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Abstract

Common approaches to test for the economic value of directional forecasts are based on the classical

χ2–test for independence, Fisher’s exact test or the Pesaran and Timmerman (1992) test for mar-

ket timing. These tests are asymptotically valid for serially independent observations. Yet, in the

presence of serial correlation they are markedly oversized as confirmed in a simulation study. We

summarize serial correlation robust test procedures and propose a bootstrap approach. By means

of a Monte Carlo study we illustrate the relative merits of the latter. Two empirical applications

demonstrate the relevance to account for serial correlation in economic time series when testing for

the value of directional forecasts.
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1 Introduction

Forecasts are produced in numerous areas as they are important tools for decision making.

The implication of a decision based on a forecast can be evaluated by means of the (expected)

gain/loss associated with the decision. A commonly used loss function for quantitative

forecasts is the quadratic loss of the forecast error. Yet, the squared forecast error provides

only a partial assessment of economic forecasts. Diebold and Mariano (1995) point out that

in light of the variety of economic decision problems relying on forecasts, statistical loss

functions such as quadratic loss need not necessarily conform to economic loss functions.

Granger and Pesaran (2000) discuss relationships between statistical and economic measures

of forecast accuracy and stress that the choice of the evaluation measure should be related

to the objectives of the forecast user. Assessing the directional accuracy (DA) of predicted

directions may provide valuable insights into forecast evaluation. Lai (1990) emphasizes

that an investor can still gain profits even with statistically biased forecasts if they are on

the correct side of the price change more often than not. Leitch and Tanner (1995) find

that DA is highly correlated with profits in an interest rate setting. As standard measures

such as mean squared/absolute forecast error (MSFE, resp. MAFE) are less correlated with

profits, they conclude that DA is a better measure of forecast accuracy for profit maximizing

firms. Ash, Smith and Heravi (1998) note that qualitative statements such as the economy

is expanding or the economy is contracting in the near future are important pre–requisites

for an appropriate implementation of monetary and fiscal policy. Öller and Barot (2000)

point out that DA is of interest for central banks. A forecast of increased inflation (above

target) would prompt central banks to raise interest rates.

An approach to assess directional forecasts which is linked but not equivalent to the loss

functional approach is based on Merton (1981). He proposes an equilibrium theory for the

economic value of market timing skills and provides a statistic to measure the value. Cicarelli

(1982) uses the statistical measure to analyze turning point errors. Havenner and Modjtahedi

(1988), Breen, Glosten and Jagannathan (1989), Schnader and Stekler (1990), Lai (1990)

and Stekler (1994) were among the first to apply Merton’s theory to evaluate the economic

value of directional forecasts. More recent applications include, inter alia, Ash, Smith and

Heravi (1998), Mills and Pepper (1999), Öller and Barot (2000), Pons (2001), Easaw, Garratt

and Heravi (2005) and Ashiya (2003, 2006). Considering realized and forecasted directions
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as binary variables, Merton’s theory implies that directional forecasts have no value if the

directional outcomes and forecasts are independent. Henriksson and Merton (1981) propose

statistical procedures for evaluating forecasting skills that are in fact related to Fisher’s

(1934) exact test for testing whether two binary variables are independent. Similarly, the

classical asymptotic χ2–test for independence and the asymptotic test for market timing

introduced by Pesaran and Timmerman (1992, PT92 henceforth) can be used for testing the

economic value of directional forecasts. Yet, these tests are derived under the assumption

of serial independence. As we outline later, they are seriously oversized in the presence of

serially correlated forecasted resp. realized directions.

Recently, Pesaran and Timmerman (2008, PT08 henceforth) have introduced statistics

for testing dependence among serially correlated multi–category variables which can be used

to test for the economic value of directional forecasts in the more realistic situation of serial

correlation. However, their test procedures reveal some small sample size distortions in a

Monte Carlo simulation study. In this paper, we summarize and analyze the size and power

properties of a battery of tests for the economic value of directional forecasts in the presence

of serial correlation. Furthermore, we propose a bootstrap test procedure to reduce size

distortions in small samples. We show in a simulation study that the bootstrap test is

robust to serial correlation and has appealing power properties. Our approach can be put

in a more general framework, i.e. testing dependence of two binary variables in the presence

of serial correlation. Moreover, it can be easily extended to multi–categorical data.

The remainder of the paper is organized as follows. We briefly review Merton’s approach

in the next Section. In Section 3 existing test procedures and the bootstrap approach are

summarized. Section 4 documents a Monte Carlo study to analyze size and power properties

of the tests. Section 5 provides two empirical applications and Section 6 concludes.

2 Merton’s framework for evaluating directional fore-

casts

Merton (1981) proposes an equilibrium theory for the value of market timing skills. In the

context of evaluating directional forecasts for a variable of interest Yt, let realized upward

resp. downward movements in Yt be denoted by Ỹt = 1, respectively, Ỹt = 0. Forecasted
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upward resp. downward movements are denoted by X̃t = 1 resp. X̃t = 0. It is assumed that

forecasts X̃t are determined using only information up to time t− 1. A directional forecast

has no value in the sense of Merton (1981) if and only if

P[X̃t = 1|Ỹt = 1] + P[X̃t = 0|Ỹt = 0] = 1 . (2.1)

In (2.1) P[X̃t = 1|Ỹt = 1] (P[X̃t = 0|Ỹt = 0]) denote the conditional probability of a correct

forecast of an upward (downward) movement. To alleviate notation, we define HM =

P[X̃t = 1|Ỹt = 1] + P[X̃t = 0|Ỹt = 0]. For example, if X̃t and Ỹt are independent then

P[X̃t = 1|Ỹt = 1] = P[X̃t = 1] and P[X̃t = 0|Ỹt = 0] = P[X̃t = 0]. Consequently, HM = 1

and such directional forecasts have no value. In particular, naively forecasting only one

direction, say X̃t = 1 ∀t, has no value.

Moreover, Merton (1981) points out that directional forecasts have positive value if and

only if

HM > 1

and that the larger HM the larger the value. Noteworthy, it can be shown that

HM − 1 =
Cov

(
X̃t, Ỹt

)
V
[
Ỹt

] ,

where Cov(X̃t, Ỹt) = P[X̃t = 1, Ỹt = 1]−P[X̃t = 1]P[Ỹt = 1] and V[Ỹt] = P[Ỹt = 1]−P[Ỹt = 1]2

denote the covariance between X̃t and Ỹt and the variance of Ỹt, respectively. Hence, the

value of the forecasts can be assessed by means of the covariability of realized and forecasted

directions. In particular, directional forecasts have (i) no value if and only if Cov(X̃t, Ỹt) = 0

and (ii) have value if and only if Cov(X̃t, Ỹt) > 0. Moreover, (iii) for a given process Yt and

hence Ỹt (resp. V[Ỹt]), it holds that the larger Cov(X̃t, Ỹt) the larger the value.

