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The Stochastic Fluctuation of the Quantile
Regression Curve ∗

Wolfgang K. Härdle †, Song Song ‡

Abstract

Let (X1, Y1), . . ., (Xn, Yn) be i.i.d. rvs and let l(x) be the un-
known p-quantile regression curve of Y on X. A quantile-smoother
ln(x) is a localised, nonlinear estimator of l(x). The strong uniform
consistency rate is established under general conditions. In many ap-
plications it is necessary to know the stochastic fluctuation of the
process {ln(x) − l(x)}. Using strong approximations of the empirical
process and extreme value theory allows us to consider the asymptotic
maximal deviation sup06x61 |ln(x)− l(x)|. The derived result helps in
the construction of a uniform confidence band for the quantile curve
l(x). This confidence band can be applied as a model check, e.g. in
econometrics. An application considers a labour market discrimina-
tion effect.

Keywords: Quantile Regression; Consistency Rate; Confidence Band;
Check Function; Kernel Smoothing; Nonparametric Fitting

JEL classification: C00; C14; J01; J31

1 Introduction

In regression function estimation, most investigations are concerned with
the conditional mean regression. However, new insights about the underly-
ing structures can be gained by considering other aspects of the conditional
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distribution. The quantile curves are key aspects of inference in various sta-
tistical problems and are of great interest in practice. These describe the
conditional behaviour of a response variable given the value of an explana-
tory variable, and investigate changes in both tails of the distribution, other
than just the mean. Besides this, it is also well-known that a quantile regres-
sion model (e.g. the conditional median curve) is more robust to outliers,
especially for fat-tailed distributions. For symmetric conditional distribu-
tions the quantile regression generates the nonparametric mean regression
analysis since the p = 0.5 (median) quantile curve coincides with the mean
regression.

Let (X1, Y1), (X2, Y2), . . ., (Xn, Yn) be a sequence of independent identi-
cally distributed bivariate random variables with joint pdf f(x, y), joint cdf
F (x, y), conditional pdf f(y|x), f(x|y), conditional cdf F (y|x), F (x|y) for Y
given X and X given Y respectively, and marginal pdf fX(x) for X, fY (y)
for Y where x ∈ J , J is a possibly infinite interval in Rd and y ∈ R. In gen-
eral, X may be a multivariate covariate, although here we restrict attention
to the univariate case and J = [0, 1] for convenience. Special treatment of
the multivariate case will be indicated when necessary. Let l(x) denote the
p-quantile curve, i.e. l(x) = F−1

Y |x(p).

As first introduced by Koenker and Bassett (1978), one may assume a
parametric model for the p-quantile curve and estimate parameters by the
interior point method discussed by Koenker and Park (1996) and Portnoy
and Koenker (1997). Similarly, we can also adopt nonparametric methods to
estimate conditional quantiles. The first one, a more direct approach using
a check function such as a robustified local linear smoother, is provided by
Fan et al. (1994) and further extended by Yu and Jones (1997, 1998). An
alternative procedure is first to estimate the conditional distribution function
using the double-kernel local linear technique of Fan et al. (1996) and then
to invert the conditional distribution estimator to produce an estimator of
a conditional quantile by Yu and Jones (1997, 1998). Beside these, Hall
et al. (1999) proposed a weighted version of the Nadaraya-Watson estimator,
which was further studied by Cai (2002). Recently Jeong and Härdle (2008)
have developed the conditional quantile causality test. More generally, for
M -regression function which involves quantile regression as a special case,
its uniform Bahadur representation and application to the additive model is
studied by Kong et al. (2008).

Under a “check function”, l(x) can be viewed as minimiser of L(θ)
def
=

E{ρp(y−θ)|X = x} (w.r.t. θ) with ρp(u) = pu1{u ∈ (0,∞)}− (1−p)u1{u ∈
(−∞, 0)}. Interestingly there is only one reference to an exercise in Ferguson
(1967)[p.51] in the literature, but no detailed proof. It is however easy to see
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that:

L(θ) = E{ρp(y − θ)|X = x}

=

∫ +∞

−∞
{p(y − θ)1(y > θ) + (1− p)(θ − y)1(y < θ)}f(y|x)dy

= p

∫ +∞

θ

(y − θ)f(y|x)dy + (1− p)

∫ θ

−∞
(θ − y)f(y|x)dy

= p

∫ +∞

−∞
yf(y|x)dy − pθ

∫ +∞

−∞
f(y|x)dy

−
∫ θ

−∞
yf(y|x)dy + θ

∫ θ

−∞
f(y|x)dy

With differentiation under the integral the FOC (w.r.t. θ) is:

−p− θf(y|x) +

∫ θ

−∞
f(y|x)dy + θf(y|x) = 0∫ θ

−∞
f(y|x)dy − p = 0.

The SOC (w.r.t. θ): f(θ|x) > 0, guarantees that the p-quantile θ minimizes
L(θ) according to the definition of quantile.

A kernel-based p-quantile curve estimator ln(x) can naturally be con-
structed by minimising:

Ln(θ) = n−1

n∑
i=1

ρp(Yi − θ)Kh(x−Xi) (1)

with respect to θ ∈ I where I is a possibly infinite, or possibly degenerate,
interval in R, and Kh(u) = h−1K(u/h) is a kernel with bandwidth h.

