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Abstract

In this paper we adopt a principal components analysis (PCA) to reduce the dimensionality of the

term structure and employ autoregressive models (AR) to forecast principal components which, in

turn, are used to forecast swap rates. Arguing in favor of structural variation, we propose data

driven, adaptive model selection strategies based on the PCA/AR model. To evaluate ex-ante fore-

casting performance for particular rates, different forecast features such as mean squared errors,

directional accuracy and big hit ability are considered. It turns out that relative to benchmark

models, the adaptive approach offers additional forecast accuracy in terms of directional accuracy

and big hit ability.

Keywords: Principal components, ex–ante forecasting, EURIBOR swap rates, term struc-

ture, directional accuracy, big hit ability.
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1 Introduction

While term structure modelling has undergone extensive improvements, advances in term

structure forecasting are comparatively small. Yet, the latter is particularly important for

purposes of managing risk or hedging derivatives. Diebold & Li (2006) point out that the

empirical performance of model based out–of–sample forecasts is rather poor. Reformulating

the Nelson & Siegel (1987) model, they use autoregressive models for the factors to obtain

encouraging results for long horizon ex–ante forecasts. While Diebold & Li (2006) find that

forecasts based on vector autoregressive models (VARs) outperform forecasts implied by the

random walk model, Duffee (2002) concludes that the random walk model is superior to

standard affine term structure models.

Ang & Piazzesi (2003) model yield curves by means of traditional latent yield factors

and observable macroeconomic variables. Forecast error variance decompositions show that

macro factors explain up to 85% of the variation in bond yields. Taking a dynamic factor

approach Diebold, Rudebusch & Aruoba (2006) model the yield curve by means of latent

level, slope and curvature factors as well as macroeconomic variables as real activity, inflation

and the federal funds rate. They find convincing evidence of the macroeconomic effects on

the yield curve. Mönch (2007) forecasts the yield curve in a data rich environment. He

uses a factor–augmented VAR jointly with an affine term structure model with parameter

restrictions implied by a no–arbitrage condition. The model turns out to outperform different

benchmark models such as a random walk, standard VAR and the Diebold & Li (2006)

approach among others.

Though a large part of the term structure literature is concerned with factor models, a

uniform conclusion with regard to the appropriate number of factors has not been achieved

yet. Nelson & Siegel (1987) introduce a parsimonious three factor model for term structures

and conclude that it is able to capture important yield curve characteristics. Numerous

extensions of the Nelson–Siegel model exist. Inter alia, a two factor version is applied by

Diebold, Piazzesi and Rudebusch (2005) and the four factor version from Svennson (1994)

is frequently used by central banks (BIS 2005). Empirical support is provided by Litterman

& Scheinkman (1991) and Steeley (1990). Their factor, respectively, principal component

analysis (PCA) suggests that most of the term structure variation can be explained by three

factors, interpreted as level, slope and curvature. Examining money market returns, Knez,
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Litterman & Scheinkman (1994) present a four factor model to find that the additional

factor is related to private issuer credit spreads. Duffie & Singleton (1997) advocate a

multi factor model for interest rate swaps that accommodates counterparty default risk and

liquidity differences between Treasury and Swap markets. They conclude that credit and

liquidity factors are important sources to explain swap term structure dynamics. Within this

framework Liu, Longstaff & Mandell (2006) estimate a five factor model to analyze swap

spreads.

To explain forecast failures of macroeconomic models, Clements & Hendry (2002), among

others, argue that economies evolve and are subject to changes, e. g., in institutions or

technology. Neglecting the change of economic relations is a potential reason for the poor

performance of model based out–of–sample term structure forecasts. To admit for dynamic

heterogeneity, data based adaptive forecasting procedures appear to be useful alternatives.

Swanson and White (1997a,b) find that an adaptive approach yields promising results in

forecasting macroeconomic variables. A particular issue in dynamic ex–ante forecasting

is the stability of model parameters. Splitting a sample of US government interest rates

covering the period January 1970 to December 1995 into three parts, Bliss (1997) concludes

that factor loadings varied only slightly. Yet, factor volatilities turned out to be relatively

stable. For US zero coupon bond yields Audrino, Barone–Adesi & Mira (2005) find that

loadings are unstable over the period from January 1986 to May 1995 in a three factor

model allowing for conditional heteroscedasticity.

A large fraction of the term structure literature is concerned with the US treasury market.

However, Remolona & Wooldridge (2003) point out that the EURO swap market has become

one of the largest and most liquid markets world wide. The enormous increase in hedging and

positioning activity tripled the turnover in Euro denominated interest rate swaps between

2000 and 2006 (ECB 2007).

Due to the huge size of swap markets and the neglected attention paid to forecasting the

term structure, we focus on forecasting the EURIBOR (European interbank offered rate)

swap term structure. Employing a purely statistical factor model approach, we decompose

the term structure of swap rates by means of PCA and apply AR models to compute (adap-

tive) forecasts. Using various combinations of the number of factors, AR orders and time

windows, our analysis includes a set of 100 model specifications. The latter are evaluated in
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terms of mean squared forecast errors, directional accuracy and big hit ability.

Similar to Härdle, Herwartz & Spokoiny (2003) we argue in favor of dynamic variation

of the term structure and motivate an adaptive procedure relying on local homogeneity of

the term structure. By means of several data driven model selection algorithms, we analyze

the relative performance of an adaptive approach and particular ‘unconditional’ PCA/AR

forecasting schemes. Compared with standard benchmark models an adaptive approach

offers additional forecast accuracy in terms of directional accuracy and big hit ability.

The remainder of the paper is organized as follows. The factor model approach is pre-

sented in the next Section. In Section 3 we introduce the loss measures used to evaluate

forecasting performance. Sections 4 and 5 describe the data and characterize the uncondi-

tional approach to motivate adaptive model selection procedures. Section 6 proposes partic-

ular adaptive strategies. Moreover, we compare the adaptive strategies to unconditionally

implemented factor models as well as to some benchmark models. Section 7 concludes.

