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Abstract

The purpose of this paper is to propose a new likelihood-based panel cointegration test
in the presence of a linear time trend in the data generating process. This new test is an ex-
tension of the likelihood ratio (LR) test of Saikkonen & Lütkepohl (2000) for trend-adjusted
data to the panel data framework, and is called the panel SL test. The idea is first to take the
average of the individual LR (trace) statistics over the cross-sections and then to standardize
the test statistic with the appropriate asymptotic moments. Under the null hypothesis, this
standardized statistic has a limiting normal distribution as the number of time periods (T )
and the number of cross-sections (N) tend to infinity sequentially. In addition to the ap-
proximation based on asymptotic moments, a second approximation approach involving the
moments from a vector autoregressive process of order one is also introduced. By means of
a Monte Carlo study the finite sample size and size-adjusted power properties of the test are
investigated. The test presents reasonable size with the increase in T and N , and has high
power in small samples.

Keywords: Panel Cointegration Test, Likelihood Ratio, Time Trend, Monte Carlo Study.

JEL classification: C33, C12, C15.

1 Introduction

Most macroeconomic variables, e.g. prices, gross domestic product, consumption etc., ex-
hibit a trending behavior. To model this behavior in the multivariate time series literature
a drift parameter is included in the vector autoregressive (VAR) model. Building on this
idea, Saikkonen & Lütkepohl (2000) proposed Lagrange multiplier (LM) and likelihood ra-
tio (LR) cointegration tests for data with a linear time trend which are different from the
popular Johansen (1995) test. Saikkonen & Lütkepohl (2000) based their test on the idea
of subtracting estimates of the deterministic terms from the original data and applying the
cointegration test on the trend-adjusted data. The principle of subtracting estimates of the
deterministic terms of the model was first suggested by Stock & Watson (1988). Saikkonen
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& Lütkepohl (2000) proposed to estimate the deterministic terms under the null hypothesis
using a generalized least squares (GLS) method. By construction, under the null hypothesis
the limit distribution of the their tests do not depend on the deterministic terms. In a simu-
lation study, they concluded that their tests have better properties than the test of Johansen
(1995) allowing for a linear trend. Moreover, the LR type version of their tests outperforms
the LM type version.

So far there are only few examples of likelihood-based panel cointegration tests which
allow for a deterministic linear trend in the data generating process. Larsson et al. (2001),
who extended the Johansen trace test to panel data and Breitung (2005), who based his tests
on the procedure of Saikkonen (1999), showed in their studies that their panel cointegration
tests can be extended to the case with deterministic terms, but they did not deliver any
proof of corresponding asymptotic results. Additionally, Anderson et al. (2006) introduced
a systems panel cointegration test, which allows for a linear time trend. This test is built
on the method of Box & Tiao (1977) in which the number of stochastic common trends is
determined by the number of certain eigenvalues close to one. Note that these eigenvalues
are the squared canonical correlation coefficients between a multivariate time series and its
linear projection on its own history. However, there is no likelihood-based panel cointegration
test that relies on the idea of subtracting the estimated deterministic terms prior to testing
for cointegration.

The goal of this paper is to close this gap. We extend the trend-adjusting procedure of
Saikkonen & Lütkepohl (2000) to the panel data framework and propose an LR panel cointe-
gration test in the presence of a linear time trend in the data generating process (DGP); recall
that the LR type test was superior to the LM type version in the simulation study of Saikko-
nen & Lütkepohl (2000). With this new likelihood-based panel cointegration test statistic
one can test for the number of cointegrating relations in the system. This is advantageous
compared to the single-equation tests, which can only be used to determine whether there is
a cointegrating relation or not. The proposed panel SL test statistic is a standardized version
of the average of the individual LR test statistics (trace statistics) over the cross-sections.
The standardization is based on the first two moments of the asymptotic trace statistic; i.e.
of the limit distribution of the trace statistic. Alternatively, according to Larsson (1999) and
Larsson et al. (2001) moments from an approximating VAR(1) process could be used. Un-
der the null hypothesis, the panel SL test statistic converges in distribution to the standard
normal law as the number of time periods and the number of cross-sections tend to infinity
in a sequential way. Therefore standard normal quantiles may serve as critical values. To
justify our approach, we show that the first two moments of the asymptotic trace statistic
exists and may be obtained as limits of the moments of a statistic defined in (18), which is
used to approximate the asymptotic moments by simulation. This result is an extension of
a result of Karaman Örsal & Droge (2009) who corrected a related proof in Larsson et al.
(2001) for the case without deterministic terms. The results of a simulation study suggest
that the panel SL test has reasonable finite sample properties.

The paper is organized as follows. In Section 2 the heterogeneous panel vector error cor-
rection (VEC) model with linear time trend is introduced. Section 3 describes the estimation
of the deterministic terms and Section 4 presents the new LR panel cointegration test. The
size and size-adjusted power properties are examined by means of a Monte Carlo study in
Section 5. Finally, Section 6 gives a summary of the main results. All proofs are deferred to
the Appendix in Section 7.
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2 The Model

Consider a panel data set consisting of N cross-sections (individuals) observed over T time
periods and suppose that for each individual i (i = 1, . . . , N) a K-dimensional time series
yit = (y1it, . . . , yKit)

′, t = 1, . . . , T , is observed which is generated by the following heteroge-
nous VAR(pi) model with linear trend:

yit = µ0i + µ1it+ xit, i = 1, . . . , N ; t = 1, . . . , T, (1)

xit = Ai1xi,t−1 + . . .+Ai,pi
xi,t−pi

+ εit. (2)

Here µ0i and µ1i are unknown K-dimensional parameter vectors, pi is the lag order of the
VAR process for the ith cross-section and Ai1, ..., Ai,pi

are unknown (K × K) coefficient
matrices. Moreover, we assume that the K-dimensional random errors εit are serially and
cross-sectionally independent with εit ∼ NK(0,Ωi), for some nonrandom positive definite
matrix Ωi. For simplicity the initial value condition xit = 0, t ≤ 0 and i = 1, . . . , N , is
imposed. However, the results remain valid if we assume that the initial values are drawn
from a fixed probability distribution, which does not depend on the sample size.

