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Abstract

We study beliefs and choices in a repeated normal-form game. In addition to a baseline

treatment with common knowledge of the game structure and feedback about choices in the

previous period, we run treatments (i) without feedback about previous play, (ii) with no infor-

mation about the opponent�s payo¤s and (iii) with random matching. Using Stahl and Wilson�s

(1995) model of limited strategic reasoning, we classify behavior with regard to its strategic

sophistication and consider its development over time. We use belief statements to track the

consistency of subjects�actions and beliefs as well as the accuracy of their beliefs (relative to

the opponent�s true choice) over time. In the baseline treatment we observe more sophisticated

play as well as more consistent and more accurate beliefs over time. We isolate feedback as the

main driving force of such learning. In contrast, information about the opponent�s payo¤s has

almost no e¤ect on the learning path. While it has an impact on the average choice and belief

structure aggregated over all periods, it does not alter the choices and the belief accuracy in

their development over time.
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1 Introduction

The literature on learning has opened the black box of how an equilibrium is reached. Numerous

theoretical and experimental papers have studied learning over a large number of periods and

have focused either on the convergence properties of the learning algorithms or on the evolution of

observed behavior in experimental data. Here, we focus on the development of behavior in relatively

few periods of play. The idea is to take a microscopic view of how beliefs and choices change over

time, controlling for the impact of information on this process. Thus, our experiment aims at a

better understanding of the development of strategic thinking.

We use a repeated two-person normal-form game with a unique Nash equilibrium of the

stage game. In this relatively simple setup, we observe whether subjects learn to play the game in

the sense that the Nash-equilibrium strategy is chosen more often in later than in earlier periods.

A novel feature of the experiment is that we elicit the beliefs of a player about the action of the

other player in every period. Thus, we can observe the joint development of beliefs and actions

over time. This allows us to answer a number of questions in a dynamic setting that have up to

now only been studied in one-shot games.

A widely used classi�cation of behavior regarding the level of strategic thinking is the

level-of-reasoning model of Stahl and Wilson (1995). We will rely on this approach to categorize

behavior and in particular to study how behavior changes over time. Players can have various levels

of strategic sophistication. The most important behavioral rules proposed by Stahl and Wilson are

L0 which prescribes randomization over all possible actions, L1 which prescribes a best response

to L0, L2 a best response to L1 etc. In addition, we will look for the Nash strategy, where a player

chooses a best response to the belief that the other player chooses the Nash Equilibrium strategy.

The categorization of choices according to their strategic sophistication is complemented

by the elicited beliefs. First, we can analyze whether players�actions are best responses to their

beliefs more frequently in later periods than in the beginning of the experiment. The alternative

hypothesis would be that best-response behavior is invariant over time, i.e. it is not learned in

the limited time of an experimental session. In addition, we study whether beliefs become more

accurate in predicting the opponents�actual behavior in later periods. In the �xed-pair matching

protocol we employ, it can be expected that observing the other player�s actions leads to more

accurate beliefs over time.

In order to better understand the reasons for the development of actions and beliefs over
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time, we vary the information that is available to the players. Learning theories typically make use

only of a limited amount of information. To be able to separate between di¤erent forms of learning,

we run a baseline treatment with full information about the game and feedback about one�s own

payo¤ (and thereby the other�s payo¤ and action) in the previous period. In addition, we run a

treatment where subjects do not get any feedback about the outcome of play in the previous period

and a treatment where subjects do not know the payo¤s of the other player in the game, only their

own payo¤s. As we change only one aspect at a time, we can observe which kind of information

is important for the learning process. Finally, we control for repeated game a¤ects by running a

treatment with random matching in every period.

In principle, two extreme learning patterns are possible and can be distinguished with our

data. First, subjects can learn inductively, based on the history of play. Players look back to

determine which strategy to choose in the next period. For example, belief learning and reinforce-

ment learning fall into this category. Second, deductive reasoning implies that players analyze the

game in order to understand its strategic properties and thereby form beliefs about the opponent�s

choice. This learning without feedback requires more sophistication of the players than the typical

inductive learning algorithms. While both forms of learning have already been studied separately,

we provide a uni�ed framework to compare no-feedback learning with inductive learning. Using the

level-k model, we characterize behavior as strategic or non-strategic and can then evaluate under

which information conditions subjects learn faster to play strategically than in others.

We �nd an initially high level of non-strategic behavior in all treatments, i.e. subjects tend

to neglect the incentives of their opponents. In the baseline treatment with full informtion about

the game and feedback about past outcomes, this non-strategic behavior decreases in later rounds.

Also, experience has a moderate positive impact on the accuracy of beliefs and on the best-response

rates in the baseline treatment. The learning path crucially depends on the information available.

At �rst, subjects seem to have only a limited understanding of the strategic properties of the game,

showing a rather low level of strategic sophistication. Accordingly, information about the other

player�s payo¤ is of some importance for initial play, but not as much as expected. Behavior over

time is very similar in treatments with and without information about the opponent�s payo¤. Our

results clearly indicate the importance of feedback. Independent of whether subjects know the

complete game or only their own payo¤s, it is the experience through feedback which reduces non-

strategic behavior. Analyzing the beliefs we conclude that the elicited beliefs are a better proxy

for the underlying true beliefs than beliefs generated by established belief learning models. While
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both, feedback and complete payo¤ information, have a positive impact on the development of the

best response rates, only feedback is needed to observe an increase of belief accuracy over time.

The literature related to this study can be organized into several groups of papers. First, the

level-of-reasoning model by Stahl and Wilson (1995) has been applied to a number of data sets based

on 3x3 one-shot normal-form games. Costa-Gomes, Crawford and Broseta (2001) study decision

rules and use the mouselab technique to record how subjects use payo¤ information. Costa-Gomes

and Weizsäcker (forthcoming) elicit the subjects�beliefs about the other player�s choice and �nd

that subjects perceive the game di¤erently when asked for beliefs than when playing it themselves.

Rey-Biel (forthcoming) focuses on constant-sum games to analyze the dependency of equilibrium

predictions on the game characteristics. Finally, Ivanov (2006) combines the level-of-reasoning

approach with risk aversion to explain observed behavior.

Repeated normal-form games with belief elicitation have been studied in two other papers.