Furthermore, maximizing Cov(X̃t, Ỹt) is not equivalent to maximizing the probability of

a correct directional forecast P[Z̃t = 1], where Z̃t = I(X̃t = Ỹt) and I(•) denotes an indicator

function. From the relationship

Cov
(
X̃t, Ỹt

)
=

1

2
P[Z̃t = 1] + P[X̃t = 1]

(
1

2
− P[Ỹt = 1]

)
+

1

2

(
P[Ỹt = 1]− 1

)
it can be seen that the correspondence between Cov(X̃t, Ỹt) and P[Z̃t = 1] is not monotone.

4



Consequently, for a given process Yt, if the probability of a correct forecast P[Z̃t = 1]

increases and the probability of an upward movement forecast P[X̃t = 1] changes, then

∆Cov
(
X̃t, Ỹt

)
=

1

2
∆P[Z̃t = 1] + ∆P[X̃t = 1]

(
1

2
− P[Ỹt = 1]

)
,

with ∆ denoting the total difference operator. Whether Cov(X̃t, Ỹt) increases depends on

the signs and magnitudes of ∆P[X̃t = 1] and 1
2
− P[Ỹt = 1].

Moreover, the loss functional approach as defined below is not equivalent to the Merton

approach. Frequently, loss functions to assess DA are defined as:

Lt =

 a if Z̃t = 1

b if Z̃t = 0,

where (a, b) 6= 0. Examples include Leitch and Tanner (1995), Greer (2005), Blaskowitz and

Herwartz (2008) where (a, b) = (1,−1) or Swanson and White (1995, 1997a,b), Gradojevic

and Yang (2006) and Diebold (2007) with (a, b) = (1, 0). Hence, a correct directional forecast

implies a loss of a (this is rather a gain if a > 0) and an incorrect directional forecast implies

a loss of b. In this case the expected DA is given by

E[Lt] = (a− b)P[Z̃t = 1] + b .

Consequently, maximizing expected DA is equivalent to maximizing the probability of a

correct directional forecast (if a > b). See Pesaran and Skouras (2002) for a link between

the HM statistic and a loss functional approach in a decision–based forecast evaluation

framework. For test procedures using loss functions in the presence of serial correlation see,

inter alia, Diebold and Mariano (1995) and West (2006).

Note that the value of directional forecasts in the sense of Merton does not take the

magnitudes of realized and forecasted changes into account. Hence, the Merton framework

is also different from the directional accuracy test proposed in Anatolyev and Gerko (2005)

and from the notion of directional forecast value considered in Blaskowitz and Herwartz

(2008).

3 Testing for zero covariance

In this section, we first summarize some classical procedures to test for zero covariance

between two categorical random variables when there is no serial dependence. Second, we
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describe tests for zero covariance in the presence of serial correlation and propose some

bootstrap procedures to account for small sample size distortions. We consider tests of the

null hypothesis

H0 : Cov
(
X̃t, Ỹt

)
= 0 .

Notably, if X̃t and Ỹt are Bernoulli variables

Cov
(
X̃t, Ỹt

)
= 0 ⇔ X̃t and Ỹt are independent .

3.1 Testing for zero covariance under serial independence

In the framework outlined above it is straightforward to use 2×2 contingency tables whenever

X̃t and Ỹt are serially independent. Testing H0 can be accomplished using the asymptotic

χ2–test for independence. For small sample sizes Fisher’s test (Fisher 1934) based on the

hypergeometric distribution is exact and the uniformly most powerful unbiased (UMPU) test

for H0 when the marginals are fixed. If the latter condition does not hold, Fisher’s test is

no longer exact in finite samples but is asymptotically equivalent to the χ2–test, see Agresti

(1992) for a survey of exact inference for contingency tables.

PT92 proposed a test based on the difference of P[Z̃t = 1] under dependence and the

probability of Z̃t = 1 under independence of Ỹt and X̃t. In the former case it holds

P[Z̃t = 1] = P[Ỹt = 1, X̃t = 1] + P[Ỹt = 0, X̃t = 0] .

If Ỹt and X̃t are independently distributed the probability of Z̃t = 1 is given by

Pindep[Z̃t = 1] = P[Ỹt = 1]P[X̃t = 1] + P[Ỹt = 0]P[X̃t = 0] .

Hence, the test proposed by PT92 is based on

PT = P[Z̃t = 1]− Pindep[Z̃t = 1] = 2Cov
(
Ỹt, X̃t

)
.

Consequently, Cov
(
X̃t, Ỹt

)
= 0 if and only if PT = 0. Under the assumption of serial

independence of Ỹt resp. X̃t and using a Hausman–type argument their proposed scaled test

statistic is asymptotically Gaussian. Moreover, this test is asymptotically equivalent to the

χ2–test when two binary variables are considered. Granger and Pesaran (2000) and Pesaran

and Skouras (2002) also derive a relationship between the HM statistic and the statistic

proposed in PT92.
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The three test procedures described above are frequently used within the context of

directional forecast evaluation. The χ2–approach is applied, inter alia, by Schnader and

Stekler (1990), Artis (1996), Kolb and Stekler (1996), Swanson and White (1997a, 1997b),

Ash, Smith and Heravi (1998), Mills and Pepper (1999), Öller and Barot (2000), Pons

(2000, 2001), Easaw, Garratt and Heravi (2005) and Greer (2003, 2005). Applications of

Fisher’s test to analyse the value of directional forecasts include, among others, Havenner

and Modjtahedi (1988), Lai (1990), Kuan and Liu (1995), Swanson and White (1995, 1997a,

1997b), Gençay (1998), Ash, Smith and Heravi (1998), Joutz and Stekler (1998, 2000),

Easaw, Garratt and Heravi (2005) and Ashiya (2003, 2006). The test statistic proposed by

PT92 is used, for example, by Pesaran and Timmerman (1995), Kuan and Liu (1995), Ash,

Smith and Heravi (1998), Gençay (1998), Mills and Pepper (1999), Pons (2001), Schneider

and Spitzer (2004) and Easaw, Garratt and Heravi (2005).

Another approach to test for zero covariance, which is useful when considering serial

correlation over time, is given by the bivariate regression model

X̃t = α + βỸt + εt , (3.1)

where εt is a discrete zero mean random error. Note that for the population coefficient it

holds β = Cov
(
X̃t, Ỹt

)
/V[Ỹt]. Hence, testing H0 amounts to standard significance tests

for β in a linear regression model. Note, that we regard the regression model merely as a

tool for testing purposes only. In our context the model in (3.1) does not have a ’causal’

or ’economic’ interpretation in the usual sense. Hence, it is also conceivable to regress Ỹt

on X̃t. These two approaches are asymptotically equivalent under the null hypothesis and

differ only in terms of power (Anatolyev, 2006).

Moreover, consider the logistic regression model

X̃t =
exp

(
α + βỸt

)
1 + exp

(
α + βỸt

) + εt ,

where εt is a discrete zero mean disturbance term. In this model with two binary variables

it can be shown that

Cov
(
X̃t, Ỹt

)
V
[
Ỹt

] =
(
eβ − 1

)
P[X̃t = 1|Ỹt = 0]P[X̃t = 0|Ỹt = 1]
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(Cox and Hinkley, 1974). Again, it follows that Cov
(
X̃t, Ỹt

)
= 0 if and only if β = 0.

