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Nikolaus Hautsch† Vahidin Jeleskovic‡
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Abstract

In this paper, we study the dynamic interdependencies between high-frequency
volatility, liquidity demand as well as trading costs in an electronic limit order
book market. Using data from the Australian Stock Exchange we model 1-min
squared mid-quote returns, average trade sizes, number of trades and average (ex-
cess) trading costs per time interval in terms of a four-dimensional multiplicative
error model. The latter is augmented to account also for zero observations. We
find evidence for significant contemporaneous relationships and dynamic inter-
dependencies between the individual variables. Liquidity is causal for future
volatility but not vice versa. Furthermore, trade sizes are negatively driven by
past trading intensities and trading costs. Finally, excess trading costs mainly
depend on their own history.
Keywords: Multiplicative error models, volatility, liquidity, high-frequency data.

JEL Classification: C13, C32, C52

1 Introduction

Due to the permanently increasing availability of high-frequency financial data, the
empirical analysis of trading behavior and the modelling of trading processes has be-
come a major theme in modern financial econometrics. Key variables in empirical
studies of high-frequency data are price volatilities, trading volume, trading intensi-
ties, bid-ask spreads and market depth as displayed by an open limit order book. A
common characteristic of these variables is that they are positive-valued and persis-
tently clustered over time.

∗This research was supported by the Deutsche Forschungsgemeinschaft through the SFB 649 ”Eco-
nomic Risk”.

†Institute for Statistics and Econometrics and CASE - Center for Applied Statistics and Economics,
Humboldt-Universität zu Berlin, Quantitative Products Laboratory (QPL), Berlin, and Center for Fi-
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‡Institute for Statistics and Econometrics, Humboldt-Universität zu Berlin, and Quantitative Prod-
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To capture the stochastic properties of positive-valued autoregressive processes,
so-called (MEMs) have become popular. The basic idea of modelling a positive-valued
process in terms of the product of positive-valued (typically i.i.d.) innovation terms
and an observation-driven and/or parameter driven dynamic function is well-known
in financial econometrics and originates from the model structure of the autoregres-
sive conditional heteroscedasticity (ARCH) model introduced by Engle (1982) or the
stochastic volatility (SV) model proposed by Taylor (1982). Engle and Russell (1997,
1998) introduced the autoregressive conditional duration (ACD) model to model au-
toregressive (financial) duration processes in terms of a multiplicative error process
and a GARCH-type parameterization of the conditional duration mean. The term
’MEM’ is ultimately introduced by Engle (2002) who discusses this approach as a
general framework to model any kind of positive-valued dynamic process. Manganelli
(2005) proposes a multivariate MEM to jointly model high-frequency volatilities, trad-
ing volume and trading intensities. Hautsch (2008) generalizes this approach by intro-
ducing a common latent dynamic factor serving as a subordinated process driving the
individual trading components. The resulting model combines features of a GARCH
type model and an SV type model and is called stochastic MEM. Engle and Gallo
(2006) apply MEM specifications to jointly model different volatility indicators in-
cluding absolute returns, daily range, and realized volatility. Recently, Cipollini et al.
(2006) extend the MEM by a copula specification in order to capture contemporaneous
relationships between the variables.

Given the growing importance of MEMs for the modelling of high-frequency trad-
ing processes, liquidity dynamics and volatility processes, this paper gives an intro-
duction to the topic and an overview of the current literature. Given that the ACD
model is the most popular specification of a univariate MEM, we will strongly rely
on this string of the literature. Finally, we will present an application of the MEM to
jointly model the multivariate dynamics of volatilities, trade sizes, trading intensities,
and trading costs based on limit order book data from the Australian Stock Exchange
(ASX).

The paper is organized as follows: Section 2 presents the major principles and
properties of univariate MEMS. In Section 3, we will introduce multivariate specifica-
tions of MEMs. Estimation and statistical inference is illustrated in Section 4. Finally,
Section 5 gives an application of the MEM to model high-frequency trading processes
using data from the ASX.

2 The Univariate MEM

Let {Yt}, t = 1, . . . ,T , denote a non-negative (scalar) random variable. Then, the uni-
variate MEM for Yt is given by

Yt = µtεt ,

εt |Ft−1 ∼ i.i.d. D(1,σ2),

where Ft denotes the information set up to t, µt is a non-negative conditionally de-
terministic process given Ft−1, and εt is a unit mean, i.i.d. variate process defined on

2



non-negative support with variance σ2. Then, per construction we have

E [Yt |Ft−1]
def= µt , (1)

Var [Yt |Ft−1] = σ
2
µ

2
t . (2)

The major principle of the MEM is to parameterize the conditional mean µt in terms
of a function of the information set Ft−1 and parameters θ . Then, the basic linear
MEM(p,q) specification is given by

