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CASE - Center for Applied Statistics and Economics

Humboldt-Universität zu Berlin

Abstract

Weather influences our daily lives and choices and has an enormous impact on corporate revenues and

earnings. Weather derivatives differ from most derivatives in that the underlying weather cannot be traded

and their market is relatively illiquid. The weather derivative market is therefore incomplete. This paper

implements a pricing methodology for weather derivatives that can increase the precision of measuring

weather risk. We have applied continous autoregressive models (CAR) with seasonal variation to model

the temperature in Berlin and with that to get the explicite nature of non-arbitrage prices for temperature

derivatives. We infer the implied market price from Berlin cumulative monthly temperature futures that

are traded at the Chicago Mercantile Exchange (CME), which is an important parameter of the associated

equivalent martingale measures used to price and hedge weather future/options in the market. We propose

to study the market price of risk, not only as a piecewise constant linear function, but also as a time

dependent object. In all of the previous cases, we found that the market price of weather risk is different

from zero and shows a seasonal structure. With the extract information we price other exotic options, such

as cooling/heating degree day temperatures and non-standard maturity contracts.

Keywords: Weather derivatives, weather risk, weather forecasting, seasonality, continuous autoregressive model,

stochastic variance, CAT index, CDD index, HDD index, market price of risk, risk premium, CME

JEL classification: G19, G29, N26, N56, Q29, Q54
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1 Introduction

Weather influences our daily lives and has an enormous impact on corporate revenues and earnings. The global

climate changes the volatility of weather and the occurrence of extreme weather events increases. Adverse

and extreme natural events like hurricanes, long cold winters, heat waves, droughts, freezes, etc. may cause

substantial financial losses. The traditional way of protection against unpredictable weather conditions has

always been the insurance, which covers the loss in exchange for the payment of a premium. However, recently
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have become popular new financial instruments linked to weather conditions: CAT bonds, sidecars and weather

derivatives.

In the 1990’s Weather Derivatives (WD) were developed to hedge against volatility caused by weather. WD are

financial contracts, where payments are based on weather-related measurements. They are formally exchanged

in the Chicago Mercantile Exchange (CME), where monthly and seasonal temperature futures, call and put

options contracts on future prices are traded. The futures and options at the CME are cash settled. WD cover

against extreme changes in temperature, rainfall, wind, snow, frost, but do not cover catastrophic events, such

as hurricanes. According to the CME (2006), the WD market increased notably from 2.2 billion USD in 2004

to 22 billion USD through to September 2005.

The key factor in efficient usage of WD is a reliable valuation procedure. However, due to their specific nature one

encounters several difficulties. Firstly, weather derivatives are different from most financial derivatives because

the underlying weather cannot be traded. Secondly, the weather derivatives market is relatively illiquid, i.e.

weather derivatives cannot be cost-efficiently replicated by other weather derivatives.

In practice, the valuation of WD is in spirit and methodolgy closer to insurance pricing than to derivative

pricing (arbitrage pricing) since their value is equal to the expected outcome under the physical probability plus

a charge depending on a risk measure (usually the standard deviation), Jewson, Brix and Ziehmann (2005).

The pricing of weather derivatives has attracted the attention of many researchers. Dornier and Querel (2000)

fitted an Ornstein-Uhlenbeck stochastic process with constant variance to temperature observations at Chicago

O’Hare airport and started to investigate future prices on temperature indices. Later Alaton, Djehiche and

Stillberger (2002) applied the Ornstein-Uhlenbeck model with a monthly variation in the variance to temperature

data of Bromma airport (Stockholm). They applied their model to get prices for different temperature prices.

Campbell and Diebold (2005) modelled temperature in several US cities with a higher order autoregressive

model. They observed seasonal behaviour in the autocorrelation function (ACF) of the squared residuals.

However, they did not price temperature derivatives. Mraoua and Bari (2007) studied the temperature in

Casablanca, Morocco using a mean reverting model with stochastic volatility and a temperature swap was

considered. Benth (2003) calculates an arbitrage free price for different temperature derivatives prices by

using the fractional Brownian motion model of Brody, Syroka and Zervos (2002), which drives the noise in an

Ornstein-Uhlenbeck process.

In the temperature derivative market, Davis (2001) proposed using a marginal utility technique to price temper-

ature derivatives based on the HDD index. Barrieu and El Karoui (2002) present an optimal design of weather

derivatives in an illiquid framework, arguing that the standard risk neutral point of view is not applicable to

valuate them. Cao and Wei (2004) and Richards, Manfredo and Sanders (2004) apply an extended version

of Lucas’ (1978) equilibrium pricing model where direct estimation of market price of weather risk is avoided.

Instead, pricing is based on the stochastic processes of the weather index, an aggregated dividend and an as-

sumption about the utility function of a representative investor. Platen and West (2005) used the world stock
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index as the numeraire to price temperature derivatives. Benth and Saltyte Benth (2005) and (2007) propose

the continuous time autoregressive model with seasonality for the temperature evolution in time and match this

model to data observed in Stockholm, Sweden. They derive future and option prices for contracts on CDD and

CAT indices. They also discuss hedging strategies for the options and the volatility term structure. For pricing

a New York WD, ? carried out an empirical study for the New York over the counter (OTC) future prices and

other weather contracts to extract the risk neutral distribution and the market price of weather risk. Hung-Hsi,

Yung-Ming and Pei-Syun (2008) extended the long term temperature model proposed by Alaton et al. (2002)

by taking into account ARCH/GARCH effects to reflect the clustering of volatility temperature. They examine

the effects of mean, variance and market price of risk on HDD/CDD option prices and demonstrate that their

effects are similar to those on the prices of traditional options.

In this paper, we apply continous autoregressive models (CAR) with seasonal variation to model the temperature

in Berlin, as Benth, Koekebakker and Saltyte Benth (2007) did for Stockholm Temperature data in order to

get the explicite nature of non-arbitrage prices for temperature derivatives. In contrast to this work we find

that Berlin Temperature is more normal in the sense that the driving stochastics are closer to a Wiener Process

than their analysis for Stockholm. The estimate of the market price of weather risk (MPR) is interesting by

its own and has not been studied earlier. The MPR adjusts the underlying process so that the level of the risk

aversion is not needed for valuation. The majority of papers so far have solved it assuming zero MPR, but

this assumption underestimates WD prices. By using the theoretical explicit prices we imply the market price

of temperature risk for Berlin futures. We find that the market price of risk is different from zero. We show

the seasonal structure when the MPR is assumed to be piecewise constant linear function or time dependent.