By subtracting xi,t−1 from both sides of (2) and rearranging terms we get the VEC form
of the model xit:

∆xit = Πixi,t−1 +

pi−1∑

j=1

Γij∆xi,t−j + εit, i = 1, . . . , N ; t = 1, . . . , T, (3)

in which Πi = −(IK −Ai1 − . . .−Ai,pi
) and Γij = −(Ai,j+1 + . . .+Ai,pi

) for j = 1, . . . , pi − 1.
The components of the process xit are assumed to be integrated at most of order one and
cointegrated with cointegrating rank ri, 0 ≤ ri ≤ K. In other words, yit is at most I(1) and
cointegrated at most of order ri. Thus, the matrix Πi can be decomposed as

Πi = αiβ
′
i, i = 1, . . . , N, (4)

where both αi and βi are (K × ri) matrices of full column rank. Note that αi is the loading
and βi is the cointegrating matrix.

On account of (1), (2) and (3) we obtain the VEC form of yit:

∆yit = νi + αi

[
β′iyi,t−1 − τi(t− 1)

]
+

pi−1∑

j=1

Γij∆yi,t−j + εit, (5)

i = 1, ..., N ; t = pi + 1, pi + 2, ..., T,

with νi = −Πiµ0i + (IK − Γi1 − . . .− Γi,pi−1)µ1i and τi = β′iµ1i.

To determine the number of cointegrating relations among the components of the process
yit, the rank of the matrix Πi should be tested. The relevant null and alternative hypotheses
for the cointegration tests are

H0 : rank(Πi) = ri ≤ r, i = 1, . . . , N vs. H1 : rank(Πi) = K, i = 1, . . . , N. (6)

Under the null hypothesis all the cross-sections have at most cointegrating rank r, whereas
under the alternative hypothesis the rank of Πi, i = 1, . . . , N , is K. Before testing for the
cointegrating rank the data should be trend-adjusted. For the trend-adjustment, estimations
of the deterministic terms µ0i and µ1i are required.
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3 Estimation of the Deterministic Terms

To estimate the parameters µ0i and µ1i, the GLS method is applied. The data series is then
trend-adjusted by subtracting the estimated deterministic terms from yit.

For estimating the deterministic terms, we use the initial value condition xit = 0, for
t ≤ 0. First we rewrite (1) as

Ai(L)yit = Gitµ0i +Hitµ1i + εit, i = 1, ..., N ; t = 1, ..., T, (7)

with Ai(L) = IK −Ai1L− ...−Ai,pi
Lpi , Git = Ai(L)at, Hit = Ai(L)bt and

at =

{
1 for t ≥ 1
0 for t ≤ 0

, bt =

{
t for t ≥ 1
0 for t ≤ 0

.

Then, (7) is premultiplied by Q′
i with

Qi =
[
Ω−1

i αi(α
′
iΩ

−1
i αi)

−1/2 : αi⊥(α′
i⊥

Ωiαi⊥)−1/2
]

and QiQ
′
i = Ω−1

i , (8)

so that the resulting error terms Q′
iεit have an identity covariance matrix1.

Replacing the unknown parameter matrices αi, βi, Γij and Ωi of the transformed model

by their reduced rank (RR) estimates (α̃i, β̃i, Γ̃ij and Ω̃i, respectively) from (5), the model
can be written in a feasible form. Note that the unknown parameters are estimated under
the null hypothesis that the cointegrating rank is r.

With the estimates of the matrices αi, βi, Γij and their definitions from the previous
section, the unknown (K ×K) coefficient matrices Aij , i = 1, . . . , N and j = 1, . . . , pi, can
be estimated by

Ãi1 = IK + α̃iβ̃
′
i + Γ̃i1,

Ãij = Γ̃ij − Γ̃i,j−1, for j = 2, ..., pi − 1,

Ãi,pi
= −Γ̃i,pi−1,

which allows to use the following:

Ãi(L) = IK − Ãi1L− ...− Ãi,pi
Lpi ,

G̃it = Ãi(L)at and

H̃it = Ãi(L)bt.

This leads to a feasible form of the transformed model. The matrices α̃i⊥ and β̃i⊥ can be

obtained from the estimates α̃i and β̃i, respectively. To estimate Qi, the estimates α̃i, α̃i⊥ ,

Ω̃i are inserted into (8), so that

Q̃i =
[
Ω̃−1

i α̃i(α̃
′
iΩ̃

−1
i α̃i)

−1/2 : α̃i⊥(α̃′
i⊥

Ω̃iα̃i⊥)−1/2
]

for i = 1, . . . , N. (9)

Finally, the estimators of µ0i and µ1i can be obtained by the multivariate least squares
method applied to the following auxiliary regression equations, separately for each cross-
section:

Q̃′
iÃi(L)yit = Q̃′

iG̃itµ0i + Q̃′
iH̃itµ1i + Q̃′

iεit, i = 1, ..., N ; t = 1, ..., T. (10)

As pointed out earlier, the least squares estimates of µ̃0i and µ̃1i from (10) are used to
trend-adjust the data before testing for cointegration.

1If A is an (n×m) matrix of full column rank, its orthogonal complement is denoted by A⊥, where A⊥ is
an (n× (n−m)) matrix of full column rank such that A′A⊥ = 0.
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4 Panel Cointegration Test

Saikkonen & Lütkepohl (2000) introduced both LM and LR cointegration test statistics. By
means of a simulation study they concluded that the LR tests are preferable to LM tests.
Based on this result we propose an LR panel cointegration test statistic, which is an extension
of the LRGLS

trace statistic of Saikkonen & Lütkepohl (2000) to panel data.

The new test statistic is based on the following trend-adjusted panel VEC model:

∆x̃it = Πix̃i,t−1 +

pi−1∑

j=1

Γij∆x̃i,t−j + eit, i = 1, ..., N ; t = pi + 1, ..., T, (11)

with x̃it = yit − µ̃0i − µ̃1it.