Nyarko and Schotter (2002) focus on the matching-pennies game to compare stated beliefs with

Cournot and �ctitious-play beliefs. Ehrblatt, Hyndman, Özbay and Schotter (2006) use two di¤er-

ent normal-form games with a unique Pareto-e¢ cient Nash Equilibrium in pure strategies to study

convergence to the Nash Equilibrium. They focus on the mechanisms underlying the convergence

process and on strategic teaching. Our experimental design is closest to the last paper. However,

the Nash equilibrium in our game is not Pareto-e¢ cient, leading to less convergence. We focus

more broadly on learning how to play strategically and pay close attention to the development and

nature of non-strategic play.

Another strand of the literature studies learning in normal-form games under di¤erent

information conditions. Oechssler and Schipper (2003) and Gerber (2006) use normal-form games

with incomplete information about opponents�payo¤ in order to study whether players can �gure

out which game they are playing. Subjects receive feedback about the strategy chosen by the

other player and can thereby form a "subjective game" (Kalai and Lehrer, 1993). In contrast,

Weber (2003) studies a repeated beauty-contest game without feedback and Weber and Rick (2008)

focus on repeated normal-form games without feedback. Both studies observe some amount of no-

feedback learning.

The paper is organized as follows. The next section introduces the design of the experiment

and provides a detailed description of the Stahl and Wilson model applied to the normal-form

game we used. Section 4 present the results, focusing �rst on choices and then on belief statements.

Section 5 concludes.
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Left Center Right

Top 78, 68 72, 23 12, 20

Middle 67, 52 59, 63 78, 49

Bottom 21, 11 62, 89 89, 78

Table 1: Game

2 Experimental design

2.1 Procedures

In all of our experiments we used the asymmetric normal-form game presented in Table 1. The

game has a unique Nash equilibrium in pure strategies in which the row player chooses Top and

the column player chooses Left. This equilibrium can be found by applying iterative elimination of

dominated strategies. Note that the Nash equilibrium of the stage game is not Pareto e¢ cient. The

strategy combination of Bottom and Right leads to higher payo¤s for both players.1 This outcome

maximizes the payo¤ of the player that is least well o¤, and it also maximizes the sum of payo¤s.

The unique Nash equilibrium of the stage game is also the unique subgame perfect equilibrium of

the repeated game.

To study the impact of information on choices and belief statements we implemented four

treatments, the details of which are given in Table 2. Our main interest is in the baseline treatment,

denoted by BASE. In this treatment subjects had all relevant information about the game, i.e. the

set of players, the set of strategies and the payo¤ function of each player. In addition, after each

period they received feedback about the payo¤ earned in this period. Every other treatment di¤ers

from BASE only in one respect. In the treatments NF (no feedback) and RM (random matching)

subjects had common knowledge of the elements of the game, but we varied the available feedback

after each period and the matching protocol. In treatment NF, subjects received no feedback at all.

In treatment RM subjects received feedback about their payo¤, but were randomly matched with

another participant in each period. In treatment PI (partial information), subjects had incomplete

information about some elements of the game. They only knew their own payo¤ function, but

1There is a Nash equilibrium of the �nitely repeated game in which the players play this strategy combination

(Bottom, Right) for a number of periods and then switch to the Nash Equilibrium (Top, Left). In case a player

deviates in this equilibrium, she is minmaxed by the other player choosing Middle or Center, respectively, for the rest

of the game.
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Treatment Payo¤ Feedback Matching Periods Sessions # of subjects

BASE own/opponent own payo¤ �xed 20 4 54

PI own own payo¤ �xed 20 4 48

NF own/opponent none �xed 20 4 50

RM own/opponent own payo¤ random 20 3 40

Table 2: Treatments

not the payo¤ function of their opponent. But they received feedback after each period, just as in

treatments BASE and RM, such that they could infer the choice of their opponent. In all treatments

subjects did not receive any feedback about their payo¤s from the belief elicitation task.2

In the beginning of all treatments, subjects were randomly assigned a player role (row player

or column player), which they kept during the whole experiment. However, they made all their

decisions from the perspective of the row player, i.e. for column players we used a transformation

of the matrix game in Table 1. Before choosing an action, we asked subjects to indicate their beliefs

regarding the behavior of their opponent.3 In particular, we asked subjects to state the expected

frequencies of play, i.e., they had to specify in how many out of 100 times they expect the column

player to choose Left, Center and Right in the current period.4 After the belief elicitation task,

subjects had to make their choice by selecting one of the three possible actions (mixing was not

possible).

Subjects were paid for both tasks. For the choice task we paid subjects according to the

numbers in the payo¤ matrix, which were exchanged at the commonly known rate of 1 point =

e0:15. To reward the belief elicitation task we used a quadratic scoring rule (QSR) which is

incentive compatible given that subjects are risk-neutral money maximizers. At the end of the

experiment, we randomly and independently selected one period to determine the payo¤s for each

of the two tasks.

The QSR is de�ned as follows. The payo¤ �QSRit for player i in period t for a given action

2Nevertheless, they could infer their payo¤ from this task in treatments BASE, PI and RM. One reason for not

showing the payo¤s from the belief elicitation task was to change as few parameters as possible when going from

BASE, PI and RM to NF.
3The same procedure was also applied by other studies, e.g. Costa-Gomes and Weizsäcker (forthcoming) or

Rey-Biel (forthcoming).
4For simplicity we restricted the expected frequencies of play to integers. Therefore, we count any belief assigning

a weight of 34 percent to one action and 33 percent to each of the remaining actions as a uniform belief statement.
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where 1[akjt]
is an indicator function equal to 1 if akjt is chosen in period t and 0 otherwise. While

paying subjects for both tasks is necessary to ensure incentive compatibility, it allows subjects to

engage in hedging. Subjects can for example coordinate on a cell of the payo¤ matrix that is not

an equilibrium and become unwilling to move away from it in order to avoid losses in the belief

elicitation task. To avoid such behavior we chose the two parameters A and b of the QSR such that

the maximum payo¤ from the belief elicitation task is low compared to payo¤s from choice task.

In the experiment the parameters are set to A = 1:5 and b = 0:75. Thus, the maximum payo¤

from the belief elicitation task is e1:50, the minimum is e0. Note that subjects could guarantee

themselves a payo¤ of e1 by stating uniform beliefs.5 Note also that the Nash Equilibrium [Top,

Left] would lead to a payo¤ of e11:7 and e10:2, respectively.