Standard maximum likelihood estimation and likelihood ratio (LR) tests can be applied.

The small sample distribution of the LR statistic is generally unknown but for Bernoulli

variables X̃t and Ỹt the small sample LR test for β = 0 corresponds to Fisher’s exact test

(Cumby and Modest, 1987).

3.2 Testing for zero covariance in the presence of serial correlation

When there is serial dependence, the tests described above are no longer suitable. Bartlett

(1951) and Patankar (1954) were among the first to show that for (Markov) dependent data

the usual Pearson statistic for testing goodness of fit need not have common asymptotic

χ2–distribution. Within the framework of 2 × 2 contingency tables, Altham (1979) reports

an inflated χ2–statistic, X2
I,T , when analyzing relationships between categorical variables

observed over time and provides upper and lower bounds for the appropriate test statistic.

Tavaré and Altham (1983) show that the classical χ2 test statistic for independence is either

inflated or deflated if X̃t resp. Ỹt are two–state Markov chains. For a general r × c contin-

gency table Holt, Scott and Ewings (1980) and Tavaré (1983) establish that the asymptotic

distribution of X2
I,T depends on unknown nuisance parameters under the null hypothesis if

(in this case the multi–categorical variables) X̃t resp. Ỹt are arbitrary (but positive recurrent)

Markov chains. Noteworthy, Tavaré (1983) also demonstrates that X2
I,T is still asymptoti-

cally distributed as χ2 with (r − 1)(c − 1) degrees of freedom when one process, say X̃t, is

serially independent. Yet, if Ỹt are directions of a serially correlated economic time series and

X̃t are reasonable directional forecasts of Ỹt then both processes most likely exhibit serial

correlation.

Furthermore, PT08 show in a simulation experiment that the test for market timing

proposed in PT92 is seriously oversized in the presence of serial dependence. Finally, it is

well known that coefficient tests in a regression model are size distorted if serial correlation

is not taken into account. In the sequel we sketch some testing procedures that account for

the more general situation of linear dependence over time.
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3.2.1 Covariance test

The first robust approach is based on a classical covariance estimator and an estimator of

its variance which accounts for serial correlation. Let pỸ = P[Ỹt = 1] resp. pX̃ = P[X̃t = 1]

be constant over time, and decompose

Ỹt = pỸ + εỸ
t resp. X̃t = pX̃ + εX̃

t ,

where εỸ
t resp. εX̃

t are binary zero mean random errors which may be serially correlated.

Consequently, the null hypothesis that Cov(Ỹt, X̃t) = 0 is equivalent to E[εỸ
t εX̃

t ] = 0. Under

suitable assumptions (e.g. stationarity and weak dependence of {εỸ
t εX̃

t }T
t=1) a central limit

theorem for 1
T

∑T
t=1 εỸ

t εX̃
t holds (Lütkepohl, 2006):

√
T

(
1

T

T∑
t=1

εỸ
t εX̃

t − E
[
εỸ

t εX̃
t

])
D−→

T→∞
N (0, S) ,

where S =
∑∞

j=−∞Cov
(
εỸ

t εX̃
t , εỸ

t−jε
X̃
t−j

)
denotes the approximate asymptotic variance of∑T

t=1 εỸ
t εX̃

t /T . With the consistent estimators p̂Ỹ = 1
T

∑T
t=1 Ỹt and p̂X̃ = 1

T

∑T
t=1 X̃t, the

unobserved random errors can be estimated consistently by ε̂Ỹ
t = Ỹt− p̂Ỹ resp. ε̂X̃

t = X̃t− p̂X̃ .

Hence, letting εỸ εX̃ = 1
T

∑T
t=1 ε̂Ỹ

t ε̂X̃
t = Ĉov

(
Ỹt, X̃t

)
it can be concluded that

CovNWT =
√

T

(
εỸ εX̃ − E

[
εỸ

t εX̃
t

])
√

ŜNW
T

D−→
T→∞

N(0, 1) . (3.2)

In (3.2), ŜNW
T is the heteroscedasticity and autocorrelation consistent variance estimator

(Newey and West, 1987) for Ĉov
(
Ỹt, X̃t

)
ŜNW

T = V̂

[
√

T

T∑
t=1

εỸ
t εX̃

t

]
= Ĉov

(
εỸ

t εX̃
t , εỸ

t εX̃
t

)
+ 2

Q∑
q=1

ω(q, Q)Ĉov
(
εỸ

t εX̃
t , εỸ

t+qε
X̃
t+q

)
(3.3)

Ĉov
(
εỸ

t εX̃
t , εỸ

t+qε
X̃
t+q

)
=

1

T

T−q∑
t=1

(
ε̂Ỹ

t ε̂X̃
t − εỸ εX̃

)(
ε̂Ỹ

t+qε̂
X̃
t+q − εỸ εX̃

)
,

and the weighting function is defined as ω(q, Q) = (1− q
Q+1

). The truncation lag Q can be

chosen according to the integer part of 4(T/100)2/9 (Newey and West, 1994).

Note that under H0 the squared statistic in (3.2) is equal to the Wald statistic discussed in

Holt, Scott and Ewings (1980) or Rao and Scott (1981). The asymptotic covariance matrix of

estimated cell proportions is determined by means of the Newey–West approach. We prefer

the representation in (3.2) as it allows to test one–sided hypotheses which is particularly

useful within the context of directional forecast evaluation.
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3.2.2 Static/dynamic regression approach

A test of H0 which accounts for serial correlation can also be accomplished in the linear

regression model. First, consider the static regression model given in (3.1) where the distur-

bance term εt is allowed to be serially correlated. Then, the Newey–West corrected t–statistic

for the OLS estimator β̂OLS
T is approximately Gaussian

β̂OLS
T − β√

V̂NW
T [β̂OLS

T ]

.
≈ N(0, 1)

(see Breen, Glosten and Jagannathan (1989) for an application).

Another possibility to allow for serial correlation is to dynamically augment model (3.1)

with lagged dependent and explanatory variables X̃t resp. Ỹt, i.e.:

X̃t = γ + βỸt −
m∑

j=1

δjỸt−j +
m∑

j=1

ρjX̃t−j + ut . (3.4)

Testing H0 in (3.4) amounts to a test of β = 0 after correcting for the effects of lagged

dependent and explanatory variables. The number of lags m can be chosen according to

some information criterion such as the Akaike Information Criterion (AIC). To account for

remaining residual autocorrelation the Newey–West corrected t–statistic for β̂OLS
T can be

computed (as in PT08). It is again approximately Gaussian. The truncation lag Q is chosen

according to the integer part of 4(T/100)2/9. The tests based on (3.1) and (3.4) are called

StatNW resp. DynNW.

