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Abstract

We present an object-oriented software framework allowing to specify, solve, and
estimate nonlinear dynamic general equilibrium (DSGE) models. The implemented
solution methods for finding the unknown policy function are the standard lin-
earization around the deterministic steady state, and a function iterator using a
multivariate global Chebyshev polynomial approximation with the Smolyak op-
erator to overcome the course of dimensionality. The operator is also useful for
numerical integration and we use it for the integrals arising in rational expecta-
tions and in nonlinear state space filters. The estimation step is done by a parallel
Metropolis-Hastings (MH) algorithm using a linear or nonlinear filter. Implemented
are the Kalman, Extended Kalman, Particle, Smolyak Kalman, Smolyak Sum, and
Smolyak Kalman Particle filters. The MH sampling step can be monitored and con-
trolled interactively by sequence and statistics plots. The number of parallel threads
can be adjusted to benefit from multiprocessor environments.

JBendge is based on the framework JStatCom, which provides a standardized ap-
plication interface. All tasks are supported by an elaborate multi-threaded graphical
user interface (GUI) with project management and data handling facilities.

Keywords: Dynamic Stochastic General Equilibrium (DSGE) Models, Bayesian
Time Series Econometrics, Java, Software Development
JEL classification: C11, C13, C15, C32, C52, C63, C68, C87
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1 Introduction

Specifying, solving and estimating dynamic macroeconomic models is an inter-
active multi-step procedure that combines many advanced numerical methods.
The implementation in JBendge follows the methodology presented in Win-
schel and Krätzig (2008). Apart from innovations in the solution and estima-
tion procedures, a distinguishing feature of our software is its highly interac-
tive sampling environment. Our view is that the sampling process can greatly
benefit from user interaction during the burn-in phase.

Existing popular toolkits for solving and estimating DSGE models, for exam-
ple Juillard (1996), are mostly based on Matlab. In our project instead, we have
chosen Java as the implementation language for various reasons. Firstly, this
gave us the opportunity to use a modern development methodology based on
well-established software engineering principles like object-orientation, unit-
testing, version control, and design patterns (Gamma et al., 1995), which
help to deal with the complexity and the size of the project. Furthermore, we
could use an integrated development environment (IDE) to manage the rather
large code base together with helpful tools for debugging and profiling. Also,
Java offers multi-threading capabilities which are needed to run parallelized
algorithms concurrently on several CPUs and to offer the user a responsive
GUI even while expensive calculations are running. This feature is essential
for achieving interactivity during running computations. The requirements for
such a software are summarized in a rather general way in Krätzig (2006), and
it is obvious that specialized number crunchers do not offer the feature set to
meet all of these criteria. The choice of Java also allows to execute JBendge
on almost any platform without the need to recompile or to adjust it in any
way. This is especially important, because end-users will often run it on the
Windows platform, while high-performance clusters are typically run under
some Unix OS.

In the following we will describe the structure of the software as well as its
use to economics as well as purely statistical applications. It should be men-
tioned that JBendge is an open source project and that interested researchers
can easily access and modify the source code. Furthermore, due to its highly
modular structure, the software can be extended in various ways. Especially,
adding new filters and approximation methods is rather straightforward with
the existing interfaces.

The paper is organized as follows. Section 2 describes the model class that can
be solved and estimated, Section 3 gives an overview of the model solution
steps, Section 4 discusses interactive estimation features, Section 5 describes
general features of JBendge, and Section 6 concludes.
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2 Model Specification

2.1 An Example

As an example for the used model class we take the standard real international
business cycle model for N infinitely lived agents. The model has no distor-
tions and a social planner decides on the allocation by solving the dynamic
optimization

max
{{cn,t,ln,t,in,t}Nn=1}

∞
t=0

U = E0

∞∑
t=0

N∑
n=1

βtUn,t

for n = 1, . . . , N countries and all future periods t ≥ 0. The welfare function
U is a discounted sum of country utilities

Un,t =
(cθnn,t(1− ln,t)1−θn)1−τn

1− τn

with discount factor β, elasticity of intratemporal substitutions τn and con-
sumption and leisure substitution rates θn. The policy variables are consump-
tion cn,t, labor ln,t and investment in,t for each country. The world budget
constraint

N∑
n=1

(yn,t − cn,t − in,t) = 0

restricts the world output Σnyn,t to be either consumed or invested in one of
the countries. The production technologies

yn,t = ean,tkαnn,tl
1−αn
n,t

depend on productivities an,t, capital kn,t and labor ln,t and the technical
substitution rates αn. The capital and productivity transitions are

kn,t+1 = (1− δn)kn,t + in,t − 0.5κni
2
n,t (1)

an,t+1 = ρnan,t + en,t+1 (2)

where δn is the depreciation rate and ρn the autocorrelation coefficient for
the productivity process with normally distributed shocks en,t ∼ N (0, σen)
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independent across countries and time. The capital transition equation (1)
contains a capital adjustment cost parameterized by κn. These costs assure
that in the multicountry model the state of the system is not simply the
aggregate capital stock but its distribution across the countries.

2.2 A General Modelclass

The modelclass in JBendge is the same as the one used in the CompEcon
Toolbox (Miranda and Fackler, 2002). The following functions have to be
specified to define a model

0 = f(st, xt, zt; θ)

zt = Eeh(st, xt, et+1, st+1, xt+1; θ)

st+1 = g(st, xt, et+1; θ).

with the function types

• f : Rds+dx+dz → Rdx - first order equilibrium conditions
• h : Rds+dx+de+ds+dx → Rdz - functions for rational expectations
• g : Rds+dx+de → Rds - state transitions

and variable types

• st ∈ S ⊆ Rds - states
• xt ∈ X ⊆ Rdx - policies
• z ∈ Z ⊆ Rdz - expected variables
• et ∼ N (0,Σe) - stochastic state shocks
• θ - structural parameters

The shocks are assumed to be independent, thus, only the diagonal of Σe is
specified. Ee denotes the expectation operator with respect to the distribution
function of the random vector e and the information set given at time t.

In addition to the minimal specification required to solve a model, JBendge
uses the following functions and variables:

yt = m(st, xt, zt; θ) + ut
rt = r(st, xt, zt; θ)

(3)

with the function types
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• m : Rds+dx+dz → Rdm - measurement equations
• r : Rds+dx+dz → Rdr - Euler error functions

and variable types

• yt ∈M ⊆ Rdm - measurements
• ut ∼ N (0,Σu) - additive stochastic measurement shocks
• rt ∈ R ⊆ Rdr - Euler errors

The measurement variables yt correspond to observable data series and are
used in the parameter estimation step. It should be noted that ut enters as an
additive term, because the proposed filters used for the likelihood evaluation
are valid only for additive measurement shocks. Euler errors are normalized,
economically interpretable estimates of the approximation error (Judd, 1992).
They can be used to evaluate the quality of the function approximations and
numerical integrations in terms of economic quantities.