The GLS-based trace statistic (LR statistic) for each cross-section is then given by

LRGLS
traceiT

(r) = −2 lnQT {H(r)|H(K)} = −T
K∑

j=r+1

ln(1 − λ̂ij). (12)

Here λ̂i1 ≥ . . . ≥ λ̂iK are the ordered generalized eigenvalues for cross-section i which are
obtained by the eigenvalue problem defined in Johansen (1995).

Under the null hypothesis it follows, as T → ∞,

LRGLS
traceiT

(r)
w→Zd with (13)

Zd ≡ tr

{(∫ 1

0
W∗(s)dW∗(s)

′

)′(∫ 1

0
W∗(s)W∗(s)

′ds

)−1(∫ 1

0
W∗(s)dW∗(s)

′

)}
,

where W∗(s) = W (s)−sW (1) is a d-dimensional Brownian bridge (d = K−r) and dW∗(s) =
dW (s) − dsW (1). The proof of this result can be found in the Appendix of Saikkonen &
Lütkepohl (2000).

Next, following Larsson et al. (2001), the average of the N individual trace statistic,

LR
GLS
traceNT

(r) =
1

N

N∑

i=1

LRGLS
traceiT

(r), (14)

is called the LRGLS
trace-bar statistic. After subtracting the mean and dividing by the standard

deviation of the asymptotic trace statistic Zd, the standardized LRGLS
trace-bar test (henceforth

panel SL test) statistic is given by

γ
LR

GLS

trace

=

√
N [LR

GLS
traceNT

(r) − E(Zd)]√
Var(Zd)

, (15)

in which E(Zd) and Var(Zd) are the mean and variance, respectively, of the individual asymp-
totic trace statistic in (13).

As usual, the mean and variance of Zd can be approximated by simulation for dif-
ferent values of d = K − r (see Lütkepohl & Saikkonen, 2000). To accomplish this, one
generates, for example, T = 1000 independent d-dimensional standard normal variates
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εt ∼ N(0, Id). Next,

AT =
1

T 2

T∑

t=1

[
t−1∑

m=1

(εm − ε̄)

][
t−1∑

m=1

(εm − ε̄)

]′
, (16)

BT =
1

T

T∑

t=1

[
t−1∑

m=1

(εm − ε̄)

]
(εt − ε̄)′, (17)

are computed with ε̄ = T−1
∑T

t=1 εt. Because of AT
ω→

∫ 1
0 W∗(s)W∗(s)

′ds and

BT
ω→
∫ 1
0 W∗(s)dW∗(s)

′, it follows

ZT,d := tr{B′
TA

−1
T BT } w→ Zd. (18)

By replicating the experiment 20000 times, approximations of the first two moments of the
asymptotic LRGLS

trace statistic are computed as sample moments of ZT,d for different values of
d. The resulting approximations of the mean and variance of Zd are presented in Table 1.

Table 1: Simulated first two moments of Zd.

d = K − r E(Zd) Var(Zd) d = K − r E(Zd) Var(Zd)

1 2.69 4.38 7 97.91 143.68
2 8.86 13.37 8 127.55 187.28
3 18.85 28.23 9 161.20 238.00
4 32.78 47.94 10 198.43 300.91
5 50.58 73.74 11 239.70 357.05
6 72.44 105.33 12 284.87 424.86

The proposed test statistic is only justified if the first two moments of the asymptotic
trace statistic Zd exist and may be obtained as limits of the corresponding moments of the
statistic ZT,d. Therefore we prove in Section 7 the following result.

Theorem 1. It holds E(Z2
d) <∞ and lim

T→∞
E(Zr

T,d) → E(Zr
d) for r = 1, 2.

The following theorem is an immediate consequence of the above result together with
the central limit theorem and motivates that quantiles of the standard normal law may serve
as critical values for the test procedure.

Theorem 2. Under the null hypothesis, H0 : rank(Π) = ri ≤ r for all i = 1, . . . , N , the
panel cointegration statistic γ

LR
GLS

trace

is asymptotically N(0, 1) distributed as T → ∞, followed

by N → ∞.

Under certain conditions2 the asymptotic distribution of the panel cointegration statistic
γ

LR
GLS

trace

can also be established when T and N tend jointly to infinity.

It is obvious from (6) that the panel cointegration test is one-sided, and a test at an
asymptotic significance level α rejects H0 defined in (6) if

γ
LR

GLS

trace

(r) > z1−α,

2see Phillips & Moon (1999), for conditions under which the sequential convergence implies joint conver-
gence.
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where z1−α is the (1 − α) quantile of the standard normal distribution.

The sequential testing procedure of Johansen (1988) may be applied to determine the
cointegrating rank of the process. First, H0 : rank(Πi) = ri ≤ 0 is tested. If this null
hypothesis is rejected, then H0 : rank(Πi) = ri ≤ 1 is tested. This procedure continues
until the null hypothesis cannot be rejected or H0 : rank(Πi) = ri ≤ K − 1 is rejected. If
H0 : rank(Πi) = ri ≤ K − 1 is rejected, then (1) is stable3.

Following the theory in Larsson (1999) and Larsson et al. (2001) we suggest a second
approximation of the moments for the standardization of the panel SL statistic. Larsson
(1999) and Larsson et al. (2001) proposed to use the moments from an approximating VAR(1)
process, even if the true DGP is a VAR process of higher order. This is motivated by the fact
that the moments of the log-likelihood for a VAR(s) process can be approximated sufficiently
well by the moments from the log-likelihood for a VAR(1) process, in which s denotes the
maximum lag order of the VAR process. In particular, they showed

Theorem 3. For all positive integers n,

E[(−2 lnQ
(s)
T )n] = E[(−2 lnQ

(1)
T )n] +O(T−1).