2 A forecast model for the swap rate term structure

The investigated EURIBOR swap term structure consists of daily swap rates for M = 10

maturities (3 months (3m), 6m, 1 year, 2years (2yr), 3yr, 5yr, 7yr, 10yr, 12yr and 15yr). Let

ỹt = (ỹ1,t, ỹ2,t, . . . , ỹM,t)
′ denote the 10 dimensional vector of observed swap rates measured

in terms of deviations from their unconditional mean, ỹt = yt− ȳT ∗ , ȳT ∗ = 1/τ
∑T ∗

t=T ∗−τ+1 yt.

To generate rolling swap rate forecasts we summarize the dynamic variation of the term

structure in a time window of size τ by a few underlying factors. More precisely, equations

(2.1) and (2.2) below constitute the local description of the term structure

ỹt = ΓKFt + ξt, t = T ∗ − τ + 1, . . . , T ∗, (2.1)

∆Ft = ν + Φ1∆Ft−1 + . . . + Φp∆Ft−p + ηt . (2.2)

In (2.1) the K–dimensional vector Ft consists of factors fk,t that govern the term structure. In

(2.2) the first differences for each fk,t, k = 1, . . . , K, are assumed to follow ’cross sectionally’

uncorrelated AR(p) processes. Hence, Φ1, . . . , Φp are diagonal matrices and ηt is a K–

dimensional zero mean error term with a diagonal covariance matrix. Moreover, the error

terms ξt and ηt are assumed to be ’cross sectionally’ and serially uncorrelated. The matrix

ΓK in (2.1) is obtained by means of PCA which decomposes the unconditional covariance
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matrix of ỹt, i.e.

Σ̂T ∗ =
1

τ

T ∗∑
t=T ∗−τ+1

ỹtỹ
′
t, Σ̂T ∗ = ΓΛΓ′. (2.3)

In (2.3) the eigenvectors of Σ̂T ∗ constitute the matrix Γ and the diagonal matrix Λ contains

the corresponding eigenvalues in decreasing order. To account for the variation explained by

the K most important principal components, the matrix ΓK consists of the first K columns

of Γ. Note that even if PCA and factor analysis are conceptually different, they are closely

related (see e.g. Johnson & Wichern 2002). Thus, we do not distinguish between factors and

principal components.

To implement ex–ante forecasting of swap rates the K most important factors Ft =

(f1t, . . . , fKt)
′ are estimated as F̂t = Γ′

K ỹt for t = T ∗− τ +1, . . . , T ∗ . First differences of the

factors are modelled by univariate AR(p) processes

∆f̂k,t = γk0 + γk1∆f̂k,t−1 + . . . + γkp∆f̂k,t−p + uk,t, k = 1, . . . , K.

Iterated h–step forecasts for the first differences, ∆f̂k,T ∗+h|T ∗ , are computed as

∆f̂k,T ∗+h|T ∗ = γ̂k0 + γ̂k1∆f̂k,T ∗+h−1|T ∗ + . . . + γ̂kp∆f̂k,T ∗+h−p|T ∗ ,

where γ̂k0, . . . , γ̂kp are OLS estimates of γk0, . . . , γkp and ∆f̂k,T ∗+j|T ∗ = ∆f̂k,T ∗+j if j ≤ 0.

Then, factor ‘level’ forecasts are

f̂k,T ∗+h|T ∗ = f̂k,T ∗ +
h∑

j=1

∆f̂k,T ∗+j|T ∗ .

Finally, the h–step ahead forecast of the swap rate term structure conditional on information

available at time T ∗ is

ŷT ∗+h|T ∗ = ΓKF̂T ∗+h|T ∗ + ȳT ∗ ,

where ȳT ∗ readjusts for the unconditional in–sample mean.

Note that we compute principal components from centered swap rate levels. If swap

rates are non stationary then some eigenvectors of Γ may be interpreted as (unidentified)

cointegration parameters (Johansen 1995), and PCA yields at least some non stationary

factors. For our forecasting procedures it turns out that results for AR models specified in

first differences of the factors Ft are more stable than for AR models in levels. Finally, in the
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local model the drift parameter ν in (2.2) implies a linear trend in the levels of interest rates.

While such a feature contradicts theoretical and empirical long run interest rate properties,

in the presence of local trends, however, including the parameter ν might be beneficial for

ex–ante forecasting procedures.

To generate h–step forecasts for a particular swap rate m in time T ∗ by means of the

local model given in (2.1) and (2.2) an analyst has to choose the parameters τ,K and p. In

this study, we consider a set of 100 competing model specifications implied by combining a

variety of choices for τ,K, p. Then, an adaptive model selection approach is based on out–

of–sample forecast performance evaluated with particular loss functions such as quadratic

loss, directional accuracy and big hit ability.

3 Loss functions

Before motivating the loss functions considered in this study, we briefly introduce some nota-

tion. Let a general loss function depend on the h–step ahead swap rate forecast, ŷm,T ∗+h|T ∗ ,

the current swap rate, ym,T ∗ and the future (true, realized) swap rate, ym,T ∗+h, with maturity

m, i.e.

Lh,m
T ∗ = L(ŷm,T ∗+h|T ∗ , ym,T ∗ , ym,T ∗+h) .

A common loss function is the quadratic loss:

Lh,m
1,T ∗ = (ym,T ∗+h − ŷm,T ∗+h|T ∗)2 . (3.1)

Diebold & Mariano (1995) point out that in light of the variety of economic decision

problems relying on forecasts, statistical loss functions such as the quadratic loss do not

necessarily conform to economic loss functions. In an interest rate setting, Swanson &

White (1995) show that the mean squared forecast error (MSFE) and profit measures are

not closely linked. Similarly, Leitch & Tanner (1991) find that, opposite to MSFE, the

directional accuracy (DA) of forecasts, i. e. the ability of correctly predicting directions, is

highly correlated with profits in a term structure analysis. Lai (1990) points out that an

investor can still gain profits even with statistically biased forecasts if they are characterized

by significant DA. Ash, Smith & Heravi (1998) indicate that qualitative statements on the

change of the economy in the near future are important pre–requisites for the appropriate

implementation of monetary and fiscal policy. Similarly, Öller & Barot (2000) emphasize the
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importance of DA for central banks as a forecast of increased inflation (above target) would

prompt central banks to raise interest rates. With I(•) denoting an indicator function a loss

function for DA is:

Lh,m
2,T ∗ = I

(
(ŷm,T ∗+h|T ∗ − ym,T ∗)(ym,T ∗+h|T ∗ − ym,T ∗) > 0

)
−I

(
(ŷm,T ∗+h|T ∗ − ym,T ∗)(ym,T ∗+h|T ∗ − ym,T ∗) < 0

)
.