µt = ω +
p

∑
j=1

α jYt− j +
q

∑
j=1

β jµt− j, (3)

where ω > 0, α j ≥ 0, β j ≥ 0. This specification corresponds to a generalized ARCH
model as proposed by Bollerslev (1986) as long as Yt is the squared (de-meaned) log
return between t and t−1 with µt corresponding to the conditional variance. Accord-
ingly, the process (3) can be estimated by applying GARCH software based on

√
Yt

(without specifying a conditional mean function). Alternatively, if Yt corresponds to a
(financial) duration, such as, e.g., the time between consecutive trades (so-called trade
durations) or the time until a cumulative absolute price change is observed (so-called
price durations), the model is referred to an ACD specification as introduced by Engle
and Russell (1997, 1998).

The unconditional mean of Yt is straightforwardly computed as

E[Yt ] = ω/(1−
p

∑
j=1

α j−
q

∑
j=1

β j). (4)

The derivation of the unconditional variance is more cumbersome since it requires the
computation of E[µ2

t ]. In the case of an MEM(1,1) process, the unconditional variance
is given by (see, e.g., Hautsch (2004))

Var[Yt ] = E[Yt ]2σ
2(1−β

2−2αβ )/(1− (α +β )2−α
2
σ

2) (5)

corresponding to

Var[Yt ] = E[Yt ]2(1−β
2−2αβ )/(1−β

2−2αβ −2α
2) (6)

in case of σ2 = 1 which is, e.g., associated with a standard exponential distribution.
Correspondingly, the model implied autocorrelation function is given by

ρ1
def= Corr[Yt ,Yt−1] = α(1−β

2−αβ )/(1−β
2−2αβ ), (7)

ρ j
def= Corr[Yt ,Yt− j] = (α +β )ρ j−1 for j ≥ 2. (8)

Similarly to the GARCH model, the MEM can be represented in terms of an
ARMA model for Yt . Let ηt

def= Yt−µt denote a martingale difference, then the MEM(p,q)
process can be written as

Yt = ω +
max(p,q)

∑
j=1

(α j +β j)Yt− j−
q

∑
j=1

β jηt− j +ηt . (9)
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The weak stationarity condition of a MEM(1,1) process is given by (α +β )2−α2σ2 <
1 ensuring the existence of Var[Yt ].

Relying on the GARCH literature, the linear MEM specification can be extended
in various forms. A popular form is a logarithmic specification of a MEM ensuring
the positivity of µt without imposing parameter constraints. This is particularly im-
portant whenever the model is augmented by explanatory variables or when the model
has to accommodate negative (cross-) autocorrelations in a multivariate setting. Two
versions of logarithmic MEM’s have been introduced by Bauwens and Giot (2000) in
the context of ACD models and are given (for simplicity for p = q = 1) by

log µt = ω +αg(εt−1)+β log µt−1, (10)

where g(·) is given either by g(εt−1) = εt−1 (type I) or g(εt−1) = logεt−1 (type II). The
process is covariance stationary if β < 1, E[εt exp{αg(εt)}]< ∞ and E[exp{2αg(εt)}]<
∞. For more details, see Bauwens and Giot (2000). Notice that due the logarithmic
transformation, the news impact function, i.e., the relation between Yt and εt−1 is not
anymore linear but is convex in the type I case and is concave in the type II parameter-
ization. I.e., in the latter case, the sensitivity of Yt to shocks in εt−1 is higher if εt−1 is
small than in the case where it is large.

A more flexible way to capture nonlinear news responses is to allow for a kinked
news response function

log µt = ω +α{|εt−1−b|+ c(εt−1−b)}δ +β log µt−1, (11)

where b gives the position of the kink while δ determines the shape of the piecewise
function around the kink. For δ = 1, the model implies a linear news response function
which is kinked at b resembling the EGARCH model proposed by Nelson (1991). For
δ > 1, the shape is convex while it is concave for δ < 1. Such a specification allows
to flexibly capture asymmetries in responses of Yt to small or large lagged innovation
shocks, such as, e.g., shocks in liquidity demand, liquidity supply or volatility. A simi-
lar specification is considered by Cipollini et al. (2006) to capture leverage effects if Yt

corresponds to a volatility variable. For more details on extended MEM specifications
in the context of ACD models, see Hautsch (2004) or Bauwens and Hautsch (2008).