Numerically the minimisation of (1) through the check function is not a
trivial task. Consequently Lejeune and Sarda (1988) and Yu et al. (2003)
proposed to employ iterative methods to compute ln(x). This is based on
writing (1) as:

Ln(θ) = n−1

n∑
i=1

(Yi − θ)2
{ρp(Yi − θ)

(Yi − θ)2

}
Kh(x−Xi). (2)

Note that if we define (Yi; θ) as:

wp(Yi; θ) =
ρp(Yi − θ)

(Yi − θ)2
=

p

Yi − θ
1{(Yi − θ) ∈ (0,∞)}

+
p− 1

Yi − θ
1{(Yi − θ) ∈ (−∞, 0)},
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and integrate wp into Kh we can rewrite (2) as a reweighted sum of squares:

Ln(θ) = n−1

n∑
i=1

(Yi − θ)2wp(Yi; θ)Kh(x−Xi)

= n−1

n∑
i=1

(Yi − θ)2Kp(x;Xi;Yi; θ) (3)

An algorithm for finding the minimiser of (2) is given in Yu et al. (2003).
This algorithm is an iteratively reweighted least squares procedure for finding
ln. Convergence of this algorithm is guaranteed for any initial value of ln,k. At
step k = 1, we simply take ln,1 as the global p-quantile. At each iteration from
k → k + 1, new weight wp(Yi; ln,k) is defined to compute Kp(x;Xi;Yi; ln,k).
A new estimator of l is obtained as:

ln,k+1 = argmin
θ

n−1

n∑
i=1

(Yi − θ)2Kp(x;Xi;Yi; ln,k)

=

∑n
i=1Kp(x;Xi;Yi; ln,k)Yi∑n
i=1Kp(x;Xi;Yi; ln,k)

. (4)

Equivalently, ln,k(x) can be viewed as a local average of those Y -observations
with corresponding X-observations in a reweighed neighbourhood of x. The
size and weight of that neighbourhood is regulated by the bandwidth h and
p. In Theorem 2.1 we show that ∃ some k1, s.t. ln,k(x) = ln(x),∀k > k1.

In the light of concepts of M -estimation as in Huber (1981), if we define
ψ(u) as:

ψp(u) = p1{u ∈ (0,∞)} − (1− p)1{u ∈ (−∞, 0)}
= p− 1{u ∈ (−∞, 0)},

ln(x) and l(x) can be treated as a zero (w.r.t. θ) of the function:

H̃n(θ, x)
def
= n−1

n∑
i=1

Kh(x−Xi)ψ(Yi − θ) (5)

H̃(θ, x)
def
=

∫
R
f(x, y)ψ(y − θ)dy (6)

correspondingly.
To show the uniform consistency of the quantile smoother, we shall reduce

the problem of strong convergence of ln(x) − l(x), uniformly in x, to an

application of the strong convergence of H̃n(θ, x) to H̃(θ, x), uniformly in x
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and θ, as given by Theorem 2.2 in Härdle et al. (1988). It is shown that
under general conditions almost surely (a.s.)

sup
x∈J

|ln(x)− l(x)| 6 B∗ max{(nh/(log n))−1/2, hα̃}, as n→∞.

where B∗ and α̃ are parameters defined more precisely in Section 2.
Please note that without assuming K has the compact support (as we do

here) under similar assumptions Franke and Mwita (2003) get:

ln(x) = F̂−1
Y |x(p)

F̂ (y|x) =

∑n
i=1Kh(x−Xi)1(Yi < y)∑n

i=1Kh(x−Xi)

sup
x∈J

|ln(x)− l(x)| 6 B∗∗{(nh/(sn log n))−1/2 + h2}, as n→∞.

where B∗∗ is some constant and sn, n > 1 is an increasing sequence of
positive integers satisfying 1 6 sn 6 n

2
and some other criteria. Thus

{nh/(log n)}−1/2 6 {nh/(sn log n)}−1/2.
By employing similar methods developed by Härdle (1989) it is shown in

this paper that

P
(
(2δ log n)1/2

[
sup
x∈J

r(x)|{ln(x)− l(x)}|λ(K)1/2 − dn

]
< z

)
−→ exp{−2 exp(−z)}, as n→∞. (7)

where r(x), δ, λ(K), dn are suitable scaling parameters. This result allows
the construction of (asymptotic) uniform confidence bands for l(x) based on
specifications of the stochastic fluctuation of ln(x).

The plan of the paper is as follows. In Section 2, the stochastic fluctuation
of the process {ln(x) − l(x)} and the uniform confidence band are present
through the equivalence of several stochastic processes with a strong uniform
consistency rate of {ln(x)− l(x)} also shown, the proof of which are sketched
in Section 3. In Section 4, in a small Monte Carlo study we investigate
the behaviour of ln(x) when the data is generated by fat-tailed conditional
distributions of (Y |X = x). In Section 5, an application considers a wage-
earning relation in labour market.

2 Results

THEOREM 2.1 For ln(x) as the minimiser of Ln(θ), and ln,k defined in
(4), ∃ some k1, s.t. ln,k(x) = ln(x),∀k > k1.

