 that describes
the changes of the DAX over the preceding 1 or 2 years. (In June 2004 the
market went up by 11% in the last 10 months.)

A utility function derived from the market data is a market utility func-
tion. It is estimated as an aggregate for all investors as if the representative
investor existed. A representative investor is however just a convenient con-
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struction because the existence of the market itself implies that the asset
is bought and sold, i.e. at least two counterparties are required for each
transaction.

In section 2 we identified the market utility function (up to linear trans-
formations) as

U(R) =

∫ R

R0

K(x)dx

where K is the pricing kernel for returns. It is defined by

K(x) = q(x)/p(x)

in terms of the historical and risk neutral densities p and q of returns. Any
utility function (both cardinal and ordinal) can be defined up to a linear
transformation, therefore we have identified the utility functions sufficiently.
In section 3.3 we proposed different models for estimating the historical den-
sity. In figure 6 we show the pricing kernels resulting from the different
estimation approaches for the historical density. The figure shows that all
three kernels are quite similar: They have the same form, the same charac-
teristic features like e.g. the hump and differ in absolute terms only a little.
This demonstrates the economic equivalence of the three estimation methods
on this day and this equivalence holds also for the other days. In the fol-
lowing we work with historical densities that are estimated by the observed
returns.

Besides the pricing kernel and the utility function we consider also the
risk attitudes in the markets. Such risk attitudes are often described in terms
of relative risk aversion that is defined by

RRA(R) = −RU
′′(R)

U ′(R)
.

Because of U ′ = cK = cq/p for a constant c the relative risk aversion is also
given by

RRA(R) = −Rq
′(R)p(R)− q(R)p′(R)

p2(R)
/
q(R)

p(R)
= R

(
p′(R)

p(R)
− q′(R)

q(R)

)
.

Hence, we can estimate the relative risk aversion from the estimated histori-
cal and risk neutral densities.

In figure 7 we present the empirical pricing kernels in March 2000, July
2002 and June 2004. The dates represent a bullish, a bearish and an unsettled
markets, see table 2. All pricing kernels have a proclaimed hump located
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Figure 6: Empirical pricing kernel on 24/03/2000 (bullish market).

at small profits. Hence, the market utility functions do not correspond to
standard specification of utility functions. We present the pricing kernels
only in regions around the initial DAX (corresponding to a return of 1) value
because the kernels explode outside these regions. This explosive behaviour
reflects the typical pricing kernel form for losses. The explosion of the kernel
for large profits is due to numerical problems in the estimation of the very
low densities in this region. But we can see that in the unsettled market the
kernel is concentrated on a small region while the bullish and bearish markets
have wider pricing kernels. The hump of the unsettled market is also narrower
than in the other two regimes. The bullish and bearish regimes have kernels
of similar width but the bearish kernel is shifted to the loss region and the
bullish kernel is located mainly in the profit area. Moreover, the figures show
that the kernel is steeper in the unsettled markets than in the other markets.
But this steepness cannot be interpreted clearly because pricing kernels are
only defined up to a multiplicative constant.

The pricing kernels are the link between the relative risk aversion and
the utility functions that are presented in figure 8. These utility functions
are only defined up to linear transformations, see section 2. All the utility
functions are increasing but only the utility function of the bullish market is
concave. This concavity can be seen from the monotonicity of the kernel, see
figure 7. Actually, this non convexity can be attributed to the quite special

18



0.5 1 1.5 2
0

1

2

3

4

5

6

7

return

bearish market
bullish market
sidewards market

Figure 7: Empirical pricing kernel on 24/03/2000 (bullish), 30/07/2002
(bearish) and 30/06/2004 (unsettled or sidewards market).

form of the historical density which has two modes on this date, see figure
4. Hence, we presume that also this utility function has in general a region
of convexity. The other two utility functions are convex in a region of small
profits where the bullish utility is almost convex. The derivatives of the
utility functions cannot be compared directly because utility functions are
identified only up to multiplicative constants. But we can compare the ratio
of the derivatives in the loss and profit regions for the three dates because the
constants cancel in these ratios. We see that the derivatives in the loss region
are highest in the bullish and lowest in the bearish market and vice versa in
the profit region. Economically these observations can be interpreted in such
a way that in the bullish market a loss (of 1 unit) reduces the utility stronger
than in the bearish market. On the other hand, a gain (of 1 unit) increases
the utility less than in the bearish market. The unsettled market shows a
behaviour between these extreme markets. Hence, investors fear in a good
market situation losses more than in a bad situation and they appreciate
profits in a good situation less than in a bad situation.