The error term distribution of εt is chosen as a distribution defined on positive sup-
port and standardized by its mean. If Yt is the squared (de-meaned) log return, then√

εt ∼ N(0,1) yields the Gaussian GARCH model. If Yt denotes a liquidity variable
(such as trade size, trading intensity, bid-ask spread or market depth), a natural choice
is an exponential distribution. Though the exponential distribution is typically too
restrictive to appropriately capture the distributional properties of trading variables,
it allows for a quasi maximum likelihood (QML) estimation yielding consistent esti-
mates irrespective of distributional misspecifications. For more details, see Section 4.
More flexible distributions are, e.g., the Weibull distribution, the (generalized) gamma
distribution, the Burr distribution or the generalized F distribution. The latter is pro-
posed in an ACD context by Hautsch (2003) and is given in standardized form (i.e.,
with unit mean) by the p.d.f.

fε(x) = [a{x/ζ (a,m,η)}am−1[η +{x/ζ (a,m,η)}](−η−m)
η

η ]/B(m,η), (12)
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where a, m, and η are distribution parameters, B(m,η) = Γ(m)Γ(η)/Γ(m+η), and

ζ (a,m,η) def= {η
1/a

Γ(m+1/a)Γ(η−1/a)}/{Γ(m)Γ(η)}. (13)

The generalized F-distribution nests the generalized gamma distribution for η → ∞,
the Weibull distribution for η →∞, m = 1, the log-logistic distribution for m = η = 1,
and the exponential distribution for η → ∞, m = a = 1. For more details, see Hautsch
(2004).

3 The Vector MEM

Consider in the following a k-dimensional positive-valued time series, denoted by
{Yt}, t = 1 . . . ,T , with Yt

def= (Y (1)
t , . . . ,Y (k)

t ). Then, the so-called vector MEM (VMEM)
for Yt is defined by

Yt = µ t � ε t

= diag(µ t)ε t ,

where � denotes the Hadamard product (element-wise multiplication) and ε t is a k-
dimensional vector of mutually and serially i.i.d. innovation processes, where the j-th
element is given by

ε
( j)
t |Ft−1 ∼ i.i.d. D(1,σ2

j ), j = 1, . . . ,k.

A straightforward extension of the univariate linear MEM as proposed by Manganelli
(2005) is given by

µ t = ω +A 0Yt +
p

∑
j=1

A jYt− j +
q

∑
j=1

B jµ t− j, (14)

where ω is a (k×1) vector, and A 0, A j, and B j are (k× k) parameter matrices. The
matrix A 0 captures contemporaneous relationships between the elements of Yt and
is specified as a matrix where only the upper triangular elements are non-zero. This
triangular structure implies that Y (i)

t is predetermined for all variables Y ( j)
t with j < i.

Consequently, Y (i)
t is conditionally i.i.d. given {Y ( j)

t ,Ft−1} for j < i.
The advantage of this specification is that contemporaneous relationships between

the variables are taken into account without requiring multivariate distributions for ε t .
This eases the estimation of the model. Furthermore, the theoretical properties of uni-
variate MEMs as discussed in the previous section can be straightforwardly extended
to the multivariate case. However, an obvious drawback is the requirement to impose
an explicit ordering of the variables in Yt which is typically chosen in accordance with
a specific research objective or following economic reasoning. An alternative way to
capture contemporaneous relationships between the elements of Yt is to allow for mu-
tual correlations between the innovation terms ε

( j)
t . Then, the innovation term vector

follows a density function which is defined over non-negative k-dimensional support
[0,+∞)k with unit mean ι and covariance matrix Σ, i.e.,

ε t |Ft−1 ∼ i.i.d. D(ι ,Σ)
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implying

E [Yt |Ft−1] = µ t ,

Var [Yt |Ft−1] = µ t µ
>
t �Σ = diag(µ t)Σ diag(µ t).

Finding an appropriate multivariate distribution defined on positive support is a diffi-
cult task. As discussed by Cipollini et al. (2006), a possible candidate is a multivariate
gamma distribution which however imposes severe restrictions on the contemporane-
ous correlations between the errors ε

(i)
t . Alternatively, copula approaches can be used

as, e.g., proposed by Heinen and Rengifo (2006) or Cipollini et al. (2006).
In correspondence to the univariate logarithmic MEM, we obtain a logarithmic

VMEM specification by

log µ t = ω +A 0 logYt +
p

∑
j=1

A jg(ε t− j)+
q

∑
j=1

B j log µ t− j, (15)

where g(ε t− j) = ε t− j or g(ε t− j) = logε t− j, respectively. Generalized VMEMs can be
specified accordingly to Section 2.