Not only, the MPR estimate is important for pricing derivatives (future/options) but also for hedging and for

pricing new non-standard contracts with ”non-standard maturities” and other OTC contracts. By using the

implied MPR from Berlin Cumulative Average Temperature (CAT) futures, we price new derivatives, e.g. Cold

Degree Days (CDD) and Heating Degree Days (HDD) for Berlin. A clear seasonal variation in the regression

residuals of the temperature is observed and the volatility term structure of CAT temperature futures presents

a modified Samuelson effect.

Our paper is structured as follows. The next section - the econometric part - is devoted to explaining the

dynamics of Berlin temperature data by using a continous autoregressive model (CAR). In section 3, we discuss

the fundamentals of temperature derivatives (future and options), their indices and we also describe the monthly

temperature futures traded at CME, the biggest market offering this kind of product. In section 4, the financial

mathematics part of the paper is explained by the connection of the weather with pricing dynamics. We imply

the market price of risk for Berlin monthly temperature futures which are traded at the Chicago Mercantile

Exchange (CME). We study the market price of risk, not only as a piecewise constant linear function, but also

as time dependent for different contract types. In any of the previous cases, we found that the market price of

weather risk is different from zero and shows a seasonal structure. With the extract information we price other

exotic options, such as cooling/heating degree day temperatures and non-standard maturity contracts. Section

5 concludes the paper. All computations in this paper were carried out in Matlab version 7.6.
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2 Berlin temperature dynamics

In this section, we study the weather dynamics for Berlin daily temperature data. The temperature data was

obtained from the Deutscher Wetterdienst. It considers 22063 recordings of daily average temperatures from

19500101-20080527 at Tempelhof Airport Weather Station.
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Figure 1: Seasonality effect (red line) and daily average temperatures 19480101-20080527, Tempelhof Airport Weather Station.

We first check the presence of a linear trend and investigate the seasonal pattern of the data. A linear trend

was not detectable. Figure 1 shows 57 years of daily average temperature from Berlin and the least squares

fitted seasonal function with trend

Λt = a0 + a1t+ a2cos

{
2π(t− a3)

365

}
(1)

where â0 = 91.52, â1 = 0.00, â2 = 97.96, â3 = −165.1 with 95% confidence bounds and R2 equal to 0.7672. In

Figure 2 we display, for better exposition, a stretch of 8.5 years. We observe low temperatures in the winter

and high temperatures in the summer.

After removing the seasonality (equation 1) from the daily average temperatures,

Xt = Tt − Λt (2)

we check whether Xt is a stationary process I(0). In order to do that, we apply the Augmented Dickey-Fuller

test (ADF):

(1− L)Xt = c1 + µt+ τLX + α1(1− L)LXt + . . . αp(1− L)LpXt + εt

where p is the number of lags of Xt by which the regression is augmented to get residuals free of autocorrelation.

Under H0 (unit root), τ should be zero. Therefore the test statistic of the OLS estimator of τ is applicable.

In this case, τ = −35.001 with 1% critical value equal to -2.56. We reject the null hypothesis H0 (τ = 0) and

hence Xt is a stationary process I(0). This result can also be verified by using the KPSS Test:

Xt = c+ µt+ k

t∑
i=1

ξi + εt
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Figure 2: Seasonality effect (red line) and daily average temperature from Berlin 2000101-20080527, Tempelhof

Airport Weather Station.

We accept H0 : k = 0 at 10% significance level that the process is stationary. The test statistic for the constant

is equal to 0.653 and for the trend equal to 0.139.

The Partial Autocorrelation Function (PACF) of Equation 2 is plotted in Figure 3. The PACF suggests that the

AR(3) model suggested by Benth et al. (2007) also holds for Berlin temperature data. p = 3 is also confirmed

by the log of Akaike’s Final Prediction Error. The fitted autoregressive process is equal to:

Xt+3 = 0.91Xt+2 − 0.20Xt+1 + 0.08Xt + σtεt (3)

Figure 3: Partial autocorrelation function (PACF) for Xt 19480101-20080527

After trend and seasonal components were removed, the residuals εt and the squared residuals ε2
t of the Berlin

temperature data of equation 3 are plotted in Figure 4. According to the modified Li-McLeod Portmanteau

test, we reject at 0% significance level the null hypothesis H0 that the residuals are uncorrelated. The ACF of

the residuals of AR(3), upper panel in Figure 5, is close to zero and according to Box-Ljung statistic the first
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Figure 4: Residuals ε̂t (up) and squared residuals ε̂2t (down) of the AR(3) during 19480101-20080527

Figure 5: ACF for residuals ε̂t (up) and squared residuals ε̂2t (down) of the AR(3) during 19480101-20080527
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few lags are insignificant. But, the ACF for the squared residuals in the lower panel in Figure 5 shows a high

seasonality pattern. We calibrate this seasonal dependence of variance of residuals of the AR(3) for 57 years

with a truncanted Fourier function

σ2
t = c1 +

4∑
i=1

{
c2i cos

(
2iπt
365

)
+ c2i+1 sin

(
2iπt
365

)}
(4)

Alternatively one could have smoothed the data with a kernel regression estimator. Asympotically they can

be approximated by Fourier series estimators though. Figure 6 shows the daily empirical variance (the average

of squared residuals for each day of the year) and the fitted squared volatility function for the residuals. Here

we obtain the Campbell and Diebold (2005) effect for Stockholm temperature data, high variance in winter -

earlier summer and low variance in spring - late summer. Figure 7 shows the Berlin temperature residuals ε̂t

and squared residuals ε̂2
t , after dividing out the seasonal volatility σt from the regression residuals, we observed

close to normal residuals. The ACF plot of the residuals remain unchanged and now the ACF plot for squared

residuals presents a non-seasonal pattern, Figure 8.
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Figure 6: Seasonal variance: daily empirical variance (blue line), fitted squared volatility function (red line) at 10% significance

level. ĉ1 = 5.09, ĉ2 = 0.64, ĉ3 = 0.74, ĉ4 = 0.95, ĉ5 = −0.45, ĉ6 = 0.44, ĉ7 = 0.05, ĉ8 = 0.81, ĉ9 = 0.81

Table 1 presents the statistics and the corresponding significance levels of the lags of the ACF of residuals with

and without seasonal volatility. The Ljung-Box’s test statistic (Qstat) is used to check the significance level of

the lags.

The Kernel smoothing density estimate against a Normal Kernel evaluated at 100 equally spaced points for

Berlin temperature residuals in the left hand side of Figure 9 has been plotted to verify if residuals become

normally distributed. The obtained residuals have a skewness equal to -0.08,a kurtosis equal to 3.56 and Jarques

Bera statistics equal to 318.96. The acceptance of the null hyptohesis H0 of normality is at 1% significance

level. The right hand side of Figure 9 shows the log of the estimated distribution function.