3.2.3 Pesaran and Timmerman (2008) test

PT08 propose a more general approach for multicategory variables. Reinterpreting (3.4) as

a reduced rank regression, they propose test statistics based on canonical correlations. For

the time points t = 1, ..., T and m initial values for X̃t resp. Ỹt model (3.4) can be rewritten

as

X̃ = Ỹ β + WB + U ,

with

X̃
T×1

=


X̃1

...

X̃T

 , Ỹ
T×1

=


Ỹ1

...

ỸT

 , U
T×1

=


u1

...

uT

 , B
(2m+1)×1

= (γ, δ1, ..., δm, ρ1, ..., ρm)′ ,
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W
T×(2m+1)

=


1 Ỹ0 Ỹ−1 ... Ỹ−m+1 X̃0 X̃−1 ... X̃−m+1

...
...

1 ỸT−1 ỸT−2 ... ỸT−m X̃T−1 X̃T−2 ... X̃T−m

 .

PT08 show that under the null hypothesis

(T − 2)S
.
≈ χ2

(1) ,

where

S = S−1
XXS ′Y XS−1

Y Y SY X , SY Y = 1
T
Ỹ ′MỸ , SY X = 1

T
Ỹ ′MX̃

SXX = 1
T
X̃ ′MX̃, M = IT −W (W ′W )−1 W ′, Ỹ = (Ỹ1, ..., ỸT )′ .

In the binary case S is a scalar random variable. Generally, S is a (cx − 1) × (cx − 1)–

matrix, with cx being the number of X̃t–categories. For finite samples PT08 simulate critical

values under H0 using multinomial sampling. They consider a static and a dynamic version

in full analogy to the regression based testing outlined before.

3.2.4 Bootstrap approach

We implement the bootstrap procedure for the covariance test in Section 3.2.1 as it allows

both one– and two–sided alternative hypotheses. Moreover, the adaptation to general r × c

contingency tables is possible. The block bootstrap is nowadays commonly accepted as an

appropriate bootstrap method if an analyst wants to avoid to impose parametric restrictions

on the structure of the data generating process. Künsch (1989), Lahiri (1991), Liu and

Singh (1992), Politis and Romano (1992) were among the first to consider the bootstrap for

time series. They show that the block bootstrap for time series is a suitable tool to obtain

asymptotically valid procedures to approximate distributions of a large class of statistics and

weakly dependent data generating processes. Radulovic (1996) proves that consistency of

the block bootstrap for the mean usually holds when the statistic is asymptotically normal

for a strongly mixing stationary sequence. Götze and Künsch (1996) and Lahiri (1996) cover

the asymptotic refinements over the classical normal approximation of the error in rejection

probability (ERP) of one–sided tests. Results for two–sided tests are given by Hall and

Horowitz (1996), Andrews (2002) and Inoue and Shintani (2006). They demonstrate that the
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block bootstrap is more accurate than the normal approximation in terms of ERP for two–

sided tests if properly implemented. Various blocking procedures have been proposed. The

non–overlapping (NBB) resp. overlapping moving block bootstrap (MBB) were considered

by Hall (1985), Carlstein (1986) and Kuensch (1989). Politis and Romano (1992, 1994)

introduced the circular block bootstrap (CBB) and the stationary bootstrap (SB). Lahiri

(1999) concludes that for estimating the distribution of a studentized statistic the MBB

and CBB procedures are more efficient than NBB and SB versions in terms of MSE. The

bootstrap sample mean has an expectation equal to the sample mean of the observed series

under the CBB which is not the case for the MBB scheme. Hence, for the CBB centering

the bootstrap distribution to establish a zero mean distribution is accomplished in the usual

way.

To perform a two–sided test of H0 : Cov
(
Ỹt, X̃t

)
= 0 we investigate two bootstrap

approaches for the studentized statistic

STT =

√
T
(

1
T

∑T
t=1 εỸ

t εX̃
t − E

[
εỸ

t εX̃
t

])
√

V̂
[

1√
T

∑T
t=1 εỸ

t εX̃
t

] ,

where V̂
[

1√
T

∑T
t=1 εỸ

t εX̃
t

]
, as given in (3.3), is a consistent estimator of the long run variance

of the sample mean of εỸ
t εX̃

t . Below we point out that care has to be taken with respect to the

choice of the weighting function and the truncation lag. Note that for ease of exposition we

do not distinguish between εỸ
t , εX̃

t and ε̂Ỹ
t , ε̂X̃

t . First, consider the observed series {εỸ
t εX̃

t }T
t=1.

The circular block bootstrap (CBB) exploits T overlapping blocks of length B given by

BỸ X̃
t = (εỸ

t εX̃
t , ..., εỸ

t+B−1ε
X̃
t+B−1), t = 1, ..., T .

Observations εỸ
t εX̃

t for r > T are wrapped around in a circle, i.e. εỸ
T+bε

X̃
T+b = εỸ

b εX̃
b for

1 ≤ b ≤ B. Let the integer part of T/B, [T/B], be the number of blocks K which are

drawn randomly with replacement from the set of blocks BỸ X̃
t . Each of the drawn blocks,

k = 1, ..., K, is denoted by ξỸ X̃
k = (ξỸ X̃

k,1 , ..., ξỸ X̃
k,B ). Concatenating all ξỸ X̃

k,b in a vector defines

the bootstrap sample V ∗
1 , ..., V ∗

L . Thus the length of the bootstrap sample is L = KB ≤ T ,

and the bootstrap sample average is

V̄ ∗
L =

1

L

L∑
t=1

V ∗
t =

1

K

K∑
k=1

(
1

b

B∑
b=1

ξỸ X̃
k,b

)
.
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Under CBB sampling (which implies a measure P ∗
CBB1) it can be shown that

E∗CBB1

[
V̄ ∗

L

]
=

1

T

T∑
t=1

εỸ
t εX̃

t ,

where E∗CBB1 is the expectation under P ∗
CBB1. Davison and Hall (1993) demonstrate that the

block bootstrap for studentized statistics provides an improvement in asymptotic accuracy

when applied properly. In particular, the naive studentization based on plugging in the

bootstrapped sample into the formula for the long run variance estimator V̂ [•], i.e.

√
L
(
V̄ ∗

L − E∗CBB1

[
V̄ ∗

L

])√
V̂
[√

LV̄ ∗
L

] ,

yields a bootstrap approximation which maybe less accurate than the classical normal ap-

proximation. For ERPs of one–sided tests asymptotic refinements are obtained when stu-

dentization is accomplished by means of the variance of the rescaled bootstrap average under

P ∗
CBB1 (Lahiri, 1991 and 1996, Götze and Künsch, 1996). This is given by

V∗CBB1

[√
LV̄ ∗

L

]
=

B

T

T∑
t=1

[(
1

B

B∑
b=1

εỸ
b+t−1ε

X̃
b+t−1

)
− E∗CBB1

[
V̄ ∗

L

]]2

.

