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Abstract: We propose a new nonlinear classification method based on a Bayesian

“sum-of-trees” model, the Bayesian Additive Classification Tree (BACT), which

extends the Bayesian Additive Regression Tree (BART) method into the classi-

fication context. Like BART, the BACT is a Bayesian nonparametric additive

model specified by a prior and a likelihood in which the additive components are

trees, and it is fitted by an iterative MCMC algorithm. Each of the trees learns

a different part of the underlying function relating the dependent variable to

the input variables, but the sum of the trees offers a flexible and robust model.

Through several benchmark examples, we show that the BACT has excellent

performance. We apply the BACT technique to classify whether firms would be

insolvent. This practical example is very important for banks to construct their

risk profile and operate successfully. We use the German Creditreform database

and classify the solvency status of German firms based on financial statement

information. We show that the BACT outperforms the logit model, CART and
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the Support Vector Machine in identifying insolvent firms.

Key words and phrases: Classification and Regression Tree, Financial Ratio,

Misclassification Rate, Accuracy Ratio
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1 Introduction

Classification techniques have been popularly used in many fields. Standard classification

tools include linear and quadratic discriminant analysis and the logistic model. The support

vector machine (SVM) (Vapnik, 1995, 1997) recently arises as an important nonlinear classi-

fication tool. It maps the input space nonlinearly into a high dimensional feature space, and

tries to find linear separating hyperplanes for the classes in the feature space, penalizing the

distances of misclassified cases to the hyperplanes. The SVM has been widely and success-

fully applied to classification problems in many domains and often shown to have excellent

performance compared to other classification methods.

Decision trees compose an important category of nonlinear classification methods. Ever

since the introduction of the classification and regression tree (CART) by Breiman et al.

(1984), it has attracted strong interest from researchers and practitioners. Figure 1 shows

an example of a classification tree, where the root node (t1) contains all training observations,

and the training data are recursively partitioned by values of the input variables (x’s) until

reaching the leaf (terminal) nodes (t3, t4, t6 and t7) where the classification decision (for y) is

made for all observations contained therein. For regression problems in which the dependent

variable is continuous, a predicted value for the dependent variable would be assigned for all

observations contained in each leaf node.

Traditional search methods for CART models use locally greedy algorithms to find the

partitions. The Bayesian approaches for CART models (Chipman et al., 1998; Denison et al.,

1998; Wu et al., 2007) specify a formal prior distribution for trees and other parameters and

use Markov Chain Monte Carlo methods to sample them from the posterior distribution.
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Figure 1: Example of a classification tree.

Chipman et al. (2006) proposed the Bayesian Additive Regression Tree (BART), in which

the mean of a continuous dependent variable is approximated by a sum of trees rather

than a single tree. This “sum-of-trees” model is defined by a prior and a likelihood, and

fitted by iterative MCMC algorithm. Each individual tree explains a different portion of the

underlying mean function, but the sum of these trees turns out to be a flexible and adaptive

model. Chipman et al. (2006) showed that BART outperforms several competitive models,

including LASSO (Efron et al., 2004), gradient boosting (Friedman, 2001), random forests

(Breiman, 2001), and neural networks with one layer of hidden units. We will extend BART

into the classification context, and therefore term the resulting classification technique as

the Bayesian Additive Classification Tree (BACT).

To investigate the differences among the logit model, SVM, CART and BACT, we plot

in Figure 2 the contours of these models trained to classify the solvency status of German

firms using the German Creditreform database based on only two variables — the ratio

of operating income to total assets (x3 in Figure 2) and the ratio of accounts payable to
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total sales (x24 in Figure 2). Details of this application will be discussed in Section 4. The

contours for the logit model are linear, thus making it inflexible for complex applications.

The SVM finds flexible smooth curves in the input space (linear hyperplanes in the feature

space) that can separate the classes. The CART is based on a single tree which recursively

partitions the observations by the input variables, and hence the contours are piecewise

linear. The BACT is based on the sum of many trees, so the contours are not constrained

to be piecewise linear as in CART; although these contours are not as smooth as in SVM,

they are quite flexible in explaining complex structure.