The q’th coordinate of vector X with q = 1, .., p, Xq from the temperature time series:

Tt = Λt +X1t (5)
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Figure 7: Berlin temperature residuals ε̂t (up) and squared residuals ε̂2t (down) after correcting for seasonal volatility

Figure 8: ACF for Berlin temperature residuals ε̂t (up) and squared residuals ε̂2t (down) after correcting for seasonal volatility
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Lag Qstatres QSIGres Qstatres1 QSIGres1

1 0.03 0.85 0.67 0.41

2 0.05 0.97 0.74 0.69

3 3.16 0.36 4.88 0.18

4 4.70 0.32 6.26 0.18

5 4.76 0.44 6.67 0.24

6 5.40 0.49 7.17 0.30

7 6.54 0.47 7.51 0.37

8 10.30 0.24 10.34 0.24

9 14.44 0.10 14.65 0.10

10 21.58 0.01 21.95 0.10

Table 1: Q-test (Qstat) using Ljung-Box’s and the corresponding significance levels (QSIG) for residuals with (res) and without

seasonality in the variance (res1)
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Figure 9: Left: Kernel smoothing density estimate (blue line) vs Normal Kernel (red line) for Berlin temperature residuals. Right:

Kernel smoothing density estimate (blue line) vs Logormal Kernel (red line) for Berlin temperature residuals
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can be seen as a discretization of a continuous-time process AR(p) (CAR(p)) and can be specified as a Markov

process. Define a p× p-matrix:

A =



0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

. . . 0
...

0 . . . . . . 0 0 1

−αp −αp−1 . . . 0 −α1


(6)

in the vectorial Ornstein-Uhlenbleck process Xt ∈ Rp for p ≥ 1 as:

dXt = AXtdt+ eptσtdBt (7)

where ek denotes the k’th unit vector in Rp for k = 1, ...p, σt > 0 states the temperature volatility, Bt is a

Wiener Process and αk are positive constants.

By applying the multidimensional Itô Formula, the process 7 with Xt = x ∈ Rp has the explicit form:

Xs = exp {A(s− t)}x +
∫ s

t

exp {A(s− u)}epσudBu (8)

for s ≥ t ≥ 0 and stationarity holds when the eigenvalues of A have negative real part or the variance matrix∫ t

0

σ2
t−s exp {A(s)}epe>p exp

{
A>(s)

}
ds (9)

converges as t→∞.

By substituting iteratively into the discrete-time dynamics, one obtains the discrete version of the CAR(p)

process 7. For example, when p = 1, 2, 3 and using εt = Bt+1 −Bt, we repeat the exercise:

for p = 1, we get that Xt = X1t and dX1t = −α1X1tdt+ σtdBt.

for p = 2, we have:

X1(t+2) ≈ (2− α1)X1(t+1) + (α1 − α2 − 1)X1(t) + σt(Bt−1 −Bt)

for p = 3, the iterations yield:

X1(t+1) −X1(t) = X1(t)dt+ σtεt

X2(t+1) −X2(t) = X3(t)dt+ σtεt

X3(t+1) −X3(t) = −α3X1(t)dt− α2X2(t)dt− α1X3(t)dt+ σtεt

X1(t+2) −X1(t+1) = X1(t+1)dt+ σt+1εt+1

X2(t+2) −X2(t+1) = X3(t+1)dt+ σt+1εt+1

X3(t+2) −X3(t+1) = −α3X1(t+1)dt− α2X2(t+1)dt− α1X3(t+1)dt+ σt+1εt+1 (10)

X1(t+3) −X1(t+2) = X1(t+2)dt+ σt+2εt+2

X2(t+3) −X2(t+2) = X3(t+2)dt+ σt+2εt+2

X3(t+3) −X3(t+2) = −α3X1(t+2)dt− α2X2(t+2)dt− α1X3(t+2)dt+ σt+2εt+2

(11)

10



substituting into the X1 dynamics:

X1(t+3) ≈ (3− α1)X1(t+2) + (2α1 − α2 − 3)X1(t+1) + (−α1 + α2 − α3 + 1)X1(t)

+ σt(Bt−1 −Bt) (12)

For Berlin temperature we have identified p = 3, see Figure 3. The AR(3) is equal to Xt+3 = 0.91Xt+2 −

0.20Xt+1 + 0.07Xt + σtεt. The CAR(3)-parameters are therefore α1 = 2.09, α2 = 1.38, α3 = 0.22. The

stationarity condition is fulfilled, since the eigenvalues of A have negative real parts (λ1 = −0.2069, λ2,3 =

−0.9359± 0.3116i). The element components of the matrix A do not change over time, this makes the process

stable.

3 A pricing model

In this section we describe the construction of pricing Future/Option for different temperature contracts.

3.1 Temperature derivatives

Temperature derivatives are written on a temperature index. The most common weather indices on temperature

are: Heating Degree Day (HDD), Cooling Degree Day (CDD), Cumulative Averages (CAT), Average of Average

Temperature (AAT) and Event Indices (EI), Jewson et al. (2005). The HDD index measures the temperature

over a period [τ1, τ2], usually between October to April, and it is defined as:

HDD(τ1, τ2) =
∫ τ2

τ1

max(c− Tu, 0)du (13)

where c is the baseline temperature (typically 18C or 65F) and Tu is the average temperature on day u. Similarly,

the CDD index measures the temperature over a period [τ1, τ2], usually between November and March, and it

is defined as:

CDD(τ1, τ2) =
∫ τ2

τ1

max(Tu − c, 0)du (14)

The HDD and the CDD index are used to trade futures and options in 18 US cities (Atlanta, Des Moines,

New York, Baltimore, Detroit, Philadelphia, Boston, Houston, Portland, Chicago, Kansas City, Sacramento,

Cincinnati, Las Vegas, Salt Lake City, Dallas, Minneapolis-St. Paul, Tucson), six Canadian cities (Calgary,

Edmonton, Montreal, Toronto, Vancouver and Winnipeg), nine European cities (Amsterdam, Essen, Paris,

Barcelona, London, Rome, Berlin, Madrid, Stockholm) and two Japanese cities (Tokio and Osaka). The CAT

index accounts the accumulated average temperature over a period [τ1, τ2] days:

CAT (τ1, τ2) =
∫ τ2

τ1

Tudu (15)

Since max(Tu − k, 0)−max(K − Tu, 0) = Tu − k, we get the HDD-CDD parity

CDD(τ1, τ2)−HDD(τ1, τ2) = CAT (τ1, τ2)− c(τ2 − τ1) (16)
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Indices Jan Feb March April May Jun Jul Aug Sept Oct Nov Dec

CDD 0 0 0 0 28.3 42 71 23.3 24.9 0 0 0

HDD 472.8 526.4 471.4 241.1 150.2 71.8 24.8 43.9 73.5 199.5 398.2 525.8

CAT 103.2 -4.4 104.6 316.9 454.1 528.2 622.2 555.4 509.4 376.5 159.8 50.2

AAT 3.32 -0.15 3.37 10.56 14.64 17.60 20.07 17.91 16.98 12.14 5.32 1.61

Table 2: Degree day indices for temperature data (2005) Berlin.

