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Abstact 

This paper proposes a nonparametric test of causality in quantile. Zheng 
(1998) has proposed an idea to reduce the problem of testing a quantile 
restriction to a problem of testing a particular type of mean restriction in 
independent data. We extend Zheng’s approach to the case of dependent 
data, particularly to the test of Granger causality in quantile. The proposed 
test statistic is shown to have a second-order degenerate U-statistic as a 
leading term under the null hypothesis. Using the result on the asymptotic 
normal distribution for a general second order degenerate U-statistics with 
weakly dependent data of Fan and Li (1996), we establish the asymptotic 
distribution of the test statistic for causality in quantile under β-mixing 
(absolutely regular) process. 
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1. Introduction 

Whether movements in one economic variable cause reactions in another variable is an 

important issue in economic policy and also for the financial investment decisions. A 

framework for investigating causality has been developed by Granger (1969). Testing for 

Granger causality between economic time series has been studied intensively in empirical 

macroeconomics and empirical finance. The majority of research results have been obtained 

in the context of Granger causality in the conditional mean. The conditional mean, though, is 

a questionable element of analysis if the distributions of the variables involved are 

non-elliptic or fat tailed as to be expected with financial returns. The fixation of causality 

analysis on the mean might result in many unclear results on Granger causality. Also, the 

conditional mean targets on an overall summary for the conditional distribution. A tail area 

causal relation may be quite different to that of the center of the distribution. Lee and Yang 

(2007) explore money-income Granger causality in the conditional quantile by using 

parametric quantile regression and find that Granger causality is significant in tail quantiles, 

while it is not significant in the center of the distribution.  

   This paper investigates Granger causality in the conditional quantile. It is well known that 

the conditional quantile is insensitive to outlying observations and a collection of conditional 

quantiles can characterize the entire conditional distribution. Based on the kernel method, we 

propose a nonparametric test for Granger causality in quantile. Testing conditional quantile 

restrictions by nonparametric estimation techniques in dependent data situations has not been 

considered in the literature before. This paper therefore intends to fill this literature gap. 

   Recently, the problem of testing the conditional mean restrictions using nonparametric 

estimation techniques has been actively extended from independent data to dependent data. 

Among the related work, only the testing procedures of Fan and Li (1999) and Li (1999) are 

consistent and have the standard asymptotic distributions of the test statistics. For the general 

hypothesis testing problem of the form ( | ) 0E zε =  a.e., where ε  and z  are the 

regression error term and the vector of regressors respectively, Fan and Li (1999) and Li 

(1999) all consider the distance measure of [ ( | ) ( )]J E E z f zε ε=  to construct kernel-based 

consistent test procedures. For the advantages of using distance measure J  in kernel-based 
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testing procedures, see Li and Wang (1998) and Hsiao and Li (2001). A feasible test statistic 

based on the measure J  has a second order degenerate U-statistics as the leading term under 

the null hypothesis. Generalizing Hall’s (1984) result for independent data, Fan and Li (1999) 

establish the asymptotic normal distribution for a general second order degenerate U-statistics 

with dependent data. 

   All the results stated above on testing mean restrictions are however irrelevant when 

testing quantile restrictions. Zheng (1998) proposed an idea to transform quantile restrictions 

to mean restrictions in independent data. Following his idea, one can use the existing 

technical results on testing mean restrictions in testing quantile restrictions. In this paper, by 

combining the Zheng’s idea and the results of Fan and Li (1999) and Li (1999), we derive a 

test statistic for Granger causality in quantile and establish the asymptotic normal distribution 

of the proposed test statistic under the beta-mixing process. Our testing procedure can be 

extended to several hypotheses testing problems with conditional quantile in dependent data; 

for example, testing a parametric regression functional form, testing the insignificance of a 

subset of regressors, and testing semiparametric versus nonparametric regression models. 

   The paper is organized as follows. Section 2 presents the test statistic. Section 3 

establishes the asymptotic normal distribution under the null hypothesis of no causalty in 

quantile. Technical proofs are given in Appendix. 

 

2. Nonparametric Test for Granger-Causality in Quantile 

   To simplify the exposition, we assume a bivariate case, or only{ , }t ty w are observable.  

Denote 1 1 1{ , , , , , }t t t p t t qU y y w w− − − − −= L L  and 1 1{ , , }t t t qW w w− − −= L . Granger causality 

in mean (Granger, 1988) is defined as  

(i)  tw  does not cause ty  in mean with respect to 1tU −  if  

       1 1 1( | ) ( | )t t t t tE y U E y U W− − −= −  and           

(ii) tw  is a prima facie cause in mean of ty  with respect to 1tU −  if  

       1 1 1( | ) ( | )t t t t tE y U E y U W− − −≠ − ,      

Motivated by the definition of Granger-causality in mean, we define Granger causality in 



 3

quantile as 

 (1) tw  does not cause ty  in quantile with respect to 1tU −  if 

  1 1 1( | ) ( | )t t t t tQ y U Q y U Wθ θ− − −= −  and        (1) 

 (2) tw  is a prima facie cause in quantile of ty  with respect to 1tU −  if 

  1 1 1( | ) ( | )t t t t tQ y U Q y U Wθ θ− − −≠ − ,         (2) 

where { }( | ) inf | ( | )t t tQ y y F yθ θ⋅ ≡ ⋅ ≥  is the θ th( 0 1θ< < ) conditional quantile of ty . 

Denote 1( , , )t t t px y y− −≡ L , 1 1( , , , , , )t t t p t t qz y y w w− − − −≡ L L , and the conditional 

distribution function y  given v  by | ( | )y vF y v , ( ),v x z= . Denote ( ) ( | )t t tQ v Q y vθ θ≡ . 

