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Abstract

Stock picking is the field of financial analysis that is of particular interest for many professional investors

and researchers. In this study stock picking is implemented via binary classification trees. Optimal tree

size is believed to be the crucial factor in forecasting performance of the trees. While there exists a

standard method of tree pruning, which is based on the cost-complexity tradeoff and used in the majority

of studies employing binary decision trees, this paper introduces a novel methodology of nonsymmetric

tree pruning called Best Node Strategy (BNS). An important property of BNS is proven that provides

an easy way to implement the search of the optimal tree size in practice. BNS is compared with

the traditional pruning approach by composing two recursive portfolios out of XETRA DAX stocks.

Performance forecasts for each of the stocks are provided by constructed decision trees. It is shown

that BNS clearly outperforms the traditional approach according to the backtesting results and the

Diebold-Mariano test for statistical significance of the performance difference between two forecasting

methods.
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1 Introduction

Professional capital management involves numerous forms of asset allocation and employment of

various financial instruments. Trying to obtain better risk-return characteristics, available funds

are frequently invested into different stocks constituting a diversified portfolio. The components of

such a portfolio are to be regularly revised, and at this point the individual stock performance is

what counts.

There is a lot of research evidence supporting the fact that stock returns can effectively be fore-

casted – consider, for instance, the studies of Fama and French (1988b) or Keim and Stambaugh

(1986). Moreover, as in Fama and French (1988a) and Balvers et al. (1990), it is concluded that

predictability is not necessary inconsistent with the concept of market efficiency. Fama (1991) ex-

amines the links between expected returns and macro-variables and acknowledges the existence of

connection between expected returns and shocks to tastes or technology (changes of business con-

ditions). Chen (1991) continues the work in this direction and concludes the consistency of the link

between excess return macro-variables and growth rates of output with intertemporal asset-pricing

models.

This applied paper, partly motivated by the valuable collaboration with one top financial services

company, focuses on the ability of effective forecasting of future stock price movements based on

available market data using the so called binary decision trees. Decision trees are a classification

method of nonparametric statistics that was introduced in 1980s by a group of American scientists

and is thoroughly described in Breiman et al. (1987).

Many studies like Ferson and Harvey (1991) or Campbell and Hamao (1992) employ standard sta-

tistical and econometric methods to examine predictability of excess stock returns. However, the

special properties of decision trees create notorious distinction among the pool of other available

classification techniques. Unlike parametric methods, which are quite sensitive to issues of misspec-

ification, one of the advantages of decision trees (or Classification and Regression Trees – CART – as
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they are called alternatively) is the ability to handle specification issues much smoother. Moreover,

the nature of the method provides substantial benefits for classification result interpretation, see

Breiman et al. (1987) for more details. Steadman et al. (2000) emphasizes the practical importance

and flexibility of decision trees in the way that this method poses contingent – and thus, possibly

different – questions to classify an object into a given set of classes, while the traditional paramet-

ric regression approach employs the common set of questions for each classified object, and final

classification score is produced by weighting every answer. Moreover, parametric regression relies

on a particular error distribution assumption (e.g. Gaussian model), and decision trees become

particularly useful when the data do not meet this assumption (Feldman et al., 1972).

In the recent years several financial services companies (e.g. JPMorgan and Salomon Smith Barney)

showed their interest in applying decision trees for stock picking by issuing a number of press releases

for professional investors (Brennan et al., 1999; Seshadri, 2003; Sorensen et al., 1999). The reports

provided valuable feedback on the method performance potential when decision trees are applied

to the US stock market. This study extends the geography of the method application and focuses

on German XETRA DAX stock market.

Decision tree financial applications are not limited solely by the stock selection challenge. In

Schroders (2006) the selection of underperforming and outperforming Pan-European banks was

achieved with the help of decision trees, and asset allocation to shares, bonds or cash was also

derived with the help of CART in Harman et al. (2000).

The majority of studies employing CART uses the industry-standard approach of tree building

described in Breiman et al. (1987). However, prior simulations and the architecture of the method

have suggested (Kim and Loh, 2001) that due to the specific nature of financial markets, it might

be reasonable to change the classical approach and introduce potentially a more effective technique

of tree building.

Tree pruning is considered to be the most important step (Breiman et al., 1987) in obtaining a
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proper decision tree, which potentially can have various sizes. Overfitting or underfitting directly

affect, and affect negatively, the forecasting power of such a decision rule. In Schroders (2006) it is

mentioned that the traditional tree pruning approach (Breiman et al., 1987) used by the authors in

the past is now substituted with a set of three rules based on different decision tree characteristics.

Although these algorithms are not revealed explicitly, this statement creates additional motivation

to search for a more effective decision tree pruning technique for financial applications.

The main contribution of this paper is the presentation of the novel methodology of nonsymmet-

ric decision tree pruning called Best Node Strategy (BNS). While the traditional cost-complexity

approach operates only with node triplets when pruning, BNS allows for a more flexible tree opti-

mization and focuses on individual node characteristics rather than an integral measure of quality

of a given subtree. The efficiency of the new method is examined on XETRA DAX stock market

via backtesting of the stock picking algorithm employing available XETRA DAX company data for

the period of 2002–2004. One important theoretical property of BNS is proven, and backtesting

results are compared with the similar trading strategy that relies on canonical version of the tree

pruning described in Breiman et al. (1987). According to the Diebold-Mariano test, the economic

performance difference between the two forecasting methods proved to be significant at the 0.1%

confidence level in favor of the novel methodology.