For two–sided tests the studentization by means of V∗CBB1

[√
LV̄ ∗

L

]
does not yield a superior

performance over the normal approximation. Lahiri (1992) and Hall and Horowitz (1996)

introduce correction factors to obtain refinements for both one– and two–sided symmetric

tests. In particular, they define the bootstrap statistic as

ST ∗T,CBB1 =

√
L
(
V̄ ∗

L − E∗CBB1

[
V̄ ∗

L

])√
V̂
[√

LV̄ ∗
L

]
√√√√√VCBB1

[
1√
L

∑L
t=1 εỸ

t εX̃
t

]
V∗CBB1

[√
LV̄ ∗

L

] , (3.5)

where VCBB1

[
1√
L

∑L
t=1 εỸ

t εX̃
t

]
is the bootstrap analog of V

[
1√
T

∑T
t=1 εỸ

t εX̃
t

]
. Hence, the

former is given by (3.3) with a weighting function ω(q, Q) = 1 and truncation lag Q = T −1.

Next, a bootstrap procedure explicitly accounting for the independence of εỸ
t and εX̃

t

under the null hypothesis is outlined. We randomly resample with replacement K circular

blocks of εX̃
t

BX̃
t = (εX̃

t , ..., εX̃
t+B−1), t = 1, ..., L .
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Concatenating the resampled blocks ξX̃
k = (ξX̃

k,1, ..., ξ
X̃
k,B) in a vector, the bootstrap sample

average is given by

V̄ ∗
L =

1

K

K∑
k=1

(
1

B

B∑
b=1

εỸ
B(k−1)+bξ

X̃
k,b

)
.

This resampling approach implies

E∗CBB2

[
V̄ ∗

L

]
= εỸ

L εX̃
L

V∗CBB2

[√
LV̄ ∗

L

]
=

L

K2

K∑
k=1

 1

L

L∑
t=1

[(
1

B

B∑
b=1

εỸ
B(k−1)+bε

X̃
b+t−1

)
− εX̃

L SỸ
k

]2
 ,

where εỸ
L = (1/L)

∑L
t=1 εỸ

t , εX̃
L = (1/L)

∑L
t=1 εX̃

t and SỸ
k = (1/B)

∑B
b=1 εỸ

B(k−1)+b. Accord-

ingly, the bootstrap statistic is

ST ∗T,CBB2 =

√
L
(
V̄ ∗

L − E∗CBB2

[
V̄ ∗

L

])√
V̂
[√

LV̄ ∗
L

]
√√√√√VCBB2

[
1√
T

∑T
t=1 εỸ

t εX̃
t

]
V∗CBB2

[√
LV̄ ∗

L

] . (3.6)

Note that for this bootstrap scheme the bootstrap analog to V
[

1√
T

∑T
t=1 εỸ

t εX̃
t

]
is given by

VCBB2

[
1√
L

L∑
t=1

εỸ
t εX̃

t

]
= Ĉov

(
εỸ

t , εỸ
t

)
Ĉov

(
εX̃

t , εX̃
t

)
+2

T−1∑
q=1

Ĉov
(
εỸ

t , εỸ
t+q

)
Ĉov

(
εX̃

t , εX̃
t+q

)
−L

(
εỸ

L εX̃
L

)2

,

which explicitly accounts for the independence of εỸ
t and εX̃

t .

3.2.5 Implementation of the bootstrap approach

The choice of the kernel function ω(q, Q) is crucial for the bootstrap to provide better

approximations than the classical normal approximation. For one–sided tests, Götze and

Künsch (1996) show that for all kernels but the Bartlett kernel improvements in ERP’s

can be obtained when B = Q = O(T 1/4). Moreover, they point out that their results

also hold for other choices of B ≤ Q. Hall and Horowitz (1996) and Andrews (2002)

consider approximation errors for two–sided symmetric tests when the truncated kernel is

used. Inoue and Shintani (2006) extend these results to show that for kernels such as

the truncated, trapezoidal or Parzen kernel the bootstrap yields refinements for two–sided
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symmetric tests when B = Q = O(T 1/3). They also point out that their results hold if block

sizes B are proportional to the truncation parameter Q. Otherwise the rate of the bootstrap

approximation error is determined by the faster rate of B and Q. Hence, in our analysis we

choose the truncated kernel and set B = Q. The choice of the truncated kernel does not

guarantee that the variance estimator is positive. Yet, for positively persistent time series

this problem is not as crucial as compared to data exhibiting negative serial correlation.

In order to implement a block bootstrap the block length parameter B has to be specified.

Various approaches to determine optimal block sizes have been proposed. Hall, Horowitz and

Jing (1995) derive optimal block sizes based on an asymptotic mean squared error criterion

for bias/variance estimation or one– and two–sided distribution estimation. They show

that optimal block lengths are O(T 1/3), O(T 1/4) and O(T 1/5), respectively. Zvingelis (2001)

determines an asymptotically optimal block length minimizing the asymptotic ERP of one–

and two–sided tests. He concludes that the optimal block sizes are O(T 1/4) and O(T 1/3),

respectively. The constants of proportionality depend on, e.g., the autocovariance function

of the DGP. Politis and White (2004) derive for the CBB scheme an explicit expression of

the optimal block length Bopt for an AR(1)–process when interest focuses on bias/variance

or distribution function estimation. They show that the optimal block size increases with

the autocorrelation coefficient.

Relying on the result of Zvingelis (2001) an adaptation of the data based block length

selection procedure of Hall, Horowitz and Jing (1995) targeting the empirical ERP criterion

is straightforward. In particular, we compute the empirical ERP of the bootstrap test for

all subsamples of length T̃ < T and a grid of selected block lengths. Given the block length

BT̃ , for which the empirical ERP is closest to the nominal significance level, the estimated

optimal block length for a sample of size T is then obtained from B̂opt = (T/T̃ )1/3BT̃ for a

two–sided test.

4 Simulation results

In order to shed light on the small sample properties of the test procedures presented above,

we carry out a simulation study. We document the MC design and describe the size and

size–adjusted power results, in turn.
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4.1 Design

To simulate Bernoulli serially correlated random variables, we consider the stationary 2–

dimensional VAR(1) process Z1t

Z2t

 =

 φ11 0

0 φ22

 Z1t−1

Z2t−1

+

 ε1t

ε2t

 ,

with |φii| < 1, i = 1, 2, and ε1t

ε2t

 ∼ NID

0,

 σ2
1 σ12

σ12 σ2
2

 .

Defining σ2
i = (1 − φ2

ii), i = 1, 2, σ12 = ρ(1 − φ11φ22) and φ11 = φ22, the univari-

ate processes, Z1t and Z2t, have unit variance V[Zit] = 1, i = 1, 2 and serial correlation

Corr(Zit, Zit−j) = φj
ii, i = 1, 2. Moreover, the contemporaneous cross covariance/correlation

is given by Cov(Z1t, Z2t) = Corr(Z1t, Z2t) = ρ. Hence, cross sectional dependence and serial

correlation are specified by selection of |ρ| < 1 and φ11, respectively. Finally, let

X̃t = 1 (Z1t > 0) and Ỹt = 1 (Z2t > 0) .