In addition to the mentioned function and variable types, JBendge allows to
specify definitions that help to split long equations into more readable terms.
Definitions are automatically expanded before any terms are evaluated.

The model class matches with the example given in the previous section in
the following way

st = {an,t, kn,t}Nn=1

xt = {cn,t, ln,t, in,t}Nn=1

et = {en,t}Nn=1

θ = {τn, κn, θn, αn, δn, ρn, β, σen}Nn=1

(4)

The functions f correspond to 2N − 1 first order conditions arising from the
Bellman equation, the functions g are the N state transitions given in equa-
tions (1) and (2), and the functions h are the arguments to the expectation
operator appearing in the Euler equations. For a detailed derivation, see Win-
schel and Krätzig (2008).

2.3 The Model Parser in JBendge

JBendge offers a model parser that automatically recognizes variables and
functions together with their corresponding types according to a number of
ad hoc conventions. This should make the model definition as convenient as
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possible for the user. In general, functions can be defined with the usual arith-
metic expressions. It should be noted that ’e’ is a reserved symbol for the
Euler constant.

Every expression must be ended with a semicolon. A simple end of line charac-
ter is not sufficient because this way long expressions can be split over separate
lines. Variable names follow the same restrictions as in Matlab. They must
start with a letter and the only allowed special character is the underscore.
However, the suffix ’ f’ (always case insensitive) denotes leading variables and
should not be used for anything else.

The following rules are applied in the same order by the parser to recognize
the various types:

(1) symbols starting with lower case letters denote structural parameters, all
variables must start with an uppercase letter

(2) expressions without ’=’ are recognized as first order conditions
(3) expressions with ’:=’ are definitions, the corresponding left hand side

(LHS) variable gets the definition type
(4) expressions with ’=’ and a LHS variable:

(a) if the LHS variable ends with ’ f’ then it is a leading state, the
variable with the same name but without the ’ f’ suffix is the corre-
sponding current state

(b) if the LHS variable starts with ’Z’ it gets the expectation type
(c) if the LHS variable starts with ’R’ it gets the (Euler) error type
(d) all other LHS variables are of the measurement type

(5) for the remaining symbols not appearing as LHS variables:
(a) symbols ending with ’ f’ denote a leading policy, the symbol with the

same name but without the ’ f’ suffix is the corresponding current
policy

(b) symbols starting with ’E’ are state shocks
(c) symbols starting with ’M’ are measurement shocks

Listing (1) shows the example model for N = 1 in the described format. The
above described variable and function types are automatically recognized. For
example, the symbol Y 1 is of the definition type, which means that it is inter-
nally replaced by its right hand side expression. The symbols Y m1, Km1, Cm1
and Lm1 are parsed as measurement variables with the corresponding mea-
surement shocks. The last expression specifies the Euler error R1. Here one
error function is defined, but zero or more are possible as well.

It is recommended that the parser rules of JBendge are followed, but users also
have the possibility to use the model specification GUI to redefine variable and
function types. We argue that by means of the model parser it is especially
convenient to specify even large and complex models. Furthermore, because
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C1ˆ((1 − tau1 ) ∗ theta1 − 1) ∗ (1 − L1) ˆ((1 − tau1 ) ∗ (1 −
theta1 ) ) − beta ∗ Z1 ;

K1 f = Inv1 + (1 − de l ta1 ) ∗ K1;
A1 f = Ea1 + A1 ∗ rho1 ;
Z1 = C1 f ˆ( (1 − tau1 ) ∗ theta1 − 1) ∗ (1 − de l ta1 + eˆ A1 f ∗

alpha1 ∗ ( K1 f ∗ L1 f ˆ(−1) ) ˆ( alpha1 − 1) ) ∗ (1 − L1 f )
ˆ( (1 − tau1 ) ∗ (1 − theta1 ) ) ;

Ym1 = My1 + Y1 ;
Km1 = K1 + Mk1;
Cm1 = C1 + Mc1 ;
Lm1 = L1 + Ml1 ;
Invm1 = Inv1 + Minv1 ;
Inv1 := Y1 − C1 ;
Y1 := eˆA1 ∗ K1ˆ alpha1 ∗ L1ˆ(1 − alpha1 ) ;
I n v 1 f := Y1 f − C1 f ;
Y1 f := eˆ A1 f ∗ K1 f ˆ alpha1 ∗ L1 f ˆ(1 − alpha1 ) ;
C1 := eˆA1 ∗ (1 − alpha1 ) ∗ (1 − L1) ∗ (K1 ∗ L1ˆ(−1) ) ˆ alpha1

∗ (1 − theta1 ) ˆ(−1) ∗ theta1 ;
C1 f := eˆ A1 f ∗ (1 − alpha1 ) ∗ (1 − L1 f ) ∗ ( K1 f ∗ L1 f

ˆ(−1) ) ˆ alpha1 ∗ (1 − theta1 ) ˆ(−1) ∗ theta1 ;
R1 = 1 − C1ˆ(−1) ∗ ( beta ∗ (1 − L1) ˆ(−((1 − tau1 ) ∗ (1 −

theta1 ) ) ) ∗ Z1) ˆ ( ( ( 1 − tau1 ) ∗ theta1 − 1) ˆ(−1) ) ;

Listing 1. Example model in parseable format

it is almost impossible to detect small typos in the formulas when they are
just presented as ASCII text, JBendge uses the excellent jeuclid math viewer
library to visually display the model equations, see Figure (1). 1

2.4 Specification of Shock Distributions and Parameters

After the equations and variables are defined, the model is usually solved at
given parameter values for certain shock distributions. JBendge offers dialogs
and parsers to conveniently input this information. A typical calibration for
the example model is shown in Listing (2). This format can directly be parsed,
alternatively, GUI components may be used.

To specify the shock distributions with the respective parameters, JBendge
offers the component shown in Figure (2). As before, a parser recognizing the
distribution specifications is provided. This parser is also used in other parts of
the program, for example to input prior distributions in the estimation stage.
Currently, the normal and the uniform distributions are supported. Listing
(3) shows the syntax for the distribution parser. Internally, distributions are

1 The homepage of the jeuclid project is jeuclid.sourceforge.net.
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Fig. 1. Model specification in JBendge

alpha1 =0.4 ;
beta =0.99;
de l t a1 =0.02;
rho1 =0.95;
tau1 =2.0 ;
theta1 =0.357;

Listing 2. Parameter parser

v a r i a b l e name : d i s t r i b u t i o n type , Property = value ,
Property = value , . . . ;

// example :
alpha : UNIFORM, LBOUND=0.2 , UBOUND=0.6;
k : NORMAL, MEAN=23.0 , SIGMA=3.0;

Listing 3. Distribution syntax

represented by a single class with the combination of a type identifier and a
parameter map. The type identifier is itself a class that provides the special
implementations needed for all distribution specific tasks, like sampling or
evaluating the density. Adding new distributions merely amounts to specifying
the corresponding type identifier, which will then automatically fit into the
existing framework, including the GUI and the parser.
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Fig. 2. Specification of shock distributions

3 Model Solution at given Parameters

The model solution at given parameters is often of interest, for example, for
comparing simulated data from the calibrated model to real data series. Fur-
thermore, solving the model at different parameters may help to understand
its dynamic behavior. Another purely technical aspect is to check whether the
model can be solved at all and whether it leads to a plausible solution. JBendge
offers two general solution methods, linearization around a steady state, and
a function iterator using Chebyshev polynomials to approximate the solution
together with Gaussian quadrature to evaluate the integrals arising from ra-
tional expectations. In JBendge, the linear solution is used to provide starting
values for the nonlinear solution.