The experiments were conducted in the computer lab at Technische Universität Berlin using

the software tool kit z-Tree, developed by Fischbacher (2007). Subjects were recruited via a mailing

list, where they could voluntarily register for participating in decision experiments. Upon entering

the lab, subjects received written instructions and were asked to read them carefully and take their

time.6 After everybody had �nished reading the instructions, we distributed an understanding test

that covered both the matrix game and the QSR. Only after all subjects had answered the questions

correctly, we proceeded with the experiment. In total 192 students (106 males and 86 females) from

various disciplines participated in the four treatments. Sessions lasted about one hour. Subjects�

average earnings were about e12:80, including a show-up fee of e3 for arriving at the laboratory

on time.

2.2 Strategies

Stahl and Wilson (1995) proposed a theory of boundedly rational types, based on a hierarchical

model by Nagel (1993). Stahl and Wilson assume that players di¤er in their level of strategic

sophistication. Their model classi�es players into types according to their "level of reasoning",
5Although stating uniform beliefs can be an attractive choice for a risk-averse subject, we �nd no evidence for

such behavior in our treatments. Only 7:5 percent of belief statements in our experiment assign no less than 30 and

no more than 35 percent to all three of the opponent�s actions. (BASE 5:8%, PI 5:9%, NF 12:1% and RM 6:3%)
6The instructions are available from the authors upon request.
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hence the term level-k model. A level-0 type randomizes uniformly over his strategy space, whereas

a level-k type best responds to level-(k � 1) behavior for k 2 f1; 2; ::;1g.7

The level-k model is a useful approach to track o¤-equilibrium behavior. It has been tested

and extended by various other studies (e.g. Costa-Gomes et al, 2001, Costa-Gomes and Weizsäcker,

forthcoming and Camerer et al, 2004). The model and its extensions are successful in organizing

data, e.g. from normal-form and beauty contest games, but also from other games as recently

shown by Crawford and Iriberri (2007a, 2007b) and Gneezy (2005). The most common types found

are level-1 (L1), level-2 (L2) and Nash, but the distribution of types crucially depends on the set

of games investigated.

All above mentioned normal-form game studies use data from one-shot interactions. In a

repeated setting additional strategic considerations come into play, and learning becomes possible.

The level-k model can accommodate learning in that subjects can learn to play higher-level strate-

gies. Suppose a subject starts out by playing the L1 action, but then learn to best respond to L1

by playing L2 and so forth. Thus, subjects can learn by updating their beliefs in the course of the

game, and we will investigate this on the basis of our data.

We use the level-k model to classify the strategy space of our game. The most prominent

types of the level-k model (L1, L2 and Nash) can be classi�ed into two broad types, namely strategic

and non-strategic types. Strategic types form beliefs based on an analysis of what others do and

best respond to these beliefs, whereas non-strategic types do not take into account the incentives

of others. Given this de�nition, strategic types are L2 and Nash and the non-strategic type is L1.

We also introduce a Rawlsian rule, de�ned as choosing the action that maximizes the payo¤

of the player with the lower payo¤, given the other player has the same objective and chooses

accordingly. Remember that in the game we use, the Rawls strategy is the same as the Utilitarian

strategy which maximizes the sum of payo¤s. With our de�nition of strategic behavior, the Rawls

action should be counted as strategic because the rule requires the belief that the other player

has the same preferences and acts accordingly (the same reasoning holds for its interpretation as

a Utilitarian rule). Previous studies did not explicitly explore Rawlsian or Utilitarian strategies,

but some of them found behavior pointing in this direction (e.g. Costa-Gomes and Weizsäcker,

7The model contains also other types to capture behavior eventually more in line with traditional game theory.

These are the naive Nash type who chooses the Nash equilibrium strategy, the wordly type who plays a best response to

a subjective distribution of all other types and the rational expectation type who correctly anticipates the distribution

of boundedly rational types and best responds to this distribution.
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Row player Column player

Top Nash(L2) Left Nash

Middle L1 Center L1(L2)

Bottom Rawls Right Rawls

Table 3: Decision rules

forthcoming). In order to be able to separate between Nash play and play of the most e¢ cient

and/or fair outcome, it is necessary to allow for e¢ ciency or fairness to lead to a separate outcome,

which motivated the choice of our game.8

The main focus of this study is on the development of strategic and non-strategic behavior

over time. We therefore designed the game for the experiment so as to identify strategic and non-

strategic behavior as clearly as possible. In particular our interest was to achieve the best possible

separation of the four rules of behavior (L1, L2, Rawls and Nash). We chose an asymmetric game

for which the di¤erent rules overlap di¤erently for the two player roles. Table 3 summarizes the

decision rules implied by the possible actions in the game.

Only the L2 rule cannot be identi�ed clearly for any of the two player roles. For the

row player, it prescribes the same action as Nash and for the column player it is the same as L1.

Assuming that there is a considerable proportion of L2 play, which is suggested by previous studies,

we will overestimate the proportion of Nash play of the row player and the proportion of L1 play

of the column player.9 We will keep this in mind when interpreting the �ndings. However, our

focus is on subjects learning to play strategically, and the L2 rule represents an intermediate level

of strategic reasoning. We are mainly interested in the comparison between L1 and Nash behavior

as the two extreme ends of the spectrum of strategic play.

Notice that we use the names L1, Nash and Rawls also for the three strategies in treat-

ment PI even though a priori the subjects cannot reason about the other player�s incentives and

consequently cannot identify the Nash and Rawls strategy in this treatment.10

8 In contrast, Ehrblatt et al. 2006 run a similar experiment based on a game where the Nash equilibrium coincides

with the Rawlsian/ Utilitarian outcome.
9 Indeed, we �nd about 10% more Nash play for the row than for the column player and about 15% more L1 play

for the column than for the row player.
10Only if the subjective game constructed by the participants happens to be equivalent to the true game, the names

of the strategies can be interpreted as decision rules. See Kalai and Lehrer (1993) for the theory of subjective games.
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3 Results

In the �rst part of our analysis we examine the choices of our subjects without considering their

stated beliefs. We begin this analysis with a focus on �rst period behavior and a comparison of

these results to previous experiments. Afterwards we extend our analysis to all periods and focus

on the development of behavior over time and considering the impact of the information available.

In the second part of the data analysis, we focus on the elicited beliefs. After con�rming that they

outperform standard models of belief formation, we examine the consistency of the corresponding

best responses and the observed actions of the players with respect to their development over

time and the information conditions. Furthermore we check the accuracy of the stated beliefs in

predicting the opponent�s choice and the role of feedback information and payo¤ information for

the formation of beliefs.