In this paper, | ( | )y vF y v  is assumed to be absolutely continuous in y  for almost all 

( ),v x z= . Then we have 

 { }| ( ) |y v t tF Q v vθ θ= ,  ( ),v x z=  

and from the definitions (1) and (2), the hypotheses to be tested are 

 0H :   { }|Pr ( ( ) | ) 1y z t tF Q x zθ θ= =           (3) 

 1H :   { }|Pr ( ( ) | ) 1y z t tF Q x zθ θ= < .          (4) 

   Zheng (1998) proposed an idea to reduce the problem of testing a quantile restriction to a 

problem of testing a particular type of mean restriction. The null hypothesis (3) is true if and 

only if { }( ) |t t tE I y Q x zθ θ≤ =⎡ ⎤⎣ ⎦  or { }( )t t tI y Q xθ θ ε≤ = +  where ( )| 0t tE zε =  

and ( )I ⋅  is the indicator function. There is a rich literature on constructing nonparametric 

tests for conditional mean restrictions. Refer to Li (1998) and Zheng (1998) for the list of 

related works. While various distance measures can be used to consistently test the hypothesis 

(3), we consider the following distance measure,  

{ }2

|E ( ( ) | ) ( )y z t t z tJ F Q x z f zθ θ⎡ ⎤≡ −⎢ ⎥⎣ ⎦
,         (5) 

where ( )zf z  be the marginal density function of z . Note that 0J ≥  and the equality 

holds if and only if 0H  is true, with strict inequality holding under 1H . Thus J  can be 
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used as a proper candidate for consistent testing 0H  (Li, 1999, p. 104). Since 

{ }|E( | ) ( ) |t t y z t tz F Q x zθε θ= − , we have 

{ }E  E( | ) ( )t t t z tJ z f zε ε= .           (6) 

   The test is based on a sample analog of E{  E( | ) ( )}zz f zε ε . Including the density 

function ( )zf z  is to avoid the problem of trimming on the boundary of the density function, 

see Powell, Stock, and Stoker (1989) for an analogue approach. The density weighted 

conditional expectation E( | ) ( )zz f zε  can be estimated by kernel methods 

 
1ˆˆ ( | ) ( )

( 1)

T

t t z t ts sm
s t

E z f z K
T h

ε ε
≠

=
− ∑ ,         (7) 

where m p q= +  is the dimension of z , { }( ) /ts t sK K z z h= −  is the kernel function and 

h  is a bandwidth. Then we have a sample analog of J  as 

 
1

1
( 1)

T T

T ts t sm
t s t

J K
T T h

ε ε
= ≠

≡
− ∑ ∑    

    { } { }
1

1 ( ) ( )
( 1)

T T

ts t t s sm
t s t

K I y Q x I y Q x
T T h θ θθ θ

= ≠

= ≤ − ≤ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦− ∑ ∑  (8) 

   The θ -th conditional quantile of ty  given tx , ( )tQ xθ , can also be estimated by the 

nonparametric kernel method 

 1
|

ˆ ˆ( ) ( | )t y x tQ x F xθ θ−= ,             (9) 

where  

 |

( )
ˆ ( | )

ts s t
s t

y x t t
ts

s t

L I y y
F y x

L
≠

≠

≤
=
∑

∑
           (10) 

is the Nadaraya-Watson kernel estimator of | ( | )y x t tF y x  with the kernel function of 

t s
ts

x xL L
a
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
 and the bandwidth parameter of a . The unknown error ε  can be 

estimated as: 
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 { }ˆˆ ( )t t tI y Q xθε θ≡ ≤ − .            (11) 

Replacing ε  by ε̂ , we have a kernel-based feasible test statistic of J , 

 
1

1ˆ ˆ ˆ
( 1)

T T

T ts t sm
t s t

J K
T T h

ε ε
= ≠

≡
− ∑ ∑    

    { } { }
1

1 ˆ ˆ( ) ( )
( 1)

T T

ts t t s sm
t s t

K I y Q x I y Q x
T T h θ θθ θ

= ≠

⎡ ⎤ ⎡ ⎤= ≤ − ≤ −⎣ ⎦ ⎣ ⎦− ∑ ∑  (12) 

 

3. The Limiting Distributions of the Test Statistic 

   Two existing works are useful in deriving the limiting distribution of the test statistic; one 

is Theorem 2.3 of Franke and Mwita (2003) on the uniform convergence rate of the 

nonparametric kernel estimator of conditional quantile; another is Lemma 2.1 of Li (1999) on 

the asymptotic distribution of a second-order degenerate U-statistic, which is derived from 

Theorem 2.1 of Fan and Li (1999). We restate these results in lemmas below for ease of 

reference. 

 

Lemma 1 (Franke and Mwita) Suppose Conditions (A1)(v)-(vii) and (A2)(iii) of Appendix 

hold. The bandwidth sequence is such that (1)a o=  and 1( log )p
T TS Ta s T −= →∞%  for 

some Ts →∞ . Let 2 1/ 2
T TS a S −= + % . Then for the nonparametric kernel estimator of 

conditional quantile of ˆ ( )tQ xθ of equation (9), we have 

 ( ) 1ˆsup ( ) ( ) T p
x G

Q x Q x O S O
Taθ θ

∈

⎛ ⎞− = + ⎜ ⎟
⎝ ⎠

 a.s.        (13) 

 

Lemma 2 (Li / Fan and Li)  Let T( , )t t tL zε=  be a strictly stationary process that 

satisfies the condition (A1)(i)-(iv) of Appendix, t Rε ∈  and m
tz R∈ , ( )K ⋅  be the kernel 

function with h being the smoothing parameter that satisfies the condition (A2)(i)-(ii) of 

Appendix.  Define  

2 2( ) [ |  ]t tz E z zεσ ε= =  and           (14) 
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1

1
( 1)

T T

T ts t sm
t s t

J K
T T h

ε ε
= ≠

≡
− ∑ ∑          (15) 

Then  

 / 2 2
0  N(0, )m

TTh J σ→  in distribution,          (16) 

where { }{ }2 4 2
0 2E ( ) ( ) ( )t z tz f z K u duεσ σ= ∫  and ( )zf ⋅  is the marginal density function of 

tz . 