The rest of this paper is organized as follows. Section 2 will describe the BACT in

detail. Section 3 will use several benchmark examples from the UCI Machine Learning

Repository to compare the performance of the BACT with the logit model and the SVM.

Section 4 will discuss our application to classification of solvency status of Germany firms

using the German Creditreform database. Section 5 then concludes.

2 The Bayesian Additive Classification Tree (BACT)

2.1 The Model

Consider a binary classification problem in which an dependent variable Y ∈ {1, 0} needs

to be predicted based on a set of input variables x = (x1, · · · , xp)
>. The majority of

classification models assume that there is a latent continuous variable Y ∗ that determines
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Figure 2: The contour plots for the logit model, SVM, CART, BACT. The pluses and

stars represent insolvent firms and solvent firms respectively. The numbers by the contours

indicate the probabilities of insolvency.
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the value of Y as follows 



Y = 1 if Y ∗ ≥ 0

Y = 0 if Y ∗ < 0

(1)

In the context of generalized linear models (GLM), the relationship of Y ∗ and x is

Y ∗ = β0 + β1x1 + · · ·+ βpxp + ε,

where the distribution of ε determines the link function, e.g. logit or probit. The generalized

additive models (GAM, Hastie and Tibshirani (1990)) replace each linear term in the GLM

by a more generalized functional form and relate Y ∗ to x by

Y ∗ = β0 + f1(x1) + · · ·+ fp(xp) + ε,

where each fj is an unspecified smooth function.

Following the idea of the BART in Chipman et al. (2006), we assume that Y ∗ is related

to x through an additive model, where each additive component is a tree based on all input

variables (rather than a flexible function based on a single input variable as in GAM). In

order to formally introduce the model, we first introduce some notation. Let m denote the

number of trees to be used. For j = 1, · · · ,m, let Tj denote the j’th tree with a set of

partition rules based on the input variables, and let Lj denote the number of leaf nodes in

Tj; for l = 1, · · · , Lj, let µjl denote the (continuous) predicted value associated with the l’th

leaf node in Tj, and let Mj = {µj1, µj2, · · · , µjLj
}. For a given value of x, let g(x, Tj,Mj)

denote the predicted value associated with the leaf node that an observation with input

variables being x would land in based on the partition rules for Tj. Thus Y ∗ is formally

modelled as

Y ∗ = g(x; T1,M1) + g(x; T2,M2) + · · ·+ g(x; Tm,Mm) + ε, (2)
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and we further assume that ε ∼ N(0, 1), using a probit-like link.

2.2 Prior Specification

In order to make inferences from the model given by (1) and (2) in a Bayesian way, we

need to specify a joint prior distribution for the unknown tree structures and leaf nodes

parameters. We assume a priori that the tree structures and the leaf node parameters have

independent distributions, so the full prior distribution can be written as

p{(T1,M1), (T2,M2), · · · , (Tm,Mm)} =
m∏

j=1

p(Tj)
m∏

j=1

Lj∏

l=1

p(µjl).

We further assume that every tree follows the same prior distribution, and every µjl follows

the same prior distribution. So the task of prior specification is reduced to specifying the

prior distribution for a single tree T and that for a single µjl parameter.

For a single tree T , we need to specify the prior distributions for its partition rules,

including whether to further split a node or leave it as a leaf node, and if a further split is

needed, which input variable and what values to be used for that split. We use the prior

distribution for a single tree T as in Chipman et al. (2006). The prior probability of splitting

any node n in tree T is

psplit(n, T ) ∝ α(1 + dn)−β,

where dn is the depth of node n in tree T (the depth of node n is the length of the path

from the root node to node n; e.g., in Figure 1, the node t1 has depth 0, and the nodes t2

and t3 have depth 1). α and β here are positive hyperparameters, hence the deeper a node

is, the smaller probability there is to further split it, or the larger probability that this node

becomes a leaf node. It turns out that the performance of BACT is not very sensitive to the
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Table 1: Prior distribution on number of terminal nodes based on different values of α and
β.