The paper is organized as follows. Section 2 provides a short introduction on decision trees. Sec-

tion 3 describes the traditional way of optimizing the tree size. Afterwards, BNS is introduced in

Section 4 as an alternative to some limitations of the traditional cost-complexity approach. The

second part of the work focuses on backtesting: in Section 5 a brief overview of available data and

calibration algorithm is provided. Section 6 describes the performance part of the study including

the formal statistical testing of the significance of the forecasting performance difference of the two

methods via the Diebold-Mariano test. Finally, Section 7 concludes the study. Proofs of some

important properties of the proposed tree pruning method are available in the Appendix.
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2 Decision Tree Basics

Classification trees are a nonparametric method of data classification. One of its peculiarities is

the special form of produced decision rules – binary decision trees. These trees are constituted

by nodes, and each node carries a ”yes-no” question. When new data are to be classified, they

are processed by sequential posing of tree questions: left branches stand for positive answers and

right branches – for negative ones. Every node of a tree in the bottom has a class tag, in this way

classified data are assigned to one of the predefined groups. This type of nodes is called terminal.

Figure 1 introduces a simple two-dimensional data structure. Its observations are of one of five pre-

defined classes, which are marked with different colors. Each split clearly separates one homogenous

data cluster that constitutes a terminal node with a respective class tag.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2
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0.7

0.8

0.9
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X
2
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X1 ≤ 0.5

Blue
X2 ≤ 0.5

X1 ≤ 0.75

Black
X2 ≤ 0.25

Yellow Purple

Green

1

Figure 1: Application of CART to an artificial two-dimensional data set. The root node at the
top contains a filter X1 ≤ 0.5. There are five terminal nodes in this tree and five classes: blue,
green, black, yellow and purple. Left branches stand for positive answers, rights ones – for negative
answers

Decision trees can be created from the available data, e.g. data from the past. If a certain link
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between some objects is assumed, then the first step to build a tree is to create a learning sample. In

the framework of stock picking, future stock price fluctuations are assumed to be driven by present

changes of fundamental or technical company indicators like Earnings Per Share. Then factors like

Earnings Per Share (Cash Flow, Return on Equity, Sales etc.) are grouped into explanatory variable

set X ∈ RP (where P is the overall number of explanatory factors) while the target characteristic

– the next period stock price yield – is characterized by the class vector Y . The natural range of

values y ∈ Y in this particular case is {long, short, neutral} standing for undervalued, overvalued

and fairly priced stocks respectively.

The application of decision trees to a data set with observations of unknown class implies three

major steps to be conducted:

• construction of the so called maximum tree TMAX

• choice of the right tree size (tree pruning) T ∗

• classification of new data using the constructed tree T ∗

A maximum tree is the one containing observations of the same class at each of the terminal nodes.

The root node – the one at the top of any tree – resembles the whole learning sample. After that

it is being split recursively in a way that more homogenous clusters of observations are separated

into tree nodes. This can be achieved as follows.

Node tP

Node tL Node tR

1

Figure 2: The triplet of nodes: tP – the parent node, tL – the left child node and tR – the right
child node
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At each node a univariate filter of the form Xp ≤ x, p = 1, P (x is some constant) is posed where

particular p and x are selected as a result of an optimization procedure to be described later in

this section. Let tP be the parent node and tL, tR – the left and right child nodes of the parent

node tP respectively so that a fraction pL of observations from the node tP follows to the left child

node, and a fraction pR = (1 − pL) – to the right one. If nP is the number of observations in tP

and nL, nR – in tL and tR respectively, then

pL =
nL

nP
, pR =

nR

nP
(1)

Let the class labels represented by the variable Y be denoted as j. Then the conditional probability

of an observation to belong to node t given that its class is j is computed as follows:

p(j| t) =
nt(j)
nt

(2)

i.e. proportion of observations of class j in the node t. It is straightforward that
J∑

j=1
p(j| t) = 1

where J is the number of classes in the learning sample. In the described stock picking setup where

y ∈ {long, short, neutral}, J is equal to three.

A functional that determines the question at each tree node – split s∗ – is the maximum value of

the one-level decrement of an impurity function i(t), which can be defined for an arbitrary node t.

Impurity is a measure of class heterogeneity for a given cluster of data (Breiman et al., 1987). One

of its important properties is that 0 ≤ i(·) ≤ 1. Therefore, one can identify the optimal split s∗ for

a given node t and i(·) as follows:

s∗ = argmax
s

∆i(s, t) = argmax
s

{−pLi(tL)− pRi(tR)} =

= argmin
s

{pLi(tL) + pRi(tR)} (3)

where tL and tR are implicit functions of s.
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While different definitions of i(t) lead to different questions in a tree, i.e. different optimal values

in (3), in Breiman et al. (1987) it is argued that the tree shape is relatively robust to the choice of

an impurity function. In financial applications of CART, the Gini index is frequently used as the

measure of class heterogeneity (Kolyshkina and Brookes, 2002) so that i(t) = 1−
J∑

j=1
p2(j|t).

Employing the Gini index as i(·), the optimal choice of tree questions is equivalent to

s∗ = argmax
s

pL

J∑
j=1

p2(j|tL) + pR

J∑
j=1

p2(j|tR)

 (4)

In this way the maximum tree TMAX can be built where each terminal node contains observations

of only one class.

3 Cost-Complexity Tradeoff as a Traditional Way of Finding Op-

timal Tree Size

Although it is possible to grow a maximum tree for a given learning sample using (4) sequentially,

its direct application for classification is far not always desirable because of the frequent overfitting

– the training error reaches zero, but the validation error is usually much greater than its minimum

level, which is feasible with a smaller tree. Note, however, that for some rare examples like on

Figure 1 this is not the case – TMAX is the best choice there.

One way to achieve the reasonable value of the validation error could be the employment of some

kind of an early stopping rule. Since the growth of a tree is controlled by the decrement of an

impurity function, the following criterion could be introduced to stop expanding the tree size:

∆i(tP , s∗) < β̄ (5)
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for some 0 < β̄ < 1.