 

   Technical conditions required to derive the asymptotic distribution of ˆ
TJ  are given in 

Appendix, which are adopted from Li (1999) and Franke and Mwita (2003). In the 

assumptions we use the definitions of Robinson (1988) for the class of kernel functions vϒ  

and the class of functions v
∞A , defined in Appendix.  

   Conditions (A1)(i)-(iv) and (A2)(i)-(ii) are adopted from condition (A1) and (A2) of Li 

(1999), which are used to derive the asymptotic normal distribution of a second-order 

degenerate U-statistic. Conditions (A1)(v)-(vii) and (A2)(iii) are conditions (A1), (A2), (B1), 

(B2), (C1) and (C2) of Franke and Mwita (2003), which are required to get the uniform 

convergence rate of nonparametric kernel estimator of conditional quantile with mixing data. 

Finally Conditions (A2)(iv)-(v) are adopted from conditions of Lemma 2 of Yoshihara (1976), 

which are required to get the asymptotic equivalence of nondegenerate U-statistic and its 

projection under the β -mixing process.  

 We consider testing for local departures from the null that converge to the null at the rate 

1/ 2 / 4mT h− − . More precisely we consider the sequence of local alternatives: 

 1H :T   { }| ( ) ( ) |y z t T t tF Q x d l z zθ θ+ = ,         (17) 

where 1/ 2 / 4m
Td T h− −=  and the function ( )l ⋅  and its first-derivatives are bounded. 

 

Theorem 1.  Assume the conditions (A1) and (A2). Then 

(i) Under the null hypothesis (3), / 2 2
0

ˆ  N(0, )m
TTh J σ→  in distribution, where 
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{ }2 4 2
0 2E ( ) ( ) ( )t z tz f z K u duεσ σ= ∫  and 2 2( ) ( | ) (1 )t t tz E zεσ ε θ θ= = − .  

(ii) under the null hypothesis (3), 2 2 2 2
0

1ˆ 2 (1 )
( 1) tsm

s t
K

T T h
σ θ θ

≠

≡ −
− ∑  is a consistent 

estimator of { }2 4 2
0 2E ( ) ( ) ( )t z tz f z K u duεσ σ= ∫ . 

(iii) under the alternative hypothesis (4), 2
|

ˆ {[ ( ( ) | ) ] ( )} 0T p y z t t z tJ E F Q x z f zθ θ→ − > . 

(iv) under the local alternatives (17), / 2 2
0

ˆ  N( , )m
TTh J μ σ→  in distribution, where 

{ }2 2
| ( ) | ( ) ( )y z t t t z tE f Q z z l z f zθμ ⎡ ⎤= ⎣ ⎦ . 

 

Theorem 1 generalizes the results of Zheng (1998) of independent data to the weakly 

dependent data case. A detailed proof of Theorem is given in the Appendix. The main 

difficulty in deriving the asymptotic distribution of the statistic defined in equation (12) is that 

a nonparametric quantile estimator is included in the indicator function which is not 

differentiable with respect to the quantile argument and thus prevents taking a Taylor 

expansion around the true conditional quantile ( )tQ xθ . To circumvent the problem, Zheng 

(1989) appealed to the work of Sherman (1994) on uniform convergence of U-statistics 

indexed by parameters. In this paper, we bound the test statistic by the statistics in which the 

nonparametric quantile estimator in the indicator function is replaced with sums of the true 

conditional quantile and upper and lower bounds consistent with uniform convergence rate of 

the nonparametric quantile estimator, 1( ( ) )t t Ty Q x Cθ≤ −  and 1( ( ) )t t Ty Q x Cθ≤ + .  

 An important further step is to show that the differences of the ideal test statistic TJ  given 

in equation (8) and the statistics having the indicator functions obtained from the first step 

stated above is asymptotically negligible. We may directly show that the second moments of 

the differences are asymptotically negligible by using the result of Yoshihara (1976) on the 

bound of moments of U-statistics for absolutely regular processes. However, it is tedious to 

get bounds on the second moments with dependent data. In the proof we instead use the fact 

that differences are second-order degenerate U-statistics. Thus by using the result on the 

asymptotic normal distribution of the second-order degenerate U-statistic of Fan and Li 
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(1999), we can derive the asymptotic variance which is based on the i.i.d. sequence having the 

same marginal distributions as weakly dependent variables in the test statistic. With this little 

trick we only need to show that the asymptotic variance is (1)o  in an i.i.d. situation. For 

details refer to the Appendix.  

 

4. Conclusion 

   This paper has provided a consistent test for Granger-causality in quantile. The test can be 

extended to testing conditional quantile restrictions with dependent data; for example, testing 

misspecification test, testing the insignificance of a subset of regressors, testing some 

semiparametric versus nonparametric models, all in quantile regression models. 
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Appendix  

 

Here we collect all required assumptions to establish the results of Theorem 1. 

 

(A1) (i) { , }t ty w  is strictly stationary and absolutely regular with mixing coefficients 

( ) ( )O τβ τ ρ=  for some 0 <  < 1ρ .  

(ii)  For some integer 2v ≥ , ,   ,  y zf f  and xf  all are bounded and belong to v
∞A  (see 

D2).  