Note that unlike in most other studies on asymmetric one-shot games (e.g. Costa-Gomes and

Weizsäcker, forthcoming), we do not pool the data over player roles. As we study only one speci�c

game, we are able to consider the exact strategic situation of each player role. This di¤erentiation

would be lost by pooling the data. Thus, we run all statistical tests separately for row and for

column players.

3.1 Choices

3.1.1 First-period choices

We �rst look at behavior in the �rst period only. This is of some stand-alone interest, since many

experiments on behavior in one-shot 3x3 normal-form games have used similar games, and we can

compare the results. First-period behavior in each treatment is presented in Figure 1. The �gure

shows the fraction of each strategy in a certain treatment for row players and column players,

respectively.

In the �rst period subjects in treatments BASE, RM and NF all face the same strategic

situation. Therefore we should not observe any di¤erences in behavior. This is clearly the case, as

can be taken from Figure 1. The frequency of chosen strategies of the row players (column players)

in all three treatments is 19 (8) percent Nash, 43 (64) percent L1 and 38 (28) percent Rawls. We

cannot reject the hypothesis that the frequency of strategies is the same using a �2-Test.11 Our

11For both player roles we perform a pairwise comparison of BASE with NF and RM, respectively. The test yields

no p-value smaller than 0:64 (�2(2)).
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Figure 1: First period choices

�ndings of 64 percent L1 behavior in the �rst period in BASE, RM and NF are in line with previous

studies.12 For instance, Costa-Gomes and Weizsäcker (forthcoming) found approximately 60% L1

behavior, whereas Costa-Gomes et al. (2001) and Rey-Biel (forthcoming) found slightly lower rates

of 45% and 50%, respectively.

Now, consider the decision situation of a subject in treatment PI. Subjects only know their

own payo¤s for their available strategies, such that they cannot base their decisions on strategic

considerations. Hence, it is no surprise to see 39 out of 48 subjects (81 percent) choosing the L1

rule in period 1 in PI, which not only maximizes the minimum payo¤, but also the expected payo¤

assuming that the opponent chooses her action randomly. We see a lot of violations of dominance

by the column player in the other treatments where she knows the payo¤s of the row player. It is

remarkable that no column player in PI chooses Rawls in the �rst period, indicating that the choice

of dominated actions in the other treatments is due to the payo¤ structure of the other player and

not only to mistakes. The frequency of the three strategies in PI is signi�cantly di¤erent from

BASE in the �rst period for both player roles (�2(2); p = 0:043 for row players and p = 0:014 for

column players). We summarize the �ndings on choices in the �rst period in the following result.

Result 1 (i) First-period behavior in BASE, RM and NF is statistically indistinguishable from

each other and comparable to �ndings from one-shot experiments. (ii) L1 is the most frequently

chosen strategy in the �rst period in all treatments and for both player roles. (iii) First-period play

in treatment PI is signi�cantly di¤erent from BASE.

12For ease of comparison to the other studies, we pool L1 behavior over player roles.

11



Row-Player Column-Player
(1)

Nash
(2)

L1
(3)

Rawls
(4)

Nash
(5)

L1
(6)

Rawls

PI
0.310

(0.290)

0.818���

(0.290)

-1.039���

(0.306)

0.556��

(0.273)

0.651���

(0.224)

-1.199���

(0.311)

NF
-0.331

(0.291)

0.849���

(0.286)

-0.419

(0.300)

0.104

(0.274)

0.644���

(0.223)

-0.662��

(0.301)

RM
-0.008

(0.306)

0.428

(0.305)

-0.292

(0.318)

-0.241

(0.295)

0.693���

(0.237)

-0.464

(0.318)

Constant
-0.590���

(0.201)

-1.252���

(0.204)

-0.018

(0.207)

-1.207���

(0.196)

-0.317��

(0.154)

-0.445��

(0.207)

logL -993.86 -925.47 -979.97 -821.49 -1160.56 -803.67

�2(3) 4.67 11.41��� 12.02��� 8.12�� 13.24��� 15.24���

N 1920 1920

Notes: Random-e¤ects probit regression, standard errors in parentheses, * Signi�cant at 10-percent level;

** Signi�cant at 5-percent level; *** Signi�cant at 1-percent level.

Table 4: Regression: Decision rules

3.1.2 Choices over all periods

First, we are interested in average behavior over all 20 periods in the di¤erent treatments. For

this purpose, we perform a separate regression for each strategy and player role combination. We

regress the strategies on treatment dummies without controlling for time e¤ects, which gives us

a �rst indication of the in�uence of the di¤erent information conditions. To model the repeated

decisions of the same subject in each treatment, we use random-e¤ects regressions. Since subjects

had to choose one out of three possible strategies, a probit model is employed where the dependent

variable re�ects the inclination to choose one strategy over the other two. All results reported in

this paper are signi�cant at the 5% level.

The results shown in Table 4 reveal the importance of the opponent�s payo¤ and of the

feedback on past choices. The coe¢ cients of PI are signi�cantly di¤erent from BASE for all strate-

gies except for the Nash strategy of the row player. There is signi�cantly more L1 play and less

Rawls play in PI than in BASE. The lack of feedback in NF results in more L1 play than in BASE

for both player roles and less Rawls play for column players. A similar but weaker e¤ect can be

12
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Figure 2: Decision rules over time

13



Row Player Column Player
(1)

Nash
(2)

L1
(3)

Rawls
(4)

Nash
(5)

L1
(6)

Rawls

PI
0.306

(0.341)

0.809��

(0.342)

-1.008���

(0.350)

0.443

(0.343)

0.987���

(0.276)

-1.413���

(0.377)

NF
-0.083

(0.346)

0.559�

(0.335)

-0.477

(0.343)

0.354

(0.346)

0.532�

(0.273)

-0.683�

(0.352)

RM
-0.209

(0.363)

0.411

(0.357)

-0.082

(0.361)

-0.204

(0.384)

0.371

(0.288)

-0.107

(0.370)

Period
0.032���

(0.012)

-0.045���

(0.013)

0.001

(0.011)

0.042���

(0.013)

-0.018�

(0.010)

-0.013

(0.012)

PI*Period
0.001

(0.016)

0.004

(0.018)

-0.003

(0.017)

0.011

(0.018)

-0.031��

(0.015)

0.020

(0.020)

NF*Period
-0.024

(0.017)

0.032�

(0.017)

0.005

(0.016)

-0.023

(0.018)

0.011

(0.015)

0.002

(0.017)

RM*Period
0.019

(0.017)

0.003

(0.019)

-0.021

(0.017)

-0.004

(0.021)

0.031��

(0.016)

-0.037��

(0.018)

Constant
-0.929���

(0.240)

-0.831���

(0.239)

-0.030

(0.236)

-1.671���

(0.251)

-0.126

(0.187)

-0.310

(0.242)

logL -977.66 -908.25 -978.62 -801.85 -1147.71 -795.93

�2(7) 36.21��� 43.73��� 14.65��� 45.70��� 37.95��� 29.82���

N 1920 1920

Notes: Random-e¤ects probit regression, standard errors in parentheses, * Signi�cant at 10-percent level;

** Signi�cant at 5-percent level; *** Signi�cant at 1-percent level.

Table 5: Regression: Decision rules over time
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observed in RM compared to BASE where L1 play is also more frequent.