3.1 Linear Solution around a Steady State

A solution to the model is a policy function x(s) which takes the state vari-
ables as arguments. For the linear solution it is assumed that x(s) is a linear
function of s. JBendge uses the generalized real Schur decomposition based
on a linearized version of the model, following the methodology suggested by
Klein (2000). In a first step, the steady state is found by setting all shocks
to zero and all future variables equal to its current values. This results in the
nonlinear system

0 = f(s̄, x̄, h(s̄, x̄, 0, s̄, x̄))

s̄ = g(s̄, x̄, 0)

of N unknown steady states, s̄ and x̄, in N equations. To solve this system,
JBendge uses a Newton root finder as described in Press et al. (2007). After-
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wards, the system is linearized with a first order Taylor approximation around
the given steady state values. It should be mentioned that JBendge uses a
symbolic differentiation and simplification engine to avoid problems with the
numerical approximation of derivatives. After these two steps the system is in
the form

AEt[zt+1] = Bzt, t = 0, 1, . . . (5)

zt =

 st
xt



where zt is an N × 1 vector of endogenous variables and AN×N and BN×N are
coefficient matrices. It should be mentioned that any exogenous variables are
endogenized which is not optimal for the performance of the solution algo-
rithm if the number of truly exogenous variables is quite large. Under certain
assumptions, especially when the number of stable generalized eigenvalues of
the matrix pencil Ay−B is equal to the number of states, the system (5) has
a unique stable solution. In JBendge, this solution is found with the real Schur
(or QZ) decomposition and the stability condition is checked. If the condition
is violated, a log message is generated which is displayed in the Control - Show
Logs panel.

3.1.1 Steady State

Because finding the steady state involves using a nonlinear root finder, start-
ing values have to be provided by the user. This can be done with a GUI
component or via the parser which takes input of the form variable name
= value. If the steady state cannot be found or if it does not make sense, it
may help to try different starting values.

In many cases analytical steady states are available, for the one country model
with states a and k the steady states are

ā = 0

k̄ = −(α− 1)α
1

1−αβ
1

1−α (β(δ − 1) + 1)
α
α−1 θ

−αδβ + δβ + αθβ − β − αθ + 1
.

Using them may significantly speed up the linear solution as well as improve its
numerical accuracy. Sometimes, analytical steady states are available for only
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a subset of s̄ and x̄. In this case the complexity of the root finding problem
can be reduced by eliminating some variables and reducing the number of
nonlinear equations. JBendge allows to specify analytic steady states with a
component that works similar to the model parser. All equations must be of
the definition type, meaning that ’:=’ must be used. The LHS variables must
be the states or policies without the ’ f’ suffix.

If an analytic steady state is set for a certain variable, it does not make sense
to set its starting value anymore. Therefore the corresponding element in the
GUI component is grayed out and displays the steady state value determined
from the given definition. If not all steady states are defined, JBendge takes
care of reducing the nonlinear system in such a way that its Jacobian remains
nonsingular. The following algorithm is used:

(1) for the analytic steady states of the state variables the corresponding
state transitions are removed

(2) for the analytic steady states of the policy variables:
(a) all first order conditions that have no free variables anymore after

substituting the analytic steady states are removed
(b) the remaining first order conditions are sorted according to the num-

ber of free variables and those with the highest number of variables
are removed (to make the Jacobian sparse), such that the number of
free variables is equal to the number of equations

The output of the linear solution is given in Listing (4). It displays the values
of all defined variables at the steady state and the linear policy functions state
transitions and measurement functions. The linear measurement functions and
state transitions together form a linear state space system.

3.2 Nonlinear Solution

Our solution approach is to solve for the policy functions x∗ : Rds → Rdx that
map states into policies. The algorithm is a function iteration scheme where
we repeatedly solve the first order conditions f(s, x(k+1),Eeh(..., x(k), ...)) = 0
for the next k + 1 iteration of the policy x(k+1) for given expected variables
z = Eeh(..., x(k), ...) based on the previous policy xk in iteration step k. This
approach has the advantage that it decomposes one big system, when one
solves for x in f(s, x,Eeh(..., x, ...)) = 0, into several independent smaller ones.
This means that for each grid point we solve one small system for all policies.
The independence between the grids is achieved because z = Eeh(..., x(k), ...)
does not depend on x(k+1) anymore and is constant during the search for
the optimal policy at a given grid point. Another advantage is that analyt-
ical derivatives are available because the exact expressions for the involved
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Steady State
−−−−−−−−−−−−
FOC 1 : −3.20854e−14
A1 [STATE ] : 0 .00000000
C1 [ DEFINITION ] : 1 .28563281
C1 f [ DEFINITION ] : 1 .28563281
Cm1 [MEASUREMENT] : 1 .28563281
Inv1 [ DEFINITION ] : 0 .46536617
I n v 1 f [ DEFINITION ] : 0 .46536617
Invm1 [MEASUREMENT] : 0 .46536617
K1 [STATE ] : 23.26830866
Km1 [MEASUREMENT] : 23.26830866
L1 [POLICY ] : 0 .31210444
Lm1 [MEASUREMENT] : 0 .31210444
R1 [ERROR] : 0 .00000000
Y1 [ DEFINITION ] : 1 .75099899
Y1 f [ DEFINITION ] : 1 .75099899
Ym1 [MEASUREMENT] : 1 .75099899
Z1 [EXPECTATION] : 0 .91362113

Linear So lu t i on
−−−−−−−−−−−−−−−
s t a t e t r a n s i t i o n s :
K1 f = 23.26830866399936 + 0.9737761225371353 ∗ (K1 −

23.26830866399936) + 1.8132706272447607 ∗ A1
A1 f = 0.95 ∗ A1 + Ea1

p o l i c y f u n c t i o n s :
L1 = 0.3121044396634933 − 0.0020665798069341218 ∗ (K1 −

23.26830866399936) + 0.19583634163843358 ∗ A1

measurement f u n c t i o n s :
Cm1 = 0.6022795798303447 + 0.029368410144493817 ∗ K1 +

0.5969485265606075 ∗ A1 + Mc1
Invm1 = 0.6101852751727221 − 0.00622387746286435 ∗ K1 +

1.8132706272447614 ∗ A1 + Minv1
Km1 = K1 + Mk1
Lm1 = 0.3601902564900247 − 0.0020665798069341218 ∗ K1 +

0.19583634163843358 ∗ A1 + Ml1
Ym1 = 1.212464855003067 + 0.023144532681629464 ∗ K1 +

2.410219153805369 ∗ A1 + My1

Listing 4. Output of nonlinear solution
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nonlinear functions are given by the first order conditions. If we would solve
f(s, x(k),Eeh(..., x(k), ...)) = 0 instead, this would result in one big and com-
plicated system involving the multidimensional numerical integration at each
evaluation of functions and derivatives, not to mention the impact on mem-
ory consumption for larger models. Our approach has been found to perform
well for models of up to 30 states, furthermore the independence of the small
systems allows a straightforward parallelization.