Here, −2 lnQ
(s)
T is the maximum log-likelihood for a VAR(s) process and −2 lnQ

(1)
T is the

maximum log-likelihood for a VAR(1) process, which can be formulated as

−2 lnQ
(1)
T = tr








T∑

t=1

(
t−1∑

m=1

(εm − ε̄)

)(
t−1∑

m=1

(εm − ε̄)

)′


−1

[
T∑

t=1

(
t−1∑

m=1

(εm − ε̄)

)
(εt − ε̄)′

][
T−1

T∑

t=1

(εt − ε̄)(εt − ε̄)′

]−1




T∑

t=1

(εt − ε̄)

(
t−1∑

m=1

(εm − ε̄)

)′





+Op(T

−1),

with εt ∼ N(0, Id) and ε̄ = T−1
∑T

t=1 εt.

Using 50000 replications for different time spans T and values d = K − r the VAR(1)
mean and variance are computed by means of a simulation. The results are tabulated in
Table 2.

Table 2: Mean and variance values of the VAR(1) approximation.

d = K − r 1 2 3 4

T − 1 Mean Variance Mean Variance Mean Variance Mean Variance

10 2.11 1.75 6.60 3.50 13.21 4.69 21.65 5.27
25 2.42 2.95 7.77 7.42 16.01 12.63 26.98 17.82
50 2.53 3.54 8.28 9.90 17.34 18.31 29.61 28.41
100 2.61 3.90 8.59 11.44 18.15 22.70 31.27 37.21
200 2.66 4.21 8.76 12.49 18.56 25.27 32.10 42.87
500 2.67 4.21 8.86 13.25 18.85 27.17 32.57 45.76
1000 2.67 4.37 8.86 13.41 18.87 27.73 32.80 46.78

3Remark: A VAR(pi) process is stable if det(Ai(z)) 6= 0 for |z| ≤ 1 with Ai(z) = IK −Ai1z − ...−Ai,pi
zpi

(see Lütkepohl, 2005).
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5 Monte Carlo Study

Three different DGPs are considered to investigate the finite sample properties of the panel
SL test. Particular interest is in checking how the test reacts to the changes in the crucial
parameters of the three DGPs.

5.1 DGP A

Since Saikkonen & Lütkepohl (2000) based their simulation study on the Toda (1994, 1995)
process, we consider a modified version of this process for panel data.

For i = 1, ..., N and t = 1, . . . , T , the general form of the bivariate Toda process in the
presence of a linear trend in the data is

yit =

(
0
δi

)
+

(
ψa 0
0 ψb

)
yi,t−1 + εit, εit ∼ N

([
0
0

]
,

[
1 θ

θ 1

])
i.i.d. (19)

Throughout the simulation study the initial values yi0 are set to zero. The parameter θ
represents the correlation between the innovations to the stationary and nonstationary com-
ponents of the relevant cross-section. If θ 6= 0, then there is instantaneous correlation between
the innovations to the stationary and nonstationary components of the process yit. The Toda
process is frequently used in the literature because from its canonical form other processes
can be obtained by regular linear transformations of yit, and the tests under consideration
are invariant to these transformations.

If ψa = ψb = 1, the true cointegrating rank is zero, and there is no cointegrating relation
between the components of the process. Then, (19) becomes

yit = δie2 + I2yi,t−1 + εit, εit ∼ N(0, I2), (20)

with e2 =
(

0 1
)′

. Thus, the process consists of two nonstationary processes. If δi 6= 0, a
heterogeneous linear trend parameter is present in the second nonstationary process because
in a nonstationary unit root processes a drift parameter generates a linear trend. More-
over, there is no instantaneous correlation between the innovations of the two nonstationary
components4, i.e. θ = 0.

If |ψa| < 1 and ψb = 1, the true cointegrating rank of the process is one, and (19) can
be written as

yit =

(
0
δi

)
+

(
ψa 0
0 1

)
yi,t−1 + εit, εit ∼ N

([
0
0

]
,

[
1 θ

θ 1

])
i.i.d. (21)

Hence, the process consists of a stationary and a nonstationary component. Instantaneous
correlation is present if θ 6= 0, and in the nonstationary component there is a linear trend for
δi 6= 0.

If |ψa|, |ψb| < 1, then the true cointegrating rank of the process is two, and the VAR
process yit is stable. This can be formulated as

yit =

(
ψa 0
0 ψb

)
yi,t−1 + εit, εit ∼ N(0, I2), (22)

4Since θ denotes correlation between the innovations to the stationary and nonstationary components of
the process, θ = 0.
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in which the process consists of two stationary components and θ = 0. The parameter δi is
excluded from the model as a drift parameter will not create a linear time trend for stationary
processes. Besides this we obtain the same simulation results even when we include a drift
parameter.

Throughout the simulation study, we consider the same values for the parameters θ, ψa

and ψb as in Saikkonen & Lütkepohl (2000): θ ∈ {0, 0.8}, ψa, ψb ∈ {0.5, 0.7, 0.8, 0.9, 0.95, 1}.
The time and cross-section dimensions are the values, which are also taken by Larsson et al.
(2001): N ∈ {1, 5, 10, 25, 50} and T − p ∈ {10, 25, 50, 100, 200, 500, 1000}, where p denotes
the VAR order of the underlying DGP5. The drift parameter is independently generated
from a uniform distribution δi ∼ U(0, 2). In addition to this, we also consider that the drift
parameter is homogeneous, i.e. δi = 1 for all i. However, this has no effect on the properties
of the test. Indeed, the same results are achieved for both heterogeneous and homogeneous
cases (cp. Saikkonen & Lütkepohl, 2000; Trenkler, 2002).

5.2 DGP B

The second DGP is a VAR(2) process, which allows for a better examination of the properties
of the test based on the VAR(1) approximation of the moments. In particular we see how
the test behaves when the underlying VAR process has a higher order than one.

If the true cointegrating rank is zero, the DGP has the form

yit =

(
0
1

)
+

(
0.8 0
0 0.4

)
yi,t−1 +

(
0.2 0
0 0.6

)
yi,t−2 + εit, εit ∼ N(0, I2), (23)

with

Πi = Π = −
(
I2 −

(
0.8 0
0 0.4

)
−
(

0.2 0
0 0.6

))
=

(
0 0
0 0

)
, i = 1, . . . , N.