Finally, we consider the relative risk aversions in the three market regimes.
These risk aversions are presented in figure 9, they do not depend on any
constants but are completely identified. We see that the risk aversion is
smallest in all markets for a small profit that roughly corresponds to the
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Figure 8: Market utility functions on 24/03/2000 (bullish), 30/07/2002
(bearish) and 30/06/2004 (unsettled or sidewards market).

initial value plus a riskless interest on it. In the unsettled regime the market
is risk seeking in a small region around this minimal risk aversion. But then
the risk aversion increases quite fast. Hence, the representative agent in this
market is willing to take small risks but is sensitive to large losses or profits.
In the bullish and bearish regimes the representative agent is less sensitive to
large losses or profits than in the unsettled market. In the bearish situation
the representative agent is willing to take more risks than in the bullish
regime. In the bearish regime the investors are risk seeking in a wider region
than in the unsettled regime. In this sense they are more risk seeking in the
bearish market. In the bullish market – on the other hand – the investors
are never risk seeking so that they are less risk seeking than in the unsettled
market.

The estimated utility functions most closely follow the specification pro-
posed by Friedman & Savage (1948). The utility function proposed by Kah-
neman & Tversky (1979) consists of one concave and one convex segment and
is less suitable for describing the observed behaviour, see figure 10. Both util-
ity functions were proposed to account for two opposite types of behaviour
with respect to risk attitudes: buying insurance and gambling. Any utility
function that is strictly concave fails to describe both risk attitudes. Most
notable examples are the quadratic utility function with the linear pricing
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Figure 9: Relative risk aversions on 24/03/2000 (bullish), 30/07/2002 (bear-
ish) and 30/06/2004 (unsettled or sidewards market).

kernel as in the CAPM model and the CRRA utility function. These func-
tions are presented in figure 10. Comparing this theoretical figure with the
empirical results in figure 7 we see clearly the shortcoming of the standard
specifications of utility functions to capture the characteristic hump of the
pricing kernels.

4 Individual investors and their utility func-

tions

In this section, we introduce a type of utility function that has two regions
of different risk aversion. Then we describe how individual investors can be
aggregated to a representative agent that has the market utility function.
Finally, we solve the resulting estimation problem by discretization and es-
timate the distribution of individual investors.

4.1 Individual Utility Function

We learn from figures 10 and 7 that the market utility differs significantly
from the standard specification of utility functions. Moreover, we can observe
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Figure 10: Common utility functions (solid) and their pricing kernels (dotted)
(upper: quadratic, middle: power, lower panel: Kahneman and Tversky
utility function).
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from the estimated utility functions 8 that the loss part and the profit part of
the utility functions can be quite well approximated with hyperbolic absolute
risk aversion (HARA) functions, k = 1, 2:

U (k)(R) = ak(R− ck)
γk + bk,

where the shift parameter is ck. These power utility functions become in-
finitely negative for R = ck and can be extended by U (k)(R) = −∞ for
R ≤ ck, i.e. investors will avoid by all means the situation when R ≤ ck.
The CRRA utility function has ck = 0.

We try to reconstruct the market utility of the representative investor by
individual utility functions and hence assume that there are many investors
on the market. Investor i will be attributed with a utility function that
consists of two HARA functions:

Ui(R) =

{
max {U(R, θ1, c1);U(R, θ2, c2,i)} , if R > c1

−∞, if R ≤ c1

where U(R, θ, c) = a(R − c)γ + b, θ = (a, b, γ)>, c2,i > c1. If a1 = a2 = 1,
b1 = b2 = 0 and c1 = c2 = 0, we get the standard CRRA utility function.

The parameters θ1 and θ2 and c1 are the same for all investors who differ
only with the shift parameter c2. θ1 and c1 are estimated from the lower
part of the utility market function, where all investors probably agree that
the market is “bad”. θ2 is estimated from the upper part of the utility
function where all investors agree that the state of the world is “good”. The
distribution of c2 uniquely defines the distribution of switching points and is
computed in section 4.3. In this way a bear part Ubear(R) = U(R, θ1, c1) and
a bull part Ubull(R) = U(R, θ1, c2) can be estimated by least squares.

The individual utility function can then be denoted conveniently as:

Ui(R) =

{
max {Ubear(R);Ubull(R, ci)} , if R > c1;

−∞, if R ≤ c1.
(5)

Switching between Ubear and Ubull happens at the switching point z, whereas
Ubear(z) = Ubull(z, ci). The switching point is uniquely determined by ci ≡
c2,i. The notations bear and bull have been chosen because Ubear is activated
when returns are low and Ubull when returns are high.

Each investor is characterised by a switching point z. The smoothness
of the market utility function is the result of the aggregation of different
attitudes. Ubear characterizes more cautious attitudes when returns are low
and Ubull describes the attitudes when the market is booming. Both Ubear
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Figure 11: Market utility function (solid) with bearish (dashed) and bullish
(dotted) part of an individual utility function 5 estimated in the unsettled
market of 30/06/2004.

and Ubull are concave. However, due to switching the total utility function
can be locally convex.