Hatzmark (1991) investigates forecast ability by looking at DA and ‘Big Hit Ability’. To

motivate the latter, it might occur that a profit seeking trader is better able to predict big

price changes rather than small changes. In this case, forecast performance could depend on

a small number of correct directional forecasts generating large profits, and a large number

of incorrect directional forecasts associated with negligibly small losses. A loss function for

Big Hit Ability (BH) is:

Lh,m
3,T ∗ = Lh,m

2,T ∗|ym,T ∗+h − ym,T ∗|

The BH measure generalizes the quadratic loss and DA statistics in that it takes the sign as

well as the magnitude of the movement into account. If ym,T ∗ is a swap rate, Lh,m
3,T ∗ is only

approximately a profit function. The profit/loss from closing a swap position in T ∗ + h is

given by the swap value in T ∗ + h since in T ∗ a swap with a (fair value) fixed rate ym,T ∗

has a value of zero. However, as a swap is a financial derivative, in T ∗ + h the value of a

swap with rate ym,T ∗ is a non linear function of ym,T ∗+h (Miron & Swannell 1991). Yet, as

the second derivative of the swap value function with respect to ym,T ∗+h, is often very small,

most traders and risk managers consider swaps as linear instruments even if they are actually

non linear. That is to say upward/downward movements in ym,T ∗+h are almost proportional

to changes in the profit/losses from closing the corresponding swap position.

4 Data

We investigate closing rates for Eurozone interest rate swaps with maturity 1yr, 2yr, 3yr, 5yr,

7yr, 10yr, 12yr and 15yr and the 3m resp. 6m Euribor rate as obtained from the database

EcoWin (http://www.ecowin.com/). The sample period comprises 2100 daily observations

(Mon through Fri) from February 15, 1999, to March 2, 2007. Figure 1 shows the evolution

of the swap term structure. It displays the variability of the term structure shape over

time. For example, the level of the swap term structure is higher in October/November
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2000 (around week 100) than in March 2004 (around week 280). Similarly, the slope of

the term structure is higher in March 2003 (around week 210) as e. g. in November 2007

(around week 400). Moreover, the curvature in November 2003 (around week 250) exceeds

the corresponding measure in October 2001 (around week 140).

Table 1 documents that all observed term structures increase with a minimum slope

measure of 0.01. Consequently, the average term structure is also increasing. Swap rates

at long maturities exhibit less variation than those at the short end. For the curvature

the evidence is mixed. The sample mean (median) of this quantity indicates a slightly

concave curvature of -0.00543 (-0.00325) with minimum and maximum values between -

0.0825 and 0.084, respectively. Hence, on average the curvature of the term structure is not

very pronounced, although Figure 1 uncovers locally concave/convex patterns.

5 Unconditional forecast models

We consider 4 forecast horizons (h = 1, 5, 10, 15 days) and focus on h–step forecasts of 2yr,

5yr and 10yr swap rates. Hence, overall there are 12 distinct forecast ‘exercises’ FEj =

{mj, hj}, j = 1, . . . , 12, where FEj is a tuple from the cartesian set defined by {2, 4, 8} ×

{1, 5, 10, 15}. To define the adaptive strategies let a particular model specification be denoted

by Ms = {τ s, Ks, ps}, where

τ s ∈ Ωτ = {42, 63, 126, 189, 252} ,

Ks ∈ ΩK = {1, 2, 3, 4, 5} ,

ps ∈ Ωp = {0, 1, 2, 3} .

Ms is a three dimensional tuple from the cartesian set Ωτ × ΩK × Ωp the cardinality of

which is 100. A forecast for a specification s at time T ∗ is ŷs
m,T ∗+h|T ∗ . For a particular

loss function Lh,m,s
i , i = 1, 2, 3, and each model specification Ms an average out–of–sample

forecast performance over the time interval [T ∗
1 ; T ∗

2 ] is

1

T ∗
2 − T ∗

1 + 1

T ∗
2∑

T ∗=T ∗
1

Lh,m,s
i,T ∗ =

1

T ∗
2 − T ∗

1 + 1

T ∗
2∑

T ∗=T ∗
1

Li(ŷ
s
m,T ∗+h|T ∗ , ym,T ∗ , ym,T ∗+h) .

We refer to the average loss associated with Lh,m,s
i , i = 1, 2, 3, respectively, as MSFE, mean

directional accuracy (MDA) and mean big hit ability (MBH). The average losses of model
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specification s in forecasting rate m at horizon h are denoted by MSFEh,m
s , MDAh,m

s and

MBHh,m
s .

To motivate an adaptive model selection approach we first consider the ‘unconditional’

forecast performance, i. e. the average forecast performance of the 100 models Ms for the

period T ∗
1 = 308 (April 19, 2000) to T ∗

2 = 2085 (February 9, 2007). Table 2 shows the

MSFEs obtained when forecasting the 2yr swap rate one day ahead (h = 1). The best model

is approximately 8 times better than the worst model, the 10th best model is still more than

3 times better than the 90th best model. For MDA and MBH the overall picture is similar.

Hence, choosing the wrong model may provide poor forecasts. Moreover, for MDA and

MBH the latter conclusion holds throughout for all forecast exercises FEj. For the MSFE

criterion, however, the ‘spread’ between the best and worst models diminishes for forecast

horizons h > 5.

[Insert Table 2 about here]

In addition to marked differences in relative model performance, forecasting accuracy of

a particular factor model might vary over time. In case of structural variation each factor

model specification might be seen as an approximation of the true data generating process

and the approximation accuracy of particular models depends on ‘local’ term structures.