5



The following assumptions will be convenient. To make x and X clearly
distinguishable, we replace x by t sometimes, but they are essentially the
same.
(A1) The kernel K(·) is positive, symmetric, has compact support [−A,A]
and is Lipschitz continuously differentiable with bounded derivatives;
(A2) (nh)−1/2(log n)3/2 → 0, (n log n)1/2h5/2 → 0, (nh3)−1(log n)2 6 M , M a
constant;
(A3) h−3(log n)

∫
|y|>an

fY (y)dy = O(1), fY (y) the marginal density of Y ,

{an}∞n=1 a sequence of constants tending to infinity as n→∞;
(A4) inft∈J |q(t)| > q0 > 0, where q(t) = ∂ E{ψ(Y − θ)|t}/∂θ {l(t)} · fX(t) =
f{l(t)|t}fX(t);
(A5) the quantile function l(t) is Lipschitz twice continuously differentiable,
for all t ∈ J .
(A6) 0 < m1 6 fX(t) 6 M1 < ∞, t ∈ J ; the conditional densities
f(·|y), y ∈ R, are uniformly locally Lipschitz of order α̃ (ulL-α̃) on J ,
uniformly in y ∈ R, with 0 < α̃ 6 1.

Define also

σ2(t) = E[ψ2{Y − l(t)}|t] = p(1− p)

Hn(t) = (nh)−1

n∑
i=1

K{(t−Xi)/h}ψ{Yi − l(t)}

Dn(t) = ∂(nh)−1

n∑
i=1

K{(t−Xi)/h}ψ{Yi − θ}/∂θ {l(t)}

and assume that σ2(t) and fX(t) are differentiable.
Assumption (A1) on the compact support of the kernel could possibly be

relaxed introducing a cutoff technique as Csörgö and Hall (1982) for density
estimators. Assumption (A2) has purely technical reasons: to keep the bias at
a lower rate than the variance and to ensure the vanishing of some non-linear
remainder terms. Assumption (A3) appears in a somewhat modified form
also in Johnston (1982). Assumption (A5, A6) are common assumptions in
robust estimation as in Huber (1981), Härdle et al. (1988) which exponential,
and generalised hyperbolic distributions satisfy.

For the uniform strong consistency rate of ln(x)−l(x), we apply the result
of Härdle et al. (1988) by taking β(y) = ψ(y − θ), y ∈ R, for θ ∈ I = R,
q1 = q2 = −1, γ1(y) = max{0,−ψ(y − θ)}, γ2(y) = min{0,−ψ(y − θ)} and
λ = ∞ to satisfy the representations for the parameters there. Thus from
Theorem 2.2 and Remark 2.3(v) there we immediately have the following
lemma.
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LEMMA 2.1 Let H̃n(θ, x) and H̃(θ, x) be given by (5) and (6). Under
assumption (A6) and (nh/ log n)−1/2 → ∞ through (A2), for some constant
A∗ not depending on n, we have a.s. as n→∞

sup
θ∈I

sup
x∈J

|H̃n(θ, x)− H̃(θ, x)| ≤ A∗ max{(nh/ log n)−1/2, hα̃} (8)

For our result on ln(·), we shall also require

inf
x∈J

∣∣ ∫
ψ{y − l(x) + ε}dF (y|x)

∣∣ > q̃|ε|, for |ε| 6 δ1, (9)

where δ1 and q̃ are some positive constants, see also Härdle and Luckhaus
(1984). This assumption is satisfied if there exists a constant q̃ such that
f(l(x)|x) > q̃/p, x ∈ J .

THEOREM 2.2 Under the conditions of Lemma 2.1 and also assuming
(9), we have a.s. as n→∞

sup
x∈J

|ln(x)− l(x)| ≤ B∗ max{(nh/ log n)−1/2, hα̃} (10)

with B∗ = A∗/m1q̃ not depending on n and m1 a lower bound of fX(t).

THEOREM 2.3 Let h = n−δ, 1
5
< δ < 1

3
, λ(K) =

∫ A

−AK
2(u)du and

dn = (2δ log n)1/2 + (2δ log n)−1/2[log{c1(K)/π1/2}+
1

2
{log δ + log log n}],

if c1(K) = {K2(A) +K2(−A)}/{2λ(K)} > 0

dn = (2δ log n)1/2 + (2δ log n)−1/2 log{c2(K)/2π}

otherwise with c2(K) =

∫ A

−A
{K ′(u)}2du/{2λ(K)}.

Then (7) holds with

r(x) = (nh)1/2f{l(x)|x}{fX(x)/p(1− p)}1/2.

This theorem can be used to construct uniform confidence intervals for the
regression function as stated in the following corollary.
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COROLLARY 2.1 Under the assumptions of the theorem above, an ap-
proximate (1− α)× 100% confidence band over [0, 1] is

ln(t)± (nh)−1/2{p(1− p)λ(K)/f̂X(t)}1/2f̂−1{l(t)|t}{dn + c(α)(2δ log n)−1/2},

where c(α) = log 2 − log | log(1 − α)| and f̂X(t), f̂{l(t)|t} are consistent
estimates for fX(t), f{l(t)|t}.

In the literature, according to Fan et al. (1994, 1996), Yu and Jones
(1997, 1998), Hall et al. (1999), Cai (2002) and others, asymptotic normality
at interior points for various nonparametric smoothers, e.g. local constant,
local linear, reweighted NW methods, etc. has been shown:

ln(t)− l(t) ∼ N
(
0, τ 2(t)

)
with τ 2(t) = λ(K)p(1− p)/[fX(t)f 2{l(t)|t}]. Please note that the bias term
vanishes here as we adjust h. With τ(t) introduced, we can further write
Corollary 2.1 as:

ln(t)± {dn + c(α)(2δ log n)−1/2}τ̂(t).