However, i(·) is usually a non-monotone function of the tree size (Breiman et al., 1987), therefore

a signal to stop could be premature.

Breiman et al. (1987) introduced a method that is based on the idea of optimizing the trade-off

between the tree complexity and its size. Let e(t) = 1−max
j

p(j| t), T̃ be the set of terminal nodes

and
∣∣∣T̃ ∣∣∣ – the number of terminal nodes. Then E(t) = e(t)p(t) and E(T ) =

∑
t∈T̃

E(t) are the so called

internal misclassification errors of a node t and tree T . For a given tree T the cost-complexity

function Eα(T ) to minimize takes the following form:

Eα(T ) = E(T ) + α
∣∣∣T̃ ∣∣∣ (6)

where α ≥ 0 is a complexity parameter and α
∣∣∣T̃ ∣∣∣ is a cost component: the more complex is the

tree (the higher is the number of terminal nodes) – the lower is E(T ), but at the same time the

higher is the penalty α
∣∣∣T̃ ∣∣∣, and vice versa.

Although α can have infinite number of values, the authors of the method prove that the number

of subtrees of TMAX resulting in minimization of Eα(T ) is finite. The traditional method employs

cross-validation for a drastically reduced set of optimal subtrees (compared to the number of all

possible subtrees of a given tree TMAX) to select the optimal one with the balanced complexity

(training error) and validation error.

It is claimed that the minimum value of all Eα(T ) is not always desirable since results are frequently

unstable. An empirical ”one standard error” rule is employed instead, see Breiman et al. (1987)

for more details.
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4 Best Node Strategy – An Alternative Way of Tree Pruning

By its architecture, the cost-complexity approach ultimately operates with triplets of nodes

{tP , tL, tR}, which are parts of optimized subtrees of TMAX . The decision whether to employ

the selected triplet or not is based on the joint performance of two child nodes in the triplet, refer

to the definition of the ”weak link” in Breiman et al. (1987) for more details.

However, there are many cases when only one of the child nodes contains homogenous data while

the second one is filled with points belonging to various classes. Performing validation of the

tree containing both child nodes, which is done traditionally, frequently results in a mediocre

performance of the triplet as a whole.

Node tP

Node tL Node tR

1

Figure 3: Traditional CART pruning operates only with both child nodes simultaneously – both
child nodes are pruned here

Hence, there are serious reasons to concern that at least for selected types of classification tasks,

for instance, in stock picking, the traditional cost-complexity balance approach does not provide

the best feasible results.

Best Node Strategy (BNS) analyzes the individual node performance and provides an opportunity

to prune only one child node if necessary, at the same time pruning both child nodes simultaneously

is also an option.

While the traditional approach relies solely on the cross-validation performance of a given sub-

tree, the ”quality” of individual nodes is ignored. The tree ”quality” is estimated via an integral
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Node tP

Node tL Node tR

1

Figure 4: Situation that is infeasible for the traditional cost-complexity approach – only one child
node is pruned here

characteristic (6), therefore individual nodes have only a minor impact on the overall result.

BNS reverses this approach and assumes that good performance of the tree is driven by good

individual performance of nodes. This method of tree pruning takes into account only individual

node characteristics and does not perform cross-validation to obtain an integral measure of the tree

performance.

Let us consider a slightly modified example from Figure 1 and introduce some overlapping of the

elements in a three-class problem depicted on Figure 5. Classes Black and Green are not linearly

separable anymore, and that creates a challenge for the canonical cost-complexity approach, which

is not able to keep only one of the child nodes in the decision tree.
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Figure 5: Modified example with three-class data and a cluster of linearly non-separable data.
Solid lines refer to recursive partitioning suggested by the canonical cost-complexity approach, the
dashed line indicates another partitioning that is missing and might be useful to separate a lot of
points belonging to class Black.

X1 < 0.5

Blue
X2 < 0.5

Black Green

X1 < 0.5

Blue
X2 < 0.5

X1 < 0.75

Black Black

Green

Figure 6: Two trees produced by the cost-complexity approach (left) and the novel Best Node
Strategy (right). The grey dashed node on the right tree indicates the noisy part of the data in the
learning sample and suggests this cluster of the decision rule to be excluded when classifying new
data.
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The key idea of BNS is to analyze node reliability in terms of their purity and size and allow

nonsymmetric pruning when necessary. If a terminal node, which is potentially the crucial element

of the final classification of new data, contains mixture of observations belonging to various classes,

its presence in the decision rule is desirable only if one class clearly dominates others, because

otherwise the reliability of the classification decision may be compromised. At the same time,

such node should not contain only a minor number of observations from the learning sample; put

differently, it should be representative.

Let us consider the tree produced by the cost-complexity approach (the left one on Figure 6) and

its terminal node with the class tag Black. It partially corresponds to the mixed area on Figure 5

where observations of both Black and Green classes are present. It contains 68 points of class Black

and only 12 points of class Green, and the risk of making the wrong classification decision, all other

things being equal, is 12
12+68 = 15%. The aim of BNS is to reduce or, when possible, to avoid fully

this risk – BNS results in a slightly different tree (the right one on Figure 6) where another perfectly

homogenous cluster of points is separated, which corresponds to the auxiliary condition X1 < 0.75.

Now when the data to classify appear to be in the unreliable node of the BNS tree (put differently,

when these data meet the conditions X1 ≥ 0.75 and X2 ≤ 0.5), the decision rule considers this

area of the learning sample unreliable (the risk of misclassification, all other things being equal, is

already 12
40 = 30%) and suggests no reliable classification can be performed. In the realm of stock

picking that would mean the recommendation to hold the neutral position. At the same time the

tree produced via the cost-complexity approach is not able to differentiate between two terminal

nodes with the same class Black (as on the tree produced by BNS) that implies taking extra risk of

misclassification. This happens because only symmetric pruning is available to the cost-complexity

approach.