To describe time varying model performance we consider transition probability matrices

as in Camba–Mendez, Kapetanios & Weale (2002). Each of the 100 models is mapped to

performance quartiles conditional on the first and second half of the sample period. The

transition probabilities are obtained from counting the models that move from one quartile in

the first to a particular quartile in the second subsample. While a diagonal transition matrix

indicates performance stability, large off–diagonal entries hint at performance instability.

Table 3 shows the transition probabilities for the accuracy measures MSFE, MDA and MBH

for the 2yr rate and h = 1. The upper left panel of Table 3 refers to the MSFE criterion.

While there are transitions within the two upper and the two lower quartiles, there are not

so many transitions crossing the subsample medians. The respective patterns for the MDA

and MBH measures are remarkably different, and indicate much more transitions across

quartiles. Off–diagonal elements take values between 0.083 and 0.417, respectively, 0.04 and

0.48. Again, the results are similar over all horizons h = 1, 5, 10, 15 and swap rates 2yr, 5yr,

10yr (see the average transition matrices in Table 8 given in the appendix). For a similar data
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set, Blaskowitz, Herwartz & de Cadenas (2005) conclude that model parameters τ,K and

p do not have a uniform impact on the forecasting performance. In summary, we diagnose

marked heterogeneity of model specifications in terms of MDA and MBH performance while

with respect to model implied MSFE measures model choice appears less crucial.

[Insert Table 3 about here]

In light of time dependent forecast accuracy it is desirable to have a strategy at hand

that ex-ante identifies the locally best model. In the next Section we describe and evaluate

data driven model selection strategies.

6 Adaptive strategies

6.1 Data driven model selection

An unconditional model approach is inherently subjected to misspecification under changing

relations between economic variables. The rolling window strategy allows the parameters

of a model to evolve over time. Yet, if parameter values are exposed to variation one may

conjecture that the quality of a model approximation is time specific as well. An adaptive

selection/estimation strategy is a promising means to account for distinct relative forecasting

performance.

Our data adaptive model selection approach is based on a further time window of τ̃ = 42

days in which the ‘local’ out–of–sample performance of specifications Ms, s = 1, . . . , 100, is

evaluated. Choosing evaluation windows of length τ̃ = 42 is thought to balance between

the needs of modeling flexibility under local heterogeneity on the one hand and statistical

precision of parameter estimates on the other hand.

At each time point T ∗ the most recent τ̃ h−step forecast errors for swap rate m and

model specification Ms are known. A local MSFE measure is

MSFEh,m,s
T ∗ =

T ∗−h∑
t=T ∗−h−τ̃+1

Lh,m,s
1,t /τ̃ .

The adaptive strategy, denoted MinMSFE, chooses the local MSFE minimizing specification:

ŷMinMSFE
m,T ∗+h|T ∗ = ŷs∗

m,T ∗+h|T ∗ , s∗ = argmin
s=1,...,100

{MSFEh,m,s
T ∗ } .
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Another strategy to adaptively select a particular model specification is based on an

ANOVA regression of the local MSFEs of the 100 factor models Ms on dummy variables

representing the model parameters τ,K and p. The AnoMSFE forecast is given by

ŷAnoMSFE
m,T ∗+h|T ∗ = ŷs∗

m,T ∗+h|T ∗ ,

where s∗ = {τ ∗, K∗, p∗} is the locally best model specification as indicated by the smallest

estimated (dummy variable) coefficients for τ,K and p (see also Blaskowitz, Herwartz and

de Cadenas 2005).

Among others, Diebold & Pauly (1987) argue that in the presence of structural shifts

composite forecasts can improve forecast precision. Numerous combining procedures have

been proposed in the literature. We focus on both an equal weight scheme and a combination

procedure that assigns different weights to individual forecasts. The Av10MSFE forecast is

ŷAv10MSFE
m,T ∗+h|T ∗ =

1

10

(
ŷ

s∗1
m,T ∗+h|T ∗ + . . . + ŷ

s∗10
m,T ∗+h|T ∗

)
,

where Ms∗1
, . . . ,Ms∗10

refer to the 10 best models in terms of MSFEh,m,s
T ∗ .

Conditional on Ms∗1
, . . . ,Ms∗10

the BunnMSFE forecast is given by

ŷBunnMSFE
m,T ∗+h|T ∗ = θ̂s∗1

ŷ
s∗1
m,T ∗+h|T ∗ + . . . + θ̂s∗10

ŷ
s∗10
m,T ∗+h|T ∗ ,

where the weights θ̂s∗q , q = 1, ..., 10, are proportional to the number of times (out of τ̃ forecast

realizations) that model s∗q outperforms all other 9 models in terms of smaller squared error

(Bunn 1975).

Along similar lines as described for the MSFE criterion we also use the loss functions

MDA and MBH for adaptive forecasting.

Finally, we employ two combining strategies that have found support in the empirical

literature (Clemen 1989). The AvStrat resp. MedStrat take the average resp. median

forecast of the 100 forecast models irrespective of past performance. At time T ∗ these

forecasts are given by

ŷAvStrat
m,T ∗+h|T ∗ =

1

100

100∑
s=1

ŷs
m,T ∗+h|T ∗ ,

ŷMedStrat
m,T ∗+h|T ∗ = Median

s=1,...,100

{
ŷs

m,T ∗+h|T ∗

}
.
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In summary, the set of adaptive strategies is

ΩAS = {MinMSFE, Av10MSFE, AnoMSFE, BunnMSFE, MaxMDA, Av10MDA,

AnoMDA, BunnMDA, MaxMBH, Av10MBH, AnoMBH, BunnMBH, AvStrat,

MedStrat} .