Through minimising the approximation of AMSE (asymptotic mean square
error), the optimal bandwidth hp can be computed. In practice, the rule-of-
thumb for hp is given by Yu and Jones (1998):

1. Select optimal bandwidth hmean from conditional mean regression

2. hp = [p(1− p)/ϕ2{Φ−1(p)}]1/5 · hmean
with ϕ, Φ as the pdf and cdf of a standard normal distribution

Obviously more p deviates from 0.5, means more smoothing is necessary.
The proof is essentially based on a linearisation argument after a Taylor

series expansion. The leading linear term will then be approximated in a
similar way as in Johnston (1982), Bickel and Rosenblatt (1973). The main
idea behind the proof is a strong approximation of the empirical process of
{(Xi, Yi)

n
i=1} by a sequence of Brownian bridges as proved by Tusnady (1977).

As ln(t) is the zero (w.r.t. θ) of H̃n(θ, t), it follows by applying 2nd-order

Taylor expansions to H̃n(θ, t) around l(t) that

ln(t)− l(t) = {Hn(t)− EHn(t)}/q(t) +Rn(t) (11)

where {Hn(t)− EHn(t)}/q(t) is the leading linear term and

Rn(t) = Hn(t){q(t)−Dn(t)}/{Dn(t) · q(t)}+ EHn(t)/q(t)

+
1

2
{ln(t)− l(t)}2 · {Dn(t)}−1 (12)

·(nh)−1

n∑
i=1

K{(x−Xi)/h}ψ′′{Yi − l(t) + rn(t)}, (13)
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|rn(t)| < |ln(t)− l(t)|.
is the remainder term. In Section 3 it is shown (Lemma 3.1) that ‖Rn‖ =
supt∈J |Rn(t)| = Op{(nh log n)−1/2}.

Furthermore, the rescaled linear part

Yn(t) = (nh)1/2{σ2(t)fX(t)}−1/2{Hn(t)− EHn(t)}

is approximated by a sequence of Gaussian processes, leading finally to the
Gaussian process

Y5,n(t) = h−1/2

∫
K{(t− x)/h}dW (x). (14)

Drawing upon the result of Bickel and Rosenblatt (1973), we finally obtain
asymptotically the Gumbel distribution.

We also need the Rosenblatt (1952) transformation,

T (x, y) = {FX|y(x|y), FY (y)},

which transforms (Xi, Yi) into T (Xi, Yi) = (X ′
i, Y

′
i ) mutually independent

uniform rv’s. In the event that x is a d-dimension covariate, the transforma-
tion becomes:

T (x1, x2, . . . , xd, y) = {FX1|y(x1|y), FX2|y(x2|x1, y), . . . ,

FXk|xd−1,...,x1,y(xk|xd−1, . . . , x1, y), FY (y)}. (15)

With the aid of this transformation, Theorem 1 of Tusnady (1977) may be
applied to obtain the following lemma.

LEMMA 2.2 On a suitable probability space a sequence of Brownian bridges
Bn exists that

sup
x∈J,y∈R

|Zn(x, y)−Bn{T (x, y)}| = O{n−1/2(log n)2} a.s.,

where Zn(x, y) = n1/2{Fn(x, y) − F (x, y)} denotes the empirical process of
{(Xi, Yi)}ni=1.

For d > 2, it is still an open problem which deserves further research, while
the current best result is given in Rio (1996).

Before we define the different approximating processes let us first rewrite
(14) as a stochastic integral w.r.t. the empirical process Zn(x, y),

Yn(t) = {hg′(t)}−1/2

∫∫
K{(t− x)/h}ψ{y − l(t)}dZn(x, y),

9



g′(t) = σ2(t)fX(t).

The approximating processes are now:

Y0,n(t) = {hg(t)}−1/2

∫∫
Γn

K{(t− x)/h}ψ{y − l(t)}dZn(x, y) (16)

where Γn = {|y| 6 an}, g(t) = E[ψ2{y − l(t)} · 1(|y| 6 an)|X = t] · fX(t)

Y1,n(t) = {hg(t)}−1/2

∫∫
Γn

K{(t− x)/h}ψ{y − l(t)}dBn{T (x, y)} (17)

{Bn} being the sequence of Brownian bridges from Lemma 2.2.

Y2,n(t) = {hg(t)}−1/2

∫∫
Γn

K{(t− x)/h}ψ{y − l(t)}dWn(T (x, y)) (18)

{Wn} being the sequence of Wiener processes satisfying

Bn(x
′, y′) = Wn(x

′, y′)− x′y′Wn(1, 1)

Y3,n(t) = {hg(t)}−1/2

∫∫
Γn

K{(t− x)/h}ψ{y − l(x)}dWn(T (x, y)) (19)

Y4,n(t) = {hg(t)}−1/2

∫
g(x)1/2K{(t− x)/h}dW (x) (20)

Y5,n(t) = h−1/2

∫
K{(t− x)/h}dW (x) (21)

{W (·)} being the Wiener process on (−∞,∞).

Lemma 3.2 to 3.7 ensure that all these processes have the same limit
distributions. The result then follows from

LEMMA 2.3 (Bickel and Rosenblatt (1973)) Let dn, λ(K), δ as in Theorem
2.3. Let

Y5,n(t) = h−1/2

∫
K{(t− x)/h}dW (x).

Then, as n→∞, the supremum of Y5,n(t) has a Gumbel distribution.