Setting 1 Setting 2 Setting 3
α 0.5 0.95 0.95
β 2 2 0.1
prior probability of trees with 1 terminal node 0.5 0.05 0.05
prior probability of trees with 2 terminal nodes 0.383 0.552 0.012
prior probability of trees with 3 terminal nodes 0.098 0.275 0.004
prior probability of trees with 4 terminal nodes 0.017 0.092 0.002
prior probability of trees with ≥ 5 terminal nodes 0.003 0.031 0.932

choice of alpha and beta. We tried three different settings listed in Table 1 where a priori

the trees range from small size to large size, and the resulting performance was quite similar.

So we just pick α = .95 and β = 2 as in Chipman et al. (2006). If a node needs to be split,

the prior for the associated splitting rules assigns equal probability to each available input

variable and equal probability on each available rule given the variable.

The prior distribution of µjl is taken to be a conjugate normal distribution µjl ∼

N(0, σ2
µ) (conjugate because ε in (2) follows a normal distribution). From (2), we can see

that the expected value of Y ∗ is equal to the sum of m different µjl parameters (recall that

g(x, Tj,Mj) is the µjl parameter associated with the leaf node that an observation with

input variables being x would land in based on the partition rules for Tj); because of the a

priori independence of µjl’s, the prior distribution for the expected value of Y ∗ is N(0,mσ2
µ).

Combining this with (1), it can be inferred that a priori each observation has probability 0.5

belonging to class 1 and probability 0.5 belonging to class 0.

To specify σ2
µ, we use the following procedure. We first estimate the range of Y ∗ (to be

explained soon), and then choose σ2
µ such that there is at least 95% prior probability that the
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expected value of Y ∗ is in the estimated range. Let the training data be D = {(xi, yi)}N
i=1,

where N is the number of observations in the training data. We first randomly sample y∗i for

each observation i in the training data from truncated standard normal distributions such

that the relationship in (1) holds between y∗i and the observed yi. Suppose that the sam-

pled values are y∗(0) = {y∗(0)
i }N

i=1, and denote the minimum and maximum values of y
∗(0)
i as

min(y∗(0)) and max(y∗(0)) respectively. Then [min(y∗(0)), max(y∗(0))] is a very rough estimate

of the range of Y ∗. We choose an initial σ
2(0)
µ such that there is at least 95% prior prob-

ability that the expected value of Y ∗ is in this interval, i.e., [−2
√

mσ
2(0)
µ , 2

√
mσ

2(0)
µ ] covers

[min(y∗(0)), max(y∗(0))] and therefore σ
2(0)
µ = max

{−min(y∗(0))/2
√

m, max(y∗(0))/2
√

m
}
.

We then run the Markov Chain Monte Carlo (MCMC) algorithm to be described in Section

2.3 to generate posterior samples of y∗i , and suppose that we obtain one posterior draw of

y∗(1) = {y∗(1)
i }N

i=1 after dropping the first B1 posterior draws used to reach convergence.

We assume this set of y∗i can be used to estimate reasonably the range of the true under-

lying Y ∗, and choose the value of σ2
µ for further analysis such that there is at least 95%

prior probability that the expected value of Y ∗ is in the interval [min(y∗(1)), max(y∗(1))], i.e.,

σ2
µ = max

{−min(y∗(1))/2
√

m, max(y∗(1))/2
√

m
}
.

2.3 Generation of Posterior Samples and Inference

We use the data augmentation method (Tanner and Wong, 1987) by treating y∗ = {y∗i }N
i=1

as missing data, and then use the Gibbs sampler to generate samples from the posterior

distribution p{(T1,M1), (T2,M2), · · · , (Tm,Mm), y∗|D}.