All forecast comparisons are performed over the same sample period comprising 1778

time instances. Hence, accounting for the largest estimation window (τ = 252), the highest

forecast horizon (h = 15) and the model evaluation window (τ̃ = 42), the rolling forecasting

analysis starts in time point T ∗
1 = 252 + 15 + 42 − 1 = 308. Average losses of a particular

adaptive strategy AS and forecast exercise FEj are denoted by MSFEh,m
AS , MDAh,m

AS and

MBHh,m
AS . To compare the performance of the adaptive strategies we provide respective

normalized average losses. Normalization is accomplished with respect to the best and worst

unconditional models in terms of average loss:

nMSFEh,m
AS = 1−

MSFEh,m
AS −min

s

{
MSFEh,m

s

}
max

s

{
MSFEh,m

s

}
−min

s

{
MSFEh,m

s

} ,

nMDAh,m
AS =

MDAh,m
AS −min

s

{
MDAh,m

s

}
max

s

{
MDAh,m

s

}
−min

s

{
MDAh,m

s

} ,

nMBHh,m
AS =

MBHh,m
AS −min

s

{
MBHh,m

s

}
max

s

{
MBHh,m

s

}
−min

s

{
MBHh,m

s

} .

For a given forecast horizon the sum of normalized losses for forecasts of the 2yr, 5yr

and 10yr rates for the six best strategies are provided in Table 4. For the MSFE criterion it

can be seen that the MedStrat strategy produces for all horizons superior normalized losses.

The AvStrat strategy performs slightly worse for horizons h = 5, 10, 15 and is overall the

2nd best performing strategy. The Av10MSFE strategy is for all horizons among the best

3 adaptive strategies. In terms of MDA and MBH the MedStrat is again overall the best

strategy. For h = 1, 10, 15 normalized losses are always better than the normalized losses

of at least all but one adaptive strategy. In contrast to the MSFE criterion the Av10MDA

resp. BunnMDA strategies are overall the second resp. third best competitor strategies.
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6.2 Unconditional models vs. adaptive strategies

Having identified the overall best adaptive strategies we analyze in this Section how the

forecasts from these adaptive strategies perform relative to unconditional models. Table 5

shows for each forecasting exercise normalized average loss estimates. Moreover, it provides

for a given adaptive strategy the number of unconditional model specifications Ms performing

worse (columns labelled �):

∑100
s=1 I(MSFEh,m

AS < MSFEh,m
s ),

∑100
s=1 I(MDAh,m

AS > MDAh,m
s ),

∑100
s=1 I(MBHh,m

AS > MBHh,m
s ) .

From the upper panel of Table 5 it can be seen that the adaptive strategies perform well

in terms of MSFE. The MedStrat strategy is always better than at least 68 unconditional

models. The AvStrat strategy is in 9 forecast exercises better than 62, and the Av10MSFE

strategy is still in 3 cases better than 63 unconditional models. No adaptive strategy is worse

than the 40th best unconditional model. The relative performance in terms of MDA and

MBH is provided in the two lower panels of Table 5. It is documented that the MedStrat

strategy is always better than 66 unconditional models (except for the 5yr rate and h = 5 in

terms of MDA). For the 10yr rate and h = 10 it is even better than the best unconditional

model both in terms of MDA and MBH. For six forecasting exercises (the 2yr rate for

h = 5, 10, 15, the 5yr rate, h = 1, 15 and the 10yr rate for h = 5) all three adaptive strategies

are better than at least 60 unconditional models in terms of MDA. Regarding the MBH

measure all the three adaptive strategies are at least better than 65 unconditional models

in terms of MBH, except for forecasting the 2yr and 10yr rate for h = 1 and the 10yr rate

for h = 10. These results can be viewed as an indication for the robustness of adaptive

model selection in terms of MDA and MBH as compared to the MSFE criterion. Indeed,

an analysis of all adaptive strategies considered in Section 6.1 (not reported), reveals that

‘on average’ adaptive model selection is more succesfull in terms of MDA and MBH than in

terms of MSFE.

[Insert Table 5 about here]

We conclude that adaptive model selection approaches offer a promising forecast per-

formance within the class of models introduced in Sections 2 and 5. Furthermore, it is of

interest how the adaptive procedures compare to some standard benchmark models. We

13



remark that the adaptive approach does not lead to additional forecast accuracy in terms

of MSFE when compared to the benchmark models. Hence, further results for the MSFE

measure are not reported.

6.3 Adaptive forecasts vs benchmark approaches

We compare the adaptive strategies with naive forecasts, an autoregressive time series model

and the Diebold & Li (2006) approach. The naive forecast is

ŷNaive
m,T ∗+h|T ∗ = ym,T ∗ .

For the purpose of measuring DA and BH accuracy, the naive forecast is always a downward

movement. Average losses of the naive strategy are denoted by MDAh,m
Naive and MBHh,m

Naive.

Next, time series forecasts for swap rate levels are based on a univariate AR(1) model

for the first differences of the 2yr, 5yr and 10yr swap rates. This model is fitted recursively

to a sample of size 42 respectively 252 days. For the latter benchmark forecasts average

performance measures are denoted by MDAh,m
• and MBHh,m

• , • = AR42, AR252.

Using a decay parameter of λt = 0.0609 the Diebold & Li (2006) model is implemented

by recursively fitting independent AR(1) processes for the first differences of factors using

sample sizes of 42 days respectively 252 days. Average losses of iterated forecasts are denoted

by MDAh,m
• and MBHh,m

• , • = DL42, DL252.

The last two columns of Table 6 show that the adaptive strategies MedStrat, Av10MDA

and BunnMDA outperform the benchmark strategies in a comparison over all forecast exer-

cises. In particular, the MedStrat strategy is overall best in terms of MDA and MBH. For

the latter measure it is in 8 forecast exercises (2yr rate for h = 1, 5, 10, 5yr for all horizons,

10yr rate for h = 10) better than all other strategies. Regarding the losses in terms of MDA,

in 8 forecasting exercises (2yr rate for h = 1, 5, 15, 5yr rate for all horizons, 10yr rate for

h = 10) at least one of the three adaptive strategies outperforms all benchmark models. In

terms of MBH, this is the case for 10 forecast exercises (all but 10yr rate for h = 1, 5).