P
{

(2δ log n)1/2
[
sup
t∈J

|Y5,n(t)|/{λ(K)}1/2 − dn

]
< z

}
→ exp{−2 exp(−z)}.
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3 Proof

Proof of Theorem 2.1. For ln,k and ln there are only 2 cases:

1. @ some k1, s.t. ln,k1 = ln

2. ∃ some k1, s.t. ln,k1 = ln

W.L.G. we assume ln ∈ (Ym, Ym+1) for somem. According to the convergence
of ln,k → ln shown in Lejeune and Sarda (1988), ∃ some k0, s.t. |ln,k − ln| 6
min{(ln−ym), (ym+1− ln)},∀k > k0. Using same transformation proposed by
Lejeune and Sarda (1988), Kh in (4) can be seen as not relevant and discarded
here. For simplicity of notation, if we write p1{(Yi − ln,k) ∈ (0,∞)} − (1 −
p)1{(Yi − ln,k) ∈ (−∞, 0)} as ψp(Yi − ln,k), therefore

ln,k+1 =

∑n
i=1 ψp(Yi − ln,k)/(Yi − ln,k) · (Yi − ln,k + ln,k)∑n

i=1 ψp(Yi − ln,k)/(Yi − ln,k)

=

∑n
i=1 ψp(Yi − ln,k)∑n

i=1 ψp(Yi − ln,k)/(Yi − ln,k)
+ ln,k.

As |ln,k − ln| 6 min{(ln − ym), (ym+1 − ln)},∀k > k0,
∑n

i=1 p1{(Yi − ln,k) ∈
(0,∞)} − (1− p)1{(Yi − ln,k) ∈ (−∞, 0)} = pn(1− p) + (p− 1)np = 0,∀ ln,k
with k > k0.

If case 1 holds, it means ln,k 6= ln,∀k > k0. Just pick anyone of them,
namely ln,k?

0
= ln + ε 6= 0, with ε 6= 0, k?0 > k0. Thus:

ln,k?
0+1 =

0∑n
i=1 ψp(Yi − ln,k?

0
)/(Yi − ln,k?

0
)

+ ln,k?
0

= ln,k?
0
.

So ln,k = ln,k?
0

= ln + ε, ∀k > k?0, however, this contradicts to ln,k → ln as
ε 6= 0. So ∃ some k1, s.t. ln,k1 = ln. Similarly we get:

ln,k1+1 =
0∑n

i=1 ψp(Yi − ln,k1)/(Yi − ln,k1)
+ ln,k1 = ln,k1 .

So ln,k = ln,k1 = ln,∀k > k1. �

Proof of Theorem 2.2. By the definition of ln(x) as a zero of (5), we have,
for ε > 0,

if ln(x) > l(x) + ε, and then H̃n{l(x) + ε, x} > 0. (22)

Now

H̃n{l(x) + ε, x} 6 H̃{l(x) + ε, x}+ sup
θ∈I

|H̃n(θ, x)− H̃(θ, x)|. (23)

11



Also, by the identity H̃{l(x), x} = 0, the function H̃{l(x) + ε, x} is not
positive and has a magnitude > m1q̃ε by assumption (A6) and (9), for 0 <
ε < δ1. That is, for 0 < ε < δ1,

H̃{l(x) + ε, x} 6 −m1q̃ε. (24)

Combining (22), (23) and (24), we have, for 0 < ε < δ1:

if ln(x) > l(x) + ε, and then sup
θ∈I

|H̃n(θ, x)− H̃(θ, x)| > m1q̃ε.

With a similar inequality proved for the case ln(x) < l(x) + ε, we obtain,
for 0 < ε < δ1:

if sup
x∈J

|ln(x)− l(x)| > ε, and then sup
θ∈I

|H̃n(θ, x)− H̃(θ, x)| > m1q̃ε. (25)

It readily follows that (25), and (8) imply (10). �
Below we first show that ‖Rn‖∞ = supt∈J |Rn(t)| vanishes asymptotically

faster than the rate (nh log n)−1/2; for simplicity we will just use ‖ · ‖ to
indicate the sup-norm.

LEMMA 3.1 For the remainder term Rn(t) defined in (12) we have

‖Rn‖ = Op{(nh log n)−1/2}. (26)

Proof. First we have by the positivity of the kernel K,

‖Rn‖ 6
[

inf
06t61

{|Dn(t)| · q(t)}
]−1

{‖Hn‖ · ‖q −Dn‖+ ‖Dn‖ · ‖EHn‖}

+C1 · ‖ln − l‖2 ·
{

inf
06t61

|Dn(t)|
}−1

· ‖fn‖∞,

where fn(x) = (nh)−1
∑n

i=1K{(x−Xi)/h}.
The desired result (3.1) will then follow if we prove

‖Hn‖ = Op{(nh)−1/2(log n)1/2} (27)

‖q −Dn‖ = Op{(nh)−1/4(log n)−1/2} (28)

‖EHn‖ = O(h2) (29)

‖ln − l‖2 = Op{(nh)−1/2(log n)−1/2} (30)

Since (29) follows from the well-known bias calculation

EHn(t) = h−1

∫
K{(t− u)/h}E[ψ{y − l(t)}|X = u]fX(u)du = O(h2),

12



where O(h2) is independent of t in Parzen (1962), we have from assumption
(A2) that ‖EHn‖ = Op{(nh)−1/2(log n)−1/2}.