Fig. 3. Specification of nonlinear solution in JBendge

3.2.1 Approximation of the Policy Function

Unlike in pertubation approaches which rest on higher order approximations
around the steady state, JBendge uses a global polynomial approximation
of the unknown policy functions by using projection methods (Judd, 1992).
Figure (3) shows the controls offered to the user. The nonlinear solution or
policy function x(s) resides in the infinite dimensional space of all functions.
In a practical approximation for just a single state variable, we search in the
mi dimensional space of polynomials x̂(s; c) =

∑mi
j=1 cjbj−1(s) characterized by

the coefficient vector c. We use orthogonal Chebyshev polynomials as basis
functions bj(s) defined by b0(s) = 1, b1(s) = s and bj+1(s) = 2s bj(s)− bj−1(s)
for j ≥ 1. To identify the mi elements of the coefficient vector c we use the
same number of policy values at the grid si = {si1, si2, ..., simi}.

JBendge uses the Gauss-Lobatto grid defined by s1
1 = 0 and sij = − cos(π(j −

1)/(mi − 1)) for j = 1, ...,mi and i > 1. The range of these points is from −1
to 1 and the grid in the desired approximation state space is obtained by the
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simple linear transformation

s̃ij = a+
b− a

2
(sij + 1),

where the lower and upper state bounds are a and b. In JBendge, the state
bounds can be specified with a GUI component or with a parser. The bounds
parser accepts the simple syntax

variable name = lower bound, upper bound;

If the functions to be approximated or integrated depend on several variables
the univariate approximation operator must be extended to many dimensions.
The usual extension applies the tensor operator which uses all possible combi-
nation of states. The resulting grid is the Cartesian product of the univariate
grids. Clearly, this operator imposes an exponentially growing cost of approx-
imation if the number of states increases. A cure for this problem is to use
the Smolyak Operator, see Bungartz and Griebel (2004). This operator makes
the states grid sparse, which results in a larger approximation. However, Win-
schel and Krätzig (2008) have shown for a number of different specifications
that the performance gains are dramatic and that the approximation error
is usually tolerable. JBendge offers both options, the Smolyak as well as the
Tensor operator, but it should be mentioned that the latter is computationally
infeasible except for very small models of up to 6 states.

The approximation level i must be set by the user. One should notice that
the grid size increases exponentially with the approximation level, therefore
typical choices are 2 or 3. A reasonable strategy is to choose it such that the
approximation error is still tolerable. The Clenshaw-Curtis function m1 = 1
and mi = 2i−1 + 1 for i > 1 translates the approximation level i into the
polynomial degree of the approximation. In JBendge the approximation level
is the same for every dimension.

3.2.2 Integration of the Rational Expectations

In nonlinear models involving rational expectations the integral of the expec-
tation operator must be evaluated. JBendge uses a multidimensional Gaussian
quadrature for this. Since it suffers from the same curse of dimensionality as
the multidimensional function approximation, the Smolyak operator is used
again to keep the problem tractable also for larger models. The integration
problem can be stated as

Eeh(..., e, ...) =
∫
h(..., e, ...)p(e)de ≈

∑
j

wjh(..., ej, ...),
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where the continuous random variable e and its density p(e) is essentially
discretized into some realizations ej with weights wj. For the quadrature in
JBendge it is assumed that the density p(e) is normally distributed because
this allows the generate the corresponding nodes and weights, ej and wj. How-
ever, the general approach is by no means restricted to normally distributed
shocks, but could be extended to other distributions as well when needed.

Also for the integration problem the integration level i must be chosen. The
level i determines the number of nodes and weights that are used in each
dimension.

3.2.3 Function Iteration

The approach of finding the unknown optimal policy function can be summa-
rized as follows

(0) find the initial policy: x(0) at grid si, JBendge uses the linear policy
(1) approximate the policy function at the states grid and find the Chebychev

interpolant c(k) = B(si)−1x(k), where B(si)−1 is the inverse of the matrix
holding the Chebychev bases evaluated at the states grid

(2) rational expectations:
(a) for all discrete shock realizations from the quadrature rule j = 1, ..., J

(i) calculate the state transition: s′j = g(si, x(k), e′j)
(ii) interpolate the next policy using the Chebychev interpolant:

x′j = B(s′j)c
(k)

(b) evaluate the expectations with Gaussian quadrature:
z =

∑
j wjh(si, x, e′j, s

′
j, x
′
j).

(3) function iteration:
(a) solve for xe in f(si, xe, z(x(k))) = 0 given x(k) with a rootfinder
(b) iteration: x(k+1) = αx(k) + (1− α)xe

(c) calculate the residual, JBendge applies the infinity norm (maximum
absolute row sum): R = ||xe − x(k)||∞

(4) k=k+1, go to 1. until R ≈ 0

It should be noted that the inverse of the Chebychev basis matrix at the states
grid, B(si), must be calculated only once because the grid does not change
over the iterations. JBendge provides GUI controls for setting the residual
tolerance as well as the maximum number of function iterations. The damping
factor α may be changed as well from its zero default value, but usually this
is not necessary. Furthermore, users have the option to change the number of
processors, which sets the concurrent thread count used for the solution. In
general it should be equal to the number of CPUs.
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3.2.4 Checking the Approximation Error

It is of paramount importance to check the accuracy of the involved numerical
approximations with appropriate error functions. The exact policy functions
would imply zero residuals in the complete state space and any deviation is
therefore due to the policy function approximation or the inaccurate numerical
integration. Judd (1992) proposed to normalize the residual from the evalu-
ation of the Euler equations for an economic interpretation. JBendge allows
the user to specify the error functions as part of the model specification. For
example, for the described model the Euler error rE in terms of consumption
is given by

rc(s) = cn(s)−
(

βEth(s, x∗(s), e, s′, x∗(s′); θ)

(1− ln(s))(1−θn)(1−τn)/(κnin,t − 1)

) 1
θ(1−τ)−1

s′ = g(s, x∗(s), e′)

rE = |rc(s)/cn(s)|.

The corresponding specification for the model parser is given in the last line
of Listing (1). A log10 error of −3 means that the utility loss due to the
approximation is less than one per 1000 dollars.

When the error is specified, it still has to be decided at which points in the
state space it should be calculated. JBendge offers the possibility to evaluate
all specified error functions at N randomly sampled points inside the states
bounds and reports the maximum error.