The more balanced control – individual node versus node triplet – comes at cost of introducing two

degrees of freedom. Let n̄ be the minimum required number of observations of the dominating class

j∗ in a node t, j∗ = argmax
i

p( i| t), and p̄ – the minimum required proportion of the dominating
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class j∗ observations. Assuming that there are J classes, if the following conditions hold:

 nt(j∗) ≥ n̄

nt(j∗)
nt

≥ p̄ ≥ 1
J

(7)

then the node t is called reliable and marked as such via the boolean function v(t) = 1, which

takes the zero value if (7) does not hold. If nLS is the size of the learning sample, the feasibility

constraint for (7) is straightforward:


n̄
p̄ ≤ nLS

p̄ ≤ 1
(8)

Let T (n) be the tree where each terminal node contains at most n observations unless all obser-

vations in the node belong to the same class. To obtain a classification decision for a given new

observation x ∈ RP using BNS, it suffices to build the tree T ( n̄
p̄ ), locate the terminal node t[x] of

the observation x and check if this node is reliable. If it is, then the optimal decision is the one

produced by that node. If not, then assuming that the Gini index is employed as the impurity

function, all parent nodes of the given node t[x] are also unreliable, therefore tree pruning results in

an empty tree and it is advised by BNS procedure to perform no classification based on the provided

tree as chances for misclassification are considered to be rather high. This can be called the inverse

propagation property of BNS – if a child node is unreliable, its parent is unreliable as well.

These two statements about the optimal tree size n̄
p̄ and inverse propagation property need to be

proven, of course. First of all, let us consider an arbitrary maximum tree TMAX = T (1) with

exactly one observation at each terminal node. For a given observation x ∈ RP to classify, the

terminal node t[x] of T (1) is unreliable unless n̄ = 1 or, if n̄ > 1, the condition nt[x] > n̄ is violated

since t[x] ∈ T̃ (1) and nt[x] = 1 where T̃ (1) is the set of terminal nodes of a tree T (1). It may

happen though that p(j∗|t[x]) = 1 and nt[x] > 1. Then still if nt[x] < n̄
p̄ , the node is unreliable,
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because either the condition nt[x] ≥ n̄ is violated from (7) or, if not, with the minimum required

probability of the dominating class being equal to p̄ and the number of observations of that class

being equal to n̄, the minimum feasible terminal node size not to violate (7) is n̄
p̄ .

Therefore, if BNS-reliable nodes exist in TMAX , all of them can be reached by building the tree

T ( n̄
p̄ ). The proof of Theorem 1 (in the Appendix) is in fact the proof of the inverse propagation

property of BNS. Hence if t[x] ∈ T̃ ( n̄
p̄ ) is unreliable, then all the parent nodes of t[x] are unreliable,

too.

At the moment, the inverse propagation for an arbitrary impurity function is proven only for the

case when dominating classes of the child and parent nodes coincide, refer to Lemma 2 (in the

Appendix) for details. However, as it was mentioned before, since the choice of the impurity

function does not change the configuration of the maximum tree a lot (refer to Section 2), this

creates little or no limitations in practical applicability of the method depending whether there is

a rigid constraint to employ a particular form of an impurity function. Even if there is one and

an impurity function different from the Gini index must be used, that would only mean that all

terminal nodes and their parents, if necessary, should be checked for condition (7) assuming that

(8) holds.

To conclude, the traditional cost-complexity approach builds a maximum tree at the first step. Then

a sequence of subtrees is found by minimization of the cost-complexity function. The last step is

to find the optimal tree by employing cross-validation. There, a set of cost-complexity estimates

for different subtrees is found and a rule of thumb is applied to select the optimal tree. On the

other hand, BNS requires to build the tree T ( n̄
p̄ ) using the Gini index. After that an observation

to classify is to be processed by the tree in the following way – the decision rule produced by T ( n̄
p̄ )

is valid only if the respective terminal node is reliable as indicated in (7) and (8). Otherwise, it is

suggested to avoid conducting classification using the available tree as chances for misclassification

are considered to be rather high. In the stock picking setup that would be equivalent to taking a

neutral position.
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Indicator Company Name
ADS ADIDAS-SALOMON AG
ALT ALTANA IND-AKTIEN U. ANL AG
ALV ALLIANZ AG
BAS BASF AG
BAY BAYER AG
BMW BAYERISCHE MOTOREN WERKE AG
DCX DAIMLERCHRYSLER AG
EOA E.ON AG
LHA DEUTSCHE LUFTHANSA AG
LIN LINDE AG
MAN MAN AG
SAP SAP AG
SCH SCHERING AG
SIE SIEMENS AG
TUI TUI AG

Table 1: List of available companies from XETRA DAX and their codes

5 Available Data and Calibration

To examine the adequacy of the nonsymmetric pruning via BNS, a stock picking algorithm, which

operates with XETRA DAX stocks, was backtested. A similar algorithm but with the cost-

complexity approach for tree pruning was backtested as the primary benchmark.

The available XETRA DAX market data for the analysis consist of the samples for 15 companies

and for the time period of February 19, 2001 – May 31, 2004. 13 different fundamental and technical

variables were at the disposal describing each of these companies, refer to Table 1 and Table 2 for

more details. Time scale of the data is one week.

Every stock was analyzed independently meaning that each stock return was forecasted by using

the individual company data.