For cross sectional independence (ρ = 0.0) and medium and strong cross sectional depen-

dence (ρ = 0.5 and ρ = 0.8) we simulate 5000 Monte Carlo replications of the process with

no, medium and strong serial dependence (φ11 ∈ {0.0, 0.5, 0.8}). We consider samples of

size T ∈ {20, 50, 100, 500, 1000}. For each Monte Carlo replication we use 100 initializing

presample values. The Fisher test is implemented as described in Henrikkson and Merton

(1981). For the dynamic regression approach a maximum lag of 4 is allowed when choosing

the lag order by means of the AIC. The truncation lag in the Newey–West estimation pro-

cedure is given by the integer part of 4(T/100)2/9. Finally, for the bootstrap approach we

choose B, naively, as the nearest integer to T 1/3.

In our simulations a naive choice of the block size leads to rejection frequencies smaller

than the nominal level of 5% for T ≥ 100. Thus, for T ≥ 100 we also choose the block

length using the data based selection approach of Hall, Horowitz and Jing (1995). More

precisely, for T = 100 the subsample length and the grid of block lengths are T̃ = 30 and

Bgrid = {3, 4, ..., 7}. For T = 500, 1000 we set T̃ = 100 and Bgrid = {3, 4, ..., 15}.
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4.2 Rejection frequencies under H0

First, we describe the results for the case of cross sectional independence (ρ = 0) and no

serial correlation (φ11 = 0). The nominal significance level is 5%. Notably, results for

other nominal levels are qualitatively identical. From the upper panel of Table 2 it can be

inferred that the classical χ2, the PT92, the PT08 and the bootstrap test perform very well

and have empirical rejection frequencies very close to the nominal 5% level for all sample

sizes considered. Fisher’s test is seriously oversized in small and medium sample sizes but

rejection rates converge to the nominal level as T increases. The small sample size distortion

is possibly due to the fact that the simulation design does not guarantee fixed row and column

marginals. The CovNW, StatNW and DynNW test procedures are also markedly oversized

in small samples but approach empirical rejection frequencies close to 5% for increasing T .

Accounting for serial correlation when there is none, does not pay off in small samples.

Yet, it is not surprising that correctly assuming serial independence leads to an improved

performance.

The medium panel of Table 2 displays empirical rejection frequencies under moderate

serial correlation (φ11 = 0.5). It reveals some size distortions for all but the bootstrap

test. The χ2 and the PT92 tests share similar rejection frequencies between 7% and 8%

for all sample sizes considered. Fisher’s test is seriously oversized in small samples with

a rejection frequency of ≈ 8.5%. Among the three test procedures relying on the Newey–

West variance estimator, the CovNW approach uncovers smallest size distortions for small

samples. Empirical rejection frequencies of robust tests converge to the nominal level of 5%

for all of these tests. Using the PT08 test H0 is oversized in small samples but for medium

and large samples the test has the correct rejection rate.

Introducing strong serial correlation (φ11 = 0.8), the lower panel of Table 2 indicates that

size distortions are severe for those tests which do not account for serial correlation. The

χ2, Fisher and PT92 tests are massively oversized for all sample sizes considered. Relative

rejection frequencies appear to converge to ≈ 20%. The rejection frequency of the CovNW,

StatNW and DynNW approaches is far too high in small samples but stabilizes ≈ 7%. The

PT08 test is for small samples oversized (>10%) but as T ≥ 100 it has appropriate rejection

frequency. Among all tests considered the bootstrap approach performs best. It reveals (if

any) small size distortions with empirical rejection frequencies close to the nominal level. For
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T ≥ 100 the simulations for the alternative block length selection reveal a robust performance

with rejection frequencies around 5%.

In summary, the bootstrap approach turns out to offer a remarkably robust performance.

Its implied empirical size is close to the nominal level under serial independence and in the

presence of serial correlation for all sample sizes considered. The PT08 approach is robust to

serial dependence for medium and large sample sizes but reveals size distortions if T < 100.

4.3 Size–adjusted power

Table 2 documents the size–adjusted power results for selected scenarios of serial correlation

(φ11 = 0.0, 0.5, 0.8) when the cross correlation is ρ = 0.5 resp. ρ = 0.8. Some general

conclusions can be drawn for all tests considered. The power decreases with increasing

serial correlation. In the presence of serial dependence concordant observations of X̃t and

Ỹt are more likely. Hence, it is more difficult to isolate the effects of cross sectional and

serial dependence. Furthermore and most reasonably, size–adjusted power increases with

increasing cross correlation.

While for sample sizes larger than 100 the power performance is very similar across the

various test procedures, there are some differences for smaller sample sizes. For T = 20, 50

the χ2, Fisher’s, the PT92 and the PT08 test are somewhat more powerful than the CovNW,

StatNW, DynNW and the bootstrap test. For example, while the former tests have a power

close to 80% the latter reject slightly less frequently in less than 75% of the cases when

ρ = 0.8, φ11 = 0.8 and T = 50. The power of the bootstrap test is despite its non–parametric

nature very appealing. It is close to the power of the remaining tests. For example, when

ρ = 0.8, φ11 = 0.8 and T = 50, the rejection rate of the bootstrap approach is 60%.
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φ11 = 0.0

T χ2 FE PT Cov Stat Dyn PT CBB2

92 NW NW NW 08

20 0.055 0.172 0.063 0.120 0.111 0.122 0.067 0.057

50 0.054 0.103 0.055 0.079 0.075 0.075 0.049 0.055

100 0.052 0.082 0.053 0.063 0.061 0.061 0.049 0.050

500 0.056 0.067 0.056 0.058 0.057 0.057 0.054 0.049

1000 0.050 0.059 0.050 0.054 0.054 0.054 0.051 0.045

φ11 = 0.5

T χ2 FE PT Cov Stat Dyn PT CBB2

92 NW NW NW 08

20 0.081 0.246 0.090 0.135 0.150 0.161 0.091 0.064

50 0.085 0.148 0.088 0.098 0.094 0.093 0.074 0.048

100 0.081 0.117 0.082 0.072 0.071 0.067 0.057 0.049

500 0.086 0.102 0.086 0.063 0.063 0.054 0.053 0.052

1000 0.087 0.097 0.088 0.062 0.061 0.053 0.053 0.053

φ11 = 0.8

T χ2 FE PT Cov Stat Dyn PT CBB2

92 NW NW NW 08

20 0.155 0.507 0.163 0.161 0.263 0.226 0.141 0.060

50 0.198 0.301 0.204 0.152 0.168 0.099 0.092 0.043

100 0.219 0.276 0.220 0.129 0.131 0.068 0.056 0.051

500 0.239 0.262 0.240 0.097 0.097 0.051 0.049 0.053

1000 0.242 0.257 0.242 0.094 0.094 0.051 0.053 0.045

Table 1. Empirical rejection frequencies under H0 (ρ = 0.0) and nominal significance

level 5%. Different serial correlation parameters φ11 ∈ {0.0, 0.5, 0.8} and sample sizes T ∈
{20, 50, 100, 500, 1000} are considered. χ2 and FE denote the χ2– and Fisher’s exact test,

respectively. Moreover, CovNW, StatNW, DynNW denote the covariance test and the tests

based on the static and dynamic regression approaches using the Newey–West variance

estimator. Corresponding naively chosen block sizes are 3, 4, 5, 8, 10 when ρ = 0.0. When