(iii) with probability one, 1[ | ( ), ( )] 0t t
tE z zε μ μ −

−∞ −∞ = . 4
tE ηε +⎡ ⎤ < ∞⎣ ⎦  and 

1 2

1 2

1
l

l

ii i
t t tE

ξ
ε ε ε

+⎡ ⎤ < ∞⎢ ⎥⎣ ⎦
L  for some arbitrarily small 0η >  and 0ξ > , where 2 4l≤ ≤  is 

an integer, 0 4ji≤ ≤  and 
1

8
l

j
j

i
=

≤∑ . 2 2( ) ( | )z E zεσ ε= , 4
4 ( ) |t tz E z zεμ ε⎡ ⎤= =⎣ ⎦  all 

satisfy some Lipschitz conditions: ( ) ( ) ( )a u v a u D u v+ − ≤  with 2 '( )E D z η+⎡ ⎤ < ∞⎣ ⎦  

for some small ' 0η > , where ( ) ( ) ( )2
4,a ε εσ μ⋅ = ⋅ ⋅   .  

(iv) Let ( )
1 , , l

fτ τK  be the joint probability density function of ( )1
, ,

l
z zτ τK  ( )1 3l≤ ≤ . 

Then ( )
1 , , l

fτ τK  is bounded and satisfies a Lipschitz condition: 

( ) ( )
1 1, , 1 1 2 2 , , 1 2, , , ,

l ll l lf z u z u z u f z z zτ τ τ τ+ + + − ≤K KK K ( )
1 , , 1, ,

l lD z z uτ τK K   , where 

( )
1 , , l

Dτ τK  is integrable and satisfies the condition that ( )
1

2
, , 1, ,

l lD z z z Mξ
τ τ < < ∞∫ K K , 

( ) ( )
1 1, , 1 , , 1, , , ,

l ll lD z z f z z dz Mτ τ τ τ < < ∞∫ K KK K     for some 1ξ > .  

(v) For any ,y x  satisfying |0 ( | ) 1y xF y x< <  and ( ) 0xf x > ; for fixed y , the 

conditional distribution function |y xF  and the conditional density function |y xf  belong to 

3
∞A ; | ( ( ) | ) 0y xf Q x xθ >  for all x ; |y xf  is uniformly bounded in x  and y  by fc , say.  

(vi) For some compact set G , there are 0, 0ε γ> >  such that xf γ≥  for all x  in the 

ε -neighborhood { }| ,   x x u u Gε− < ∈  of G ; For the compact set G  and some 
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compact neighborhood 0Θ  of 0, the set { }0( ) | ,v Q x x Gθ μ μΘ = = + ∈ ∈Θ  is compact 

and for some constant 0 0c > , | ( | )y xf v x 0c≥  for all ,x G v∈ ∈Θ . (vii) There is an 

increasing sequence Ts  of positive integers such that for some finite A , 

 2 /(3 ) ( )Ts T
T

T

T s A
s
β ≤ , 1

2T
Ts≤ ≤  for all 1T ≥ . 

(A2) (i) we use product kernels for both ( )L ⋅  and ( )K ⋅ , let l  and k  be their 

corresponding univariate kernel which is bounded and symmetric, then ( )l ⋅  is non-negative, 

( ) vl ⋅ ∈ϒ , ( )k ⋅  is non-negative and 2( )k ⋅ ∈ϒ .  

(ii) '( )h O T α−=  for some 0 ' (7 / 8)mα< < .  

(iii) (1)a o=  and 1( log )p
T TS Ta s T −= →∞%  for some Ts →∞  

(iv) there exists a positive number δ  such that for 2r δ= +  and a generic number 0M  

 1 2
1 2 0

1 ( ) ( )
r

z zm

z zK dF z dF z M
h h

−⎛ ⎞ ≤ < ∞⎜ ⎟
⎝ ⎠∫ ∫  and       

 1 2
0

1
r

m

z zE K M
h h

−⎛ ⎞ ≤ < ∞⎜ ⎟
⎝ ⎠

 

(v)  for some '  (0 ' )δ δ δ< < , (2 ') / '( ) ( )T O T δ δβ − += . 

 

The following definitions are due to Robinson (1988). 

Definition (D1)  ,  1λ λϒ ≥  is the class of even functions :k R R→  satisfying 

 0( )i
iR

u k u du δ=∫   ( 0,1, , 1)i λ= −K , 

 ( )1 1( ) (1 )k u O u λ ε+ + −= + , for some 0ε > , 

where ijδ  is the Kronecker’s delta. 

 

Definition (D2)  ,  0,  0α
μ α μ> >A  is the class of functions : mg R R→  satisfying that 
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g  is ( 1)d − -times partially differentiable for 1d dμ− ≤ ≤ ; for some 0ρ > , 

sup ( ) ( ) ( , ) / ( )
zy g gg y g z G y z y z D z
ρ

μ
φ∈ − − − ≤  for all z , where { }|z y y zρφ ρ= − <  

; 0gG =  when 1d = ; gG  is a ( 1)d − th degree homogeneous polynomial in y z−  with 

coefficients the partial derivatives of g  at z  of orders 1 through 1d −  when 1d > ; and 

( )g z , its partial derivatives of order 1d −  and less, and ( )gD z , has finite α th moments. 

 

Proof of Theorem (i) 

 

In the proof, we use several approximations to ˆ
TJ . We define them now and recall a few 

already defined statistics for convenience of reference. 

 
1

1ˆ ˆ ˆ
( 1)

T T

T ts t sm
t s t

J K
T T h

ε ε
= ≠

≡
− ∑ ∑            (A.1) 

 
1

1
( 1)

T T

T ts t sm
t s t

J K
T T h

ε ε
= ≠

≡
− ∑ ∑            (A.2) 

 
1

1
( 1)

T T

TU ts tU sUm
t s t

J K
T T h

ε ε
= ≠

≡
− ∑ ∑           (A.3) 

 
1

1
( 1)

T T

TL ts tL sLm
t s t

J K
T T h

ε ε
= ≠

≡
− ∑ ∑            (A.4) 

where  { }ˆˆ ( )t t tI y Q xθε θ= ≤ − , 

  { }( )t t tI y Q xθε θ= ≤ − , 

  { }( )tU t T tI y C Q xθε θ= + ≤ − ,  

  { }( )tL t T tI y C Q xθε θ= − ≤ −  and 

TC  is an upper bound consistent with the uniform convergence rate of the nonparametric 

estimator of conditional quantile given in equation (13). The proof of Theorem 1 (i) consists 
of three steps. 
 Step 1.  Asymptotic normality:  

   / 2 2
0  N(0, )m

TTh J σ→ ,          (A.5) 
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   where { }{ }2 2 2 2
0 2E (1 ) ( ) ( )tf z K u duσ θ θ= − ∫  under the null. 