3.2.5 Output and graphical Analysis

Listing (5) shows the output for the nonlinear solution. The states grid for the
two state variables k and a is shown together with the corresponding linear
and nonlinear policies. The mean percentage difference between the linear and
nonlinear policies give an idea of the significance of the nonlinearity in the
model. An important check for the quality of the approximations is the error
estimate. In the example listing, a log10 Euler error of -5 indicates that the
loss due to the approximation is very low and that the solution is sufficiently
accurate.

Figure (4) shows the GUI for plotting the nonlinear policy function as well as
the Euler errors over certain intervals of the state variables. JBendge allows to
easily specify 2D and 3D plots. Similar plot configuration dialogs are available
for the linear solution for comparisons.
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Nonl inear So lu t i on
−−−−−−−−−−−−−−−−−−
Number o f Grid Points : 13

s t a t e s g r id l i n e a r pol . non l i n ea r po l .
K1 A1 L1 L1
20.000000 −0.300000 0.260108 0.260256
20.000000 0.000000 0.318859 0.319295
20.000000 0.300000 0.377610 0.375159
24.393398 0.000000 0.309779 0.309836
35.000000 −0.300000 0.229109 0.229867
35.000000 −0.212132 0.246317 0.247862
35.000000 0.000000 0.287860 0.291565
35.000000 0.212132 0.329403 0.334654
35.000000 0.300000 0.346611 0.352108
45.606602 0.000000 0.265941 0.277379
50.000000 −0.300000 0.198110 0.209297
50.000000 0.000000 0.256861 0.272273
50.000000 0.300000 0.315612 0.335101 . . .

mean d i f f e r e n c e between l i n e a r and non l inea r p o l i c y =
2.0895587363838324 %

Number o f func t i on i t e r a t i o n s : 76
Euler e r r o r s ( over random s t a t e s g r id o f s i z e 100) :
R1 : 5.6651886125580475E−5

Computing time : 0 .08 sec

Listing 5. Output of nonlinear solution

3.2.6 Model Simulation

After the model has been solved, linearly or nonlinearly, it is possible to sim-
ulate the resulting system and to generate data series from it. JBendge gen-
erates series for all states and measurements. These series may then be used
as benchmark input for the model estimation to check how good the original
parameter values are recovered. The model simulation uses the specification
of the shock distributions for the random number generation and initializes
all variables with their steady state values. To eliminate the effect of the ini-
tial conditions, a reasonable strategy would be to simulate a large number of
observations and then take only the last fraction of it. Simulating the model
from the linear solution might also give insights into how the state bounds for
the nonlinear solution should be chosen. As a rough guide, JBendge prints the
min and max bounds for the generated states series for that purpose.
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Fig. 4. Graphical analysis of nonlinear solution

4 Model Estimation

In JBendge, a likelihood based estimation of the structural parameters using
the Metropolis-Hastings (MH) algorithm is implemented. The model estima-
tion can be done based on the linear or the nonlinear solution of the model.
This affects which filters are applicable for the calculation of the likelihood.

4.1 Linear Estimation

If the estimation is based on the linearized version of the model, we obtain
the model’s empirical implication for the observables in terms of a linear state
space model

st = Bst−1 + et
yt = Hst + ut,

where the first equation describes the state transition and the second is the
measurement equation which relates the observables to the unobserved states.
The noise processes et and ut are assumed to be independent Gaussian with
time invariant known covariance matrices. The matrices B and H are also
known and nonstochastic for given structural parameter values. With the
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Kalman (1960) filter it is possible to evaluate the likelihood of the complete
sample, L(θ; y1:T ) = p(y1:T |θ), for every parameter vector θ. Clearly, the model
has to be solved for each evaluation to arrive at the linear state space repre-
sentation.

The task is now to directly estimate the structural parameters of the model,
which also includes the standard deviations of the shock distributions. A max-
imum likelihood approach would use some nonlinear optimization procedure
to find the optimal parameter values. Typical problems with this approach are
that the solution may only be a local maximum and that it may be difficult to
use if the parameter space is very large. Reasonable starting values have to be
provided for all parameters. Furthermore, only an asymptotic approximation
of the distribution of the parameter estimates can be determined which may
be misleading for the inference.

4.2 Interactive Metropolis-Hastings

In JBendge, a Bayesian estimation procedure with the Metropolis-Hastings
sampler is implemented. The general task is to generate samples from the
posterior distribution of the parameters, p(θ|y1:T ). It is related to the likelihood
and the prior density for the parameters, p(θ), by Bayes law

p(θ|y1:T ) ∝ p(y1:T |θ)p(θ). (6)

From the generated samples one may plot histograms and use the sample mean
and the sample standard deviation for inference about the parameters.

The MH algorithm allows to generate a sequence of samples from a probability
distribution that is difficult to sample from directly, see for example Chib and
Greenberg (1995). In our case, an analytical expression is neither available
for the likelihood nor the posterior. The MH procedure requires only that a
function proportional to the target density can be evaluated. For the current
problem, this function is given by Equation (6). The MH algorithm constructs
a Markov chain that has the posterior distribution as its unique stationary
distribution. If the Markov chain is converged then realizations from it can be
regarded as samples from that distribution.

A summary of the basic algorithm is

(1) choose the starting value θ̂1 and select the variance Σε for an acceptance
ratio of ≈ 30%

(2) for n = 2, while n− J < N , n = n+ 1
(a) generate the candidate: θ̂∗n = θ̂n−1 + ε, where N (ε; 0,Σε).

19



(b) acceptance: θ̂n =


θ̂∗n if U(0, 1) ≤ p(y1:t|θ̂∗n)p(θ̂∗n)

p(y1:t|θ̂n−1)p(θ̂n−1)

θ̂n−1 otherwise

(c) decide on J by diagnostic tests
(3) disregard burn-in draws θ̂1:J .

The parameter space is traversed by a random walk. If the acceptance ratio
is tuned by the random walk variances to be around 30% we obtain after
convergence a representative sample from the target distribution. The critical
choices of the algorithm are the starting values θ̂1, the density to generate
candidates θ̂∗n and the number of draws N . The choice of θ̂1 drives the number
of draws before convergence. It can be set via the Specify initial draws panel
and works in a similar way as the specification for the shock distributions.
A similar component is available to specify the prior distributions for each
structural parameter.

The chosen variances in Σε influence the region covered by the sequence. Sam-
pling around the mode of the posterior with large variances will generate can-
didates far from the current value and a low acceptance probability. Smaller
variances increase the acceptance ratio but decrease the region being covered
so that low probability regions may be undersampled. The recommended ac-
ceptance ratio of 30% results from the attempt to balance this trade of.