A further generalization of VMEM processes has been introduced by Hautsch
(2008) and captures mutual (time-varying) dependencies by a subordinated common
(latent) factor jointly driving the individual processes. The so-called stochastic MEM
can be compactly represented as

Yt = µ t �λ t � ε t , (16)

where λ t is a (k×1) vector with elements {λ
δi
t }, i = 1, . . . ,k,

logλt = a logλt−1 +νt , νt ∼ i.i.d. N(0,1), (17)

and νt is assumed to be independent of ε t . Hence, λt serves as a common dynamic
factor with process-specific impacts δi. Then, the elements of µ t represent ’genuine’
(trade-driven) effects given the latent factor. They are assumed to follow (15) with
g(ε t) = Yt � µ−1

t . The model corresponds to a mixture model and nests important
special cases, such as the SV model by Taylor (1982) or the stochastic conditional du-
ration model by Bauwens and Veredas (2004). Applying this approach to jointly model
high-frequency volatilities, trade sizes and trading intensities, Hautsch (2008) shows
that the latent component is a major driving force of cross-dependencies between the
individual processes.

4 Statistical Inference

Define f (Y (1)
t ,Y (2)

t , . . . ,Y (k)
t |Ft−1) as the joint conditional density given Ft−1. With-

out loss of generality the joint density can be decomposed into

f (Y (1)
t ,Y (2)

t , . . . ,Y (k)
t |Ft−1) = f (Y (1)

t |Y (2)
t , . . . ,Y (k)

t ;Ft−1) (18)

× f (Y (2)
t |Y (3)

t , . . . ,Y (k)
t ;Ft−1) (19)

× f (Y k
t |Ft−1). (20)
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Then, the log likelihood function is defined by

L (θ) def=
T

∑
t=1

k

∑
j=1

log f (Y ( j)
t |Y ( j+1)

t , . . . ,Y (k)
t ;Ft−1). (21)

For instance, if Y ( j)
t |Y ( j+1)

t , . . . ,Y (k)
t ;Ft−1 follows a generalized F distribution with

parameters a( j), m( j) and η( j), the corresponding log likelihood contribution is given
by

log f (Y ( j)
t |Y ( j+1)

t , . . . ,Y (k)
t ;Ft−1) (22)

= log[Γ(m( j) +η
( j))/{Γ(m( j))Γ(η( j))}]+ loga( j)−a( j)m( j) log µ̃

( j)
t

(23)

+(a( j)m( j)−1) logY ( j)
t − (η( j) +m( j)) log

(
η

( j) +Y ( j)
t /µ̃

( j)
t

)
(24)

+η
( j) log(η( j)), (25)

where µ̃
( j)
t = µ

( j)
t /ζ (a( j),m( j),η( j)) and ζ (·) defined as above.

Constructing the likelihood based on an exponential distribution leads to the quasi
likelihood function with components

log f (Y ( j)
t |Y ( j+1)

t , . . . ,Y (k)
t ;Ft−1) =−

T

∑
t=1

(
log µ

( j)
t +Y ( j)

t /µ
( j)
t

)
,

where the score and Hessian are given by

∂ log f (Y ( j)
t |Y ( j+1)

t , . . . ,Y (k)
t ;Ft−1)

∂θ ( j) =−
T

∑
t=1

∂ µ
( j)
t

∂θ ( j)

1

µ
( j)
t

(
Y ( j)

t

µ
( j)
t

−1

)
,

∂ 2 log f (Y ( j)
t |Y ( j+1)

t , . . . ,Y (k)
t ;Ft−1)

∂θ ( j)∂θ ( j)>
=

T

∑
t=1

{
∂

∂θ ( j)>

(
1

µ
( j)
t

∂ µ
( j)
t

∂θ ( j)

)(
Y ( j)

t

µ
( j)
t

−1

)

− 1

µ
( j)
t

∂ µ
( j)
t

∂θ ( j)

∂ µ
( j)
t

∂θ ( j)>
Y ( j)

t

µ
( j)
t

2

}
.

Building on the results by Bollerslev and Wooldridge (1992) and Lee and Hansen
(1994), Engle (2000) shows the consistency and asymptotic normality of θ̂ , where
the asymptotic covariance corresponds to the Bollerslev and Wooldridge (1992) QML
covariance matrix.

Model evaluation can be straightforwardly performed by testing the dynamic and
distributional properties of the model residuals

e( j)
t

def= ε̂
( j)
t = Y ( j)

t /µ̂
( j)
t . (26)

Under correct model specification, the series e( j)
t must be i.i.d. with distribution D(·).