 Step 2.  Conditional asymptotic equivalence:  

   Suppose that both / 2 ( ) (1)m
T TU pTh J J o− =  and / 2 ( ) (1)m

T TU pTh J J o− = . 

   Then / 2 ˆ( ) (1)m
T T pTh J J o− = .         (A.6) 

 Step 3.  Asymptotic equivalence:  

   / 2 ( ) (1)m
T TU pTh J J o− =  and / 2 ( ) (1)m

T TL pTh J J o− = .   (A.7) 

The combination of Steps 1-3 yields Theorem 1 (i). 

 

Step 1: Asymptotic normality.    

Since TJ  is a degenerate U-statistic of order 2, the result follows from Lemma 2.  

                 □ 

 

Step 2: Conditional asymptotic equivalence. 

The proof of Step 2 is motivated by the technique of Härdle and Stoker (1989) which was 

used in treating trimming indicator function asymptotically. Suppose that the following two 

statements hold. 

 / 2 ( ) (1)m
T TU pTh J J o− =  and           (A.8) 

 / 2 ( ) (1)m
T TL pTh J J o− =            (A.9) 

   Denote TC  as an upper bound consistent with the uniform convergence rate of the 

nonparametric estimator of conditional quantile given in equation (13). Suppose that  

 ˆsup | ( ) ( ) | TQ x Q x Cθ θ− ≤ .           (A.10) 

If inequality (A.3) holds, then the following statements also hold: 

 ˆ{ ( )  }  { ( )  }  { ( )  }t T t t TQ x y C Q x y Q x y Cθ θ θ> + ⊂ > ⊂ > − ,  (A.11-1) 

ˆ1( ( )  )  1( ( )  )  1( ( )  )t T t t TQ x y C Q x y Q x y Cθ θ θ> + ≤ > ≤ > − ,  (A.11-2) 

ˆ    TU T TLJ J J≤ ≤ , and           (A.11-3) 

/ 2 / 2 / 2ˆ| ( ) |   max  { | ( ) |  ,  | ( ) |  }m m m
T T T TU T TLTh J J Th J J Th J J− ≤ − −  (A.11-4) 
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Using (A.10) and (A.11-4), we have the following inequality; 

 { }/ 2 ˆˆPr | ( ) |  >  sup | ( ) ( ) |m
T T TTh J J Q x Q x Cθ θδ− − ≤  

{ }/ 2 / 2 ˆ Pr  max  { | ( ) |  ,  | ( ) |  } >  sup | ( ) ( ) |m m
T TU T TL TTh J J Th J J Q x Q x Cθ θδ≤ − − − ≤

, for all  > 0δ .             (A.12) 

Invoking Lemma 1 and condition A2(iii), we have  

 { }ˆPr  sup | ( ) ( ) |   1TQ x Q x Cθ θ− ≤ →  as  T → ∞ .     (A.13) 

By (A.8) and (A.9), as   T → ∞ , we have 

 { }/ 2 / 2Pr  max  { | ( ) |  ,  | ( ) |  } >    0m m
T TU T TLTh J J Th J J δ− − → , for all  > 0δ . 

                 (A.14) 

Therefore, as   T → ∞ , 

 the L.H.S. of the inequality (A.12) { }/ 2 ˆPr | ( ) |  >    0m
T TTh J J δ− − →  and 

 the L.H.S. of the inequality (A.12)  0→ . 

In summary, we have that if both / 2 ( ) (1)m
T TU pTh J J o− =  and / 2 ( ) (1)m

T TU pTh J J o− = , 

then / 2 ˆ( ) (1)m
T T pTh J J o− = .               □ 

 

Step 3: Asymptotic equivalence. 

In the remaining proof, we focus on showing that / 2 ( ) (1)m
T TU pTh J J o− = , with the proof 

of / 2 ( ) (1)m
T TL pTh J J o− =  being treated similarly. The proof of Step 3 is close in lines 

with the proof in Zheng (1998). Denote 

 ( , , ) {1( ( )) }{1( ( )) }T ts t t s sH s t g K y g x y g xθ θ≡ ≤ − ≤ −  and    (A.15) 

 
1

1[ ] ( , , )
( 1)

T T

Tm
t s t

J g H s t g
T T h = ≠

≡
− ∑ ∑ .        (A.16) 

Then we have [ ]TJ J Qθ≡  and [ ]TU TJ J Q Cθ≡ − . We decompose ( , , )TH s t g  into 

three parts;  

( , , ) {1( ( )) ( ( ) | )}{1( ( )) ( ( ) | )}T ts t t t t s s s sH s t g K y g x F g x z y g x F g x z= ≤ − ≤ −  
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      2 {1( ( )) ( ( ) | )}{ ( ( ) | ) }ts t t t t s sK y g x F g x z F g x z θ+ × ≤ − −  

      { ( ( ) | ) }{ ( ( ) | ) }ts t t s sK F g x z F g x zθ θ+ − −  

   1 2 3 ( , , ) 2 ( , , ) ( , , )T T TH s t g H s t g H s t g= + +      (A.17) 

Then let 
1

1[ ] ( , , )
( 1)

T T

j jTm
t s t

J g H s t g
T T h = ≠

=
− ∑ ∑ , 1,2,3i = . We will treat 

[ ] [ ]   1, 2,3j j TJ Q J Q C for jθ θ− − =  separately. 