It is usually quite challenging to find good values for all elements of Σε si-
multaneously. A common approach is to run costly training sequences and to
estimate the variances from these runs. JBendge offers a much more convenient
approach by using multiple sequences simultaneously and not sequentially. By
that we can assure robustness with respect to the starting values, calculate
unbiased convergence diagnostic tests, estimate the innovation variance on the
fly and finally implement ideas from evolutionary algorithms to improve the
search for the modus of the posterior in the beginning of the sampling. The
pseudo code for this parallel Metropolis-Hastings Algorithm is given in in the
following:

(1) choose the starting values θ̂1,m for all m = 1, ...,M and select b, γGE for
an acceptance ratio of ≈ 30%

(2) for n = 2, while n− J < N , n=n+1
(a) Repeat for m = 1, ...,M

(i) draw m1 and m2 such that m1 6= m2 6= m
(ii) generate the candidate: θ̂∗m = θ̂m,n−1+γGE(θ̂m1,n−1− θ̂m2,n−1)+ε,
N (ε; 0, bI)

(iii) acceptance:

θ̂m,n =


θ̂∗m if U(0, 1) ≤ p(y1:t|θ̂∗m)p(θ̂∗m)

p(y1:t|θ̂m)p(θ̂m)

θ̂m,n−1 otherwise
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(b) decide on J by diagnostic tests
(3) disregard burn-in draws θ̂1:J,1:M

The problem of choosing all variances of the random walk shocks is reduced
in the proposed parallel variant to the choice of only two scalars b and γGE.
In the estimation specification dialog shown in Figure (5), b is set with the
Innovation scaling field and γGE with Sequence mixing. The number of se-
quences M can be set as well. A simple random walk without mixing can also
be achieved by setting γGE = 0. It may also make sense to edit the relations
of the diagonal entries in the innovation variance matrix directly with the
corresponding editing component.

Fig. 5. Estimation specification

Another critical choice is J , the number of burn in draws. The strategy sug-
gested by JBendge is to decide on it while looking at the generated sequences,
see Figure (6), and on certain diagnostic tests during the running burn-in.
The convergence tests are generated from the M parallel sequences. Brooks
and Gelman (1998) proposed the multivariate potential scale reduction fac-
tor R as a diagnostic test. The general idea is to check within and between
sequence variances and diagnose convergence if they are close to each other.
The within-sequence-variance is the D ×D matrix

W =
1

M(N − 1)

M∑
m=1

N∑
n=1

(θ̂n,m − θ̄m)′(θ̂n,m − θ̄m)

where θ̄m = 1
N

∑N
n=1 θ̂n,m is the 1 × D mean vector in sequence m. W is the
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Fig. 6. Sequence monitor

mean of the variances in each sequence. The between-sequence-variance B/N
is the D ×D matrix

B/N =
1

M − 1

M∑
m=1

(θ̄m − θ̄)′(θ̄m − θ̄)

where θ̄ = 1
M

∑M
m=1 θ̄m is the 1×D mean of all draws. The combined variance

can be estimated as

V =
N − 1

N
W + (1 +

1

M
)B/N.

Convergence is detected for similar V and W . A distance measure is calculated
by the multivariate potential scale reduction factor

R =
N − 1

N
+
M + 1

M
λmax where λmax = max

a

a′V a

a′Wa
.

λmax can be obtained by taking the largest absolute eigenvalue of W−1B/N .
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The following conditions for convergence should be checked: V and W should
be similar and stabilize and R should be below 1.1.

In JBendge, these test statistics are calculated recursively after each draw
and can be inspected with the Sampling Monitor, see Figure (7). Once the
described conditions are met, users may interactively quit the burn-in process
and start sampling by clicking the Burn in finished button, see Figure (5).
The acceptance rate is displayed in the sampling monitor as well. To achieve
a rate of about 30% one may adjust the parameter γGE accordingly. It should
be increased if the rate is too high and vice versa.

A distinguishing feature of JBendge are the interactive controls during sam-
pling. All settings that may be changed by the user without restarting the MH
chain are tagged with the symbol ’*’. The button Update sampling configura-
tion after edit activates the changes. The effect of any changes can be seen
in the updated monitor graphics. Although the graphics display in JBendge
is very fast, too many graphics updates may negatively affect the sampling
performance. Therefore, the update frequency may interactively be adjusted
with the corresponding selection component.

4.2.1 The Metropolis-Hastings as a Global Optimizer

Experience of many sampling runs has shown that convergence occurs only if
all sequences sample in regions close to the mode of the posterior distribution.
This does not necessarily mean that the actual parameter draws are very close
because it may happen that the posterior is rather flat in some directions. In
any case, we found it a very useful strategy to use the parallel MH algorithm
as a global optimizer in the first state of the burn-in process because it works
similar to a genetic algorithm. ter Braak (2006) derives the same candidate
generation process by analogy to the global evolutionary optimization algo-
rithm, called differential evolution, by Storn and Price (1997).

The analogy to genetic algorithms also motivated the introduction of an inter-
active parameter pm for the probability that single parameters are mutated.
The candidate generation in the parallel MH algorithm is changed in the fol-
lowing way:

(1) generate the potential candidate: θ̂∗∗m = θ̂m,n−1+γGE(θ̂m1,n−1− θ̂m2,n−1)+ε

(2) for all elements i of the candidate vector θ̂∗m, do

θ̂∗m,i =

 θ̂
∗∗
m,i if U(0, 1) ≤ pm

θ̂m,n−1,i otherwise

If pm = 1 the original MH algorithm is replicated. The purpose of this algo-
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Fig. 7. Sampling monitor

rithm is to allow a more flexible candidate generation where not all elements
of θ̂ need to change. If the single elements of θ̂ are viewed as its genes, then pm
steers the probability that the genes mutate. If pm = 1 the additional random
number draws are not needed which results in a notably better performance.
However, it has been found that setting pm to, say, 0.5 can help finding the
mode of the posterior when the original MH seems to get stuck.

Another interactive feature of the parallel MH algorithm implemented in
JBendge is the possibility to restart the Markov chain by replacing those
n sequences either with the lowest posterior or the lowest acceptance rate.
Restarting means that all sequences take their current value as the starting
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value, except those n sequences with the lowest criterion value. These se-
quences attain their starting values from the remaining M −n sequences with
the highest criterion values. If n is larger than M/2 then the replacement
values are recycled.

Restarting the MH algorithm can occasionally be very helpful to speed up the
burn-in process and to replace sequences that are far away from the others.
Theoretically, those sequences should converge as well but it may take a very
long time.

4.3 Nonlinear Estimation

If the estimation of the structural parameters is based on the nonlinear so-
lution, all settings previously set in the solution specification, like the states
grid bounds and the approximation and integration levels, are inherited.

The model solving policy functions x(s) can be used to substitute the policy
variables in the state transition equations. Augmented with a measurement
equation, we obtain the model’s empirical implication for the observables in
terms of a nonlinear state space model

st = g(st−1, x(st−1), et) = g(st−1, et)

yt = m(st, x(st−1)) + εt = m(st) + εt.