The first model degree of freedom is the threshold value R̄ ≥ 0 that defines the class y of each

stock for a given next period return in the learning sample. Depending on the next period stock
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performance, there are three classes employed: long, short and neutral. R̄ can potentially have

different values for different calibrated stocks allowing for ”big hit” ability (the ability of a method

to forecast effectively the movements with big relative magnitude) introduced in Hartzmark (1991).


Rt > R̄, yt = {long}

Rt < −R̄, yt = {short}

−R̄ ≤ Rt ≤ R̄, yt = {neutral}

(9)

Given the magnitude of weekly stock returns in the learning sample, R̄ was selected for each stock

independently during calibration from the grid [0%, 3%] with the step of 0.5%.

Although CART chooses variables for the learning sample automatically when building a decision

tree, there is always a possibility for spurious links between dependent and independent variables.

That is the main reason to consider multiple possible input specifications for the learning sample.

Unlike Brennan et al. (1999), where preliminary regression analysis of available data was sup-

posed to find the most significant variables to be included in the tree(s), in this study the optimal

specification for each stock was obtained from a calibration procedure, which is described below.

Two different specifications were considered. The first one resembles the ideas of fundamental

analysis (Fama and French, 1992; Sorensen et al., 1999; Brennan et al., 1999) and therefore is

based on variables of fundamental nature – these are listed in the upper part of Table 2. According

to the first specification, the learning sample consists of four variables: CFt
Pt

, EPSt
Pt

, ∆12EPSt
Pt

and

ROEt (t is the current time period).

Depending on the stability of a distribution and the level of noise of the learning sample over

time, retaining the old observations in the learning sample may potentially result in a deteriorated

forecasting power of the model (Tam and Kiang, 1992); therefore, the second degree of freedom

for calibration is the type of the learning sample, which can either have the fixed size over time

(sliding window) or, when such setup provides inadequate calibration results (see below), include
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Indicator Type Frequency Comments
Sales/P Fundamental 1 week Sales to Price Ratio
CF/P Fundamental 1 week Cash Flow to Price Ratio
EPS/P Fundamental 1 week Earnings per Share to Price Ratio
∆12EPS/P Fundamental 1 week 3-Month Change in EPS to Price Ratio
ROE Fundamental 1 week Return on Equity
Momentum Technical 1 week Mt = Pt − Pt−T , T = 20
Stochastic Technical 1 week Pt−PL

PH−PL
, PH = max(Pt), PL = min(Pt)

MA/P Technical 1 week MA(T ) =
∑t

i=t−T Pi

T , T = 12
MACD Technical 1 week (1− n1

n2
){MA(n1)−MA(n2 − n1)}

n1 = 12, n2 = 26
MA St. Error Technical 1 week Standard deviation of MA
ROC/P Technical 1 week ROCt = Pt

Pt−T
, T = 10

TRIX Technical 1 week Triple exponentially smoothed MA
Rt−1 Technical 1 week Rt−1 = Pt−Pt−1

Pt−1
, Pt – current stock price

Table 2: List of available variables as potential input factors for learning samples. All variables are
available for each of 15 analyzed companies. The current time period is indicated by t

each new available observation with the following step.

For each stock independently the adequacy of calibration was assessed primarily based on the ex-

pected annualized yield – the higher the yield, the better the specification is assumed. To avoid

the potential spuriousness of calibration results, the activity ratio indicator (the percentage of ac-

tive operations during calibration for a given stock) was employed in the following way. First, the

activity ratio has to exceed 40% in order for a specification to be considered reliable. Compet-

ing specifications (with the similar amount of yielded expected return) were selected in favor of

those with the highest activity ratio. Additionally, the hit ratio (the proportion of correct active

directional forecasts during the calibration) of a reliable specification had to exceed 45%.

If the first specification failed to provide adequate calibration results with both types of the learning

sample, i.e. when the calibrated profit was negative for any setup or when the activity ratio or hit

ratio constraints were violated, the second specification was considered. The second specification

therefore implies the situation when the sole use of fundamental variables is not enough to explain
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Stock Specification R̄ Learning sample
ADS fund. and tech. 0.5% sliding window
ALT fundamental 1.0% sliding window
ALV fundamental 1.0% sliding window
BAS fund. and tech. 0.5% expanding
BAY fundamental 0.5% sliding window
BMW fundamental 1.0% sliding window
DCX fundamental 1.0% sliding window
EOA N/A N/A N/A
LHA N/A N/A N/A
LIN fundamental 0.5% sliding window
MAN N/A N/A N/A
SAP N/A N/A N/A
SCH fundamental 0.5% expanding
SIE N/A N/A N/A
TUI fund. and tech. 0.5% expanding

Table 3: Calibration results for BNS tree pruning, N/A indicates situations when none of the inputs
were able to produce positive calibration yield

the movements of the next period stock return adequately, therefore the variable set is expanded by

available technical factors (Neftci, 1991; Sullivan et al., 1999) like ROC, TRIX or Stochastic listed

in Table 2. According to the second specification, the learning sample consists of all 13 available

variables.

Finally, two BNS parameters need to be fixed as well. Similar to Breiman et al. (1987), an empirical

rule of thumb was employed: set p̄ to 75% and n̄ to 10% of the size of the learning sample, refer

to Osei-Bryson (2004) for a description of the so called discriminatory power measure, which is

defined via p̄, and Bramer (2002) for a discussion on size cutoff, which is in fact just a different

name of n̄. If a particular application requires more precision for p̄ and n̄, these two parameters

can be calibrated analogously to R̄.