 

[1] [ ]/ 2
1 1( ) ( ) (1)m

T pTh J Q J Q C oθ θ− − = :  

By simple manipulation, we have 

 1 1( ) ( )TJ Q J Q Cθ θ− −   

 [ ]1 1
1

1 ( , , ) ( , , )
( 1)

T T

T T Tm
t s t

H s t Q H s t Q C
T T h θ θ

= ≠

= − −
− ∑∑  

 [ ][ ]{
1

1  1 ( ) ( ) 1 ( ) ( )
( 1)

T T

ts t t s sm
t s t

K Q F Q Q F Q
T T h θ θ θ θ

= ≠

= − −
− ∑∑  

   [ ][ ] }1 ( ) ( ) 1 ( ) ( )  t T t T s T s TQ C F Q C Q C F Q Cθ θ θ θ− − − − − − −  (A.18) 

To avoid tedious works to get bounds on the second moment of 1 1( ) ( )TJ Q J Q Cθ θ− −   

with dependent data, we note that the R.H.S. of (A.18) is a degenerate U-statistic of order 2. 

Thus we can apply Lemma 2 and have 

 [ ]/ 2 2
1 1 1( ) ( )   N(0, )m

TTh J Q J Q Cθ θ σ− − →  in distribution,   (A.19) 

where the definition of the asymptotic variance 2
1σ  is based on the i.i.d. sequence having the 

same marginal distributions as weakly dependent variables in (A.18). That is,  

 [ ]2
1 1 1( , , ) ( , , )T T TE H s t Q H s t Q Cθ θσ = − −% , 

where the notation E%  is expectation evaluated at an i.i.d. sequence having the same 

marginal distribution as the mixing sequences in (A.18) (Fan and Li (1999), p. 248). Now, to 

show that [ ]/ 2
1 1( ) ( ) (1)m

T pTh J Q J Q C oθ θ− − = , we only need to show that the asymptotic 
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variance 2
1 ( )zσ  is (1)o  with i.i.d data.  We have 

 [ ]2
1 1 ( , , ) ( , , )       T T TE H s t Q H s t Q Cθ θ− −%  

 [ ][ ]{  E  1 ( ) ( ) 1 ( ) ( )t t s sQ F Q Q F Qθ θ θ θ≤ Λ − −%  

        [ ][ ] }2
1 ( ) ( ) 1 ( ) ( )  t T t T s T s TQ C F Q C Q C F Q Cθ θ θ θ− − − − − − −

 

  [ ] [ ]{ } ( ) 1 ( ) ( ) 1 ( )t t s sE F Q F Q F Q F Qθ θ θ θ≤ Λ − −%  

  [ ] [ ]{ }( ) 1 ( ) ( ) 1 ( )t T t T s T s TE F Q C F Q C F Q C F Q Cθ θ θ θ+ − − − − − −%  

     [ ]{2  (min( , ) ( ) ( )t T t t TE F Q Q C F Q F Q Cθ θ θ θ− − − −  

        [ ] }(min( , ) ( ) ( )   s T s s TF Q Q C F Q F Q Cθ θ θ θ× − − −  

  [ ][ ]{ } ( ) ( ) ( ) ( ) ( ) ( )t t t s s sE F Q F Q F Q F Q F Q F Qθ θ θ θ θ θ= Λ − −%  

     [ ]{  (min( , ) ( ) ( )t T t t TE F Q Q C F Q F Q Cθ θ θ θ−Λ − − −%  

        [ ] }(min( , ) ( ) ( )   s T s s TF Q Q C F Q F Q Cθ θ θ θ× − − −  

  [ ]{   ( ) ( ) ( )t T t T t TE F Q C F Q C F Q Cθ θ θ+Λ − − − −%  

     [ ] }( ) ( ) ( )  s T s T s TF Q C F Q C F Q Cθ θ θ× − − − −  

     [ ]{  (min( , ) ( ) ( )t T t t TE F Q Q C F Q F Q Cθ θ θ θ−Λ − − −%  

        [ ] }(min( , ) ( ) ( )   s T s s TF Q Q C F Q F Q Cθ θ θ θ× − − −  

 (1).TC o≤ Λ =              (A.20) 

where the last equality holds by the smoothness of conditional distribution function and its 

bounded first derivative due to Assumption (A.8). Thus we have  

 [ ]/ 2
1 1( ) ( ) (1)m

T pTh J Q J Q C oθ θ− − =         (A.21) 

 

[2] [ ]/ 2
2 2( ) ( ) (1)m

T pTh J Q J Q C oθ θ− − = :  

Noting that 2 ( , , ) 0TH s t Qθ =  because of | ( ( ) | ) 0y z s sF Q x zθ θ− = , we have 

 2 2( ) ( )TJ Q J Q Cθ θ− −  
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 2 ( )TJ Q Cθ= − −  

 
1

1 1
( 1)

T T
t s

m
t s t

z zK
T T h h= ≠

−⎛ ⎞= − ⎜ ⎟− ⎝ ⎠
∑ ∑  

 | | {1( ( ) ) ( ( ) | )}{ ( ( ) | ) }t t T y z t T t y z s T sy Q x C F Q x C z F Q x C zθ θ θ θ× ≤ − − − − −  (A.22) 

Denote ( ) [ ] /S g F g g≡ ∂ ∂ . By taking a Taylor expansion of | ( ( ) | )y z s T sF Q x C zθ −  around 

( )sQ xθ , we have 

 2 2( ) ( )TJ Q J Q Cθ θ− −  

 |
1

1 1 {1( ( ) ) ( ( ) | )}
( 1)