It is well known that the standard Kalman filter should not be used to eval-
uate the likelihood of the nonlinear state space system because its optimality
properties rest on the assumption of normality and linearity, which are both
violated in this case. In JBendge there are five filters implemented which are
eligible for nonlinear state space models

(1) Extended Kalman filter
(2) Particle filter
(3) Smolyak Kalman filter
(4) Smolyak Gaussian Sum filter
(5) Particle Smolyak Kalman filter

The first two of these filters are standard in the literature but with obvi-
ous shortcomings, see for example Arulampalam et al. (2002). The Extended
Kalman filter applies the Kalman filter on a linearized version of the state
space model which may result in biased estimates for the required moments.
The Particle filter, on the other hand, estimates and updates the complete pos-
terior density of the unobserved states represented by a sample of the states,
called particles. This is done by a costly sequential importance sampling with
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an inaccurate but simple to implement proposal density. This filter is com-
putationally costly because the proposal density does not use the available
information from the current observation and may therefore generate many
useless draws. Moreover, as a Monte Carlo approach it does not use any in-
formation, like the smoothness, of the involved functions.

The remaining three filters have been proposed in Winschel and Krätzig
(2008). All of them have in common that they extend existing filters with
the Smolyak Gaussian quadrature.

The Smolyak Kalman filter assumes that the prediction p(st|y1:t−1) and pos-
terior densities p(st|y1:t) are Gaussian. We therefore need to approximate only
the first two moments of the densities and can then use the Kalman update in
the filtering step. The moments needed for the Kalman step can be calculated
as expected values of nonlinearly transformed random variables. Hence, we
can use a deterministic Smolyak Gaussian quadrature for the approximation
of these moments. This filter is very fast but the price may be an undesirably
high approximation error.

The Smolyak particle filter improves the particle filter by combining it with
the Smolyak Kalman filter. We use the posterior densities obtained by the
Smolyak Kalman filter, represented by the deterministically integrated first
two moments of the states, as a proposal density for the importance sam-
pling of the particle filter. This procedure incorporates the latest information
obtained from the data. It combines the advantages of both filters, the accu-
rate but slow sampling particle filter and the potentially inaccurate but fast
deterministic filter. It also uses a Gaussian assumption in one step.

Finally, the Smolyak Gaussian sum filter applies a Gaussian sum approxima-
tion (Kotecha and Djuric, 2003) of the involved densities. The filter is again
very fast and purely deterministic. It effectively runs several Smolyak Kalman
filters in parallel.

We have found little differences between these nonlinear filters for the nonlin-
ear structural estimation, except from the extended Kalman filter.

Figure (8) shows the user interface for the filter specification of the estima-
tion. All available filters can be selected from a drop down menu and the
corresponding parameters may be set. For the quadrature based filters this
involves setting the integration order for the integrations over the state and
measurement errors. Typical values are 2 or 3. Particle filters also allow to
set to number of particles to use. This figure should be much lower for the
Particle Smolyak Kalman filter (1000-5000 particles) than for the standard
Particle filter (20000-80000 particles). The Gaussian sum filter also allows to
set the number of Gaussians involved in the approximation of the density, a
typical value is 20.
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The filter specification GUI also allows to evaluate the filters at certain val-
ues for the structural parameters. Furthermore, it is possible to do the filter
evaluation at a grid over a single selected parameter, see the text output in
Figure (8). This feature is helpful to investigate the shape of the likelihood in
certain directions.

Fig. 8. Filter evaluator

4.4 Estimation output

The output of the estimation are the generated sequences which can be stored
sequentially to a file. JBendge summarizes the sampled distributions in his-
togram plots for each parameter, see Figure (9). Furthermore, it prints textual
output with the means, standard deviations, minima, maxima as well as the
realizations corresponding to the maximum likelihood and maximum posterior
values.

5 General Features

JBendge inherits many useful features from the underlying software frame-
work JStatCom. Any software that is built with that framework can automat-
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Fig. 9. Estimation output

ically use the data import and export functions, the overall application frame,
project management, the symbol control, the time series calculator and other
subsystems, see Krätzig (2006) for a detailed description. Most inherited func-
tions can be changed or simply switched off. Framework driven development
avoids reinventing the wheel, however, the framework must fit well in the
problem domain (Deutsch, 1989).

5.1 Project Management

JBendge provides a project management system that stores all relevant model
settings together with the time series data in a single project file with the
default suffix .jsc. Project files are just gzipped XML files, hence, they are
human-readable after unzipping. However, it is in general not convenient to
edit them manually. For that purpose JBendge offers a simple ASCII format
that allows to specify all relevant model settings in a single file, see Section
5.2.

A JSC project file in JBendge represents a state of the system. There can only
be one project loaded at the time, but it is easy to switch between different
projects. This behavior is different from other programs, for example Eviews,
where multiple workfiles can be loaded. However, we believe that this behavior
simplifies user interaction.

At startup, JBendge restores its last state. The corresponding project is au-
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Fig. 10. JBendge project explorer

tomatically generated in the user’s home directory and named Last State.
Whenever a state should be permanently saved, either a new project should
be created for it or the current project settings are overwritten. Figure (10)
shows the main window of JBendge with the project and module explorer
panel on the left. Switching between projects just requires a mouse click. JSC
project files make it especially convenient to share models together with spe-
cific settings and data. It is even possible to simply drag JSC files with the
mouse and drop them over the explorer panel.

5.2 Model Definition File

An important feature is the option to specify all relevant equations and pa-
rameters in a single file that is easy to create. This supports the typical us-
age scenario where the model equations are automatically generated by a
computer-algebra system, like Mathematica or Maple. Listing (6) displays the
respective file format for JBendge. It consists of sections that are separated by
identifiers with a leading $ sign. Inside the sections the parser rules described
earlier apply. For example, in the $ModelSpec section all model equations
are recognized according to the rules described in Section 2.3. The following
identifiers can be used:

• $ModelSpec - model equations
• $Parameters - parameter values
• $ShockDist - shock distributions
• $SteadyStatesAnalytic - analytic steady states
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• $SteadyStateStartVals - start values for root finder used by steady
state solver
• $Priors - prior distributions for estimation
• $InitDraws - distributions for initial draws of estimation
• $StatesGridBounds - grid bounds for the states, required by nonlinear

solution.

The identifiers are case insensitive and can be in any order. Except the $ModelSpec
section, all other sections are optional. The model specification is required
because it is used internally to instantiate an object of the class DGEModel,
without which the other settings cannot be meaningfully interpreted. Further-
more, the model specification must adhere to the rules with which JBendge
automatically recognizes variable and function types.

5.3 Symbol Control

Another JStatCom feature that is available in JBendge is the symbol control
system. Figure (11) shows the GUI that displays all internally used data ob-
jects. Users may select symbols to display their contents and to export them
in various formats. In the displayed example the coefficient matrices for the
linear solution are displayed. Those can be exported, for example, to a binary
Matlab .m file.