These utility functions are illustrated in figure 11 that shows the results
for the unsettled market. We observe/estimate the market utility function
that does not correspond to standard utility approaches because of the convex
region. We propose to reconstruct this phenomenon by individual utility
functions that consist of a bearish part and a bullish part. While the bearish
part is fixed for all investors the bullish part starts at the switching point that
characterizes an individual investor. By aggregating investors with different
switching points we reconstruct the market utility function. We describe the
aggregation in section 4.2 and estimate the distribution of switching points
in section 4.3. In this way we explain the special form of the observed market
utility functions.

4.2 Market Aggregation Mechanism

We consider the problem of aggregating individual utility functions to a rep-
resentative market utility function. A simple approach to this problem is to
identify the market utility function with an average of the individual utility
functions. To this end one needs to specify the observable states of the world
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in the future by returns R and then find a weighted average of the utility
functions for each state. If the importance of the investors is the same, then
the weights are equal:

U(R) =
1

N

N∑
i=1

Ui(R),

where N is the number of investors. The problem that arises in this case is
that utility functions of different investors can not be summed up since they
are incomparable.

Therefore, we propose an alternative aggregation technique. First we
specify the subjective states of the world given by utility levels u and then
aggregate the outlooks concerning the returns in the future R for each per-
ceived state. For a subjective state described with the utility level U , such
that

u = U1(R1) = U2(R2) = . . . = UN(RN)

the aggregate estimate of the resulting returns is

RA(u) =
1

N

N∑
i=1

U−1
i (u) (6)

if all investors have the same market power. The market utility function UM

resulting from this aggregation is given by the inverse R−1
A .

In contrast to the naive approach described at the beginning of this sec-
tion, this aggregation mechanism is consistent under transformations: if all
individual utility functions are changed by the same transformation then the
resulting market utility is also given by the transformation of the original
aggregated utility. We consider the individual utility functions Ui and the
resulting aggregate UM . In addition, we consider the transformed individ-
ual utility functions Uφ

i (x) = φ{Ui(x)} and the corresponding aggregate Uφ
M

where φ is a transformation. Then the aggregation is consistent in the sense
that Uφ

M = φ(UM). This property can be seen from

(Uφ
M)−1(u) =

1

N

N∑
i=1

(Uφ
i )−1(u)

=
1

N

N∑
i=1

U−1
i {φ−1(u)}

= U−1
M {φ−1(u)}

The naive aggregation is not consistent in the above sense as the following
example shows: We consider the two individual utility functions U1(x) =

√
x
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and U2(x) =
√
x/2 under the logarithmic transformation φ = log. Then the

naively aggregated utility is given by UM(x) = 3
√
x/4. Hence, the trans-

formed aggregated utility is φ{UM(x)} = log(3/4) + log(x)/2. But the ag-
gregate of the transformed individual utility functions is

Uφ
M(x) =

1

2

{
log(

√
x) + log(

√
x/2)

}
=

1

2
log

(
1

2

)
+ log(x)/2.

This implies that Uφ
M 6= φ(UM) in general.

This described aggregation approach can be generalized in two ways: If
the individual investors have different market power then we use the corre-
sponding weights wi in the aggregation (6) instead of the uniform weights.
As the number of market participants is in general big and unknown it is bet-
ter to use a continuous density f instead of the discrete distributions given
by the weights wi. These generalizations lead to the following aggregation

RA(u) =

∫
U−1(·, z)(u)f(z)dz

where U(·, z) is the utility function of investor z. We assume in the follow-
ing that the investors have utility function of the form described in section
4.1. In the next section we estimate the distribution of the investors who are
parametrized by z.

4.3 The Estimation of the Distribution of Switching
Points

Using the described aggregation procedure, we consider now the problem of
replicating the market utility by aggregating individual utility functions. To
this end, we choose the parametric utility functions U(·, z) described in 4.1
and try to recover with them the market utility UM . We do not consider
directly the utility functions but minimize instead the distance between the
inverse functions:

min
f
‖

∫
U−1(·, z)f(z)dz − U−1

M ‖L2(P̃ ) (7)

where P̃ is image measure of the historical measure P on the returns under
the transformation UM . As the historical measure has the density p the
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transformation theorem for densities implies that P̃ has the density

p̃(u) = p{U−1
M (u)}/U ′M{U−1

M (u)}.