Therefore, it is sufficient to analyse only CDD and CAT indices. The AAT measures the ”excess” or deficit of

temperature i.e. the average of average temperatures over [τ1, τ2] days:

AAT (τ1, τ2) =
1

τ1 − τ2

∫ τ2

τ1

Tudu (17)

This index is just the average of the CAT and it is relevant for the Pacific Rim consisting of two Japanese

cities (Tokyo and Osaka). The event index (EI) considers the number of times a certain meteorological event

occurs in the contract period. For example, a frosty day is considered when the temperature at 7:00-10:00 hrs

local time is less than or equal to -3.5C. To illustrate this, Table 2 shows the number of HDDs, CDDs, CATs

and AATs estimated by the Earth Satellite Corporation (the weather analysis provider of CME) and for the

historical Berlin temperature data.

In this paper, we will focus on the pricing of some of the most common temperature futures traded at the CME,

i.e. monthly CAT, CDD and HDD indices. Table 3 describes the CME - WD data from 20031003 - 20070521.

The contract size of a future traded at CME is 20 pounds times the Degree Day Index (for convenience, we call

it ”price”). The minimum price increment is one Degree Day Index point. The degree day metric is Celsius and

the tick value is twenty pounds. The termination of the trading is two calendar days following the expiration of

the contract month. The Settlement is based on the relevant Degree Day index on the first exchange business

day at least two calendar days after the futures contract month. The accumulation period of each CAT index

futures contract begins with the first calendar day of the contract month and ends with the calendar day of the

contract month. Earth Satellite Corporation reports to CME the daily average temperature. Traders bet that

the temperature will not exceed the estimates from Earth Satellite Corporation. The notation used by CME

for temperature futures is the following: F for January, G for February, H for March, J for April, K for May, M

for June, N for July, Q for August, U for September, V for November and X for December. J7 stands for 2007,

J8 for 2008, etc. The J7 contract corresponds to the month of April, i.e. with the temperature measurement

period from 20070401 (τ1) to 20070430 (τ2) and trading period from 20060503 to 20070502. Figure 10 plots the

values of Berlin monthly CAT and HDD Future Prices traded on 20060530 at the CME. Observe that seven

contracts are traded for CAT futures (from April to October) and for HDD futures (from November to April).

At the trading day t, one can buy contracts with measurement period τ1 ≤ t ≤ τ2 or t < τ1 ≤ τ2 (six months

ahead from the trading day t). Figure 11 shows the plot of Berlin CAT future prices from 20060501 to 20060530:

future prices shown constant behaviour over the measurement period, but they increase when the temperature

is high e.g. prices decrease from September to April.

To proceed with a correct estimation of the indices, we compare the plots of the Berlin CAT and HDD future

12



Trading-Period Measurement-Period

Code First-trade Last-trade τ1 τ2

J7 20060503 20070502 20070401 20070430

K7 20060603 20070602 20070501 20070531

M7 20060705 20070702 20070601 20070630

N7 20060803 20070802 20070701 20070731

Q7 20060906 20070904 20070801 20070831

U7 20061003 20071002 20070901 20070930

V7 20061103 20071102 20071001 20071031

X7 20061204 20071202 20071101 20071130

Z7 20070104 20080102 20071201 20071231

F8 20080204 20080202 20080101 20080131

G8 20070304 20080302 20070201 20080228

H8 20070404 20080402 20070301 20080331

Table 3: Contracts listed at the CME. Source: Bloomberg
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Figure 10: Berlin CAT (left side) - HDD (right side) Monthly Future Prices traded on 20060530 at the CME. Source: Bloomberg
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Figure 11: Berlin CAT Future Prices traded on 20060501-20060530 at the CME. Source: Bloomberg
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prices with τ1 < t ≤ τ2 from the period 2001 to 2006 reported by Bloomberg (red line), Earth Satellite

Corporation (blue) and our estimates (black line) in Figure 12. The average relative difference from the values

reported from Bloomberg and Earth Satellite Corporation is equal to 2.43 for HDD prices and -10.57 for CAT

prices, while for our estimates and the values reported by Earth Satellite Corporation is equal to 0.04 and -0.09

respectively. This confirms that our temperature data is adequate to price temperature derivatives.
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Figure 12: Berlin CAT (upper side) HDD (lower side) Future Prices estimated by the Earth Satellite Corporation (blue line) and

from historical data (black line). Source: Bloomberg

3.2 Temperature futures pricing

As temperature is not a tradable asset in the market place, no replication arguments hold for any temperature

futures and incompleteness of the market follows. In this context all equivalent measures Q will be risk-neutral

probabilities. We assume the existance of a pricing measure Q, which can be parametrized and complete the

market, Karatzas and Shreve (2001). For that, we pin down an equivalent measure Q = Qθt to compute the

arbitrage free price of a temperature future:

F(t,τ1,τ2) = EQθt [YT (Tt)|Ft] (18)

with 0 ≤ t ≤ T and YT being the payoff from the temperature index (CAT,HDD,CDD indices) at T > t and θt

denotes the time dependent market price of risk (MPR). By Girsanov theorem:

Bθt = Bt −
∫ t

0

θudu

is a Brownian motion for any time before the end of the trading time, i.e. t ≤ τmax and a martingale under Qθt .

Here the market price of risk (MPR) θt is as a real valued, bounded and piecewise continous function. We later

relax that assumption, by considering the (non)-time dependent market price of risk. In fact, from Theorem

14



4.2 (page 12) in Karatzas and Shreve (2001), we can parametrize the market price of risk θt and relate it to the

risk premium for traded assets by the equation

µt + δt − rt1̃ = σtθt (19)

where 1̃ denotes the N -dimensional vector with every component equal to one, µt is the N-dimensional mean

rate of return process, δt defines a N -dimensional dividend rate process, σt denotes the volatility process and

rt determines the risk-free interest rate process of the traded asset. For example, in the Black-Scholes Model

framework, the asset price follows:

St = S0 exp
[{
µ(St, t)−

1
2
σ2(St, t)

}
t+ σ(St, t)Bt

]
with dSt

St
= µ(St, t)dt+ σ(St, t)dBt, where t ∈ [0, T ], Bt is standard Brownian motion under measure Q and by

Girsanov theorem Bθt = Bt −
∫ t

0
θudu = Bt −

∫ t
0

(
µu−ru
σu

)
du is also Brownian motion under Qθt for t ≤ τmax.