[Insert Table 6 about here]

A summary of bilateral model comparisons is provided in Table 7. Furthermore, it is

formally tested if the expected loss of a particular adaptive strategy is significantly larger
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than the expected loss of the naive resp. AR benchmark strategy (which outperform the

Diebold–Li model). The number of forecast exercises FEj, j = 1, . . . , 12, in which adap-

tive strategy AS ∈ {MedStrat, Av10MDA, BunnMDA} is (significantly) better than the

benchmark model BM ∈ {Naive, AR42, AR252} can be found in the left hand side panels

of Table 7. The right hand panels show how often is benchmark model BM (significantly)

better than adaptive strategy AS. As can be verified from the left hand panels of Table

7, any of the three adaptive strategies is better than a given benchmark model in more

than 6 (out of 12) forecast exercises in terms of MDA. For the MBH measure the results

are even more compelling, each adaptive strategy outperforms a given benchmark model in

more than 8 forecast exercises. In particular, the MedStrat strategy is better than the naive,

AR42 resp. AR252 benchmark in 11, 10 resp. 12 forecast exercises. In 5, 3 resp. 9 cases it is

also significantly better. On the other hand, the benchmark models are rarely significantly

better than the adaptive strategies. For example, neither the naive nor the AR benchmark

model significantly outperform the MedStrat strategy in any forecast exercise. Hence, we

conclude that adaptive model selection/estimation within the class of models considered

in this paper is preferable to standard benchmark models with MedStrat being the most

convincing adaptive approach.

[Insert Table 7 about here]

7 Conclusions

Based on a factor model characterized by a dynamic autoregressive factor representation

we forecast 2yr, 5yr and 10yr swap rates one day, resp., one, two and three weeks ahead.

We compare a set of 100 unconditional model specifications to a variety of adaptive model

selection strategies. Additionally, the latter procedures undergo a comparison with a naive,

a standard time series and the Nelson–Siegel/Diebold–Li term structure model.

Building the comparison on out–of–sample forecast performance measured by quadratic

loss, directional accuracy and big hit ability, we analyze the suitability of a standard PCA

factor model approach for ex–ante forecasting. We find that an adaptive model selection

approach leads to additional gains in directional accuracy and big hit ability. In particular,

the MedStrat strategy turns out to consistently produce highly accurate forecasts for distinct
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swap rates and forecast horizons. This result can be interpreted as evidence for an evolving

economy characterized by changing underlying relations in economic variables (which is in

line with the conclusions from Swanson & White (1997a,b) or Clements & Hendry (2002),

for example). Hence, we show that an adaptive approach represents a promising and costless

candidate for ex–ante forecasting that merits further consideration.

Moreover, the big hit measure as defined in this paper may also be used to evaluate the

profitability of trading systems. For basic financial instruments such as stocks it represents

cash flows from an elementary buy/sell strategy. For quasi linear financial derivatives, such

as swaps, it is proportional to cash flows of a buy/sell strategy. Our definition of BH can be

easily generalized using the cash flow function based on the ‘exact’ pricing function of the

financial instrument or portfolio under consideration. Hence, in this framework it is possible

to test for significant differences in profitability between two or more trading systems, see

also Diebold & Mariano (1995) and West (2006), for example.
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Figures

Figure 1. Evolution of the actual swap term structure for the period from February 15,

1999 to March 2, 2007.

Tables

3m 6m 1yr 2yr 3yr 5yr 7yr 10yr 12yr 15yr level slope curve

Mean 3.138 3.191 3.307 3.544 3.756 4.093 4.354 4.621 4.741 4.878 4.086 0.538 -0.00543

Median 3.013 3.109 3.228 3.490 3.680 3.906 4.117 4.420 4.575 4.759 3.915 0.555 -0.00325

Min 1.984 1.950 1.956 2.010 2.240 2.615 2.850 3.120 3.250 3.395 2.652 0.010 -0.08250

Max 5.211 5.274 5.415 5.583 5.698 5.805 5.900 6.031 6.150 6.295 5.774 0.900 0.08400

StD 0.915 0.919 0.935 0.910 0.876 0.825 0.803 0.776 0.768 0.762 0.816 0.234 0.03122

Table 1. Descriptive statistics of location and dispersion for actual swap rates and shape

parameters for the period from February 15, 1999 (T ∗ = 1) to March 2, 2007 (T ∗ = 2100).

Level, slope and curvature are measured by 2yr + 5yr + 10yr
3

, 10yr
2

− 2yr
2

and 2yr
4
− 5yr

2
+ 10yr

4
,

respectively. Swap rates are multiplied by 100 for this Table only. In the remaining analysis

swap rates are measured as 0.0312 instead of 3.12.
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2yr 5yr 10yr

h = 1 h = 5 h = 10 h = 15 h = 1 h = 5 h = 10 h = 15 h = 1 h = 5 h = 10 h = 15

MSFE∗106

1st 0.200
(126/5/0)

0.962
(252/5/0)

1.954
(252/3/1)

3.025
(252/3/1)

0.196
(252/5/0)

0.938
(252/5/0)

1.852
(252/5/0)

2.861
(252/5/3)

0.153
(126/5/0)

0.697
(252/4/3)

1.384
(252/5/3)

2.095
(252/2/3)

10th 0.203
(42/4/0)

0.971
(252/3/3)

1.969
(252/5/2)

3.040
(252/4/2)

0.201
(63/4/0)

0.953
(189/5/2)

1.882
(189/5/2)

2.903
(252/4/2)

0.155
(63/3/0)

0.699
(252/5/2)

1.390
(252/4/1)

2.142
(252/5/1)

50th 0.213
(126/3/2)

1.043
(42/3/0)

2.154
(126/2/2)

3.357
(63/3/1)

0.212
(42/2/0)

1.014
(63/3/1)

2.070
(63/5/0)

3.287
(63/3/0)

0.160
(63/4/2)

0.740
(63/4/0)

1.543
(63/5/0)

2.466
(63/2/0)

90th 0.654
(126/1/2)

1.556
(126/1/2)

2.774
(126/1/0)

4.128
(126/1/2)

0.655
(126/1/2)

1.550
(126/1/0)

2.740
(126/1/0)

4.064
(126/1/2)

0.578
(126/1/2)

1.170
(126/1/0)

1.976
(126/1/0)

3.019
(42/1/1)

100th 1.609
(252/1/0)

2.608
(252/1/0)

3.897
(252/1/0)

5.266
(252/1/0)

1.806
(252/1/0)

2.729
(252/1/0)

3.895
(252/1/0)