T T
t s

t t T y z t T tm
t s t

z zK y Q x C F Q x C z
T T h h θ θ

= ≠

−⎛ ⎞= − ≤ − − −⎜ ⎟− ⎝ ⎠
∑ ∑  

       ( ) ( ( ))T sC S Q xθ× −         

 |
1

1 ˆ{1( ( ) ) ( ( ) )} ( ( )) ( )
T

T t t T y z t T s z t
t

C y Q x C F Q x C S Q x f z
T θ θ θ

=

= ≤ − − −∑   

 
1

1 ˆ( ( )) ( )
T

T t s z t
t

C u S Q x f z
T θ

=

≡ ∑ ,          (A.23) 

where Qθ  is between Qθ  and TQ Cθ − . Thus we have 

 2 2( ) ( )TE J Q J Q Cθ θ− −  

 
1

1 ˆ ( )
T

T t z t
t

C E u f z
T =

≤ Λ ∑      

 { }2 2

1

1 ˆ ( )
T

T t z t
t

C E u f z
T =

≤ Λ ∑  

 ( )1( )m
TO C Th −= ,             (A.24) 

where the first inequality holds due to Assumption (1)(v) and the last equality is derived by 

using Lemma C.3(iii) of Li (1999) that is proved in the proof of Lemma A.4(i) of Fan and Li 

(1996c). 

 

Thus, we have 
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 [ ]/ 2
2 2( ) ( )m

TTh J Q J Q Cθ θ− −  

 ( )/ 2m
p TO C h−=  

 (1)po= .               (A.25) 

 

[3] [ ]/ 2
3 3( ) ( ) (1)m

T pTh J Q J Q C oθ θ− − = :  

Noting that 3 ( , , ) 0TH s t Qθ =  because of ( ( ) | ) 0 for ,j jF Q x z j t sθ θ− = = , we have 

 3 3( ) ( )TJ Q J Q Cθ θ− −  

 
1

1 1
( 1)

T T
t s

m
t s t

z zK
T T h h= ≠

−⎛ ⎞= − ⎜ ⎟− ⎝ ⎠
∑ ∑  

       { ( ( ) | ) }{ ( ( ) | ) }t T t s T sF Q x C z F Q x C zθ θθ θ× − − − −  

 2

1

1 1=  ( ( )) ( ( ))
( 1)

T T
t s

T t sm
t s t

z zK C S Q x S Q x
T T h h θ θ

= ≠

−⎛ ⎞
⎜ ⎟− ⎝ ⎠

∑ ∑  

 2

1

1 ˆ= ( ( )) ( ( )) ( )
T

T t s z t
t

C S Q x S Q x f z
T θ θ

=
∑         (A.26) 

Thus, we have 

 3 3( ) ( )TE J Q J Q Cθ θ− −  

 2

1

1 ˆ ( )
T

T z t
t

C E f z
T =

≤ Λ ∑  

 2 2

1 1

1 1 ˆ ( ) ( ) ( )
T T

T z t T z t z t
t t

C E f z C E f z f z
T T= =

≤ Λ +Λ −∑ ∑  

 { }2
2 2

1 1

1 1 ˆ ( ) ( ) ( )
T T

T z t T z t z t
t t

C Ef z C E f z f z
T T= =

≤ Λ +Λ −∑ ∑  

  ( )2
TO C=               (A.27) 

Finally, we have  

 [ ]/ 2
3 3( ) ( )m

TTh J Q J Q Cθ θ− −  

 ( )/ 2 2m
p TO Th C=  
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 (1)po= .               (A.28) 

By combining (A.21), (A.25) and (A.28), we have the result of Step 3      □ 

 

Proof of Theorem 1 (ii) 

 

Since  

 { }2 2 2 2
0 2 (1 ) E ( ) ( )z tf z K u duσ θ θ= − ∫  and 

 2 2 2 2
0

1ˆ 2 (1 )
( 1) tsm

s t
K

T T h
σ θ θ

≠

≡ −
− ∑ , 

it is enough to show that  

 2 21
( 1)T tsm

s t
K

T T h
σ

≠

≡
− ∑      

    { } 2E ( ) ( ) (1)z t pf z K u du o= +∫          (A.29) 

Note that 2
Tσ  is a nondegenerate U-statistic of order 2 with kernel  

 21( , ) t s
T t s m

z zH z z K
h h

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

.          (A.30) 

Since Assumption (A2)(iv)-(v) satisfy the conditions of Lemma 2 of Yoshihara (1976) on the 

asymptotic equivalence of U-statistic and its projection under β -mixing, we have for 

2( ') / '(2 ) 0γ δ δ δ δ= − + >  

 2 1 ( , )
( 1)T T t s

s t
H z z

T T
σ

≠

≡
− ∑  

    1 2 1 2( , ) ( ) ( )T z zH z z dF z dF z= ∫ ∫  

   1 1
2 2 1 2 1 2

1
2 ( , ) ( ) ( , ) ( ) ( ) ( )

T

T t z T z z p
t

T H z z dF z H z z dF z dF z O T γ− − −

=

⎡ ⎤+ − +⎣ ⎦∑ ∫ ∫ ∫  

    1 2 1 2( , ) ( ) ( ) (1)T z z pH z z dF z dF z o= +∫ ∫  

    2 1 2
1 2

1 ( ) ( ) (1)z z pm

z zK dF z dF z o
h h

−⎛ ⎞= +⎜ ⎟
⎝ ⎠∫ ∫  
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    ( )2 2 ( ) (1)z pK u du f z dz o= +∫ ∫          (A.31) 

The result of Theorem (ii) follows from (A.31).          □ 

 

Proof of Theorem 1 (iii) 

 

The proof of Theorem (iii) consists of the two steps. 

 Step 1.  Show that ˆ (1)T T pJ J o= +  under the alternative hypothesis (4). 

 Step 2.  Show that (1)T pJ J o= +  under the alternative hypothesis (4), 

where 2
|{[ ( ( ) | ) ] ( )}y z t t z tJ E F Q x z f zθ θ= − . The combination of Steps 1 and 2 yields 

Theorem (iii). 