Then, under Qθt , the dynamics of the underlying process in the Black&Scholes framework are:

dSt
St

= {µ(St, t) + σ(St, t)θt} dt+ σ(St, t)dBθt

Similarly, under Qθ, the temperature dynamics of equation( 8) become

dXt = (AXt + epσtθt)dt+ epσtdBθt (20)

with explicit dynamics, for s ≥ t ≥ 0:

Xs = exp {A(s− t)}x +
∫ s

t

exp {A(s− u)}epσuθudu+
∫ s

t

exp {A(s− u)}epσudBθu (21)

Observe that the volatility σt from the econometric part is deterministic for every t, so that the relationship

between θt and σt is well identified and can be compared to the Black&Scholes MPR for traded assets θt =

(µt− rt)/σt, meaning that the MPR of temperature futures is nothing other than the temperature variation σt.

3.2.1 CAT Futures

Following equation (18), the risk neutral price of a future based on a CAT index is defined as:

FCAT (t,τ1,τ2) = EQθ
[∫ τ2

τ1

Tsds|Ft
]

(22)

For contracts whose trading date is earlier than the temperature measurement period, i.e. 0 ≤ t ≤ τ1 < τ2,

Benth et al. (2007) calculate the future price explicitly by inserting the temperature model (equation 5) into

equation 22:

FCAT (t,τ1,τ2) =
∫ τ2

τ1

Λudu+ at,τ1,τ2Xt +
∫ τ1

t

θuσuat,τ1,τ2epdu+
∫ τ2

τ1

θuσue>1 A
−1 [exp {A(τ2 − u)} − Ip] epdu (23)

with at,τ1,τ2 = e>1 A
−1 [exp {A(τ2 − t)} − exp {A(τ1 − t)}] and p× p identity matrix Ip.
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We observed from real data that CME trades CAT futures between the temperature measurement period, i.e.

τ1 ≤ t ≤ τ2. Following the same pricing methodology as before, we calculate the risk neutral price for these

kind of contracts:

FCAT (t, τ1, τ2) = EQ
θ

[∫ t

τ1

Tsds|Ft)
]

+ EQ
θ

[∫ τ2

t

Tsds|Ft
]

= EQ
θ

[∫ t

τ1

Tsds|Ft
]

+
∫ τ2

t

Λudu+ at,τ1,τ2Xt +
∫ τ2

t

θuσue>1 A
−1 [exp {A(τ2 − u)} − Ip] epdu

where at,t,τ2 = e>1 A
−1 [exp {A(τ2 − t)} − Ip]. Notice that this time the price of the future CAT consists on a

random and deterministic part since the expected value of the temperature from τ1 to t is known.
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Figure 13: The Berlin CAT term structure of volatility from 2004-2008 (left) and 2006 (right) for contracts traded within the

measurement period
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Figure 14: The Berlin CAT term structure of volatility from 2004-2008 (left) and 2006 (right) for contracts traded before the

measurement period

For contracts traded within the measurement period, CAT volatility σtat,τ1,τ2ep is close to zero when the time

to measurement is large. It decreases up to the end of the measurement period, since information about the

temperature development is already known. On the left hand side of Figure 13 we plot the CAT volatility path

for contracts issued within measurement periods in 2004-2008 and on the right hand side we display the plot for

2006. For contracts which were issued before the measurement period, we also observe a CAT future volatility

close to zero when time to measurement is large, (temperature deviations are smoothed over time), however it

increases up to the start of the measurement period. Figure 14 shows this effect for contracts issued before the
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measurement period. In the literature, an effect of this nature is called Samuelson effect and it is very common

in future contracts based on mean reverting commodity prices.

In Figure 15 we plot 2 contracts issued on 20060517: one with measurement period the first week of June and

the other one as the whole month of June. The contract with the longest measurement period has the largest

volatility. In contrast to the later effect, one can observe the effect of the CAR(3) in both contracts when

the volatility decays just before maturity of the contracts. These two effects observed on Berlin CAT futures

are also similar for Stockholm CAT futures, Benth et al. (2007), however the deviations are less smoothed for

Berlin.

3.2.2 CDD Futures

Analogously, one derives the CDD future price. Following equation (18), the risk neutral price of a CDD future

which is traded at 0 ≤ t ≤ τ1 < τ2 is defined as:

FCDD(t,τ1,τ2) = EQθ
[∫ τ2

τ1

max(Ts − c, 0)ds|Ft
]

=
∫ τ2

τ1

υt,sψ

[
m{t,s,e>1 exp{A(s−t)}Xt} − c

υt,s

]
ds (24)

where m{t,s,x} = Λs−c+
∫ s
t
σuθue>1 exp {A(s− t)} epdu+x, υ2

t,s =
∫ s
t
σ2
u

[
e>1 exp {A(s− t)} ep

]2
du and ψ(x) =

xΦ(x) + ϕ(x) with x = e>1 exp {A(s− t)}Xt.

For CDD futures contracts traded at τ1 ≤ t ≤ τ2, the non-abitrage price of a CDD future is:

FCDD(t,τ1,τ2) = EQθ
[∫ τ2

τ1

max(Ts − c, 0)ds|Ft
]

= EQθ
[∫ t

τ1

max(Ts − c, 0)ds|Ft
]

+
∫ τ2

t

υt,sψ

[
m{t,s,e>1 exp{A(s−t)}Xt} − c

υt,s

]
ds (25)

with m{t,s,x} and υ2
t,s defined as above. Notice again that the expected value of the temperature from τ1 to t

is known.

4 Infering the market price of temperature risk

The incompleteness of the WD market, since weather is not a tradable asset, requires the estimation of the

market price of weather risk (MPR) for pricing and hedging temperature derivatives. The MPR adjusts the

underlying process so that one may perform correct and the level of risk aversion is not needed for valuation. In

this part of the paper, we infer the market price of risk θt from Berlin monthly CAT temperature futures. Once

we know the MPR for temperature futures, then we know the MPR for options. Moreover with this inferred

information, we can price new derivatives, e.g. non-standard contracts with ”non-standard maturities”. We

first study the contracts which are traded before the measurement period, i.e. t < τ1 ≤ τ2 (or contract number
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Figure 15: Berlin CAT volatility and AR(3) effect of 2 contracts issued on 20060517: one with whole of June as measurement

period (blue line) and the other one with only the first week of June (red line)

i = 2 . . . 7), since their pricing value depends only on the expected value of the underlying process, while for the

other contracts traded during the measurement period, i.e. τ1 < t ≤ τ2 (or contract number i = 1), a partial

or full information of the temperature development inside the measurement period is already known. Then,

we mix both cases to study the dynamics of the MPR, when it is assumed to be piecewise constant or time

dependent.