If after all tested combinations during the calibration all specifications were considered inadequate

for a given stock, this stock was excluded from the portfolio, see Section 6 for more details on

portfolio creation.
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Stock Specification R̄ Learning sample
ADS fund. and tech. 0.5% sliding window
ALT fundamental 0.5% sliding window
ALV fundamental 0.5% sliding window
BAS fund. and tech. 0.5% expanding
BAY fundamental 0.5% sliding window
BMW N/A N/A N/A
DCX N/A N/A N/A
EOA N/A N/A N/A
LHA N/A N/A N/A
LIN N/A N/A N/A
MAN N/A N/A N/A
SAP N/A N/A N/A
SCH fundamental 0.5% expanding
SIE N/A N/A N/A
TUI N/A N/A N/A

Table 4: Calibration results for cost-complexity tree pruning, N/A indicates situations when none
of the inputs were able to produce positive calibration yield

The available market data were employed in the following way. The first 53 observations (or

roughly one year) were allocated to the learning period. The next 25 points (or roughly half a

year) comprised the test set for calibration. Finally, the rest 93 points (or a little less than two

years) were used for validation. The size of the sliding window, when applicable, was set to the

length of the learning period – 53 observations.

Such calibration was performed independently for BNS and the cost-complexity approaches of tree

pruning. Tenfold cross-validation and 1-SE rule (Breiman et al., 1987) were employed to find

optimal cost-complexity trees. In case when the resulting optimal tree was underparameterized

(consisted of the single root node after pruning), 0-SE rule (Breiman et al., 1987) was employed

instead.
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6 XETRA DAX Stocks Backtesting

As it can be seen from Table 3 and Table 4, for BNS 10 out of 15 stocks (66.7%) showed positive

performance at the test set and only 6 out of 15 (40%) – for the cost-complexity tree pruning.

If an open position was recommended for an arbitrary stock, it was then closed at the end of each

period – no reinvesting was allowed. Transaction costs in the amount of 10 b.p. were accounted

for every active operation.

Two various recursive portfolios – based on BNS and cost-complexity approach recommendations

– were created. Their positions were updated weekly. Both portfolios were equally-weighted –

this weighting scheme, firstly, comes to diversify the portfolios and reduce the risk of returns and,

secondly, because there are no explicit reasons to prefer one stock to another (Amenc et al., 2003).

According to Table 3 and Table 4, the first portfolio to backtest contained 10 stocks while the

second one – 6 stocks.

Figure 7 depicts portfolio’s weekly returns when BNS was used for tree pruning. Its annualized

return is 17.17% while the Sharpe ratio is 1.26 for the risk-free rate of 4.5%. The hit ratio of this

portfolio is 59%. However, one may notice that the vast majority of wrong classifications coincides

with the relatively small values of stock price returns, therefore resulting in substantial profit and

the high Sharpe ratio.

While the hit ratio of the second portfolio, which was built by employing the traditional cost-

complexity approach, is close to the first one – 54%, the financial performance is far more different,

refer to Figure 8 for details. Although it manages to produce the positive annualized profit – 2.87%,

its returns are obviously more volatile resulting in the Sharpe ratio of only -0.09.

BNS exhibited superior performance comparing with the cost-complexity approach, however, an-

other indirect comparison is also possible. Some of the studies mentioned in Section 1 employed

decision trees for stock picking and reported the corresponding results. Although the markets and
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 CART − BNS: ER = 0.17, SR = 1.27

Figure 7: Equally weighted portfolio of stocks performance when BNS is employed for tree pruning,
ER – annualized expected return, SR – the Sharpe ratio
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Figure 8: Equally weighted portfolio of stocks performance when the traditional cost-complexity
approach is employed for tree pruning, ER – annualized expected return, SR – the Sharpe ratio
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Figure 9: Wealth curves for two active CART strategies and three passive investment strategies

the time periods are different, it may still be interesting to compare these results in terms of rela-

tive returns and their risks. In Seshadri (2003) the three-class (overweight, underweight, neutral)

recommendations for stocks from the S&P500 universe were provided. As at August 6, 2003, the

model has returned 14.6% (annualized) with a corresponding Sharpe ratio of 1.5.

Similarly, technological stocks were classified into three performance buckets in Sorensen et al.

(1999), and for the period of 1996-1999 the model returned 19.62% with a corresponding Sharpe

ratio of 1.23. Interestingly, while the recursive partitioning mechanism is described in this report,

nothing is said about tree pruning that led to the achieved performance.

Figure 9 depicts the benchmarking of different strategies when an investor has alternative opportu-

nities to invest into DAX index fund, FTSE100 index fund or SP500 index fund. While the markets

are, of course, different (excluding XETRA DAX virtual index fund), this benchmarking accounts

for some alternative types of passive investment.
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Δ12EPS
P < 0.065
(25,25,3)

Δ12EPS
P < -0.126
(22,11,2)
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P < 74.963

(3,6,0)

CLASS SHORT
(3,1,0)

CLASS LONG
(0,5,0)

ROC
P < 0.987
(19,5,2)

CLASS LONG
(1,2,1)

Stochastic < 0.108
(18,3,1)

CLASS LONG
(0,1,0)

MACD < 0.019
(18,2,1)

CLASS LONG
(0,1,0)

CLASS SHORT
(18,1,1)

Momentum < 1.125
(3,14,1)

Rt−1 < -0.157
(1,14,1)

CLASS SHORT
(1,0,0)

CLASS LONG
(0,14,1)

CLASS SHORT
(2,0,0)

Figure 10: An example of the decision tree for ADS stock. Here n̄ = 5 and p̄ = 0.75. The
numbers in parentheses reflect the number of observations for a given node belonging to classes
short, long and neutral respectively. BNS-reliable nodes are marked with solid lines and yellow
color, BNS-unreliable – dashed lines and grey color

To illustrate the difference in performance exhibited by the cost-complexity approach and BNS,

Figure 10 shows the sample tree T (7) for ADS stock. The root node – at the very top of the tree

– is constituted by 25 observations of class short, 25 – of class long and 3 – of class neutral. The

numbers in parentheses show the quantity of observations in a given node for respective three classes

as in the root node. With n̄ = 5 for this case, many terminal nodes are considered unreliable since

they contain fewer number of points of the dominating class. For instance, to reach the terminal

node in the very bottom of the tree that has a recommendation short and is constituted by 18

observations of class short, one observation of class long and one – of class neutral, one would need

to keep the majority of the tree’s structure preserved. However, for the cost-complexity approach

this single node may not have such a strong influence. Because other nodes in the close vicinity are

quite impure, it may happen that the target node becomes pruned simply because the significant

number of points from the test set falls into these impure neighbor nodes: the cost-complexity
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function value for a subtree carrying the target node may become too high.