If the true cointegrating rank is one, the DGP is

yit =

(
0
1

)
+

(
ψ 0
0 0.4

)
yi,t−1 +

(
0.2 0
0 0.6

)
yi,t−2 + εit, εit ∼ N(0, I2), (24)

with

Πi = Π = −
(
I2 −

(
ψ 0
0 0.4

)
−
(

0.2 0
0 0.6

))
=

(
ψ − 0.8 0

0 0

)
, i = 1, . . . , N.

If ψ < 0.8, then the DGP consists of a stationary and a nonstationary component. To generate
the same Πi matrices as in DGP A, the ψ parameter takes the values ψ ∈ {0.5, 0.6, 0.7, 0.75}.
The drift parameter takes the value 1 for all i because a cross-section varying trend term
does not affect the results of the simulation study.

A VAR(2) process with a true cointegrating rank of two can be generated as follows:

yit =

(
ψ 0
0 0.3

)
yi,t−1 +

(
0.2 0
0 0.2

)
yi,t−2 + εit, εit ∼ N(0, I2). (25)

If we assume again that ψ ∈ {0.5, 0.6, 0.7, 0.75}, the DGP is composed of two stationary
processes. The drift parameter is not included in the expression as this will not generate a
linear trend.

5In our study, we consider additionally T − p ∈ {500, 1000} to find out the properties of the tests when T
is large.
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5.3 DGP C

The third DGP considered in this simulation study is that of Breitung (2005). DGP C differs
from the other two DGPs in so far as both the drift parameter and the parameters of the
coefficient matrix are heterogeneous over the cross-sections. This is quite suitable for the
heterogeneous structure of the model introduced in (1) and (2). The DGP is based on the
following VAR(1) model.

yit = µi

(
1
1

)
+

(
1 − a1i −a1ib

−a2i 1 − a2ib

)
yi,t−1 + εit, (26)

in which εit = uit+ϑiui,t−1, uit ∼ N(0, I2) i.i.d and yi0 = 0, i = 1, . . . , N . If ϑi 6= 0, then there
is correlation between the components of the process yit. Furthermore, the cross-sectional
varying parameters are generated from uniform distributions: µi ∼ U(0, 1), ϑi ∼ U(0, 0.5),
aKi ∼ U(0.1, 0.5) for K = 1, 2 and b = 1.

5.4 Simulation Results

In this section the simulation results based on the three different data generating processes
explained above are presented. Throughout the simulation study the test statistics are com-
puted with two different approximations, i.e approximations based on asymptotic moments
and on VAR(1) moments. Similar to the Monte Carlo study of Breitung (2005), we compare
our panel SL test with the panel test of Larsson et al. (2001) allowing a linear time trend
(henceforth LLL test), which is an extension of the test of Johansen (1995) with deterministic
terms. The LLL panel test statistic is computed using the asymptotic moments presented
in Breitung (2005). To include the results for the LLL test based on VAR(1) moments, the
moments are calculated analogous to the procedure described in Section 4.

Note that the total number of replications is 1000. While generating the random error
terms, seeded values are used and the first 50 observations are deleted, so that the starting
values are not zero anymore. All the programming is done in GAUSS 6.0.

5.4.1 Simulation Results for DGP A

With the approximation based on asymptotic moments the size6 of the panel SL test for the
true cointegrating rank of zero (see Table 3) varies between 0.053 (for T = 25, N = 25) and
0.118 (for T = 10, N = 50). If the test statistic is approximated with VAR(1) moments,
the empirical size of the test is around the 5% level for T = 500, 1000 and otherwise it is
severely oversized. Even worse, the LLL test is severely oversized for short time periods under
both approximations, and the distortion increases with the increase in N . Moreover, its size
comes close to the nominal 5% significance level for longer time periods; it reaches 0.055 for
T = 1000, N = 10, when the VAR(1) moments are used. Overall, based on the asymptotic
moments the panel SL test shows the best size properties if the true cointegrating rank of the
process is zero. Note that with an increase in T , the size results with different approximations
converge to each other.

6In the tables presenting the empirical size results, the columns denoted by “asymp” refer to the results of
the tests based on the moments of the asymptotic trace statistic, whereas the columns denoted by “VAR(1)”
present the results of the tests based on VAR(1) moments.
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Table 3: Empirical size results of the tests for DGP A and true cointegrating rank of zero.

panel SL LLL
T-1 N asymp VAR(1) asymp VAR(1)

10 1 0.072 0.372 0.188 0.765
5 0.089 0.720 0.394 0.996
10 0.088 0.890 0.604 1.000
25 0.104 0.999 0.906 1.000
50 0.118 1.000 0.990 1.000

25 1 0.067 0.160 0.083 0.286
5 0.073 0.286 0.114 0.611
10 0.058 0.395 0.129 0.774
25 0.053 0.636 0.266 0.983
50 0.075 0.836 0.379 1.000

50 1 0.081 0.128 0.079 0.165
5 0.062 0.154 0.100 0.253
10 0.067 0.181 0.100 0.376
25 0.061 0.281 0.142 0.604
50 0.057 0.426 0.178 0.819

100 1 0.064 0.076 0.064 0.092
5 0.056 0.096 0.058 0.112
10 0.060 0.114 0.076 0.168
25 0.077 0.160 0.119 0.284
50 0.075 0.220 0.147 0.387

200 1 0.076 0.084 0.070 0.082
5 0.061 0.071 0.070 0.080
10 0.056 0.071 0.074 0.088
25 0.077 0.109 0.110 0.139
50 0.074 0.105 0.124 0.155

500 1 0.069 0.069 0.064 0.062
5 0.076 0.077 0.082 0.077
10 0.074 0.074 0.079 0.072
25 0.068 0.069 0.088 0.078
50 0.074 0.076 0.115 0.094

1000 1 0.061 0.061 0.080 0.076
5 0.070 0.070 0.068 0.058
10 0.066 0.066 0.066 0.055
25 0.068 0.068 0.081 0.059
50 0.069 0.069 0.118 0.073
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Table 4: Empirical size results of the tests for DGP A and true cointegrating rank of one with θ = 0.