4.1 Constant market price of risk for each contract per trading day

From equation (23), we can infer θt for contracts with trading date t < τ1 ≤ τ2. Our first assumption is to set

θ̂it as a constant for each of the i contract, with i = 2 . . . 7. θ̂it is estimated via:

arg min
θ̂it

(
FCAT (t,τ i1,τ

i
2) −

∫ τ i2

τ i1

Λ̂udu− ât,τ i1,τ i2Xt − θ̂it
{∫ τ1

t

σ̂uât,τ i1,τ i2epdu

+
∫ τ i2

τ i1

σ̂ue>1 A
−1
[
exp

{
A(τ i2 − u)

}
− Ip

]
epdu

})2

(26)

The right upper part of Figure 19 shows the MPR estimates for each contract per trading day for Berlin CAT

Future Prices traded on 20060530. We reject H0 : E(θ̂) = 0 under the Wald statistic
{
θt ∈ R6

}1000

t=1
: 0.087 with

probability 0.2322.
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4.2 Constant market price of risk per trading day

A simpler parametrization of θt is to assume that it is constant for all maturities. We therefore estimate this

constant θt for all contracts with t < τ1 ≤ τ2 as follows:

arg min
θ̂t

Σ7
i=2

(
FCAT (t,τ i1,τ

i
2) −

∫ τ i2

τ i1

Λ̂udu− ât,τ i1,τ i2Xt − θ̂t

{∫ τ i1

t

σ̂uât,τ i1,τ i2epdu

+
∫ τ i2

τ i1

σ̂ue>1 A
−1
[
exp

{
A(τ i2 − u)

}
− Ip

]
epdu

})2

(27)

The corresponding picture to this parametrization is displayed in Figure 16. As we observed, this is a very

robust estimation. We reject H0 : E(θ̂) = 0 under the Wald statistic
{
θt ∈ R6

}1000

t=1
: 0.8066 with probability

0.6309.
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Figure 16: Constant MPR per trading day for Berlin CAT Futures traded on 20060530

4.3 Two constant market prices of risk per trading day

Assuming now that, instead of one constant market price of risk per trading day, we have a step function with

jump θ̂t = I (u ≤ ξ) θ̂1
t + I (u > ξ) θ̂2

t with jump point ξ (take e.g. the first 150 days before the beginning of the

measurement period). Then we estimate θ̂t by:

f(ξ) = arg min
θ̂1t ,θ̂

2
t

Σ7
i=2

(
FCAT (t,τ i1,τ

i
2) −

∫ τ i2

τ i1

Λ̂udu− ât,τ i1,τ i2Xt

− θ̂1
t

{∫ τ i1

t

I (u ≤ ξ) σ̂uât,τ i1,τ i2epdu+
∫ τ i2

τ i1

I (u ≤ ξ) σ̂ue>1 A−1
[
exp

{
A(τ i2 − u)

}
− Ip

]
epdu

}

− θ̂2
t

{∫ τ i1

t

I (u > ξ) σ̂uât,τ i1,τ i2epdu+
∫ τ i2

τ i1

I (u > ξ) σ̂ue>1 A
−1
[
exp

{
A(τ i2 − u)

}
− Ip

]
epdu

})2

(28)

The lower left part of Figure 19 shows the MPR estimates with ξ = 150 days for Berlin CAT Future Prices

traded on 20060530. We notice that the value of the MPR decreases when the value of ξ increases, i.e. when
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Figure 17: Two constant MPRs with ξ = 62, 93, 123, 154 days (upper left, upper right, lower left, lower right) for contracts with

trading day 20060530 before the measurement period

the time to measurement period gets large. This effect is related to the Samuelson effect, where the volatility

for each contract is close to zero when the time to measurement period is large. In a next step we optimized

the value of ξ, it was choosen such as f(ξ) in equation 28 is minimized. For ξ = 62, 93, 123, 154 days, the

corresponding sum of squared errors are 2759, 14794, 15191 and 15526. Figure 17 shows the MPR estimates for

different values of ξ of Berlin CAT Future Prices traded on 20060530, a date before the measurement period.

The line is broken for those days when there is no trading of such contracts. Figure 18 shows the same situation

as before but now all kinds of contracts are considered, i.e. sold contracts during and before the measurement

period. We reject H0 : E(θ̂) = 0 under the Wald statistic
{
θt ∈ R6

}1000

t=1
: 0.8005 with a probability of 0.058.

4.4 General form of the market price of risk per trading day

Generalising the piecewise continuous function given in the previous subsection, the (inverse) problem of deter-

mining θt can be formulated via a series expansion for θt:

arg min
γ̂k

Σ7
i=2

(
FCAT (t,τ i1,τ

i
2) −

∫ τ i2

τ i1

Λ̂udu− ât,τ1i ,τ i2X̂t −
∫ τ i1

t

K∑
k=1

γ̂kĥk(ui)σ̂ui ât,τ1,τ2epdui

−
∫ τ i2

τ i1

K∑
k=1

γ̂kĥk(ui)σ̂uie
>
1 A
−1
[
exp

{
A(τ i2 − ui)

}
− Ip

]
epdui

)2

(29)
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Figure 18: Two constant MPRs with ξ = 62, 93, 123, 154 days (upper left, upper right, lower left, lower right) for contracts with

trading day 20060530 in and before the measurement period

where hk(ui) is a vector of known basis functions and γk defines the coefficients. Here hk(ui) may denote a

spline basis for example. The right lower part of Figure 19 shows the MPR per trading day for Berlin CAT

Future Prices traded on 20060530 using cubic polynomios with number of knots equal to the number of traded

contracts (6). The spline MPR is closed to zero, but then it explodes for the days when there is no trading.

4.5 Bootstrapping market price of risk

The bootstrap method can be applied to get estimates of the MPR for contracts with a trading date earlier

than the measurement period. If six contracts are traded at a time t < τ i1 ≤ τ i2 with i = 2 . . . 7 and τ i1 < τ i+1
1 ≤

τ i2 < τ i+1
2 , the resampling idea method consists on the estimation of θ̂2 from the second contract (i = 2):

arg min
θ̂2t

(
FCAT (t,τ2

1 ,τ
2
2 ) −

∫ τ2
1

τ2
1

Λ̂udu− ât,τ2
1 ,τ

2
2
X̂t − θ̂2

t

{∫ τ2
1

t

σ̂uât,τ2
1 ,τ

2
2
epdu

+
∫ τ2

2

τ2
1

σ̂ue>1 A
−1
[
exp

{
A(τ2

2 − u)
}
− Ip

]
epdu

})2

(30)

To get an estimate of θ̂3
t , θ̂

2
t is substituted in the period (τ2

1 , τ
2
2 ) of the next equation:

arg min
θ̂3t

(
FCAT (t,τ3

1 ,τ
3
2 ) −

∫ τ3
2

τ3
1

Λ̂udu− ât,τ3
1 ,τ

3
2
X̂t −

∫ τ2
1

t

θ̂2
t σ̂uât,τ3

1 ,τ
3
2
epdu

−
∫ τ3

2

τ3
1

θ̂3
t σ̂ue

>
1 A
−1
[
exp

{
A(τ3

2 − u)
}
− Ip

]
epdu

)2

(31)
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Figure 19: Prices (upper left) and MPR for Berlin CAT Futures traded on 20060530. Constant MPR for each contract per trading

day (upper right), 2 constant MPR per trading day (lower left) and time dependent MPR using spline (lower right).