Portmanteau statistics such as the Ljung-Box statistic (Ljung and Box (1978)) based
on (de-meaned) MEM residuals can be used to analyze whether the specification is
able to capture the dynamic properties of the process. The distributional properties
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can be checked based on QQ-plots. Engle and Russell (1998) propose a simple test for
no excess dispersion implied by an exponential distribution using the statistic

√
n
{

(σ̂2
e( j) −1)/σ̃

( j)
}

,

where σ̂2
e( j) is the sample variance of e( j)

t and σ̃ ( j) is the standard deviation of (ε( j)
t −

1)2. Under the null hypothesis of an exponential distribution, the test statistic is asymp-
totically normally distributed with σ̂2

e( j) = 1 and
(
σ̃ ( j)

)2
=
√

8.
Alternatively, probability integral transforms can be used to evaluate the in-sample

goodness-of-fit, see, e.g., Bauwens et al. (2004). Building on the work by Rosenblatt
(1952), Diebold et al. (1998) show that

q( j)
t

def=
∫

∞

−∞

fe( j)(s)ds

must be i.i.d. U[0,1]. Alternative ways to evaluate MEMs are Lagrange Multiplier tests
as proposed by Meitz and Teräsvirta (2006), (integrated) conditional moment tests as
discussed by Hautsch (2006) or nonparametric tests as suggested by Fernandes and
Grammig (2006).

5 High-Frequency Volatility and Liquidity Dynamics

In this section, we will illustrate an application of the VMEM to jointly model re-
turn volatilities, average trade sizes, the number of trades as well as average trading
costs in intra-day trading. We use a data base extracted from the electronic trading of
the Australian Stock Exchange (ASX) which is also used by Hall and Hautsch (2006,
2007). The ASX is a continuous double auction electronic market where the contin-
uous trading period between 10:09 a.m. and 4:00 p.m. is preceded and followed by a
call auction. During continuous trading, any buy (sell) order entered that has a price
that is greater than (less than) or equal to existing queued buy (sell) orders, will execute
immediately and will result in a transaction as long as there is no more buy (sell) order
volume that has a price that is equal to or greater (less) than the entered buy (sell) order.
In case of partial execution, the remaining volume enters the limit order queues. Limit
orders are queued in the buy and sell queues according to a strict price-time priority
order and may be entered, deleted and modified without restriction. For more details
on ASX trading, see Hall and Hautsch (2007).

Here, we use data from completely reconstructed order books for the stocks of the
National Australian Bank (NAB) and BHP Billiton Limited (BHP) during the trading
period July and August 2002 covering 45 trading days. In order to reduce the impact
of opening and closure effects, we delete all observations before 10:15 a.m. and after
3:45 p.m. To reduce the complexity of the model we restrict our analysis to equi-
distant observations based on one-minute aggregates. For applications of MEMs to
irregularly spaced data, see Manganelli (2005) or Engle (2000).

Table 1 shows summary statistics for log returns, the average trade size, the number
of trades, and the average (time-weighted) trading costs. The log returns correspond
to the residuals of an MA(1) model for differences in log transaction prices. This pre-
adjustment removes the effects of the well-known bid-ask bounce causing negative
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first-order serial correlation, see Roll (1984). The trading costs are computed as the
hypothetical trading costs of an order of the size of 10,000 shares in excess to the
trading costs which would prevail if investors could trade at the mid-quote. They
are computed as a time-weighted average based on the average ask and bid volume
pending in the queues and yield natural measures of transaction costs induced by a
potentially lacking liquidity supply. Conversely, trade sizes and the number of trades
per interval indicate the liquidity demand in the market.

We observe that high-frequency log returns reveal similar stochastic properties as
daily log returns with significant overkurtosis and slight left-skewness. For the av-
erage trade size and the number of trades per interval we find a highly right-skewed
distribution with a substantial proportion of observations being zero. These observa-
tions stem from tranquil trading periods, where market orders do not necessarily occur
every minute. As illustrated below, these periods typically happen around noon caus-
ing the well-known ’lunch-time dip’. On the other hand, we also find evidence for
very active trading periods resulting in a high speed of trading and large average trade
sizes. On average, the number of trades per one-minute interval is around 2.5 and
3.5 for NAB and BHP, respectively, with average trade sizes of approximately 2,300
and 5,800 shares, respectively. The excess trading costs associated with the buy/sell
transaction of 10,000 shares are on average around 60 ASD for BHP and 188 ASD
for NAB. Hence, on average, excess trading costs for NAB are significantly higher
than for BHP which is caused by a higher average bid-ask spread and a lower liquidity
supply in the book. The Ljung-Box statistics indicate the presence of a strong serial
dependence in volatilities and all liquidity variables, and thus reveal the well-known
clustering structures in trading processes. The significant Ljung-Box statistics for log
returns are induced by the bid-ask bounce effect causing significantly negative first or-
der autocorrelation. Obviously, the MA(1) filter does not work very well in the case of
NAB data. Alternatively, one could use higher order MA-filter. The empirical autocor-
relations (ACFs) shown in Figure 1 confirm a relatively high persistence in volatilities
and liquidity variables indicated by the Ljung-Box statistics. A notable exception is
the process of trade sizes for NAB revealing only weak serial dependencies. Figure 2
displays the cross-autocorrelation functions (CACFs) between the individual variables.
It turns out that squared returns are significantly positively (cross-)autocorrelated with
the number of trades and excess trading costs, and – to less extent – with the average
trade size. This indicates strong dynamic interdependencies between volatility and
liquidity demand as well as supply. Similarly, we also observe significantly positive
CACFs between trade sizes and the speed of trading. Hence, periods of high liquidity
demand are characterized by both high trade sizes and a high trading intensity. Con-
versely, the CACFS between trading costs and trade sizes as well as between trading
costs and the trading intensity are significantly negative. Ceteris paribus this indicates
that market participants tend to exploit periods of high liquidity supply, i.e. they trade
fast and high volumes if the trading costs are low and thus liquidity supply is high.