ψa = 0.7 ψa = 0.95
panel SL LLL panel SL LLL

T-1 N asymp VAR(1) asymp VAR(1) asymp VAR(1) asymp VAR(1)

10 1 0.022 0.087 0.025 0.187 0.018 0.083 0.021 0.162
5 0.008 0.095 0.002 0.324 0.003 0.086 0.004 0.311
10 0.001 0.122 0.002 0.411 0.001 0.102 0.001 0.406
25 0.000 0.174 0.001 0.654 0.000 0.110 0.000 0.667
50 0.000 0.238 0.000 0.858 0.000 0.102 0.000 0.860

25 1 0.039 0.068 0.012 0.049 0.015 0.021 0.007 0.036
5 0.016 0.054 0.003 0.025 0.003 0.010 0.001 0.011
10 0.006 0.042 0.001 0.020 0.000 0.002 0.000 0.006
25 0.004 0.049 0.000 0.024 0.000 0.000 0.000 0.002
50 0.001 0.054 0.000 0.010 0.000 0.000 0.000 0.000

50 1 0.062 0.080 0.030 0.063 0.015 0.024 0.000 0.019
5 0.058 0.085 0.016 0.046 0.002 0.005 0.000 0.000
10 0.038 0.089 0.009 0.046 0.000 0.001 0.000 0.002
25 0.038 0.106 0.002 0.042 0.000 0.000 0.000 0.000
50 0.031 0.122 0.002 0.028 0.000 0.000 0.000 0.000

100 1 0.060 0.071 0.053 0.064 0.013 0.018 0.013 0.013
5 0.069 0.092 0.036 0.063 0.001 0.003 0.000 0.000
10 0.064 0.088 0.059 0.078 0.000 0.000 0.002 0.003
25 0.063 0.111 0.058 0.099 0.000 0.000 0.000 0.000
50 0.079 0.149 0.048 0.119 0.000 0.000 0.000 0.000

200 1 0.063 0.062 0.068 0.077 0.022 0.020 0.014 0.016
5 0.067 0.069 0.071 0.082 0.012 0.011 0.003 0.003
10 0.059 0.068 0.069 0.081 0.003 0.003 0.003 0.004
25 0.060 0.069 0.073 0.088 0.000 0.000 0.001 0.001
50 0.068 0.084 0.082 0.109 0.000 0.000 0.000 0.000

500 1 0.055 0.057 0.063 0.064 0.041 0.044 0.049 0.049
5 0.066 0.073 0.076 0.076 0.041 0.046 0.046 0.046
10 0.077 0.084 0.070 0.070 0.027 0.029 0.037 0.037
25 0.064 0.072 0.068 0.067 0.012 0.014 0.025 0.025
50 0.083 0.095 0.074 0.073 0.013 0.016 0.020 0.020

1000 1 0.065 0.065 0.066 0.066 0.050 0.050 0.067 0.067
5 0.066 0.067 0.073 0.071 0.053 0.053 0.073 0.072
10 0.064 0.066 0.051 0.050 0.050 0.051 0.058 0.058
25 0.069 0.072 0.071 0.068 0.034 0.035 0.073 0.071
50 0.056 0.060 0.075 0.071 0.020 0.024 0.086 0.078
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Table 5: Empirical size results of the tests for DGP A and true cointegrating rank of one with
θ = 0.8.

ψa = 0.7 ψa = 0.95
panel SL LLL panel SL LLL

T-1 N asymp VAR(1) asymp VAR(1) asymp VAR(1) asymp VAR(1)

10 1 0.029 0.087 0.026 0.236 0.019 0.083 0.022 0.162
5 0.016 0.095 0.016 0.482 0.005 0.086 0.005 0.323
10 0.012 0.122 0.015 0.688 0.001 0.102 0.001 0.416
25 0.003 0.174 0.008 0.911 0.000 0.110 0.000 0.679
50 0.001 0.238 0.003 0.991 0.000 0.102 0.000 0.874

25 1 0.045 0.068 0.043 0.122 0.015 0.021 0.008 0.037
5 0.019 0.054 0.034 0.190 0.003 0.010 0.000 0.013
10 0.011 0.042 0.040 0.253 0.000 0.002 0.000 0.008
25 0.008 0.049 0.045 0.479 0.000 0.000 0.000 0.003
50 0.003 0.054 0.059 0.710 0.000 0.000 0.000 0.000

50 1 0.059 0.080 0.079 0.118 0.014 0.024 0.011 0.019
5 0.031 0.085 0.080 0.158 0.004 0.005 0.002 0.003
10 0.019 0.089 0.086 0.215 0.000 0.001 0.001 0.005
25 0.007 0.106 0.137 0.380 0.000 0.000 0.000 0.000
50 0.004 0.122 0.209 0.561 0.000 0.000 0.000 0.000

100 1 0.041 0.071 0.074 0.094 0.016 0.018 0.023 0.034
5 0.033 0.092 0.093 0.127 0.000 0.003 0.010 0.017
10 0.015 0.088 0.079 0.125 0.000 0.000 0.010 0.013
25 0.008 0.111 0.116 0.198 0.000 0.000 0.004 0.011
50 0.005 0.149 0.176 0.287 0.000 0.000 0.000 0.003

200 1 0.037 0.062 0.079 0.088 0.013 0.020 0.049 0.054
5 0.039 0.069 0.077 0.094 0.003 0.011 0.056 0.069
10 0.027 0.068 0.067 0.082 0.000 0.003 0.047 0.058
25 0.017 0.069 0.091 0.122 0.000 0.000 0.078 0.101
50 0.008 0.084 0.120 0.161 0.000 0.000 0.099 0.150