We now turn to the question how behavior changes over time and how this change is

in�uenced by the di¤erent information conditions. Choices over time are represented in Figure 2

which displays the proportion of the behavioral rules for each treatment. The �gure shows averages

over three periods in a given treatment for row players in the left panel and for column players in

the right panel. As stated above we cannot clearly identify L2 behavior, since this rule overlaps

with Nash for row players and L1 for column players (see also Table 3). This might be the reason

why we observe on average less Nash and more L1 play of column players compared to row players

over all treatments.

To investigate potential learning paths we extend our regressions from Table 4 by including

a time trend and interaction terms for treatments with time. The results of these regressions are

presented in Table 5. In these regressions the dummy variables are coded such that the correspond-

ing coe¢ cients represent the intercept and the development over time in each treatment relative to

the baseline treatment. In order to assess the absolute time trends in each treatment directly, we

additionally test the hypothesis that the sum of the coe¢ cient for Period and the relevant coe¢ cient

for Treatment*Period is equal to zero.

First, let us focus on the development of the three strategies in BASE. The regression shows

that in BASE subjects tend to choose the L1 strategy less often in later periods while Nash play

increases and Rawlsian behavior is stable over time. We can now compare this learning path to

the trends in treatment PI. The inclusion of time controls reveal that behavior in PI changes in

a similar way as in BASE, with an even stronger decrease of L1 play for the column player. The

average di¤erence in the choices between the BASE and the PI treatment is therefore mainly due

to the behavioral di¤erences in the �rst period. Although the removal of feedback in treatment

NF does not produce signi�cant di¤erences in the time trend compared to BASE, the time trends

in NF are no longer signi�cant, when tested directly. Finally, we compare the e¤ect of random

matching to �xed matching on the time trend. While we do not �nd di¤erences between RM and

BASE for row players, column players in RM choose Rawls less and L1 more often over time than

in BASE. This may be due to the fact that reputation building is not possible and a deviation from

Rawls to L1 which gives a higher payo¤ cannot be sanctioned e¤ectively by the row player.

The �ndings based on the various regressions can be summarized as follows.

Result 2 (i) In treatments PI and NF there is on average signi�cantly more L1 and less Rawls

play than in BASE. (ii) Over time the proportion of the Nash strategy increases in all treatments
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and player roles except in NF. (iii) The proportion of the L1 strategy decreases in BASE and PI

over time. Again there is no similar time trend in NF. (iv) The proportion of Rawls choices is

almost constant over time for all treatments and player roles (except for the column player in RM).

Thus, in the sense of Stahl and Wilson we observe a trend towards more strategic play in

all treatments with feedback in that there is an increase in Nash and a decrease in L1 play. In

treatment PI the lower proportion of strategic behavior can be ascribed to the lack of information

about the opponent�s payo¤s. However, the fact that players in PI can observe the choices of

their opponent over time and react to these observations leads to a development of behavior away

from the L1 rule, just as in BASE. In treatment NF behavior does not change over time. As the

NF treatment is comparable to a repeated one-shot situation, this �nding lends support to the

frequently applied method of giving no feedback between di¤erent tasks in experiments in order to

minimize learning e¤ects. Finally, as our control for repeated game e¤ects, treatment RM reveals

no di¤erences to BASE for the row player. But we see that the column player�s behavior is a¤ected

by the matching protocol in that he chooses on average more non-strategic L1 play. Also, over time

he is less likely to choose the dominated strategy (Rawls) in RM compared to BASE.

3.2 Belief formation

In standard equilibrium analysis it is assumed that subjects form beliefs over the behavior of the

opponent and then best respond to these beliefs. Models of bounded rationality depart from this

view either by positing that subjects best respond to their beliefs with noise, i.e. they make errors

in best-responding to expectations (e.g. McKelvey and Palfrey, 1995) or that subjects di¤er in their

strategic sophistication (e.g. Stahl and Wilson, 1995).

In this section we focus on the relationship between the elicited beliefs and the subjects�

own as well as their opponents�actions. There are some caveats concerning the belief elicitation

procedure. First, subjects need not hold beliefs about opponent�s play at all. For example, they

might choose some non-strategic decision rule in the �rst period and then condition play on received

payo¤s (reinforcement learning). Forcing them to state beliefs could alter play if these subjects move

their decisions in the direction of belief-based play. However, our design is based on a comparison

between treatments which all use belief elicitation. Unless, the e¤ects of belief elicitation interact

with our treatment variables, our results are immune to such problems.

Also, subjects might make mistakes when stating their beliefs, just as when taking deci-
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sions. We therefore propose that the belief statements should only be taken as a proxy of the true

underlying beliefs of subjects.13 Finally, even though we asked explicitly to state myopic beliefs, i.e.

beliefs only for the current period, we cannot rule out that subjects follow repeated game strategies

and state beliefs accordingly. This would open up the possibility that subjects exploit the repeated

interaction structure of the game in order to achieve a cooperative outcome. As the choices that

are part of repeated-game strategies are not necessarily best responses to myopic beliefs, we will

take this into account when interpreting best-response rates. For this purpose, treatment RM is

necessary to check for repeated-game e¤ects.

3.2.1 Stated beliefs vs. models of belief formation

In this subsection we follow the approach used in Nyarko and Schotter (2002) and compare the

explanatory power of elicited beliefs to standard belief learning models. The purpose of this com-

parison is to establish whether stated beliefs are a good measure of strategic uncertainty or whether

stated beliefs are inferior to beliefs derived indirectly from the participants�choices.

Standard belief learning models assume that players update their beliefs based on the op-

ponent�s history of play and best-respond to these beliefs. The two most prominent models based

on this assumption are the �ctitious-play and the Cournot best response model. While in the

Cournot model subjects best respond to the opponent�s play in the very last period, players in a

pure �ctitious-play model best respond to beliefs based on all previous actions of the opponent.