5.128
(252/1/0)

1.696
(252/1/0)

2.302
(252/1/3)

3.074
(252/1/0)

3.892
(252/1/0)

MDA∗10

1st 1.130
(189/2/0)

1.828
(63/3/0)

2.222
(63/3/1)

2.469
(63/3/0)

0.793
(42/5/1)

1.243
(63/3/0)

1.710
(63/4/0)

1.789
(63/4/1)

0.973
(252/3/3)

0.827
(252/3/3)

1.035
(63/1/1)

1.389
(63/1/2)

10th 0.996
(189/2/2)

1.614
(63/2/2)

1.963
(63/3/2)

2.188
(63/2/0)

0.579
(63/2/1)

1.007
(63/3/2)

1.406
(63/2/1)

1.665
(63/5/0)

0.771
(252/4/0)

0.658
(189/3/3)

0.832
(189/2/1)

1.063
(42/1/2)

50th 0.726
(42/2/2)

0.973
(126/3/3)

1.187
(126/2/2)

1.254
(252/5/0)

0.343
(42/2/0)

0.771
(126/3/2)

1.024
(126/2/3)

0.967
(126/5/3)

0.523
(126/4/1)

0.377
(126/2/1)

0.551
(189/5/2)

0.771
(63/3/0)

90th 0.253
(252/1/1)

0.287
(189/1/2)

0.546
(189/4/3)

0.501
(189/3/2)

0.017
(252/3/3)

0.264
(189/3/3)

0.214
(189/4/2)

0.304
(252/2/1)

0.118
(189/2/2)

0.017
(63/2/2)

−0.157
(126/3/2)

−0.377
(126/5/0)

100th −0.219
(63/1/1)

−0.039
(126/1/0)

0.231
(189/1/3)

0.197
(189/1/3)

−0.433
(189/1/2)

−0.399
(189/1/1)

−0.461
(189/1/3)

−0.067
(189/1/3)

−0.051
(42/2/3)

−0.579
(189/1/3)

−0.934
(189/1/2)

−1.063
(189/1/1)

MBH∗104

1st 0.428
(252/5/1)

1.482
(63/2/0)

2.921
(63/3/1)

4.210
(63/3/0)

0.335
(252/5/3)

0.907
(63/3/0)

1.796
(63/4/0)

2.432
(63/3/2)

0.320
(252/3/3)

0.597
(63/1/0)

1.072
(63/1/1)

1.801
(63/1/0)

10th 0.401
(126/2/3)

1.306
(63/5/1)

2.622
(63/2/2)

3.923
(63/2/2)

0.272
(189/4/3)

0.721
(126/2/0)

1.420
(63/5/1)

2.124
(63/2/0)

0.249
(252/4/2)

0.409
(42/3/2)

0.771
(252/3/1)

0.989
(63/5/2)

50th 0.302
(126/3/3)

0.678
(189/5/2)

1.322
(126/3/3)

1.873
(126/2/3)

0.183
(126/3/2)

0.438
(63/1/0)

0.828
(42/4/0)

1.043
(42/1/1)

0.183
(63/5/3)

0.227
(126/1/0)

0.343
(189/4/0)

0.625
(42/5/1)

90th 0.049
(42/1/2)

0.239
(63/1/0)

0.405
(252/4/2)

0.420
(189/5/2)

0.026
(252/1/2)

0.008
(126/1/3)

0.102
(252/4/0)

−0.072
(189/4/0)

0.061
(42/2/3)

−0.066
(42/2/1)

−0.129
(252/1/3)

−0.160
(126/5/2)

100th −0.108
(63/1/1)

−0.202
(126/1/0)

0.148
(189/1/3)

0.233
(189/1/3)

−0.166
(189/1/2)

−0.562
(189/1/1)

−0.611
(189/1/3)

−0.674
(189/1/2)

−0.048
(189/1/3)

−0.637
(189/1/2)

−1.161
(189/1/2)

−1.590
(189/1/1)

Table 2. Quantiles for MSFE∗106, MDA∗10 and MBH∗104 out-of-sample forecast per-

formance of h = 1, 5, 10, 15 day–ahead forecasts of 2yr, 5yr, 10yr swap rates from T ∗
1 =

308 (April 4, 2000) to T ∗
2 = 2085 (February 9, 2007) for the 100 models {Ms}100

s=1 =

{τ s, Ks, ps}100
s=1. Specifications are shown in parentheses.
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1 2 3 4

1 0.600 0.400 0.000 0.000

2 0.400 0.520 0.080 0.000

3 0.000 0.080 0.800 0.120

4 0.000 0.000 0.120 0.880

MSFE

1 2 3 4

1 0.308 0.231 0.231 0.231

2 0.083 0.333 0.417 0.167

3 0.464 0.179 0.143 0.214

4 0.091 0.273 0.318 0.318

MDA

1 2 3 4

1 0.600 0.080 0.160 0.160

2 0.280 0.080 0.280 0.360

3 0.040 0.360 0.280 0.320

4 0.080 0.480 0.280 0.160

MBH

Table 3. Transition probability matrices for one day-ahead forecasts of the 2yr swap rate.

The first sample period of 889 forecasts ranges from T ∗
1 = 308 (April 4, 2000) to T ∗ =

1196 (August 31, 2004), the second sample period of 889 forecast ranges from T ∗ = 1197

(September 1, 2004) to T ∗
2 = 2085 (February 9, 2007). The first row contains the relative

transition frequencies from the models, from the 1st quartile in the first sample half to the