According to Lemma A.3 in Franke and Mwita (2003),

sup
t∈J

|Hn(t)− EHn(t)| = O{(nh)−1/2(log n)1/2}.

and the following inequality

‖Hn‖ 6 ‖Hn − EHn‖+ ‖EHn‖.
= O{(nh)−1/2(log n)1/2}+ Op{(nh)−1/2(log n)−1/2}
= O{(nh)−1/2(log n)1/2}

Statement (27) thus is obtained.
Statement (28) follows in the same way as (27) using assumption (A2)

and the Lipschitz continuity properties of K, ψ′, l.
According to the uniform consistency of ln(t)− l(t) shown before, we have

‖ln − l‖ = Op{(nh)−1/2(log n)1/2}

which implies (30).
Now the assertion of the lemma follows, since by tightness of Dn(t),

inf06t61 |Dn(t)| > q0 a.s. and thus

‖Rn‖ = Op{(nh log n)−1/2}(1 + ‖fn‖).

Finally, by Theorem 3.1 of Bickel and Rosenblatt (1973), ‖fn‖ = Op(1); thus
the desired result ‖Rn‖ = Op{(nh log n)−1/2} follows. �

We now begin with the subsequent approximations of the processes Y0,n

to Y5,n.

LEMMA 3.2

‖Y0,n − Y1,n‖ = O{(nh)−1/2(log n)2} a.s.

13



Proof. Let t be fixed and put L(y) = ψ{y− l(t)} still depending on t. Using
integration by parts and obtain∫∫

Γn

L(y)K{(t− x)/h}dZn(x, y)

=

∫ A

u=−A

∫ an

y=−an

L(y)K(u)dZn(t− h · u, y)

= −
∫ A

−A

∫ an

−an

Zn(t− h · u, y)d{L(y)K(u)}

+L(an)(an)

∫ A

−A
Zn(t− h · u, an)dK(u)

−L(−an)(−an)
∫ A

−A
Zn(t− h · u,−an)dK(u)

+K(A)
{∫ an

−an

Zn(t− h · A, y)dL(y)

+L(an)(an)Zna(t− h · A, an)− L(−an)(−an)Zn(t− h · A,−an)
}

−K(−A)
{∫ an

−an

Zn(t+ h · A, y)dL(y) + L(an)(an)Zn(t+ h · A, an)

−L(−an)(−an)Zn(t+ h · A,−an)
}
.

If we apply the same operation to Y1,n with Bn{T (x, y)} instead of Zn(x, y)
and use Lemma 2.2, we finally obtain

sup
06t61

h1/2g(t)1/2|Y0,n(t)− Y1,n(t)| = O{n−1/2(log n)2} a.s..

�

LEMMA 3.3 ‖Y1,n − Y2,n‖ = Op(h
1/2).

Proof. Note that the Jacobi of T (x, y) is f(x, y) hence

Y1,n(t)− Y2,n(t)

=
∣∣∣{g(t)h}−1/2

∫∫
Γn

ψ{y − l(t)}K{(t− x)/h}f(x, y)dxdy
∣∣∣ · |Wn(1, 1)|.

It follows that

h−1/2‖Y1,n − Y2,n‖ 6 |Wn(1, 1)| · ‖g−1/2‖

· sup
06t61

h−1

∫∫
Γn

|ψ{y − l(t)}K{(t− x)/h}|f(x, y)dxdy.

14



Since ‖g−1/2‖ is bounded by assumption, we have

h−1/2‖Y1,n − Y2,n‖ 6 |Wn(1, 1)| · C4 · h−1

∫
K{(t− x)/h}dx = Op(1).

�

LEMMA 3.4 ‖Y2,n − Y3,n‖ = Op(h
1/2).

Proof. The difference |Y2,n(t)− Y3,n(t)| may be written as∣∣∣{g(t)h}−1/2

∫∫
Γn

[ψ{y − l(t)} − ψ{y − l(x)}]K{(t− x)/h}dWn{T (x, y)}
∣∣∣.

If we use the fact that l are uniformly continuous this is smaller than

h−1/2|g(t)|−1/2 · Op(h)

and the lemma thus follows. �

LEMMA 3.5 ‖Y4,n − Y5,n‖ = Op(h
1/2).

Proof.

|Y4,n(t)− Y5,n(t)| = h−1/2
∣∣∣ ∫ [{g(x)

g(t)

}1/2

− 1
]
K{(t− x)/h}dW (x)

∣∣∣
6 h−1/2

∣∣∣ ∫ A

−A
W (t− hu)

∂

∂u

[{g(t− hu)

g(t)

}1/2

− 1
]
K(u)du

∣∣∣
+h−1/2

∣∣∣K(A)W (t− hA)
[{g(t− Ah)

g(t)

}1/2

− 1
]∣∣∣

+h−1/2
∣∣∣K(−A)W (t+ hA)

[{g(t+ Ah)

g(t)

}1/2

− 1
]∣∣∣

S1,n(t) + S2,n(t) + S3,n(t), say.