Figure 1: Sample ACF of squared log returns (SR), trade size (TS), number of trades
(NT), and trade costs (TC)(from top to bottom) for BHP (left) and NAB (right). The
x-axis shows the lags. The broken line shows the asymptotic 95% confidence intervals.

A typical feature of high-frequency data is the strong influence of intra-day sea-
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BHP NAB
LR TS NT TC LR TS NT TC

Obs. 14520 14520 14520 14520 14503 14503 14503 14503
Mean 6.81E-7 5811.52 3.53 60.20 -3.19E-4 2295.24 2.69 188.85
S.D. 7.41E-2 8378.09 3.20 18.47 3.83E-2 7228.38 2.72 97.37
Min -0.50 0 0 2.99 -0.31 0 0 16.52
Max 0.44 250000 24 231.38 0.38 757500.50 23 1043.35
q10 -0.10 0 0 5.00 -0.04 0 0 84.48
q90 0.10 13475 8 8.80 0.04 5150 6 317.48
Kurtosis 5.23 - - - 9.85 - - -
LB20 29.61 1585.04 34907.77 22422.32 939.05 95.94 22825.72 23786.09
LB20(SR) 2073.77 - - - 2808.75 - - -

Table 1: Descriptive statistics of log returns (LR), trade sizes (TS), number of trades (NT),
and trade costs (TC) for BHP and NAB. Evaluated statistics: mean value, standard deviation
(S.D.), minimum and maximum, 10%- and 90%-quantile (q10 and q90, respectively), kurtosis,
and the Ljung-Box statistic (associated with 20 lags). LB20(SR) represents the Ljung-Box
statistic computed for the squared log returns (SR).

Figure 2: Sample CACF for BHP (top) and NAB (bottom). The solid, dash-dotted and
dashed lines show the CACF between TC and SR, TC and TS, TC and NT, respectively,
on the left side and between SR and TS, SR and NT, TS and NT, respectively, on the
right side. The dotted line shows the asymptotic 95% confidence interval. The x-axis
shows the lags.

sonalities which is well documented by a wide range of empirical studies. For detailed
illustrations, see Bauwens and Giot (2001) or Hautsch (2004). One possibility to ac-
count for intra-day seasonalities is to augment the specification of µ t by appropriate
regressors. An alternative way is to adjust for seasonalities in a first step. Though
the effect of a pre-adjustment on the final parameter estimates is controversially dis-
cussed in the literature (see e.g. Veredas et al. (2001)), most empirical studies prefer
the two-stage method since it reduces model complexity and the number of parame-
ters to be estimated in the final step. Here, we follow this proceeding and adjust the
individual variables Y (i)

t for deterministic intraday-seasonalities based on cubic spline
regressions with 30-minute nodes between 10:30 and 15:30. Figure 3 shows the re-
sulting estimated seasonality components. Confirming empirical findings from other
markets, we observe that the liquidity demand follows a distinct U-shape pattern with
a clear dip around lunch time. However, a clearly different picture is revealed for
the trading costs. Obviously, the liquidity supply is lowest during the morning and
around noon inducing high trading costs. Then, (excess) trading costs decline during
the afternoon and reach a minimum before market closure. This indicates that not only
liquidity demand but also liquidity supply is highest before the end of the trading pe-
riod. For volatility, we observe a rather typical picture with the highest volatility after
the opening of the market and (but to less extent) before closure. The high volatility at
morning is clearly associated with information processing during the first minutes of
trading.