Finally, to test the statistical significance of the financial performance difference in the results

exhibited by the traditional cost-complexity and the novel BNS tree pruning approach, the Diebold-

Mariano test was employed (Diebold and Mariano, 1995). While the hit ratios of the compared

portfolios are quite close, the main motivation for this test is to take into account the economic

value of the forecasts and not just their directional accuracy. The null hypothesis H0 of the

Diebold-Mariano test is that the expected value of an arbitrary loss differential d is equal to zero:

H0 : E (d) ≡ E
[
g

(
eBNS

)
− g

(
eCC

)]
= 0 (10)

where g(·) is an arbitrary function and eBNS , eCC – vectors of forecast errors associated with BNS

and cost-complexity portfolios.

Since the aim of applying the Diebold-Mariano test here is to compare the expected economic

values of two forecasts, function g(·) resembles the wealth curves from Figure 9:

 g(e1) = 1 + e1,

g(ei) = g(ei−1) + ei, 1 < i ≤ N
(11)

where e1 is the forecast error at the first time period, N – number of forecasts made (the length of

the backtesting period).

Forecast errors are computed as the difference between the realized portfolio profit and any arbitrary

benchmark – the resulting form of the loss differential d is invariant with respect to the choice of

the benchmark as shown below. Given (11), if ΠBNS and ΠCC are vectors of values of the two

respective portfolios and ΠDAX is the vector of values of some arbitrary DAX benchmark, then:

E (d) = E
[(

ΠBNS −ΠDAX
)
−

(
ΠCC −ΠDAX

)]
= E

[
ΠBNS −ΠCC

]
(12)
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and therefore the loss differential d is the difference between wealth curves for BNS and cost-

complexity portfolios.

The test statistic is defined as

DM =
d̄√

2πf̂d(0)/N
(13)

where d̄ is the sample mean of the the loss differential d, f̂d(0) is a consistent estimate of spectral

density of the loss differential at the zero frequency and N is the number of forecasts.

The variance 2πf̂d(0) was estimated using the Bartlett kernel with automatic bandwidth selection

(Andrews, 1991; Newey and West, 1994). As a result, DM = 13.14 and the p-value = 1.37 · 10−38,

which indicates that H0 is rejected at the 0.1% confidence level. One may therefore conclude

that the economic value associated with portfolio returns generated by BNS and cost-complexity

decision tree pruning strategies are statistically significantly different in favor of BNS.

7 Conclusions

The new tree pruning technique introduced in this study – Best Node Strategy (BNS) – proved its

high potential over the traditional approach based on the cost-complexity function for the analyzed

XETRA DAX stocks data set. Backtesting has shown the superiority of BNS in terms of financial

performance of the recursive equally weighted portfolio: the annualized profit of 17.17% vs 2.87%

and the Sharpe ratio of 1.27 vs -0.09. Active stock management via BNS showed its higher efficiency

also compared to selected passive investment strategies.

While the hit ratios of the both active strategies are quite close – 59% and 54% – and do not

significantly deviate from 50%, the difference in economic value of both forecasts is undeniably

significant according to the Diebold-Mariano test. At this point it is worth citing professional

equity investment managers from Schroders (€189.4 billion under management as at December 31,
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2007) commenting a very similar outcome (in their study, the backtested annualized return of a

decision tree based trading strategy over the whole period is 12%): ”Although these hit rates do

not seem significantly different from 50% (which is indicative of no skill in stock picking), this is

very typical in financial applications and it would be rare to observe models with average hit rates

in excess of 55%. Indeed, as the chart above illustrates, hit rates even slightly better than 50% can

generate strong strategy outperformance in practice. [...] We would conclude from this analysis

that the model is very successful at locating the key stock characteristics that identify future relative

performance” (Schroders, 2006).

With the proven reverse propagation property of BNS, it is easy to build the tree of an optimal

size possessing much more flexible non-symmetric structure than its symmetric canonically pruned

counterpart.

Appendix

Lemma 1. Let’s tP be the parent node for tL and tR given some arbitrary split s. If the following

inequalities hold:  i(tP ) > i(tL)

i(tP ) ≥ i(tR)
(14)

and one of them holds as strict, for instance, for tL, then it is true that

∆i(tP , s) = i(tP )− pLi(tL)− pRi(tR) > 0. (15)

The reverse statement is also true.

Proof. The proof of the first part is straightforward and can be found in (Breiman et al., 1987).

Let us prove the reverse part of the lemma. Using the link between pL and pR, one can get the
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following inequality:

 ∆i(tP , s) = i(tP )− pLi(tL)− pRi(tR) > 0

pL + pR = 1, pL ∈ (0; 1), pR ∈ (0; 1)
⇒ i(tP ) > pLi(tL) + (1− pL)i(tR) (16)

Let us suppose that i(tP ) < i(tL) and to be more specific: i(tP ) = pLi(tL) < i(tL) ∀pL ∈ (0; 1).