ρ = 0.5, 0.8 block sizes are 3 and 4 for T = 20 and T = 50. For T ≥ 100 block sizes are

determined by means of the approach proposed by Hall, Horowitz and Jing (1995). Bold

figures are not within the 95% confidence interval given by [α ± 2
√

α(1− α)/5000], where

α = 0.05.
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ρ = 0.5, φ11 = 0.0

T χ2 FE PT Cov Stat Dyn PT CBB2

92 NW NW NW 08

20 0.296 0.268 0.296 0.265 0.259 0.239 0.270 0.167

50 0.681 0.675 0.681 0.638 0.637 0.633 0.674 0.439

100 0.931 0.931 0.931 0.925 0.926 0.925 0.931 0.844

500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ρ = 0.8, φ11 = 0.0

T χ2 FE PT Cov Stat Dyn PT CBB2

92 NW NW NW 08

20 0.775 0.742 0.775 0.703 0.699 0.663 0.740 0.443

50 0.995 0.995 0.995 0.989 0.990 0.990 0.995 0.931

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999

500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ρ = 0.5, φ11 = 0.5

T χ2 FE PT Cov Stat Dyn PT CBB2

92 NW NW NW 08

20 0.233 - 0.236 0.192 0.177 0.176 0.192 0.134

50 0.558 0.552 0.560 0.523 0.520 0.504 0.535 0.400

100 0.857 0.858 0.857 0.848 0.851 0.835 0.853 0.708

500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ρ = 0.8, φ11 = 0.5

T χ2 FE PT Cov Stat Dyn PT CBB2

92 NW NW NW 08

20 0.671 - 0.673 0.537 0.540 0.524 0.604 0.317

50 0.978 0.977 0.978 0.968 0.969 0.963 0.975 0.891

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995

500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ρ = 0.5, φ11 = 0.8

T χ2 FE PT Cov Stat Dyn PT CBB2

92 NW NW NW 08

20 0.158 - 0.155 0.127 - - 0.144 0.081

50 0.303 - 0.316 0.282 0.282 0.247 0.301 0.233

100 0.570 0.577 0.572 0.545 0.550 0.519 0.568 0.429

500 0.996 0.998 0.996 0.997 0.997 0.998 0.999 0.991

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ρ = 0.8, φ11 = 0.8

T χ2 FE PT Cov Stat Dyn PT CBB2

92 NW NW NW 08

20 0.453 - 0.449 0.339 - - 0.412 0.160

50 0.818 - 0.827 0.734 0.766 0.699 0.796 0.628

100 0.979 0.980 0.980 0.970 0.976 0.968 0.981 0.909

500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 2. Size–adjusted power. Different cross sectional correlation parameters ρ ∈
{0.5, 0.8}, serial correlation parameters φ11 ∈ {0.0, 0.5, 0.8} and sample sizes T ∈
{20, 50, 100, 500, 1000} are considered. Note, no size–adjusted power is reported for Fisher’s,

the StatNW and the DynNW test in some cases. Due to the discreteness of the data it

happens that at a nominal significance level of 0.1% the empirical size is 8% or larger. For

further notes see Table .
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5 Empirical applications

To illustrate the application of the test procedures and highlight the importance of accounting

for serial correlation in applied work, we consider two empirical examples.

5.1 A large sample case

We apply the χ2, Fisher’s, the PT92, the PT08 and the bootstrap test to analyze direc-

tional forecasts for selected EURIBOR swap rates. Blaskowitz and Herwartz (2008) consider

h = 1, 5, 10, 15 days ahead ex–ante forecast for the EURIBOR swap term structure. Based

on a battery of factor models they adaptively combine models to produce 1778 daily fore-

casts for the 2yr swap rate from April 19th, 2000, till mid February / beginning of March

2007 (depending on the forecast horizon h). We consider forecasts obtained from the most

preferable Median strategy.

For comparison purposes some benchmark models are also considered. Namely, an AR(1)

model and a variant of the term structure model proposed by Diebold and Li (2006) are fitted

by means of rolling windows of 42 daily observations (see Blaskowitz and Herwartz, 2008)

for details. The benchmark strategies are denoted by AR resp. DL.

Table 3 illustrates the extent of serial correlation present in realized and forecasted direc-

tions (up–/downward movements) of the 2yr EURIBOR swap rate. Apart from the realized

directions of the 2yr swap rate for one day ahead forecasts, all remaining series are highly

and significantly serially correlated. Moreover, the higher the horizon, the stronger the se-

rial dependence. For forecast horizons h = 5, 10, 15 first order correlations for outcomes in

directions are high, about 0.6, 0.7, 0.8, respectively. Correlations decrease to less than 0.1

at lag 20. For forecasted directions, first order correlations are between 0.75 and 0.93 for

h = 5, 10, 15 and remain high (above ≈ 0.4) at all lags considered. This evidence suggests

that commonly applied procedures to test for the value of directional forecasts in the sense

of Merton (1981) are inadequate for all but the one day ahead forecasts of the 2yr swap rate.

To analyze the value of EURIBOR swap rate forecasts, Table 4 shows empirical esti-

mates of covariances and HM statistics for various forecast exercises. It can be seen that the

forecasts of all models have positive value. Moreover, Table 4 provides the results for testing

H0 : Cov(Ỹt, X̃t) = 0 against H1 : Cov(Ỹt, X̃t) 6= 0 for various significance levels α ≤ 0.20.

Using traditional test procedures the null of no value is rejected at a 1% significance level for
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all forecast exercises except for h = 1 AR and DL forecasts. For the latter, H0 is rejected at

nominal levels between 11% and 15%. Conclusions drawn from the serial correlation robust

test procedures are different in some cases. The discrepancy becomes more apparent the

larger the serial correlation. Test decisions for h = 1 generally agree for all procedures.

Yet, striking differences in significance are obtained for the 5 day ahead forecasts for the

DL model as well as for the 10 day ahead forecasts for the Median strategy and the DL

model. Note, for the bootstrap test we used a the data based block length selection method

of Hall, Horowitz and Jing (1995) as described in Section 3.2.4. Using a naive block choice

B = [17781/3] = 12 does not change the conclusions.

h = 1 h = 5 h = 10 h = 15 h = 1 h = 5 h = 10 h = 15

Realized Directions MedStrat

1 -0.040 0.605 0.749 0.802 0.365 0.782 0.896 0.931

5 0.015 0.070 0.393 0.524 0.323 0.741 0.841 0.868

10 -0.009 0.056 0.063 0.272 0.270 0.699 0.805 0.828

15 0.015 0.044 0.050 0.086 0.239 0.657 0.754 0.775

20 -0.012 0.060 0.083 0.076 0.208 0.609 0.700 0.721

AR DL

1 0.546 0.815 0.851 0.864 0.097 0.676 0.832 0.863

5 0.503 0.693 0.714 0.720 0.097 0.529 0.710 0.726

10 0.410 0.603 0.616 0.625 0.098 0.409 0.596 0.629

15 0.407 0.560 0.564 0.573 0.010 0.272 0.523 0.546

20 0.368 0.489 0.499 0.501 0.068 0.211 0.418 0.458

Table 3. Serial correlations of realized and forecasted directions of EURIBOR swap rates.