Conceptual difficulties are caused by the relatively high number of zeros in the
liquidity demand variables which cannot be captured by a standard MEM requiring
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Figure 3: Deterministic intra-day seasonality patterns for SR, TS, NT and TC (from top
to bottom) for BHP (left) and NAB (right). The seasonality components are estimated
using cubic spline functions based on 30-minute nodes. The x-axis gives the time of
the day.

positive random variables. In order to account for zeros, we augment a Log-VMEM
by corresponding dummy variables:

log µ t = ω +A 0[(logYt)�1{Yt>0}]+A 0
0�1{Yt=0} (27)

+
p

∑
j=1

A j[g(ε t− j)�1{Yt−1>0}]+
p

∑
j=1

A 0
j �1{Yt−1=0} (28)

+
q

∑
j=1

B j log µ t− j, (29)

where 1{Yt>0}} and 1Yt=0 denote k× 1 vectors of indicator variables indicating non-
zeor and zero realizations, respectively, and A 0

j , j = 0, . . . , p, are corresponding k× k
parameter matrices.

Then, the log likelihood function is split up into two parts yielding

L (θ) =
T

∑
t=1

k

∑
j=1

log f (Y ( j)
t |Y ( j+1)

t , . . . ,Y (k)
t ;Y ( j)

t > 0,Ft−1) (30)

× logP[Y ( j)
t > 0|Y ( j+1)

t , . . . ,Y (k)
t ;Ft−1]. (31)

If both likelihood components have no common parameters, the second part can be
maximized separately based on a binary choice model including past (and contempo-
raneous) variables as regressors. Then, the first log likelihood component is associated
only with positive values and corresponds to the log likelihood given by (27).

We estimate a four-dimensional Log-VMEM for squared log returns, trade sizes,
the number of trades and transaction costs standardized by their corresponding season-
ality components. For simplicity and to keep the model tractable, we restrict our analy-
sis to a specification of the order p = q = 1. The innovation terms are chosen as g(εt) =
εt . For the process of squared returns, Y (1)

t = r2
t , we assume Y (1)

t |Y (2)
t , . . . ,Y (4)

t ,Ft−1 ∼
N(0,µ

(1)
t ). Accordingly, for Y ( j)

t , j∈{2,3,4}, we assume Y ( j)
t |Y ( j+1)

t , . . . ,Y (4)
t ,Ft−1 ∼

Exp(µ
( j)
t ). Though it is well-known that both the normal and the exponential distribu-

tion are not flexible enough to capture the distributional properties of high-frequency
trading processes, they allow for a QML estimation of the model.

Hence, the adjustments for zero variables have to be done only in the liquidity
components but not in the return component. Moreover, note that there are no zeros
in the trading cost component. Furthermore, zero variables in the trade size and the
number of trades per construction always occur simultaneously. Consequently, we can
only identify the (2,3)-element in A 0

0 and one of the two middle columns in A 0
1,

where all other parameters in A 0
0 and A 0

1 are set to zero.
For the sake of brevity we do not show the estimation results of the binary choice

component but restrict our analysis to the estimation of the MEM. Figure 2 shows the
estimation results for BHP and NAB based on a specification with fully parameterized
matrix A 1 and diagonal matrix B1.
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BHP NAB
Coeff. Coeff. Std. err. Coeff. Std. err.
ω1 -0.0673 0.0663 0.0023 0.0302
ω2 0.1921 0.0449 0.1371 0.0254
ω3 -0.4722 0.1009 -0.1226 0.0432
ω4 -0.4914 0.1066 -0.5773 0.0485
A0,12 0.0549 0.0092 0.1249 0.0056
A0,13 0.3142 0.0173 0.6070 0.0122
A0,14 0.4685 0.0489 0.7876 0.0094
A0,23 0.0673 0.0074 0.0531 0.0070
A0,24 -0.1002 0.0289 0.0176 0.0093
A0,34 -0.2181 0.0618 -0.0235 0.0123
A0

0,12 -3.8196 0.0402 -1.5086 0.0176
A1,11 0.1446 0.0080 0.0804 0.0038
A1,12 0.0043 0.0090 0.0804 0.0041
A1,13 -0.0939 0.0173 0.2036 0.0125
A1,14 0.1487 0.0602 -0.0833 0.0214
A1,21 0.0004 0.0034 -0.0002 0.0015
A1,22 0.0488 0.0049 0.0259 0.0025
A1,23 -0.0377 0.0115 -0.0116 0.0093
A1,24 -0.1911 0.0398 -0.1329 0.0226
A1,31 0.0100 0.0053 -0.0022 0.0020
A1,32 0.0095 0.0071 0.0045 0.0031
A1,33 0.1088 0.0152 0.0894 0.0109
A1,34 0.3420 0.0932 0.0341 0.0377
A1,41 0.0064 0.0113 0.0044 0.0067
A1,42 0.0091 0.0163 0.0081 0.0081
A1,43 0.0524 0.0321 0.0537 0.0249
A1,44 0.4256 0.0898 0.5105 0.0431
A0