Fig. 11. Symbol control showing parts of linear solution

5.4 Scripting

The drawback of using a GUI application is that it only provides features that
have been prepared by the developers. There is a lack of flexibility as compared
to pure scripts. It is clear that researchers will always require the possibility to
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$ModelSpec
C1ˆ((1 − tau1 ) ∗ theta1 − 1) ∗ (1 − L1) ˆ((1 − tau1 ) ∗ (1 −

theta1 ) ) − beta ∗ Z1 ;
K1 f = Inv1 + (1 − de l ta1 ) ∗ K1;
A1 f = Ea1 + A1 ∗ rho1 ;
. . .

$Parameters
alpha1 =0.40;
beta =0.99;
. . .

$ShockDist
Ea1 : NORMAL, MEAN=0.0 , SIGMA=0.035;
Mk1 : NORMAL, MEAN=0.0 , SIGMA=8.66E−4;
. . .

$SteadyStatesAna lyt i c
L1 := ( alpha1 − 1) ∗ (1 + beta ∗ ( de l t a1 − 1) ) ∗ theta1 ∗ (

alpha1 ∗ theta1 − 1 + beta ∗ (1 + ( alpha1 − 1) ∗ de l ta1 −
alpha1 ∗ theta1 ) ) ˆ(−1) ;

A1 := 0 ;
. . .

$SteadyStateStartVa l s
A1=0;
K1=23;
L1=0.3121;

$Pr i o r s
A1 : NORMAL, MEAN=0.0 , SIGMA=0.1;
alpha1 : UNIFORM, LBOUND=0.0 , UBOUND=1.0;
. . .

$InitDraws
alpha1 : UNIFORM, LBOUND=0.390459312 , UBOUND=0.390459312;
beta : UNIFORM, LBOUND=0.9875197840000001 , UBOUND

=0.9875197840000001;
. . .

$StatesGridBounds
A1=−0.3 ,0.3;
K1=20 ,30;

Listing 6. Structure of an example model definition file
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use the system in new and unanticipated ways. Currently, JBendge addresses
this issue by providing a Java interface to the users. This might prevent users
trained in other languages from using it. However, it is much easier to do the
scripting with JBendge than to write Fortran code, which is also a typical tool
in this problem domain.

Furthermore, scripting with JBendge only requires to write rather basic Java
code that is easy to learn. Listing (7) shows the code to load a model defini-
tion file, to find the steady state and the linear and the nonlinear solutions
of that model. The Euler errors are calculated and displayed as well. Using
Java can even be very convenient if one uses a modern integrated develop-
ment environment, like for example Eclipse. Such a tool highlights syntax
errors, does code indentation and syntax coloring, the compilation is done
automatically after every change and typing is supported by automatic com-
pletions, to name just a few benefits not typically available in statistical pack-
ages. Figure (12) shows the Java editor from the Eclipse IDE. The mistyped
call settStatesGridBounds is underlined and the box shows all available
methods of the class NonLinearSolution. This should demonstrate that
scripting with Java can be convenient and relatively easy. Furthermore, all
required tools are open source, which allows to step through single lines of
code with the debugger and to analyze numerical traps in every detail. It is
also possible to use JBendge as a library callable from other languages via the
available Java interfaces. Hence, JBendge is a versatile modeling environment
that can be used with and without its GUI interface.

Fig. 12. Eclipse IDE code editor

6 Conclusion

We have presented a new and comprehensive software package that is espe-
cially useful for solving and estimating DSGE models. Its estimation proce-
dures are defined in terms of linear or nonlinear state space models and are
therefore useful for a much larger class of models. Many of the implemented
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ModelParser par s e r = new ModelParser ( ) ;
pa r s e r . parseFromFile (new F i l e (” modelparse . txt ” ) ) ;
DGEModel model = par s e r . getAssembledModel ( ) ;

SteadyState s s = new SteadyState ( model ) ;
s s . s o l v e ( par s e r . getStartingValsSSMap ( ) ) ;
System . out . p r i n t l n ( s s . getSteadyStateMap ( ) ) ;

L inea rSo lu t i on l i n S o l = new Linea rSo lu t i on ( s s ) ;
l i n S o l . s o l v e ( ) ;

NonLinearSolut ion non l in = new NonLinearSolut ion ( l i n S o l ) ;
non l in . setStatesGridBounds ( par s e r . getStatesGridBoundsMap ( ) ) ;
non l in . setOperatorType ( ApproxOperatorEnum .SMOLYAK CHEBYSHEV) ;
non l in . s e t I t e ra to rType ( ApproxIteratorEnum .FUNCTION) ;
non l in . setApproxLevel ( 2 ) ;
non l in . s e t I n t e g r a t i o n L e v e l ( 2 ) ;
non l in . setMaxIter ( 2 0 0 0 ) ;
non l in . s e tTo l e rance (1 e−4);
non l in . i n i t i a l i z e ( ) ;
non l in . s o l v e ( ) ;
System . out . p r i n t l n ( non l in . r epor t ( ) ) ;

Residuum r e s = non l in . estimateResiduum ( 1 0 0 0 ) ;
double [ ] maxErr = r e s . getMaxEulerError ( ) ;
f o r ( i n t i = 0 ; i < maxErr . l ength ; i++)

System . out . p r i n t l n (”max Euler Error : ” + maxErr [ i ] ) ;

Listing 7. Java example

methods are unique and so far not found in any other tool. The interactive
MH sampler offers much better usability than existing samplers which have
to be restarted when parameters need to be changed.

JBendge takes a new path in econometric software development as it is not
built with a specialized statistical package but uses the mainstream program-
ming language Java and is strictly object-oriented. The advantages of that
approach are that modern elaborate development tools may be used and that
a wealth of additional language features and libraries is available. Further-
more, the software can run on literally any operating system without changes.
Another important aspect is that concurrent and grid computing is supported
by libraries that are mature and well supported. This comes at the price of
slightly worse scripting capabilities and more verbose numerical code.

We argue that software development in economics can exploit significant gains
from applying current software engineering principles. These help to build
and maintain larger systems with better quality. This holds especially for
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complex systems with many interacting components and algorithms of which
many have a quite natural abstraction as objects. It is not always easy to
follow these principles in specialized languages because they often lack certain
important features or tool support. For example, among the most vital quality
engineering tools are automated unit tests which check all features of a project
after changes have been made (Beck, 1999). But this needs to be supported by
tools that make the process of creating, maintaining and executing these tests
sufficiently convenient. Otherwise they would always be skipped and loose
their value.

We also want to stress the community aspect of the open source software
paradigm. As JBendge is hosted at sourceforge, a big provider for such projects
that offers many essential features to users and developers, it is ideally suited
for online collaboration. This spans from bug reports and informed critique
over detailed feature requests to active development. Due to the modular ap-
proach of JBendge, it is possible to clearly separate development tasks. A
remarkably successful project that bears many similarities to JBendge is Bio-
clipse (Spjuth et al., 2007). It is based on a mature Java framework for in-
heriting basic functionality and is organized as an open source project. By
using a similar organizational setup we hope to achieve a significant level of
collaboration also with JBendge.
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