Let T(j) denote the m − 1 trees other than Tj, and let M(j) denote the parameters
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associated with the leaf nodes in T(j). The Gibbs sampler composes of drawing m successive

draws of (Tj,Mj) for j = 1, · · · ,m from p{(Tj,Mj)|T(j),M(j), y
∗,D} followed by draw of

y∗ from p{y∗|(T1,M1), (T2,M2), · · · , (Tm,Mm),D}. The draws of (Tj,Mj) can be generated

similar to Chipman et al. (2006). Let ŷ∗i =
∑m

j=1 g(xi; Tj,Mj) denote the fitted value for

observation i from the m trees. Then y∗i (i = 1, · · · , N) can be independently generated

from truncated normal distributions:





y∗i ∼ N(ŷ∗i , 1) and y∗i ≥ 0 if yi = 1

y∗i ∼ N(ŷ∗i , 1) and y∗i < 0 if yi = 0

After σ2
µ has been chosen according to the procedure described in Section 2.2, we can

drop the first B2 posterior draws used to reach convergence, and use subsequent S posterior

draws for inference. Denote these S posterior draws as {(T (s)
1 ,M

(s)
1 ), · · · , (T

(s)
m ,M

(s)
m )}S

s=1.

Given the s’th draw, the probability that an observation with input variables x belongs to

class 1 is Φ
{∑m

j=1 g(x, T
(s)
j ,M

(s)
j )

}
, where Φ is the cumulative distribution function of stan-

dard normal distribution. Therefore, the posterior average probability that an observation

with input variables x belongs to class 1 can be estimated as

1

S

S∑
s=1

Φ

{
m∑

j=1

g(x, T
(s)
j ,M

(s)
j )

}
. (3)

We can use (3) to classify observations in training data or other data: if the probability

calculated from (3) is larger than 0.5, then the observation is classified into class 1; otherwise

it is classified into class 0.
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Table 2: For five benchmark data sets from the UCI Machine Learning Repository, the
number of cases, the number of variables, and the average misclassification rates for the test
data using the logit model, the SVM and the BACT.

Data Set # Cases # Variables Logit SVM BACT
breast cancer 683 9 3.8% 2.8% 3.3%
ionosphere 351 34 12.8% 4.5% 7.2%
diabetes 768 8 21.8% 25.2% 24.8%
sonar 208 60 29.8% 19.4% 17.2%
German credit 1000 30 23.6% 27.3% 23.6%

3 Benchmark Examples

To compare the performance of the BACT with the logit model and SVM (in which radial

basis function is used as the kernel, and the parameters are chosen by cross-validation),

we use five data sets for binary classification from the UCI Machine Learning Repository

(Asuncion and Newman, 2007): breast cancer, ionosphere, diabetes, sonar, and German

credit. Columns 2-3 in Table 2 summarize the number of cases and the number of variables

for these data sets. Throughout the rest of the paper, in the BACT method, we fix m = 200,

B1 = 500, B2 = 1000 and S = 1000.

We partition each data set randomly into 80% of training data and 20% of test data.

The training data is used to fit the models, and misclassification rate on the test data is

calculated. Such procedure is repeated for 20 times, and columns 4-6 in Table 2 report

the average misclassification rates on the test data using the logit model, the SVM and the

BACT. We can see that the BACT has comparable performance with the SVM, and has no

worse performance than the logit model except for the “diabetes” data set.
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4 Classification of Solvency Status of German Firms

We use the German Creditreform database, which contains financial statement information

on 20,000 solvent and 1,000 insolvent firms in Germany and spans the period from 1996 to

2002. Information on the insolvent firms were collected two years prior to insolvency. Chen

et al. (2007); Härdle et al. (2008) applied SVM to classify the solvency status of German

firms, with the former using the German Creditreform database. We will preprocess the

data set in the same way as Chen et al. (2007) do, and compare the results of our BACT

with those of the logit model, CART and SVM.