1,21 1.1467 0.0911 -0.5181 0.0204
A0

1,22 0.1497 0.0212 0.0341 0.0134
A0

1,23 0.0946 0.0318 0.0985 0.0132
A0

1,24 -0.0006 0.0755 0.0115 0.0579
B1,11 0.4027 0.0252 0.2616 0.0078
B1,22 0.7736 0.0179 0.9109 0.0081
B1,33 0.9731 0.0074 0.9673 0.0070
B1,44 0.5369 0.1024 0.7832 0.0374
Log Likelihood -60211 -58622
BIC -60378 -58790

Table 2: Quasi-maximum likelihood estimation results of a MEM for seasonally adjusted (i)
squared (bid-ask bounce adjusted) log returns, (ii) average trade sizes, (iii) number of trades,
and (iv) average trading costs per one-minute interval. Standard errors are computed based on
the OPG covariance matrix.
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Descriptive statistics of seasonally adjusted data
BHP NAB

SR TS NT TC SR TS NT TC
Mean 1.000 1.001 1.000 1.000 1.002 1.001 1.000 0.999
S.D. 1.963 1.528 0.834 0.300 3.152 2.644 0.991 0.507
LB20 1159.456 202.001 8782.762 19210.412 800.808 124.806 3775.762 19707.831

Descriptive statistics of MEM-residuals
BHP NAB

SR TS NT TC SR TS NT TC
Mean 1.000 1.000 1.000 1.000 1.000 0.999 1.001 1.000
S.D. 1.568 1.348 0.629 0.228 2.595 2.280 0.675 0.386
LB20 63.559 61.388 519.348 1568.428 63.455 14.201 751.317 163.426

Table 3: Summary statistics of the seasonality adjusted time series and the corresponding
MEM residuals for BHP and NAB.

We can summarize the following major findings: First, we observe significant mu-
tual correlations between nearly all variables. Confirming the descriptive statistics
above, volatility is positively correlated with liquidity demand and liquidity supply.
Hence, active trading as driven by high volumes and high trading intensities is ac-
companied by high volatility. Simultaneously, as indicated by significantly negative
estimates of A 0

24 and A 0
34, these are trading periods which are characterized by low

transaction costs.
Second, as indicated by the diagonal elements in A 1 and the elements in B1, all

trading components are strongly positively autocorrelated but are not very persistent.
As also revealed by the descriptive statistics, the strongest first order serial dependence
is observed for the process of trading costs. The persistence is highest for trade sizes
and trading intensities.

Third, we find Granger causalities from liquidity variables to future volatility. High
trade sizes predict high future return volatilities. However, the impact of trading in-
tensities and trading costs on future volatility is less clear. Here, we find contradictive
results for both stocks. Conversely, we do not observe any predictability of return
volatility for future liquidity demand and supply. For both stocks all corresponding
coefficients are insignificant.

Fourth, trade sizes are significantly negatively driven by past trading intensities
and past trading costs. This finding indicates that a high speed of trading tends to
reduce trade sizes over time. Similarly, increasing trading costs deplete the incentive
for high order sizes but on the other hand increase the speed of trading. Hence, market
participants observing a low liquidity supply reduce trade sizes but trade more often.
A possible explanation for this finding is that investors tend to break up large orders
into sequences of small orders.

Fifth, (excess) transaction costs depend only on their own history but not on the
lagged volatility or liquidity demand. This indicates that liquidity supply is difficult to
predict based on the history of the trading process.

Sixth, as shown by the summary statistics of the MEM residuals, the model cap-
tures a substantial part of the serial dependence in the data. This is indicated by a sig-
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nificant reduction of the corresponding Ljung-Box statistics. Nevertheless, for some
processes, there is still significant remaining serial dependence in the residuals. This
is particularly true for the trading cost and trading intensity components for which ob-
viously higher order dynamics have to be taken into account. For the sake of brevity
we refrain from showing results of higher parameterized models. Allowing for more
dynamic and distributional flexibility further improves the goodness-of-fit, however,
makes the model less tractable and less stable for out-of-sample forecasts.

6 Conclusion

In summary, we find strong dynamic interdependencies and causalities between high-
frequency volatility, liquidity demand, and liquidity supply. In particular, the high
trade sizes are able to predict high future volatilities whereas the return volatility ap-
pears not to give rise to future liquidity demand and supply dynamic. The effects of
the trading intensities and trading costs on future volatilities could not be uniformly
concluded although these effects seem to be significant. An interesting finding is that
the high trade costs, associated with low liquidity supply, lead to a decrease of the trade
sizes and simultaneously to an increase of the trade intensities. However, the dynamic
of the trade costs seems to be mostly driven by its own history. Last but not at least we
find a higher persistence by liquidity variables than by return volatilities. Hence, these
results might serve as valuable input for trading strategies and (automated) trading
algorithms.
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