 

Step 1: Show that ˆ (1)T T pJ J o= +  under the alternative hypothesis. 

We need to show that the results of Step 2 and Step 3 in the proof of Theorem (i) hold under 

the alternative hypothesis. First, we show that the result of Step 2 in the proof of Theorem (i) 

still holds under the alternative hypothesis. We can show that 2 ( ) (1)T pJ Q C oθ − =  by the 

same procedures as in (A.24). Thus we focus on showing that 2 ( ) (1)pJ Q oθ = . As in the proof 

of Theorem (i), denote ( ) [ ] /S g F g g≡ ∂ ∂ . By taking a Taylor expansion of 

| ( ( ) | )y z s sF Q x zθ  around ( )sQ zθ , we have 

 2 ( )J Qθ |
1

1 1 {1( ( )) ( ( ) | )}
( 1)

T T
t s

t t y z t tm
t s t

z zK y Q x F Q x z
T T h h θ θ

= ≠

−⎛ ⎞= − ≤ −⎜ ⎟− ⎝ ⎠
∑ ∑  

        ( ( , ))s sS Q x zθ×         

 |
1

1 ˆ{1( ( )) ( ( ))} ( ( , )) ( )
T

t t y z t s s z t
t

y Q x F Q x S Q x z f z
T θ θ θ

=

= ≤ −∑   

 
1

1 ˆ( ( , )) ( )
T

t s s z t
t

u S Q x z f z
T θ

=

≡ ∑ ,           (A.32) 

where ( , )s sQ x zθ  is between ( )sQ xθ  and ( )sQ zθ . By using the same procedures as in 
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(A.24), we have   

 ( )1
2 ( ) mJ Q O T hθ

− −= .             (A.33) 

   Next, we show that the result of Step 3 in the proof of Theorem (i) holds under the 

alternative hypothesis. Since ( ( ) | ) 0 for ,j jF Q x z j t sθ θ− ≠ =  under the alternative 

hypothesis, we have  

 3 3( ) ( )TJ Q J Q Cθ θ− −  

 
1

1 1
( 1)

T T
t s

m
t s t

z zK
T T h h= ≠

−⎛ ⎞= ⎜ ⎟− ⎝ ⎠
∑ ∑ { ( ( ) | ) }{ ( ( ) | ) }t t s sF Q x z F Q x zθ θθ θ× − −  

   
1

1 1
( 1)

T T
t s

m
t s t

z zK
T T h h= ≠

−⎛ ⎞− ⎜ ⎟− ⎝ ⎠
∑ ∑  

       { ( ( ) | ) }{ ( ( ) | ) }t T t s T sF Q x C z F Q x C zθ θθ θ× − − − −   

 
1

1 ˆ{ ( ( ) | ) }{ ( ( ) | ) } ( )
T

t t s s z t
t

F Q x z F Q x z f z
T θ θθ θ

=

= − −∑  

  
1

1 ˆ{ ( ( ) | ) }{ ( ( ) | ) } ( )
T

t T t s T s z t
t

F Q x C z F Q x C z f z
T θ θθ θ

=

− − − − −∑ .  (A.34) 

By taking a Taylor expansion of | ( ( ) | )y z j T jF Q x C zθ −  around ( ) for ,jQ z j t sθ = , we 

have 

 3 3( ) ( )TJ Q J Q Cθ θ− −  

 
1

1 ˆ{ ( ( ) | ) } ( ( )) ( )
T

t t T s z t
t

F Q x z C S Q x f z
T θ θθ

=

= −∑  

  
1

1 ˆ( ( )){ ( ( ) | ) } ( )
T

T t s s z t
t

C S Q x F Q x z f z
T θ θ θ

=

+ −∑  

  2

1

1 ˆ( ( )) ( ( )) ( )
T

T t s z t
t

C S Q x S Q x f z
T θ θ

=

− ∑ .         (A.35) 

We further take Taylor expansion of | ( ( ) | )y z j jF Q x zθ  around ( ) for ,jQ z j t sθ =  and have 

 3 3( ) ( )TJ Q J Q Cθ θ− −  
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1

1 ˆ( ( , )) ( ( )) ( )
T

t t T s z t
t

S Q x z C S Q x f z
T θ θ

=

= ∑  

  
1

1 ˆ( ( )) ( ( , )) ( )
T

T t s s z t
t

C S Q x S Q x z f z
T θ θ

=

+ ∑  

  2

1

1 ˆ( ( )) ( ( )) ( )
T

T t s z t
t

C S Q x S Q x f z
T θ θ

=

− ∑ ,         (A.36) 

where ( , )s sQ x zθ  is between ( )sQ xθ  and ( )sQ zθ . Then by using the same procedures as 

in (A.27), we have   

 ( )3 3( ) ( )T TJ Q J Q C O Cθ θ− − = .          (A.37) 

Now we have the result of Step 1 for the proof of Theorem (iii).      □ 

 

Step 2: Show that (1)T pJ J o= +  under the alternative hypothesis. 

Using (7) and uniform convergence rate of kernel regression estimator under β -mixing 

process, we have 

 
1

1
( 1)

T T

T ts t sm
t s t

J K
T T h

ε ε
= ≠

=
− ∑ ∑  

    
1

1 ˆˆ ( | ) ( )t t z t t
t

E z f z
T

ε ε
=

= ∑  

    
1

1 ( | ) ( )t t z t t
t

E z f z
T

ε ε
=

= ∑  

  { }
1

1 ˆˆ ( | ) ( ) ( | ) ( )t t z t t t z t t
t

E z f z E z f z
T

ε ε ε
=

+ −∑  

    
1

1 ( | ) ( ) (1)t t z t t p
t

E z f z o
T

ε ε
=

= +∑  

    [ ]( | ) ( ) (1)t t z t t pE E z f z oε ε= +  

    (1)pJ o= +               (A.38)

                   □ 
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