With this density the functional to be minimized in problem (7) can be stated
as ∫ (∫

U−1(u, z)f(z)dz − U−1
M (u)

)2

p̃(u) du

=

∫ (∫
U−1(u, z)f(z)dz − U−1

M (u)

)2

p{U−1
M (u)}/U ′M{U−1

M (u)} du

=

∫ (∫
U−1(u, z)f(z)dz − U−1

M (u)

)2

p{U−1
M (u)}(U−1

M )′(u) du

because the derivative of the inverse is given by (g−1)′(y) = 1/g′{g−1(y)}.
Moreover, we can apply integration by substitution to simplify this expression
further ∫ (∫

U−1(u, z)f(z)dz − U−1
M (u)

)2

p{U−1
M (u)}(U−1

M )′(u) du

=

∫ (∫
U−1{UM(x), z}f(z)dz − x

)2

p(x) dx.

For replicating the market utility by minimizing (7) we observe first that
we have samples of the historical distribution with density p. Hence, we can
replace the outer integral by the empirical expectation and the minimization
problem can be restated as

min
f

1

n

n∑
i=1

(∫
g{UM(xi), z}f(z)dz − xi

)2

where x1 . . . , xn are the samples from the historical distribution and g = U−1.
Replacing the density f by a histogram f(z) =

∑J
j=1 θjIBj

(z) with bins
Bj, hj = |Bj|, the problem is transformed into

min
θj

1

n

n∑
i=1

{
J∑

j=1

g̃(i, j)θj − xi

}2

where g̃(i, j) =
∫

Bj
g{UM(xi), z}dz.
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Hence, the distribution of switching points can be estimated by solving
the quadratic optimization problem

min
θj

1

n

n∑
i=1

{
J∑

j=1

g̃(i, j)θj − xi

}2

,

s.t. θj ≥ 0,

J∑
j=1

θjhj = 1.

Such quadratic optimization problems are well known and their solutions
can be obtained using standard techniques, see e.g. Mehrotra (1992) or
Wright (1998).

We present in figures 12–14 the estimated distribution of switching points
in the bullish (24/03/2000), bearish (30/07/2002) and unsettled (30/06/2004)
markets. The distribution density f was computed for 100 bins but we
checked the broad range of binwidths. The width of the distribution varies
greatly depending on the regularisation scheme, for example as represented
by the number of bins. The location of the distribution maximum, however,
remains constant and independent from the computational method.

The maximum and the median of the distribution, i.e. the returns at
which half of investors have bearish and bullish attitudes, depend on the year.
For example, in the bullish market (Figure 12) the peak of the switching
point distribution is located in the area of high returns around R = 1.07
for half a year. On the contrary, in the bearish market (Figure 13) the
peak of switching points is around R = 0.93. This means that when the
market is booming, such as in year 1999–2000 prior to the dot-com crash,
investors get used to high returns and switch to the bullish attitude only
for comparatively high R’s. An overall high level of returns serves in this
respect as a reference level and investors form their judgements about the
market relative to it. Since different investors have different initial wealth,
personal habits, attitudes and other factors that our model does not take into
account, we have a distribution of switching points. In the bearish market
the average level of returns is low and investors switch to bullish attitudes
already at much lower R’s.
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Figure 12: Left panel: the market utility function (red) and the fitted utility
function (blue). Right panel: the distribution of the reference points. 24
March 2000, a bullish market.
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Figure 13: Left panel: the market utility function (red) and the fitted utility
function (blue). Right panel: the distribution of the reference points. 30
July 2002, a bearish market.
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Figure 14: Left panel: the market utility function (red) and the fitted utility
function (blue). Right panel: the distribution of the reference points. 30
June 2004, an unsettled market.

5 Conclusion

We have analyzed in this paper empirical pricing kernels in three market
regimes using data on the German stock index and options on this index.
In the bullish, bearish and unsettled market regime we estimate the pric-
ing kernel and derive the corresponding utility functions and relative risk
aversions.

In the unsettled market of June 2004, the market investor is risk seeking
in a small region around the riskless return but risk aversion increases fast for
high absolute returns. In the bullish market of March 2000, the investor is on
the other hand never risk seeking while he becomes more risk seeking in the
bearish market of July 2002. Before the stock market crash in 1987 European
options did not show the smile and the Black-Scholes model captured the data
quite well. Hence, utility functions could be estimated at that times by power
utility functions with a constant positive risk aversion. Our analysis shows
that this simple structure does not hold anymore and discusses different
structures corresponding to different market regimes.

The empirical pricing kernels of all market regimes demonstrate that the
corresponding utility functions do not correspond to standard specifications
of utility functions including Kahneman and Tversky (1979). The observed
utility functions are closest to the general utility functions of Friedman and
Savage (1948). We propose a parametric specification of these functions,
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estimate it and explain the observed market utility function by aggregating
individual utility functions. In this way, we can estimate a distribution of
individual investors.

The proposed aggregation mechanism is based on homogeneous investors
in the sense that they differ only with switching points. Future research can
reveal how nonlinear aggregation procedures could be applied to heteroge-
neous investors.
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