The second term can be estimated by

h−1/2‖S2,n‖ 6 K(A) · sup
06t61

|W (t− Ah)| · sup
06t61

h−1
∣∣∣[{g(t− Ah)

g(t)

}1/2

− 1
]∣∣∣;

by the mean value theorem it follows that

h−1/2‖S2,n‖ = Op(1).
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The first term S1,n is estimated as

h−1/2S1,n(t) =
∣∣∣h−1

∫ A

−A
W (t− uh)K ′(u)

[{g(t− uh)

g(t)

}1/2

− 1
]
du

1

2

∫ A

−A
W (t− uh)K(u)

{g(t− uh)

g(t)

}1/2{g′(t− uh)

g(t)

}
du

∣∣∣
= |T1,n(t)− T2,n(t)|, say;

‖T2,n‖ 6 C5 ·
∫ A

−A |W (t− hu)|du = Op(1) by assumption on g(t) = σ2(t) ·
fX(t). To estimate T1,n we again use the mean value theorem to conclude
that

sup
06t61

h−1
∣∣∣{g(t− uh)

g(t)

}1/2

− 1
∣∣∣ < C6 · |u|;

hence

‖T1,n‖ 6 C6 · sup
06t61

∫ A

−A
|W (t− hu)|K ′(u)u/du = Op(1).

Since S3,n(t) is estimated as S2,n(t), we finally obtain the desired result. �

The next lemma shows that the truncation introduced through {an} does
not affect the limiting distribution.

LEMMA 3.6 ‖Yn − Y0,n‖ = Op{(log n)−1/2}.

Proof. We shall only show that g′(t)−1/2h−1/2
∫∫

R−Γn
ψ{y − l(t)}K{(t −

x)/h}dZn(x, y) fulfills the lemma. The replacement of g′ by g(t) may be
proved as in Johnston (1982). The quantity above is less than h−1/2‖g−1/2‖ ·
‖

∫∫
{|y|>an} ψ{y − l(·)}K{(· − x)/h}dZ(x, y)‖. It remains to be shown that

the last factor tends to zero at a rate Op{(log n)−1/2}. We show first that

Vn(t) = (log n)1/2h−1/2

∫∫
{|y|>an}

ψ{y − l(t)}K{(t− x)/h}dZn(x, y)

p→ 0 for all t

and then we show tightness of Vn(t), the result then follows:

Vn(t) = (log n)1/2(nh)−1/2

n∑
i=1

[ψ{Yi − l(t)}1(|Yi| > an)K{(t−Xi)/h}

−Eψ{Yi − l(t)}1(|Yi| > an)K{(t−Xi)/h}]

=
n∑
i=1

Xn,t(t),
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where {Xn,t(t)}ni=1 are i.i.d. for each n with EXn,t(t) = 0 for all t ∈ [0, 1].
We then have

EX2
n,t(t) 6 (log n)(nh)−1 Eψ2{Yi − l(t)}1(|Yi| > an)K

2{(t−Xi)/h}
6 sup

−A6u6A
K2(u) · (log n)(nh)−1 Eψ2{Yi − l(t)}1(|Yi| > an);

hence

Var{Vn(t)} = E
{ n∑

i=1

Xn,t(t)
}2

= n · EX2
n,t(t)

6 sup
−A6u6A

K2(u)h−1(log n)

∫
{|y|>an}

fy(y)dy ·Mψ.

where Mψ denotes an upper bound for ψ2. This term tends to zero by
assumption (A3). Thus by Markov’s inequality we conclude that

Vn(t)
p→ 0 for all t ∈ [0, 1].

To prove tightness of {Vn(t)} we refer again to the following moment condi-
tion as stated in Lemma 3.1:

E{|Vn(t)− Vn(t1)| · |Vn(t2)− Vn(t)|} 6 C ′ · (t2 − t1)
2

C ′ denoting a constant, t ∈ [t1, t2].

We again estimate the left-hand side by Schwarz’s inequality and estimate
each factor separately,

E{Vn(t)− Vn(t1)}2 = (log n)(nh)−1 E
[ n∑
i=1

Ψn(t, t1, Xi, Yi) · 1(|Yi| > an)

−E{Ψn(t, t1, Xi, Yi) · 1(|Yi| > an)}
]2

,

where Ψn(t, t1, Xi, Yi) = ψ{Yi − l(t)}K{(t−Xi)/h} − ψ{Yi − l(t1)}K{(t1 −
X1)/h}. Since m, K are Lipschitz continuous, it follows that

[E{Vn(t)− Vn(t1)}2]1/2

6 C7 · (log n)1/2h−3/2|t− t1| ·
{∫

{|y|>an}
fy(y)dy

}1/2

.

If we apply the same estimation to Vn(t2)− Vn(t1) we finally have

E{|Vn(t)− Vn(t1)| · |Vn(t2)− Vn(t)|}

6 C2
7(log n)h−3|t− t1||t2 − t| ×

∫
{|y|>an}

fy(y)dy

6 C ′ · |t2 − t1|2 since t ∈ [t1, t2] by (A3).
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�

LEMMA 3.7 Let λ(K) =
∫
K2(u)du and let {dn} be as in the theorem.

Then
(2δ log n)1/2[‖Y3,n‖/{λ(K)}1/2 − dn]

has the same asymptotic distribution as

(2δ log n)1/2[‖Y4,n‖/{λ(K)}1/2 − dn].