Following Chen et al. (2007), we clean the data of firms whose characteristics are very

different from the others. We first eliminate firms within industries with small percentage

in the industry composition and are left with 949 insolvent firms and 16583 solvent firms in

four main industries — Construction, Manufacturing, Wholesale & Retail Trade and Real

Estate. We then exclude those firms whose asset size is less than 105 EUR or greater than

108 EUR, because the credit quality of small firms often depends as much on the finances

of a key individual as on the firm itself and largest firms rarely go bankrupt in Germany.

We further exclude the solvent firms in 1996 due to lack of insolvent firms in that year. We

also eliminate firms with zero value for some variables used as denominators in calculating

financial ratios to be used in classification. Several apparent outliers are then deleted and

we end up with a data set with 783 insolvent firms and 9,575 solvent firms (due to slightly

different ways of deleting outliers, our remaining solvent firms differ a little from the 9,583

solvent firms in Chen et al. (2007)).

We adopt the same set of financial variables to be used for classification as in Chen et al.
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(2007) and list them in Table 3. The five number summary of these financial variables are

listed in Table 4 for insolvent firms and solvent firms separately. In order to avoid sensitivity

to outliers in applying the SVM, Chen et al. (2007) truncated each financial variable to be

between its 5% quantile and 95% quantile. The BACT, however, only uses the ordering of

values of the input variables in the partition rules, so there is no need to do such truncation.

We use the data from 1997 to 1999 to train the model, and use the data from 2000

to 2002 to test the resulting model. The training set contains 387 insolvent firms and 3535

solvent firms, and the test set contains 396 insolvent firms and 6040 solvent firms. Because

the density of insolvent firms is rather low, we need to oversample the insolvent firms in

order for the models to pick up the patterns predictive of insolvency (e.g., Berry and Linoff

(2000), chap. 5). This is done through the bootstrap technique (Efron and Tibshirani, 1993;

Sobehart et al., 2001). For each bootstrap sample, a training subset is constructed as follows.

We use all 387 insolvent firms in the training set and randomly sample 387 solvent firms from

the training set. This subset of 774 firm with 50% being insolvent is then used to train the

model. When training the CART model, the training subset is further randomly partitioned

into two parts stratified by the solvency status of the firms. The first part comprises of 80%

of the training subset and is used to grow the tree, and the second part comprises of the

remaining 20% of the training subset and is used to prune the tree. Performance measures

are then evaluated using all observations (396 insolvent firms and 6040 solvent firms) in the

test set. The average performance measures over 30 bootstrap samples are then calculated.

We can compare average performance measures across different models.

We consider two performance measures: Accuracy Ratio (AR) (Sobehart and Keenan,

14



Table 3: Definition of financial variables to be used for classification for the Creditreform
data.

Var. Definition
x1 Net Income/Total Assets
x2 Net Income/Total Sales
x3 Operating Income/Total Assets
x4 Operating Income/Total Sales
x5 Earnings before Interest and Tax/Total Assets
x6 Earnings Before Interest, Tax, Depreciation and Amortization/Total Assets
x7 Earnings before Interest and Tax/Total Sales
x8 Own Funds/Total Assets

x9
(Own Funds− Intangible Assets)
/(Total Assets− Intangible Assets− Cash and Cash Equivalents− Lands and Buildings)

x10 Current Liabilities/Total Assets
x11 (Current Liabilities − Cash and Cash Equivalents)/Total Assets
x12 Total Liabilities/Total Assets
x13 Debt/Total Assets
x14 Earnings before Interest and Tax/Interest Expense
x15 Cash and Cash Equivalents/Total Assets
x16 Cash and Cash Equivalents/Current Liabilities
x17 (Cash and Cash Equivalents − Inventories)/Current Liabilities
x18 Current Assets/Current Liabilities
x19 (Current Assets − Current Liabilities)/Total Assets
x20 Current Liabilities/Total Liabilities
x21 Total Assets/Total Sales
x22 Inventories/Total Sales
x23 Accounts Receivable/Total Sales
x24 Accounts Payable/Total Sales
x25 log(Total Assets)
x26 Increase (Decrease) in Inventories/Inventories
x27 Increase (Decrease) in Liabilities/Total Liabilities
x28 Increase (Decrease) in Cash Flow/Cash and Cash Equivalents
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Table 4: Five number summary (minimum, lower quartile, median, upper quartile, maxi-
mum) of the financial variables for insolvent firms and solvent firms.