Then substitute θ̂2 in the period (τ2
1 , τ

2
2 ) and θ̂3 in the period (τ3

1 , τ
3
1 ) to estimate θ̂4:

arg min
θ̂4t

(
FCAT (t,τ4

1 ,τ
4
2 ) −

∫ τ4
2

τ4
1

Λ̂udu− ât,τ4
1 ,τ

4
2
X̂t −

∫ τ2
1

t

θ̂2
t σ̂uât,τ4

1 ,τ
4
2
epdu

−
∫ τ3

1

τ2
1

θ̂3
t σ̂uât,τ4

1 ,τ
4
2
epdu−

∫ τ4
2

τ4
1

θ̂4
t σ̂ue

>
1 A
−1
[
exp

{
A(τ4

2 − u)
}
− Ip

]
epdu

)2

(32)

In a similar way, the estimation of θ̂5
t , θ̂

6
t θ̂

7
t can be obtained. The estimates of the bootstrap MPR lead to full

replication of the CAT futures prices, as in the case when the MPR is constant per trading day. The relative dif-

ference between the bootstrap method and the constant MPR per trading day method (|MPRbootstrap−MPRconstant| /MPRconstant),

is equal to -1.2895e-004, while for the constant MPR, the two constant MPRs and the MPR obtained by splines

the differences are equal to 6.3714, 7.4945 and 0.0232 respectively.

Figure 20 shows the box plot per CAT future contract type of the MPR estimates when this one is assummed to

be constant per contract per trading day, constant per trading day (OLS), 2 constants per trading day (OLS2),

Boostrap and time dependent (represented by the Spline MPR). The data includes the MPR estimates from

20060501 to 20060530. Observe that in most of cases, the median and mean of the MPR per contract i = 2, . . . , 7

is negative, meaning that buyers of temperature derivatives are expecting to pay lower prices to hedge their

weather risk. However, one can notice that on some days of contract 2,3,6 and 7, the MPR is positive, indicating

the existance of consumers, who consider temperature derivatives as a kind of insurance.

To see how big the deviations from one estimation to another one are, we define the relative differences between

estimations as the absolute value of the MPR estimation differences divided by the value of the constant MPR,
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whose estimates lead to a full replication of prices. Figure 21 displays the relative differences between the

estimates of the MPR from the previous subsections and the constant MPR per contract per trading day. The

differences between estimations are more visible over contract type, but in all of them the relative differences

from the general form of the MPR obtained from splines and the boostrap are insignificant, while for constant

MPR for all types of contracts, the estimates show to have the highest relative difference.
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Figure 20: Box plot per CAT future contract type of the MPR estimates (20060501- 20060530) when this one is constant per

contract per trading day, constant per trading day (OLS), 2 constants per trading day (OLS2), Boostrap and smooth by Spline.

4.6 Smoothing the market price of risk over time

After computing the MPR θ̂t for each of the trading days for different contracts, a smoothing of the MPR with

the inverse problem points can be made to find a MPR θ̂u for every calendar day and with that one can price

temperature derivative for any maturity. We performed two procedures. The first one consists on smoothing

the MPR that was estimated in the previous subsection, i.e:

arg min
f∈Fj

Σnt=1

{
θ̂t − f(ut)

}2

= arg min
αj

Σnt=1

{
θ̂t − Σ7

j=2αjΨj(ut)
}2

(33)

where Ψj(ut) is a vector of known basis functions, αj defines the coefficients and ut = t + ∆ − 1 and n is the

number of days to be smoothed. In our case ut = 1 day and Ψj(ut) is estimated using cubic splines. Figure 22,

Figure 23 and Figure 24 show the MPR smoothing for 1, 5 and 30 days of the constant MPR per contract

per day (upper left), the constant MPR per day (upper right), the 2 constant MPR per day (middle left), the

Bootstrap MPR (middle right) and the Spline MPR (lower left) for Berlin CAT Future traded on 20060530.

Instead of smoothing the MPR estimation in two steps, the second approach follows the estimation and smooth-
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Figure 21: Box plot per CAT future contract type of the relative differences (20060501- 20060530) between MPR estimates:

MPR constant per contract per trading day (C), MPR constant per trading day (OLS), 2 MPR constant per trading day (2OLS),

Bootstrap MPR (B), Spline MPR (S).
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Figure 22: MPR smoothing for 1 day: the constant MPR per contract per day (upper left), the constant MPR per day (upper

right), the two constant MPRs per day (middle left), the Bootstrap MPR (middle right) and the Spline MPR (lower left) for Berlin

CAT Future traded on 20060530.
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Figure 23: MPR smoothing for 5 days: the constant MPR per contract per day (upper left), the constant MPR per day (upper

right), the two constant MPRs per day (middle left), the Bootstrap MPR (middle right) and the Spline MPR (lower left) for Berlin

CAT Future traded on 20060530.
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Figure 24: MPS smoothing for 30 days: the constant MPR per contract per day (upper left), the constant MPR per day (upper

right), the two constant MPRs per day (middle left), the Bootstrap MPR (middle right) and the Spline MPR (lower left) for Berlin

CAT Future traded on 20060530.
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ing procedure in just one step. We smooth the estimation of two constant market prices of risk per trading day

over several days t as:

arg min
θ̂1t ,θ̂

2
t

Σnt=1Σ7
i=2

(
FCAT (t,τ i1,τ

i
2) −

∫ τ i2

τ i1

Λ̂udu− ât,τ i1,τ i2Xt

− θ̂1
t

{∫ τ i1

t

I (u ≤ ξ) σ̂uât,τ i1,τ i2epdu+
∫ τ i2

τ i1

I (u ≤ ξ) σ̂ue>1 A−1
[
exp

{
A(τ i2 − u)

}
− Ip

]
epdu

}

− θ̂2
t

{∫ τ i1

t

I (u > ξ) σ̂uât,τ i1,τ i2epdu+
∫ τ i2

τ i1

I (u > ξ) σ̂ue>1 A
−1
[
exp

{
A(τ i2 − u)

}
− Ip

]
epdu

})2

(34)