Bold numbers are significant at a 5% significance level. Critical values are ±2/
√

1778 ≈
±0.047.
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MedStrat AR DL

h = 1 h = 5 h = 10 h = 15 h = 1 h = 5 h = 10 h = 15 h = 1 h = 5 h = 10 h = 15

Cov 0.023 0.035 0.036 0.042 0.009 0.029 0.038 0.045 0.002 0.013 0.029 0.037

HM 1.091 1.139 1.143 1.170 1.036 1.118 1.152 1.182 1.010 1.052 1.115 1.148

χ2 1% 1% 1% 1% 14% 1% 1% 1% 15% 1% 1% 1%

FE 1% 1% 1% 1% 13% 1% 1% 1% 11% 1% 1% 1%

PT92 1% 1% 1% 1% 14% 1% 1% 1% 15% 1% 1% 1%

PT08 1% 2% NR 1% 14% 1% 5% 13% 15% NR NR 2%

CBB2 1% 1% 6% 6% NR 3% 5% 4% NR 10% 11% 7%

Table 4. Covariances, HM statistics and test results for various significance levels α ≤ 0.2

are provided. NR indicates that H0 cannot be rejected at the 20% significance level.

5.2 A small sample case

Moreover, we investigate the stock return predictions analyzed in Herwartz and Morales

(2008). Based on a panel asset pricing model they determine h = 3, 6 month ahead forecast

of returns of Germany’s DAX30, Italy’s MIB30 and Norway’s OBX25. We focus on the

most recent 50 forecasts which cover the period 06/2000 to 01/2005 (depending on the

forecast horizon). Positive/negative realized resp. forecasted returns are considered as up–

/downward movements.

As can be seen from Table 5 the covariance and HM statistic for the 6 months ahead

forecasts of Norway’s OBX25 returns are quite large, around 0.15 resp. 1.6. Even if serial

correlations are significant at least up to lags 4 and 6 for realized and forecasted directions

all test procedures reject at low significance levels. As the test statistic is high, any test

should reject the null and the impact of serial correlation should be negligible.

For Germany’s DAX30 both the 3 and 6 month ahead forecasts have a rather low value.

Covariances and HM statistics are about 0.05 resp. 1.2. Moreover, there is no marked

serial correlation beyond lag 4. Thus, similar decisions are inferred from all tests. The null

hypothesis is not rejected at conventional significance levels.

The 3 and 6 month ahead forecasts of the MIB30 and the 3 month ahead forecasts

of the OBX25 have a moderate value, with covariances between 0.08 and 0.09 and HM

statistics between 1.3 and 1.4. Serial correlations are significant up to lags 4 and 6. In

such a situation accounting for serial correlation is important when testing for the value

of directional forecasts. While all the classical tests reject the null hypothesis, the serial
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correlation robust procedures yield a downgrading of the forecast’s economic value. The

bootstrap test is carried out using B = 4. Alternative choices of B = 2 and B = 6 provide

the same results.

Serial correlations

h = 3 h = 6

realized directions

Ger Ita Nor

0.533 0.619 0.497

0.151 0.199 0.314

0.039 0.117 0.075

0.063 0.135 0.053

-0.202 -0.045 -0.049

forecasted directions

Ger Ita Nor

0.394 0.628 0.661

0.251 0.550 0.529

0.259 0.453 0.371

0.065 0.258 0.270

0.125 0.063 0.089

lag

1

4

6

9

12

realized directions

Ger Ital Nor

0.760 0.650 0.661

0.236 0.466 0.325

0.214 0.389 0.204

0.013 0.206 -0.015

-0.187 0.104 0.045

forecasted directions

Ger Ita Nor

0.071 0.694 0.740

-0.019 0.458 0.560

0.113 0.261 0.360

0.022 0.143 0.060

-0.131 -0.095 -0.040

Test statistics and test results

h = 3

Ger Ita Nor

Cov 0.047 0.082 0.078

HM 1.200 1.350 1.312

χ2 17% 2% 3%

FE 10% 1% 2%

PT92 17% 2% 3%

PT08 NR NR NR

CBB2 NR 9% NR

h = 6

Ger Ita Nor

Cov 0.055 0.090 0.150

HM 1.254 1.403 1.600

χ2 9% 1% 1%

FE 4% 1% 1%

PT92 8% 1% 1%

PT08 9% NR 1%

CBB2 12% 16% 4%

Table 5. Upper panel shows serial correlations of realized and forecasted directions of

European stock market returns. Bold numbers are significant at a 5% significance level.

Critical values are ±2/
√

50 ≈ ±0.283. The lower panel provides covariances, HM statistics

and test results for significance levels α ≤ 0.2. NR indicates that H0 cannot be rejected at

the 20% significance level.
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6 Conclusions

Commonly applied procedures to test for the value of directional forecasts suffer from marked

size distortions in the presence of serial correlation. As this issue is highly relevant for

economic applications, we summarized existing procedures and proposed a simple statistic

for which we implement a bootstrap approach. By means of a Monte Carlo simulation we

find that the bootstrap test reveals only minor size distortions in small samples as opposed to

traditional procedures and retains appealing power. For medium and large sample sizes, the

dynamically augmented maximum correlation test proposed in Pesaran and Timmerman

(2008) represents an alternative approach with correct size and promising power. In two

empirical examples we illustrate the relevance and application of serial correlation robust

test procedures for small as well as for large sample sizes.

A particular merit of the investigated test statistic is that it allows for both one–sided

and two–sided alternative hypotheses. Moreover, since its square is equal to a Wald statistic

under the null hypothesis the test procedure can be easily extended to general r × c con-

tingency tables. In this framework, the generalized test of market timing as proposed in

Pesaran and Timmermann (1992) can be dealt with readily. In principle, the remaining test

procedures summarized in this paper can be subjected to resampling. Yet, for the reasons

outlined above we focuse on the covariance test statistic and leave it for further research to

develop bootstrap algorithms for the other tests.

An appropriate choice of the block length is important for a proper bootstrap test. Our

simulations reveal that a naive choice based on the fact that the optimal block length is

O(T 1/3) results in a slightly undersized bootstrap scheme for large sample sizes. Adapting

the data based block length selection procedure of Hall, Horowitz and Jing (1995) yields

empirical rejection frequencies close to the nominal size. Additional improvements can be

expected by a block size selection procedure that accounts for size and power considerations.

We regard the latter issue to merit further reflection.
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