Proof. Y3,n(t) is a Gaussian process with

EY3,n(t) = 0

and covariance function

r3(t1, t2) = EY3,n(t1)Y3,n(t2)

= {g(t1)g(t2)}−1/2h−1

∫∫
Γn

ψ2{y − l(t)}K{(t1 − x)/h}

×K{(t2 − x)/h}f(x, y)dxdy

= {g(t1)g(t2)}−1/2h−1

∫∫
Γn

ψ2{y − l(t)}f(y|x)dyK{(t1 − x)/h}

×K{(t2 − x)/h}fX(x)dx

= {g(t1)g(t2)}−1/2h−1

∫
g(x)K{(t1 − x)/h}K{(t2 − x)/h}dx

= r4(t1, t2)

where r4(t1, t2) is the covariance function of the Gaussian process Y4,n(t),
which proves the lemma. �

4 A Monte Carlo Study

We have generated bivariate data {(Xi, Yi)}ni=1, n = 500 with joint pdf:

f(x, y) = g(y −
√
x+ 2.5)1(x ∈ [−2.5, 2.5]) (31)

g(u) =
9

10
ϕ(u) +

1

90
ϕ(u/9).

The p-quantile curve l(x) can be obtained from a zero (w.r.t. θ) of:

9Φ(θ) + Φ(θ/9) = 10p,
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with Φ as the cdf of a standard normal distribution. Solving it numeri-
cally gives 0.5-quantile curve l(x) =

√
x+ 2.5, and 0.9-quantile curve l(x) =

1.5296 +
√
x+ 2.5. We use the quartic kernel:

K(u) =
15

16
(1− u2)2, |u| 6 1,

= 0, |u| > 1.
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Figure 1: The 0.5-quantile curve, the Nadaraya-Watson estimator m∗
n(x),

and the 0.5-quantile smoother ln(x).

In Fig. 1 the raw data, together with the 0.5-quantile curve, are displayed.
The random variables generated with probability 1

10
from the fat-tailed pdf

1
9
ϕ(u/9), see (31), are marked as squares whereas the standard normal rv’s

are shown as stars. We then compute both Nadaraya-Watson estimator
m∗
n(x) and 0.5-quantile smoother ln(x) using an iterative method as in (4).

The iteration step and bandwidth are set to 150 and 1.25 which is equivalent
to 0.25 after rescalling x to [0, 1] and fullfills the requirement of Theorem
2.3. Fig. 2 displays the simulation result for ln,k(x) with different starting
values and different x values. ln,k(−1) are shown as solid and dashed lines,
while ln,k(1) are shown as dashed-dotted and dotted lines. As we can see,
convergence of ln,k(x) is guaranteed no matter that the initial value is 5 or
−5. After around 35 steps, ln,k(x) arrives at ln(x) and never leaves again;
this coincides with the result of Theorem 2.1.
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Figure 2: Convergence of ln,k(x) to 0.5-quantile smoother ln(x) with starting
value 5, −5 and x value −1, 1.

In Fig. 1 the l(x), m∗
n(x) and ln(x) are shown as a dotted line, dashed-

dot line, and solid line respectively. At first sight m∗
n(x) has clearly more

variation and has the expected sensitivity to fat-tails of f(x, y). A closer
look reveals that m∗

n(x) for x ≈ 0 even leaves apparently from 0.5-quantile
curve. It may be surprising that this happens at x ≈ 0 where no outliers is
placed, but a closer look at Fig. 1 shows that the large negative data values
at both x ≈ −0.1 and x ≈ 0.25 causes the problem. This data value is
inside the window (h = 1.10) and therefore distorts m∗

n(x) for x ≈ 0. The
quantile-smoother ln(x) (solid line) is unaffected and stays fairly close to the
0.5-quantile curve. Similar results can be obtained in Fig. 3 corresponding
to 0.9 quantile (h = 1.25) with the 95% confidence band.

5 Application

In labour markets economists are concerned with whether discrimination
exists, for example for different genders, nationalities, union status and so
on. To study this, we need to separate out other effects first, e.g. age,
education, etc. Recently there has been great interest in finding out how the
financial returns of a job depends on the age of the employee. We use the
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Figure 3: The 0.9-quantile curve, the 0.9-quantile smoother and 95% confi-
dence band.

Current Population Survey (CPS) data from 2005 for the following group:
male, 25 ∼ 59 for age, full-time employed, and college graduate containing
16, 731 observations, for the age-earning estimation. As is usual for wage
data, log transformation to hourly real wages (unit: US dollar) is carried
out first. In CPS all ages (25 ∼ 59) are reported as integers, we rescale
them into [0, 1] through dividing 40 with bandwidth 0.059 for nonparametric
quantile-smoothers. This is equivalent to set bandwidth 2 for the original
age data.

In Fig. 4 the original observations are displayed as small stars. The local
0.5 and 0.9 quantiles at the integer points of age are shown as dashed lines,
whereas the corresponding nonparametric quantile-smoothers are displayed
as solid lines with corresponding 95% uniform confidence bands shown as
dashed-dot lines. A closer look reveals a quadratic relation between age and
logged hourly real wages. If we use several popular parametric methods to
estimate the 0.5 and 0.9 conditional quantiles, e.g. quadratic, quartic and
set of dummies (for ages groups) models as in Fig. 5, with help of the 95%
uniform confidence bands, we can do the parametric model specification test.
At the 5% significance level, we could not reject any model. However, at
the 10% significance level, when the uniform confidence bands get narrower,
the set of dummies (for age groups) model is rejected while the other two
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could not. As the quadratic model performs quite similar to the quartic one,
for simplicity, it is suggested in practice for measuring the log(wage)-earing
relation.
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Figure 4: The original observations, local quantiles, 0.5, 0.9-quantile
smoothers and corresponding 95% confidence bands.
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