Insolvent Firms Solvent Firms
Var. min Q1 mdn. Q3 max min Q1 mdn. Q3 max
x1 -1.51 -0.02 0.00 0.02 1.13 -4.82 0.00 0.02 0.06 5.92
x2 -5.41 -0.02 0.00 0.01 6.10 -17.13 0.00 0.01 0.03 15.91
x3 -0.97 -0.04 0.00 0.03 1.14 -4.82 0.00 0.03 0.09 5.97
x4 -3.38 -0.02 0.00 0.02 10.15 -44.81 0.00 0.02 0.04 20.39
x5 -0.99 -0.01 0.02 0.05 1.15 -1.51 0.02 0.05 0.11 5.95
x6 -0.91 0.03 0.07 0.11 1.17 -1.46 0.06 0.11 0.18 5.95
x7 -3.55 -0.01 0.01 0.04 10.27 -39.63 0.01 0.02 0.05 14.53
x8 0.00 0.00 0.05 0.14 0.96 0.00 0.05 0.14 0.28 0.99
x9 -0.86 0.00 0.05 0.17 2.31 -2.68 0.05 0.16 0.37 49.18
x10 0.01 0.37 0.52 0.73 1.00 0.00 0.25 0.42 0.64 4.13
x11 -0.35 0.33 0.49 0.69 0.99 -0.86 0.17 0.36 0.58 4.12
x12 0.01 0.54 0.76 0.89 1.00 0.00 0.42 0.65 0.82 4.37
x13 0.00 0.09 0.21 0.37 0.91 0.00 0.02 0.15 0.33 0.98
x14 -17658.06 -0.56 1.05 1.92 433.40 -22796.04 0.86 2.16 6.55 516896.73
x15 0.00 0.00 0.02 0.06 0.44 0.00 0.01 0.03 0.11 0.90
x16 0.00 0.01 0.03 0.12 25.01 0.00 0.01 0.08 0.30 40.61
x17 0.01 0.43 0.68 0.97 57.44 0.00 0.59 0.94 1.58 238.37
x18 0.03 1.00 1.26 1.84 62.63 0.06 1.11 1.58 2.67 989.76
x19 -0.69 0.00 0.15 0.36 0.92 -3.45 0.06 0.25 0.47 0.98
x20 0.07 0.62 0.84 0.99 1.18 0.01 0.56 0.85 1.00 1.00
x21 0.07 0.40 0.61 0.94 97.26 0.02 0.32 0.48 0.74 828.76
x22 0.00 0.08 0.16 0.34 89.96 -0.14 0.05 0.11 0.21 451.09
x23 0.00 0.07 0.12 0.18 0.87 0.00 0.05 0.09 0.14 21.85
x24 0.00 0.09 0.14 0.19 43.96 0.00 0.04 0.07 0.11 61.29
x25 11.72 14.07 14.87 15.76 18.25 11.51 14.25 15.41 16.62 18.42
x26 -46.89 -0.09 0.00 0.26 2.83 -282.51 -0.01 0.00 0.06 145.12
x27 -12.75 -0.04 0.00 0.11 1.00 -28.91 -0.04 0.00 0.10 1.00
x28 -1283.20 -0.61 0.00 0.18 1.00 -2513.39 -0.27 0.00 0.26 1.75
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2001; Engelmann et al., 2003) and misclassification rate. AR is calculated using the Cumu-

lative Accuracy Profiles (CAP) (Sobehart and Keenan, 2001; Engelmann et al., 2003) curve.