The estimation of the MPR in this particular case shows exactly the moment when the MPR changes from

being positive to negative, indicating a kind of a seasonal structure. This temporal variation might explain the

connection between temperature future prices and its deviations from spot prices based on the risk attitude of

consumers and producers in the diversification process. It is interesting to see that the MPR have different signs

depending on how many days are left before the measurement period starts. The MPR increases as the time

to maturity of the CAT future increases. The left side of Figure 25, Figure 26 and Figure 27 show the MPR

smoothing for 1, 5 and 30 days for Berlin CAT Future traded on 20060530 in two step procedures (smoothing

the estimation), while the right hand side of those pictures display the smoothing and estimating procedure in

one step. One can observe that both approaches diverge when the smoothing takes place over more calendar

days.
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Figure 25: Smoothed MPR of Berlin CAT prices traded on 20060530 for 1 lag in 2 steps procedure (red crosses-left side) and 1

step procedure (blue line with blue crosses-right side)

4.7 Pricing CAT-HDD futures

The Chicago Mercantile exchange does not carry out trade CDD futures for Berlin, however we can use the

estimates of the smoothed MPR of CAT futures in equation 24 to price CDD futures. Then from the HDD-CDD

parity equation 16, one can estimate HDD futures and compare them with real data. Using the corresponding

MPRs from the last section, the left hand side of Figure 28 shows the estimated CAT future prices and the
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Figure 26: Smoothed MPR of Berlin CAT prices traded on 20060530 for 5 lags in 2 steps procedure (red crosses-left side) and 1

step procedure (blue line with blue crosses-right side)
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Figure 27: Smoothed MPR of Berlin CAT prices traded on 20060530 for 30 lags in 2 steps procedure (red crosses-left side) and

1 step procedure (blue line with blue crosses-right side)
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real prices extracted from Bloomberg (black line) for contracts traded before the measurement period. The

CAT future prices estimates replicate the Bloomberg estimates (black line) when the MPR estimate is constant

per contract per trading day. The seasonality effect of the temperature is clearly reflected in the CAT future

prices, showing high prices from June to August and low prices from September to April. However, pricing

deviations are smoothed over time when the estimations use smoothed MPRs, as we observe in the right hand

side of Figure 28. Replication of the HDD prices for Berlin are also displayed in Figure 29, when these ones

are estimated from robust (left hand side) and smooth (right hand side) MPRs. The extract information does

not fully replicate the reported HDD prices, indicating that there is some added value that the market use to

price these kind of contracts. However we observe that a high part of the composition of the price is from the

seasonal exposure. When the MPR becomes positive, there is a positive contribution to the future price which

makes it larger than the estimated price.

100 200 300

300

400

500

600

Day: 20060530

Nr. days to measurement period

B
er

lin
 C

A
T

 p
ri

ce
s

100 200 300

300

400

500

600

Day: 20060530

Nr. days to measurement period

B
er

lin
 C

A
T

 p
ri

ce
s

Figure 28: Right: Berlin CAT Future Prices from Bloomberg (black line) and estimated with constant MPR θ̂i
t (red line), MPR=0

(cyan line), constant MPR θ̂t (yellow line), two constant MPR θ̂1
t , θ̂

2
t (magenta line), Spline MPR (green line). Left: CAT Future

Prices estimates using smoothed MPRs

100 200 300

−500

0

500

Day: 20060530

Nr. days to measurement period

B
er

lin
 H

D
D

 p
ric

es

100 200 300

−500

0

500

Day: 20060530

Nr. days to measurement period

B
er

lin
 H

D
D

 p
ric

es

Figure 29: Right: Berlin HDD Future Prices from Bloomberg (black line) and estimated with constant MPR per contract per

day (red line), MPR=0 (cyan line), constant MPR θ̂t (yellow line), two constant θ̂1
t , θ̂

2
t (magenta line), Spline MPR (green line).

Left: HDD Future Prices estimates using smoothed MPR’s

We also estimate the CAT futures prices for contracts traded during the measurement period. The prices also
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show a seasonal pattern, confirming the idea that most of the derivative price is driven by the seasonal effect.

The left hand side of Figure 30 shows the estimated CAT future prices and the real prices extracted from

Bloomberg (black line) for contracts traded in and before the measurement period. The replication is almost

perfect in this case, but for HDD (right hand side of the picture) deviations are emphasised.
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Figure 30: Berlin CAT-HDD Future Prices from Bloomberg (black line) and estimated with constant MPR per contract per day

(red line), MPR=0 (cyan line), constant MPR for all contracts (yellow line), two constant MPR per day (magenta line), Spline

MPR(green line)

Since CAT futures are already temperature derivatives traded in the market, we relate the seasonal effect that

the MPR presents in the previous subsection with the seasonal variation of the underlying process. Figure 31

shows the behaviour of the MPR and the seasonal variation σ̂2
t+∆ for CAT future contracts with the measurement

period May 2006 (Contract K6). As we expect, the relationship between the seasonal variation σ̂2
t+∆ and the

MPR is more linear when the MPR θ̂t is smoothed over time (Figure 32) than when it is not θ̂2
t (Figure 33).

We observe that the MPR increases as the σ̂2
t+∆ increases, i.e. the closer we are to the measurement period.

This might be due to the incorporation of information from the temperature process.
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Figure 31: Left: Constant MPR θ̂i
t (blue)/smooth MPR θ̂t (red). Right: Seasonal Variation σ̂2

t+∆ (black) and σ̂2
t (magenta)

(right side) for Berlin CAT Future Prices, measurement period May 2006 (Contract K6)
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Figure 32: Seasonal Variation σ̂2
t+∆ and smoothed MPR θ̂t for Berlin CAT Future Prices 2006, measurement period May 2006

(Contract K6)
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Figure 33: Seasonal Variation σ̂2
t+∆ and constant MPR θ̂2

t for Berlin CAT Future Prices, measurement period May 2006 (Contract

K6)
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5 Conclusion

We apply higher order continuous time autoregressive models CAR(3) with seasonal variance for modelling

temperature in Berlin for more than 57 years of daily observations.

This paper also analyses the weather future products for Berlin as traded at the Chicago Mercantile Exchange

(CME). We implied the market price of weather risk, which is an important issue to price non-tradable assets.

We study the MPR structure, not only as a piecewise constant linear function, but also as time dependent for

different contract types to obtain a full replica of real prices. By doing so, we can establish explicit relationships

between the market risk premium and the MPR and explain connections between forward prices and their

deviations from the spot market. We found that the MPR for cumulative temperature derivatives is different

from zero and shows a seasonal structure that increases as the expiration date of the temperature future

increases. The main explanation of this temporal variation is the risk attitude of consumers and producers

in the diversification process and the seasonal effect of the underlying process nature. We observe a nonlinear

relationship between the seasonal variation of the temperature process and the MPR, indicating that a significant

portion of derivative prices could come from the different time horizont perspectives of market players to hedge

weather risk.
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