1st, 2nd, 3rd and 4th quartile in the second sample half, etc.
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normalized MSFE

h = 1 h = 5 h = 10 h = 15 all horizons

1

2

3

4

5

6

MedStrat 2.992

Av10MSFE 2.990

BunnMSFE 2.990

AnoMSFE 2.981

MinMSFE 2.981

BunnMDA 2.967

MedStrat 2.972

AvStrat 2.935

Av10MSFE 2.875

BunnMSFE 2.872

AnoMSFE 2.857

BunnMDA 2.835

MedStrat 2.942

AvStrat 2.886

Av10MSFE 2.640

BunnMSFE 2.637

BunnMBH 2.626

Av10MDA 2.620

MedStrat 2.904

AvStrat 2.832

Av10MSFE 2.407

BunnMSFE 2.394

Av10MDA 2.367

Av10MBH 2.345

MedStrat 11.810

AvStrat 11.613

Av10MSFE 10.913

BunnMSFE 10.892

AnoMSFE 10.763

Av10MDA 10.759

normalized MDA

h = 1 h = 5 h = 10 h = 15 all horizons

1

2

3

4

5

6

AnoMSFE 2.378

MedStrat 2.321

Av10MSFE 2.052

MinMSFE 2.019

BunnMDA 2.002

BunnMSFE 1.872

AnoMSFE 2.662

BunnMSFE 2.538

Av10MDA 2.487

BunnMDA 2.484

Av10MSFE 2.471

BunnMBH 2.401

MedStrat 2.478

AvStrat 2.267

BunnMBH 2.124

Av10MBH 2.101

AnoMBH 2.044

AnoMDA 2.038

AvStrat 2.379

MedStrat 2.370

Av10MDA 2.047

Av10MBH 1.973

AnoMDA 1.855

BunnMDA 1.846

MedStrat 9.498

Av10MDA 8.404

BunnMDA 8.347

AnoMSFE 8.095

BunnMSFE 7.851

Av10MSFE 7.826

normalized MBH

h = 1 h = 5 h = 10 h = 15 all horizons

1

2

3

4

5

6

AnoMSFE 2.595

MedStrat 2.491

MaxMDA 2.362

Av10MSFE 2.338

BunnMSFE 2.210

MinMSFE 2.160

AnoMSFE 2.543

Av10MDA 2.421

BunnMDA 2.417

BunnMSFE 2.386

MedStrat 2.373

BunnMBH 2.328

MedStrat 2.448

Av10MBH 2.274

BunnMBH 2.255

AvStrat 2.221

AnoMBH 2.209

BunnMDA 2.197

AvStrat 2.330

MedStrat 2.250

Av10MBH 2.064

Av10MDA 2.063

AnoMDA 1.941

BunnMDA 1.902

MedStrat 9.563

Av10MDA 8.570

BunnMDA 8.540

AnoMSFE 8.531

BunnMBH 8.396

BunnMSFE 8.383

Table 4. MSFE, MDA and MBH comparison of adaptive strategies. For a given forecast

horizon the sum of normalized losses for forecasts of the 2yr, 5yr and 10yr rates for 1778

rolling forecasts for the period from T ∗
1 = 308 (April 4, 2000) to T ∗

2 = 2085 (February

9, 2007) are provided. Normalization is accomplished with respect to the best and worst

unconditional models in terms of MSFE, MDA and MBH. Results for the six best adaptive

strategies are shown.
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MDA

Naive AR42 AR252 Sum

MedStrat 9 (4) 8 (2) 10 (5) 27 (11)

Av10MDA 8 (4) 6 (1) 9 (5) 23 (10)

BunnMDA 7 (4) 6 (2) 8 (3) 21 (9)

Adaptive strategy

(significantly) better than

benchmark strategy

MDA

MedStrat Av10MDA BunnMDA Sum

Naive 3 (0) 4 (1) 5 (1) 12 (2)

AR42 4 (0) 6 (1) 6 (1) 16 (2)

AR252 2 (0) 3 (1) 4 (0) 9 (1)

Benchmark strategy

(significantly) better than

adaptive strategy

MBH

Naive AR42 AR252 Sum

MedStrat 11 (5) 10 (3) 12 (9) 33 (17)

Av10MDA 8 (5) 9 (1) 10 (6) 27 (12)

BunnMDA 9 (5) 8 (2) 9 (5) 26 (12)

Adaptive strategy

(significantly) better than

benchmark strategy

MBH

MedStrat Av10MDA BunnMDA Sum

Naive 1 (0) 4 (1) 3 (1) 8 (2)

AR42 2 (0) 3 (0) 4 (0) 9 (0)

AR252 0 (0) 2 (1) 3 (0) 5 (1)

Benchmark strategy

(significantly) better than

adaptive strategy

Table 7. MDA and MBH comparison of benchmark and adaptive strategies of 1778 rolling

forecasts for the period from T ∗
1 = 308 (April 4, 2000) to T ∗

2 = 2085 (February 9, 2007) for

2yr, 5yr, 10yr swap rates and horizons h = 1, 5, 10, 15. Each panel provides the number of

forecast exercises, out of 12, in which the strategy given in the first column (significantly)

outperforms the strategy given in the first row in terms of MDA resp. MBH. Significance

is tested using a one–sided null hypothesis, the Diebold–Mariano test statistic, Diebold and

Mariano (1995), and the 10% critical value from the standard normal distribution. Note

that for the forecast exercise h = 1 and the 2yr rate the MedStrat and Naive strategy have

a MDA of 0.546.
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Appendix

1 2 3 4

1 0.707 0.287 0.007 0.000

2 0.227 0.530 0.243 0.000

3 0.027 0.170 0.663 0.140

4 0.040 0.013 0.087 0.860

MSFE

1 2 3 4

1 0.488 0.235 0.129 0.147

2 0.267 0.246 0.236 0.251

3 0.205 0.278 0.269 0.248

4 0.067 0.258 0.348 0.328

MDA

1 2 3 4

1 0.460 0.163 0.207 0.170

2 0.247 0.207 0.260 0.287

3 0.177 0.283 0.280 0.260

4 0.117 0.347 0.257 0.280

MBH

Table 8. Average transition probability matrices. Transition matrices are averaged for the

forecasts for the horizons h = 1, 5, 10, 15 and swap rates 2yr, 5yr, 10yr. The first sample

period of 889 forecasts ranges from T ∗
1 = 308 (April 4, 2000) to T ∗ = 1196 (August 31,

2004), the second sample period of 889 forecast ranges from T ∗ = 1197 (September 1, 2004)

to T ∗
2 = 2085 (February 9, 2007). The first row contains the average relative transition

frequencies from the models, from the 1st quartile in the first sample half to the 1st, 2nd,

3rd and 4th quartile in the second sample half, etc.
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