500 1 0.071 0.057 0.068 0.069 0.017 0.044 0.080 0.084
5 0.054 0.073 0.068 0.069 0.003 0.046 0.092 0.093
10 0.039 0.084 0.083 0.084 0.001 0.029 0.109 0.109
25 0.032 0.072 0.082 0.081 0.000 0.014 0.137 0.137
50 0.019 0.095 0.096 0.092 0.000 0.016 0.178 0.175

1000 1 0.060 0.065 0.071 0.071 0.019 0.050 0.080 0.080
5 0.049 0.067 0.062 0.061 0.002 0.053 0.070 0.069
10 0.045 0.066 0.065 0.062 0.000 0.051 0.086 0.084
25 0.044 0.072 0.061 0.059 0.000 0.035 0.081 0.077
50 0.036 0.060 0.082 0.079 0.000 0.024 0.148 0.137
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Figure 1: Empirical size-adjusted power results of the tests for DGP A and true cointegrating rank of one with θ = 0 when the
hypothesized rank is zero. • panel SL-asymp, N −−−− panel SL-VAR(1), ◦........ LLL-asymp, △ − · − · −· LLL-VAR(1).
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Figure 2: Empirical size-adjusted power results of the tests for DGP A and true cointegrating rank of one with θ = 0.8 when the
hypothesized rank is zero. • panel SL-asymp, N −−−− panel SL-VAR(1), ◦........ LLL-asymp, △ − · − · −· LLL-VAR(1).
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Figure 3: Empirical power results of the tests for DGP A and true cointegrating rank of two when hypothesized rank is one. •
panel SL-asymp, N −−−− panel SL-VAR(1), ◦........ LLL-asymp, △ − · − · −· LLL-VAR(1).
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To save space, just the extreme cases, i.e ψa = 0.7, ψa = 0.95, are shown for the true
cointegrating rank of one. When the asymptotic moments are used to approximate the panel
statistics, the true hypothesis of r = 1 for ψa = 0.7 cannot be rejected if T = 10, 25 and
N ≥ 10 (see Table 4). With the increase in T the size of the panel SL test rises and is around
the 5% level for T ≥ 100, and it varies between 0.056 (for T = 1000, N = 50) and 0.083 (for
T = 500, N = 50). If VAR(1) moments are used, the size of the panel SL test comes close
to the 5% level for T = 25. Moreover, based on the VAR(1) moments the LLL test shows
poor size properties for small T . However, if T = 1000, the size of the LLL test under both
approximations is around the 5% level. For ψa = 0.95, the panel SL test is undersized for
almost all T and N combinations, except for T = 1000, N ≤ 10 (see Table 4). In the latter
case the size is exactly 5% with both approximations. The LLL test is also undersized for
almost all cases, but the most important difference between the properties of the two tests is
that if VAR(1) moments are used, the LLL test is oversized for T = 10. With an increase in
T , the size of the LLL test moves close to the 5% nominal level. However, the panel SL test
has once more better size properties than the LLL test when T increases.

As it is apparent from Table 5 when ψa = 0.7 and θ = 0.8 the panel SL test has reasonable
size either for N ≤ 10 or T = 1000. Hence, for almost all T and N combinations the size of
the panel SL test is zero if the true cointegrating rank is one, ψa = 0.95 and N ≥ 10. (see
Table 5). If the panel SL test statistic is approximated with VAR(1) moments, the test has
just the correct size for T = 25, N = 10, 25 and T = 1000, N = 5 as ψa = 0.7. Otherwise the
test is size distorted for both ψa being either 0.7 or 0.95. However, with the approximation
based on asymptotic moments the LLL test is undersized for small T . With an increase in T
the size approaches the nominal level, and the test becomes oversized with further increases
in T and N . The LLL test approximated with VAR(1) moments is again severely oversized
for short time periods, and the size moves around the 5% level, but does not approach it even
for large T . In general, none of the tests have nice size properties for ψa = 0.95.

In line with Banerjee et al. (2004) we observe nonmonotonicities in the results on the
size properties of the tests. The sizes of the tests do not increase or decrease monotonically
with the increase in T and/or N .

Figures 1-3 present the power results for DGP A7. For the true cointegrating rank of
one with θ = 0, it is obvious from Figure 1 that the size-adjusted power of the LLL test is
slightly better than the size-adjusted power of the panel SL test when T = 10. As expected,
for small T the approximation based on VAR(1) moments lead to higher power than the
approximation based on asymptotic moments. Moreover, the powers of the tests approach
unity even for small T if N increases and their powers are almost always unity if T and N

are sufficiently large. The same conclusions are also visible in Figure 2, in which the true
cointegrating rank is one and θ = 0.8 .

From Figure 3 it can be concluded that if both test statistics are approximated with
asymptotic moments, the false hypothesis of one cointegrating relation cannot be rejected for
T = 10. On the contrary, if the test statistics are approximated with VAR(1) moments the
powers of the tests increase with an increase in N , and the power of the LLL test is higher.
If ψa parameter8 increases, larger T and N are necessary so that the powers of the tests tend

7The size-adjusted power results for the true cointegrating rank of zero are not illustrated as the power of
the tests for the false hypothesis of one cointegrating relation is around zero.

8For DGP A to achieve the true cointegrating rank of two, ψb parameter is held constant at 0.5.
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Table 6: Empirical size results of the tests for DGP B and true cointegrating rank of zero.

panel SL LLL
T-2 N asymp VAR(1) asymp VAR(1)

10 1 0.161 0.497 0.446 0.925
5 0.277 0.898 0.905 1.000
10 0.430 0.985 0.997 1.000
25 0.694 1.000 1.000 1.000
50 0.902 1.000 1.000 1.000

25 1 0.095 0.203 0.129 0.356
5 0.105 0.386 0.238 0.746
10 0.092 0.480 0.306 0.928
25 0.147 0.782 0.596 0.998
50 0.216 0.964 0.858 1.000

50 1 0.082 0.129 0.110 0.196
5 0.074 0.170 0.121 0.325
10 0.094 0.251 0.148 0.462
25 0.095 0.349 0.240 0.756
50 0.128 0.564 0.401 0.933