To obtain the CAP curve, the firms are first ordered by risk scores from riskiest to safest. For

BACT and the Logit model, the risk score is simply the predicted probability of insolvency;

for SVM, the risk score can be calculated as distance to the separating hyperplane. The

higher the risk score is, the riskier the firm is. For a given fraction q of the total number of

firms, the CAP curve is constructed by calculating the fraction r(q) of the insolvent firms

whose risk scores are equal to or larger than the minimum score at fraction q.

Figure 3 plots the CAP curve for the test set of the Creditreform data where the scoring

model is the BACT model trained using one bootstrap training subset. In the ideal case, the

insolvent firms will be assigned the highest risk scores, and therefore the CAP curve would

be increasing linearly and then stay at one. For a random model without any discriminative

power, the fraction q of all firms with the highest risk scores will contain fraction q of all

insolvent firms, and therefore the corresponding CAP curve will be a straight line connecting

the points (0, 0) and (1, 1). AR is defined as the ratio of the area between the CAP curve

for a scoring model and that for the random model to the area between the CAP curve for

the ideal case and that for the random model. The value of AR lies between zero and one,

with zero indicating no discriminative power of the scoring model and one indicating perfect

discriminative power. Mathematically, AR is defined as

AR ≡
∫ 1

0
rmodel(q)dq − 1

2∫ 1

0
rideal(q)dq − 1

2

, (4)

where rmodel(q) and rideal(q) indicate r(q) for the scoring model and the ideal case respec-

tively, and the integrals can be approximated by 1
N

∑N
i=1 r(i/N) where N is the number of
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observations in the test set.
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Figure 3: The CAP curve for the test set of the Creditreform data where the scoring model

is the BACT model trained using one bootstrap training subset.

We also consider three types of misclassification rates: the overall misclassification rate,

the type I misclassification rate and type II misclassification rate. Here type I misclassifica-

tion refers to the case when the firm is in fact insolvent, but the model classifies the firm as

solvent; whereas type II misclassification refers to the case when the firm is in fact solvent,

but the model classifies the firm as insolvent. Financial institutions usually seek to keep

either type of misclassification rate as low as possible (Sobehart et al., 2001).

Table 5 reports the average values of AR in (4) and the three types of misclassification

rates for the Logit model, CART and BACT. Apparently, BACT outperforms the Logit

model and CART in all aspects except for average Type I misclassification rate for which

BACT is slightly worse than CART.
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Table 5: The average values of AR and the three types of misclassification rates for the Logit
model, CART and BACT.

Performance Measure Logit CART BACT
AR 52.1% 58.7% 60.4%
Overall Misclassification Rate 30.2% 33.8% 26.6%
Type I Misclassification Rate 28.3% 27.2% 27.6%
Type II Misclassification Rate 30.3% 34.3% 26.5%

Rather than using all data from 2000 to 2002 as the test set, Chen et al. (2007)

used a test subset for each bootstrap sample, which comprises of all insolvent firms and a

random sample of the same number of solvent firms in the test set. They reported that the

median AR value for 30 bootstrap samples was 60.5%, using 1
10

∑10
i=1 p(i/10) to approximate

the integrals in calculating the AR value. The median overall misclassification rate was

calculated as 28.2%. If we adopt the same procedure, BACT yields a median AR value of

66.5% and median overall classification rate as 27.2%. So BACT also outperforms SVM in

identifying the insolvent firms.

5 Concluding Remarks

In this paper, we propose the Bayesian Additive Classification Tree as a general nonlinear

classification method. We show that, based on the sum of many trees, the BACT can yield

flexible class boundaries, and that it has excellent performance compared with the logit

model, CART and SVM, as demonstrated through several benchmark examples and a real

application to credit risk modelling.

Because the partitions in each tree depend only on the ordering of the values of the
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input variables rather than the values themselves, the BACT is robust to extreme values

in the input variables, and the results do not change with monotone transformation of any

input variable. Hence little data processing is needed when using the BACT technique.

Another thing to note is that although we only discuss binary classification in this paper,

extension to multi-class classification is straightforward and left as future research.
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