Then pLi(tL) > pLi(tL) + (1− pL)i(tR) that is equivalent to (1− pL)i(tR) < 0 ⇔ i(tR) < 0, which

is impossible by definition of i(·). Hence one can conclude that i(tP ) ≥ i(tL).

Let us suppose now that i(tP ) < i(tR) and let i(tP ) = (1 − pL)i(tR) < i(tR) ∀pL ∈ (0; 1). Then

(1−pL)i(tR) > pLi(tL)+(1−pL)i(tR) ⇔ i(tL) < 0, which is impossible. That is why i(tP ) ≥ i(tR).

The remaining step is to note that one of the two inequalities – i(tP ) ≥ i(tL) or i(tP ) ≥ i(tR) –

must hold as strict because if i(tP ) = i(tL) = i(tR), then ∆i(tP , s) = 0 that violates the conditions

of the lemma.

Lemma 2. Let tL and tR be the two child nodes with tP being the parent node and s – the relevant

data split so that ∆i(tP , s) > 0. Let S(t) be the dominating class of the node t. Then for the node

t ∈ {tL, tR} so that S(t) = S(tP ) it is true that if v(t) = 0, then v(tP ) = 0 where v(·) is defined

in (7) so that n̄ and p̄ do not violate (8).

Proof.

1. Let us consider two sets of conditional probabilities (p1, p2, . . . , pJ) and (p′1, p
′
2, . . . , p

′
J) where

pi = p( i| tP ) and p′i = p( i| t), t ∈ {tL, tR}. Since the inequality i(tP ) > i(t) holds as strict at

least for one of the child nodes {tL, tR} (Lemma 1), it follows that at least one of the values

in the set p( i| t) has changed compared to the set p( i| tP ), refer to (Breiman et al., 1987) for

the detailed description of the properties of an arbitrary impurity function.

2. Since
J∑

i=1
p( i| t) = 1 , there exist at least one value of the conditional probability from (p′1, p

′
2, . . . , p

′
J)
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that has increased compared to (p1, p2, . . . , pJ) and at least one – that has decreased, because

the situation when each of the components p( i| t) ≥ 0 changed their values in one direction

is impossible.

3. For some class j let p′j = max
i

p′i = max
i

p( i| t), i.e. the maximum value of the conditional prob-

ability from the second set. Then while there may exist an arbitrary number of components

that increased or decreased their values when transferring from the first set of probabilities

p( i| tP ) to the second – p( i| t), p′j is the maximum value from the subset of values that have

increased.

4. That is why pj ≤ p′j where pj = max
i

p( i| t) and p′j = p(j|tP ).

Since j = argmax
i

p (i |t), it follows that S(tP ) = j. It is given that S(t) = S(tP ), therefore

S(t) = j. Because v(t) = 0, it follows that p(j|t) < p̄. However, it was proven that p(j|t) ≥

p(j|tP ). Therefore, p(j|tP ) ≤ p(j|t) < p̄. Hence p(j|tP ) < p̄ ⇒ v(tP ) = 0.

Theorem 1. Let tL and tR be the two child nodes with tP being the parent node and s – the relevant

data split. Let tL and tR be terminal nodes in a tree T ( n̄
p̄ ). Let i(t) be the impurity function taking

the form of the Gini index: i(t) = 1−
J∑

j=1
p2(j|t), J be the number of classes in the learning sample

and ∆i(tP , s) > 0. Then if at least one of the child nodes is unreliable: v(t) = 0, then the parent

node is also unreliable: v(tP ) = 0 where v(·) is defined in (7) so that n̄ and p̄ do not violate (8).

Proof. Let j∗ = argmax
i

p (i |t). One of the requirements for a node to be accounted as reliable is

to show the significantly high probability of the dominating class: p(j∗|t) ≥ p̄. Since
J∑

i=1
p( i| t) = 1,

0 ≤ p( i| t) ≤ 1 and i(t) = 1 −
J∑

j=1
p2(j|t), then the inequality p(j∗|t) ≥ p̄ implies the existence of

the upper bound of the node impurity value – ı̄, so that
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p(j∗|t) ≥ p̄ ⇔ i(t) ≤ ı̄

where

ı̄ =

 1− p̄2

J , p̄ = 1
J

−Jp̄2+2p̄+J−2
J−1 , p̄ > 1

J

Since v(t) = 0, there are two possible configurations of the triplet {tL, tR, tP }, where tL and tR are

arbitrary child nodes and tP – their parent node.

1. Both child nodes are unreliable: v(tL) = v(tR) = 0

In this case i(t) > ı̄ where t = {tL, tR} because t ∈ T̃ ( n̄
p̄ ). Since ∆i(tP , s) > 0, according to

Lemma 1 it follows that i(tP ) ≥ i(t), and therefore i(tP ) > ı̄ ⇒ v(tP ) = 0.

2. Only one of the child nodes is unreliable, for sake of simplicity let it be node tR:

Employing Lemma 1 once again, it is possible to conclude that i(tP ) ≥ i(tL). Because the

node tL is pure, then i(tL) < ı̄. However, it is not possible to say if i(tP ) > ı̄ or not.

But for the node tR the situation changes drastically. Again, i(tP ) ≥ i(tR), but in this case

i(tR) > ı̄, so one can conclude that i(tP ) > ı̄ ⇒ v(tP ) = 0.

Since it is given that v(t) = 0, the situation when both terminal nodes in the triplet are pure is

impossible. This concludes the proof of the theorem.

If tP is unreliable, the same set of arguments can be applied to this node because ntP > nt ≥ n̄ ≥ n̄
p̄ .

Therefore, if a terminal node in T ( n̄
p̄ ) is unreliable, each of its parent nodes is unreliable, too.
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