The -weighted �ctitious-play model introduced by Cheung and Friedman (1997) contains Cournot

best response and �ctitious-play as special cases. In this model subject i�s belief bki;t+1 that subject

j will choose action akjt; k 2 fL;C;Rg in period t+ 1 is de�ned as:

bki;t+1 =
1[akjt]

+
Pt�1
u=1 

u
i 1[akj;t�u]

1 +
Pt�1
u=1 

u
i

(2)

The parameter i is the weight player i gives to the past actions of his opponent. It is obvious

from (2) that i = 0 leads to the Cournot best-response model and i = 1 leads to �ctitious-play,

respectively. In accordance with the imperfect best-response behavior observed in the preceding

subsections we use a standard logistic choice model in which subjects to choose their actions with

some noise in response to their beliefs. Subject i chooses action k with probability

Pr
�
akit

�
=

exp
�
��[akit; bit]

�P
l2fL;C;Rg exp

�
��[alit; bit]

� ; (3)

13See Costa-Gomes and Weizsäcker (forthcoming) for a thorough analysis of belief statements.
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where �[akit; bit] is the expected payo¤ of player i when she chooses an action k given her beliefs

bit over the action set of her opponent. The parameter � determines the impact of this expected

payo¤ on her own choice probability and thus can be interpreted as a rationality parameter. A

player with � = 0 chooses all actions with equal probability disregarding the expected payo¤ of her

choice. On the other hand if � ! 1 the player is unboundedly rational, i.e. she makes no errors

in best responding to her beliefs.

We now turn to the estimation and probabilistic comparison of the choice model (3) based

on the most �exible -weighted �ctitious-play model (2) on the one hand and on the stated beliefs

on the other hand. Since the belief-learning model assumes that subjects process information

about their own payo¤ matrix and about the history of their opponent�s play, only the data of

treatments BASE and PI are used in the following analysis, while treatment NF is excluded. The

data from treatment RM are also analyzed since the process described in (2) can be interpreted as

the formation of beliefs over the average play of the population rather than over individual choices.

The estimation results for each treatment and player role separately are presented in Table 6.14

ML-Estimation of Model (3) using Model Selection Tests

Fictitious-play (2) Stated Beliefs Vuong�s Test Clarke�s Test

Treatment Role �  logL � logL Z p-value Z p-value

BASE row 0.0575 0.7418 -484.01 0.1005 -422.12 -3.46 0.0005 -9.12 0.0000

column 0.0373 0.6009 -492.96 0.0586 -421.93 -6.88 0.0000 -5.42 0.0000

PI row 0.0442 0.6488 -487.68 0.0646 -451.16 -3.72 0.0002 -3.47 0.0005

column 0.0571 0.6220 -413.59 0.1066 -307.98 -5.82 0.0000 -14.97 0.0000

RM row 0.0233 0.5821 -427.04 0.0825 -372.34 -5.35 0.0000 -5.90 0.0000

column 0.0729 0.9067 -350.21 0.0604 -334.25 -1.42 0.1548 -1.30 0.1936

Notes: p-values are two-sided. Clarke�s corrected B has been by the approximated by the standard normal

distribution.

Table 6: Model Estimation and Selection.

As a �rst result we observe that the stated beliefs play a signi�cant role in explaining the

behavior of our subjects, since appropriate likelihood-ratio tests reject the hypothesis that the

rationality parameter � is equal to zero (p = 0:00 for all treatments and player roles).

14With respect to the -weighted �ctitious-play model we estimated  and � simultaneously. All ML-estimations

and tests have been conducted with MATLAB and R.
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Using tests for the selection between non-nested models introduced by Vuong (1989) and

Clarke (2003)15, the hypothesis of equal explanatory power of the models can be rejected at all

usual signi�cance levels for all treatments and player roles, the only exception being the column

player in the random-matching treatment.16 In our notation the negative signs of the test statistics

reveal that the stated belief model is closer to the real data generating process than the beliefs

generated by the belief-learning models.

To summarize, we extend the �nding of Nyarko and Schotter (2002) from a matching-

pennies game to our normal-form game with a unique Nash equilibrium in pure strategies. We �nd

that stated beliefs are better at explaining observed choices than beliefs that are implied by the

standard models of belief formation. Therefore, we use the stated beliefs for analyzing the impact

of experience and information on the consistency and accuracy of beliefs.

3.2.2 Consistency of actions and stated beliefs

Both in the standard Nash equilibrium and in the level-k model it is assumed that subjects best

respond to their beliefs. Therefore, we investigate the consistency of actions and stated beliefs, i.e.

whether subjects best respond to their stated beliefs. In Figure 3 the proportion of players best

responding to their stated beliefs is displayed for each player role and treatment separately. Again,

the �gure shows the average proportion over three periods. Obviously, the best response rates are

low, but in line with previous �ndings ranging from 54 to 75 percent best responses. In order to

compare our results to these studies, it is useful to look at aggregated best-response behavior over

all subjects. Averaging over all treatments and player roles, subjects best-respond to their stated

beliefs in 63 percent of the cases. The best-response rates found in similar studies are summarized

in Table 7. In simple games like 2x2 games (Nyarko and Schotter, 2002) or constant-sum games

(Rey-Biel, forthcoming) consistency rates are around 75 percent, whereas in more complicated

games similar to the one we used (e.g. Costa-Gomes and Weizsäcker, forthcoming, Ehrblatt et al.,

15Vuong�s test is based on the overall likelihood ratio of two rival models and is asymptotically normally distributed

under the null. Clarke�s test uses the number of single likelihood ratios being greater than 1 which is under the null

binomial distributed with � = 0:5 and the number of observations in each data subset. Vuong�s test is outperformed

by the latter when the distribution of the single log-likelihood ratios is highly peaked. Both tests where calculated

using corrections for the dimension of the models as proposed by Schwarz (1978) and Clarke (2007) respectively.
16The insigni�cance of test statistic for the column player in treatment RM may be due to the fact that the �ctitious

play model is su¢ cient to capture the formation of beliefs over the play of a population, since the beliefs in this model

are just weighted averages of all opponents�historical actions that tend to stabilize over time.
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Figure 3: Best-response rates over time

Costa-Gomes

& Weizsäcker

(forth.)

Rey-Biel

(forth.)

Ehrblatt et al

(2006)

Nyarko

& Schotter

(2002)

our study

Games various 3x3 various 3x3 two 3x3 one 2x2 one 3x3

Interaction one-shot one-shot repeated repeated repeated

� 54 73 54 75 63

Table 7: Best-response rates (in %) in various studies

2006) rates are about 54%.

For statistical evidence on di¤erences between the treatments and the development of best

response rates over time, we run random-e¤ects panel regressions. As the dependent variable is

either 0 (no best response) or 1 (best response), we use a probit model. Besides the constant

the independent variables are dummies for PI, NF and RM, a linear time trend and interaction

dummies for trend and treatment. The regression results are summarized in Table 8. Again we run

direct tests of the absolute time trends in the control treatments.

Consider in the following the comparison of each control treatment with BASE separately

and let us start with PI. For the row player, the average number of best responses in BASE is

slightly higher than the number of best responses in PI. The opposite holds for the column player

which is due to less Rawls play in PI (as the e¢ cient or Rawls payo¤ combination cannot be

identi�ed as such), avoiding violation of dominance. Using direct tests for the time trends, there

is no signi�cant development over time for both player roles in PI. When comparing BASE to NF
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Best Response

row player column player

(1) (2) (3) (4)

PI
-0.356�

(0.212)

0.105

(0.263)

0.846���

(0.257)

1.262���

(0.314)

NF
-0.517��

(0.209)

-0.387

(0.260)

0.499��

(0.253)

0.578�

(0.302)

RM
0.326

(0.222)

-0.176

(0.275)

0.335

(0.269)

0.244

(0.320)

Period
0.032���

(0.011)

0.018�

(0.011)

PI*Period
-0.046���

(0.015)

-0.039��

(0.017)

NF*Period
-0.014

(0.015)

-0.007

(0.016)

RM*Period
-0.016

(0.016)

0.009

(0.017)

Constant
0.557���

(0.146)

0.234

(0.181)

0.176

(0.174)

-0.012

(0.208)

logL -1160.74 -1152.70 -1008.56 -1002.94

�2(:) �2(3) = 6.48� �2(7) = 22.13��� �2(3) = 11.22�� �2(7) = 22.09���

N 1920 1920

Notes: Random-e¤ects probit regression, * Signi�cant at 10-percent level; ** Signi�cant at 5-percent level;

*** Signi�cant at 1-percent level

Table 8: Regression: Best-response rates over time
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the overall level of best responses is again higher in BASE than in NF for the row player and lower

for the column player (because the dominated Rawls strategy is played less often). As in PI the

time trends in NF are not signi�cant when tested directly. Besides the row players in BASE, only

the column players in RM display higher best-response rates in later periods (the time trend being

signi�cant when using a direct test).

These �ndings raise the question why best-response rates of the row player are higher in

BASE compared to treatments PI and NF. Internal consistency requires best responding to one�s

beliefs, independent of the information conditions. We can merely o¤er possible explanations of

our observations, but further research is necessary to disentangle the causes of behavior more

thoroughly. In NF, subjects might be doubtful about the accuracy of their beliefs, lacking any

information about the other player�s behavior. This might induce them to put less weight on their

beliefs when choosing an action. In treatment PI where players can only learn the structure of

the game over time, there is also no discernible increase in best-response behavior. Two possible

explanations come to mind. First, the complexity of learning both the structure of the game and

to best respond to beliefs at the same time is too high. Second, in treatment PI many subjects

start with uniform beliefs and best respond to them. As the belief set of L1 is large and L1 is an

attractive strategy initially, there is a high rate of consistency at the outset. This e¤ect is absent

in BASE and NF.

The focus of the preceding analysis was on myopic beliefs. However, our game also allows

subjects to achieve a cooperative outcome, because in our repeated-game setting Folk-Theorem

results are possible. If this is the case, column players choose their dominated action (Rawls) in

response to Rawls play of row players. A necessary condition for a repeated game strategy is the

observability of the (past) behavior such that subjects can condition their actions on opponents�

play. To achieve a cooperative outcome a minimum of information �ow is needed to make sanctions

for deviations possible.17 The fact that Rawls can never be a best response to any myopic belief

statement, explains why we observe very low best-response rates for column players in BASE but

not in NF and PI where less Rawls play is observed. If the low best-response rates are indeed

a result of repeated-game strategies, we should observe signi�cantly higher best-response rates in

RM. The reason is that the �nite time horizon and the random-matching protocol do not allow for

cooperation based on Folk theorem results. But we observe a substantial proportion of Rawls play

17For instance, Ellison (1994) and Kandori (1992) have shown for in�nitely repeated games with random matching

that a cooperative outcome is possible through contagious sanctions.
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also in RM in both player roles. Moreover, the regressions reveal no signi�cant di¤erences between

BASE and RM neither for the extent of average Rawls play (see Table 4) nor for the average best

response rates (see Table 8).

Theoretically, the insigni�cant di¤erence of best response rates could be due to a higher

number of failures to best respond to undominated actions in RM, which would push best response

down in the direction of BASE. This is not the case. When considering only the best-response

behavior to Nash and L1, we �nd best response rates of about 90 percent in all treatments. We can

further support our result of equal best-response rates in BASE and RM by a Kolmogorov-Smirnov

Test which compares the number of best responses of each subject. The test yields a p-value of

p > 0:7.18 For these reasons we consider the evidence for repeated-game strategies as weak.

Result 3 (i) Row player: The best-response rates in PI and NF are on average signi�cantly lower

than in BASE. While the number of best responses increases over time in BASE, there is no

signi�cant time trend in the remaining treatments. (ii) Column player: Best-response rates are on

average higher in treatments NF and PI than in BASE. This di¤erence disappears when restricting

attention to undominated actions. There is no signi�cant time trend for any treatment except RM.

(iii) For both player roles, treatments BASE and RM do not signi�cantly di¤er from each other

with respect to average best-response rates and time trends.

3.2.3 Accuracy of stated beliefs

In the Nash equilibrium of the stage game, subjects hold accurate beliefs about their opponent�s

choice. In the level-k model, however, this is typically not the case as subjects�beliefs can be at

odds with true behavior. In order to measure how well stated beliefs predict the opponent�s play,

we use the earnings from the quadratic scoring rule (QSR). Figure 4 shows the average earnings

over three periods from the QSR for all treatments and for both player roles.19

A natural benchmark for the accuracy of belief statements is the payo¤ that subjects receive

by stating uniform beliefs, which is 1e. However, the average across treatments for both player

roles is about 1e. Remember that we do not observe many uniform belief statements (see also

18We use each column player as an independent observation and compare the number of best responses of each

column player across BASE and RM.
19 In principle the accuracy of predicting other�s behavior should not depend on the player role. Indeed, we only

�nd a weak signi�cant di¤erence between player roles in RM (Mann-Whitney test, p = 0:098). In all other treatments

the same test yields p-values higher than 0:45.
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Beliefpay

row player column player

(1) (2) (3) (4)

PI
-0.017

(0.063)

-0.030

(0.082)

-0.069

(0.063)

-0.087

(0.081)

NF
-0.144��

(0.063)

0.240

(0.081)

-0.219���

(0.062)

-0.039

(0.080)

RM
-0.100

(0.067)

-0.053

(0.086)

-0.216���

(0.066)

-0.138

(0.085)

Period
0.005

(0.003)

0.013���

(0.003)

PI*Period
0.001

(0.005)

0.002

(0.005)

NF*Period
-0.011��

(0.005)

-0.017���

(0.005)

RM*Period
-0.005

(0.005)

-0.007

(0.005)

Constant
1.056���

(0.044)

0.999���

(0.056)

1.080���

(0.043)

0.941���

(0.055)

�2(:) �2(3) = 6.84� �2(7) = 15.60�� �2(3) = 17.61��� �2(7) = 55.56���

R2 0.07 0.07 0.16 0.16

N 1920

Notes: Random-e¤ects regression, * Signi�cant at 10-percent level; ** Signi�cant at 5-percent level; ***

Signi�cant at 1-percent level.

Table 9: Regression: Accuracy of stated beliefs over time
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Figure 4: Accuracy of stated beliefs over time

footnote 5). Row players in all treatments earn slightly more than the benchmark of 1e, but we

cannot reject the hypothesis of equal means at any conventional signi�cance level (Wilcoxon Signed

Rank test, p-values > 0:12). The same holds for column players in BASE and PI, whereas column

players in NF and RM earn on average less than 1e (Wilcoxon Signed Rank test, for NF and RM

p-values < 0:01).

Although the accuracy of belief statements is low, we observe improvements in predicting

the play of the opponent over time in treatments BASE and PI. Apparently, this is not the case for

treatments NF and RM. We run a random-e¤ects panel regression on the earnings from the belief

elicitation task. The dependent variable is the payo¤ from the QSR. Besides the constant and an

reference time trend for BASE, the regression includes treatment and time interaction dummies for

the controls PI, NF and RM as independent variables in order to measure the corresponding perfor-

mance relative to BASE. Again, direct tests of the absolute time trends in the control treatments

where performed separately and are not reported.

On average beliefs are signi�cantly less accurate in NF than in BASE while PI and BASE

show the same accuracy of beliefs. When comparing BASE to RM, only the column players di¤er

signi�cantly from each other due to a lower accuracy of beliefs in RM than in BASE. Focusing

on the development over time we observe some learning in BASE since the beliefs become more

accurate over time for the column players. The row players show no signi�cant learning path in any

treatment. Whereas we observe the same pattern over time in PI and BASE, tests of the absolute

time trends reveal that there is no learning at all in NF and RM. In addition, the di¤erence between
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BASE and NF is more pronounced than the di¤erence between BASE and RM.

These results indicate that information about the behavior of previous opponents is more

useful for subjects to predict the current opponent�s behavior than information about the game

structure. Further support for the relatively minor role of the opponent�s payo¤s comes from the

fact that in the �rst rounds beliefs are not signi�cantly less accurate in PI than in BASE. Our

data also reveal that there is a positive e¤ect of playing with the same opponent repeatedly on the

accuracy of beliefs. We summarize these �ndings in the following result.

Result 4 (i) The accuracy of stated beliefs is low, and only very limited learning e¤ects can be

observed. Merely in BASE subjects earn more than they would have earned by always stating

uniform beliefs. (ii) In BASE and PI subjects reveal the same pattern of learning. The column

players best respond more often in later periods while the row players do not. (iii) On average

beliefs are signi�cantly less accurate in NF than in BASE since there is no learning at all in NF.

(iv) While for the row player the accuracy of beliefs is the same in RM as in BASE on average and

over time, the column players exhibit less accuracy on average which is due to less improvements

over time.

4 Summary

This paper reports on an experiment aimed at a better understanding of the development of strategic

reasoning over a limited number of rounds. To classify the strategies of the 3x3 normal-form game

employed in our study, we used the level-of-reasoning model of Stahl and Wilson. This classi�cation

allows us to track strategic play over time. In order to understand the determinants of strategic

play, we varied the information available to the players and elicited their beliefs about opponents�

play.

First consider behavior aggregated over all periods. We �nd that both, feedback and infor-

mation about the payo¤s of the opponent have an impact on the average choice and belief structure.

Both types of information lead to an increase of non-strategic (L1) and a decrease of e¢ cient (or

Rawls) play on average. Moreover, the lack of feedback reduces the average accuracy of beliefs

which is not the case for missing information about the opponent�s payo¤ structure. We also �nd

that stated beliefs are a better proxy for the underlying true beliefs than theoretical belief models

such as weighted �ctitious play or Cournot best response (as in Nyarko and Schotter, 2002).

In addition, we investigate choices and beliefs over time. There is considerable learning in a
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relatively small number of rounds. In the baseline treatment, subjects exhibit less non-strategic and

more Nash play over time. Furthermore in later periods their actions become more consistent with

their stated beliefs (signi�cantly so for row players). The accuracy of subjects�beliefs with respect

to the opponent�s choices is also increasing over time (this is signi�cant for column players). In

the no-feedback treatment, neither the strategic sophistication of the choices nor the accuracy and

consistency of stated beliefs show any signi�cant time trend. These results support the experimental

approach of studying behavior in di¤erent one-shot games by using repeated choices of the same

subject without giving any feedback. On the other hand missing information about the opponent�s

payo¤ has almost no impact on the learning path that we have observed in the baseline treatment.

Both, the strategic sophistication of choices and the accuracy of beliefs are not altered in their

development over time. Only the increase in best-response rates observed in the baseline treatment

is diminished without information about the opponent�s payo¤s.

This study should be seen as a �rst step in understanding the development of strategic

thinking with the help of stated beliefs in a game. Many issues remain to be investigated, e.g.

other games should be used in order to abstract from the speci�cs of our game. Also, the accuracy

and consistency of beliefs over time is by now very little understood and requires thorough empirical

scrutiny.
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