100 1 0.076 0.093 0.075 0.098
5 0.073 0.110 0.086 0.158
10 0.066 0.123 0.090 0.187
25 0.067 0.164 0.141 0.316
50 0.093 0.241 0.226 0.511

200 1 0.063 0.071 0.077 0.084
5 0.057 0.070 0.068 0.087
10 0.066 0.081 0.085 0.102
25 0.079 0.110 0.132 0.162
50 0.074 0.123 0.155 0.208

500 1 0.055 0.055 0.063 0.062
5 0.062 0.063 0.071 0.070
10 0.057 0.059 0.092 0.083
25 0.063 0.064 0.090 0.082
50 0.074 0.075 0.135 0.107

1000 1 0.063 0.063 0.061 0.056
5 0.064 0.064 0.083 0.070
10 0.065 0.065 0.073 0.068
25 0.062 0.062 0.086 0.071
50 0.078 0.078 0.111 0.077
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Table 7: Empirical size results of the tests for DGP B and true cointegrating rank of one.

ψ = 0.5 ψ = 0.75
panel SL LLL panel SL LLL

T-2 N asymp VAR(1) asymp VAR(1) asymp VAR(1) asymp VAR(1)

10 1 0.037 0.096 0.074 0.326 0.030 0.094 0.067 0.352
5 0.013 0.106 0.074 0.650 0.014 0.109 0.069 0.698
10 0.004 0.097 0.059 0.871 0.007 0.093 0.098 0.891
25 0.001 0.090 0.084 0.992 0.000 0.078 0.117 0.998
50 0.000 0.074 0.095 1.000 0.000 0.065 0.189 1.000

25 1 0.033 0.064 0.009 0.045 0.027 0.040 0.009 0.047
5 0.012 0.045 0.000 0.044 0.006 0.020 0.005 0.034
10 0.007 0.035 0.003 0.027 0.000 0.011 0.001 0.016
25 0.002 0.037 0.001 0.028 0.000 0.002 0.000 0.015
50 0.001 0.044 0.000 0.019 0.000 0.001 0.000 0.005

50 1 0.047 0.074 0.017 0.036 0.018 0.026 0.012 0.018
5 0.034 0.059 0.008 0.031 0.004 0.007 0.000 0.004
10 0.030 0.064 0.004 0.020 0.000 0.002 0.000 0.000
25 0.014 0.072 0.000 0.012 0.000 0.000 0.000 0.000
50 0.028 0.104 0.001 0.010 0.000 0.000 0.000 0.000

100 1 0.078 0.092 0.050 0.072 0.016 0.019 0.005 0.012
5 0.050 0.073 0.031 0.055 0.005 0.006 0.002 0.005
10 0.058 0.094 0.023 0.043 0.000 0.000 0.000 0.000
25 0.059 0.110 0.027 0.058 0.000 0.000 0.000 0.000
50 0.087 0.137 0.027 0.067 0.000 0.000 0.000 0.000

200 1 0.074 0.077 0.073 0.084 0.031 0.033 0.012 0.014
5 0.045 0.050 0.056 0.069 0.004 0.004 0.001 0.002
10 0.075 0.082 0.075 0.090 0.003 0.004 0.000 0.001
25 0.069 0.081 0.076 0.093 0.000 0.001 0.000 0.000
50 0.074 0.090 0.074 0.106 0.000 0.000 0.000 0.000

500 1 0.051 0.064 0.060 0.061 0.048 0.043 0.031 0.033
5 0.075 0.069 0.078 0.081 0.035 0.037 0.034 0.034
10 0.074 0.088 0.069 0.069 0.030 0.025 0.025 0.025
25 0.064 0.063 0.077 0.077 0.009 0.013 0.010 0.010
50 0.068 0.084 0.075 0.073 0.004 0.008 0.013 0.013

1000 1 0.057 0.058 0.058 0.058 0.058 0.059 0.054 0.054
5 0.065 0.065 0.076 0.075 0.046 0.046 0.073 0.073
10 0.075 0.076 0.068 0.067 0.052 0.053 0.070 0.068
25 0.072 0.075 0.064 0.061 0.038 0.040 0.055 0.052
50 0.057 0.063 0.089 0.085 0.027 0.029 0.087 0.078
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Figure 4: Empirical size-adjusted power results of the tests for DGP B and true cointegrating rank of one when the hypothesized rank
is zero. • panel SL-asymp, N −−−− panel SL-VAR(1), ◦........ LLL-asymp, △ − · − · −· LLL-VAR(1).
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Figure 5: Empirical power results of the tests for DGP B and true cointegrating rank of two when hypothesized rank is one. •
panel SL-asymp, N −−−− panel SL-VAR(1), ◦........ LLL-asymp, △ − · − · −· LLL-VAR(1).
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to unity. Moreover, the LLL test is the least powerful test for T = 50, 100 and ψa = 0.95.

Please note that the size and size-adjusted power results remain the same if a cross-section
invariant trend parameter is assumed, i.e. δi = 1, i = 1, ..., N , instead of a heterogeneous
one. This outcome coincides with the simulation results of Saikkonen & Lütkepohl (2000)
and Trenkler (2002).

In general, for DGP A, the panel SL test has better size properties in comparison to
the LLL test under both approximations. On the contrary, the power of the LLL test is the
highest when the test statistic is approximated with VAR(1) moments.

5.4.2 Simulation Results for DGP B

Table 6 demonstrates that the panel SL test is oversized for T ≤ 50 and its size increases with
an increase in N . For T ≥ 100 the size of the panel SL test ranges from 0.057 (for T = 500,
N = 10) to 0.093 (for T = 100, N = 50). But if the test statistic is approximated with
VAR(1) moments, the test is oversized for T ≤ 200, and the size is around the 5% nominal
significance level only for T ≥ 500. The LLL test is always more distorted than the panel SL
test independent of the chosen approximation. Moreover, if asymptotic moments are used,
the size of the panel SL test approaches the 5% level for T ≥ 100 and N < 10. If the true
cointegrating rank of zero the panel SL test has the most reasonable size among the two tests
and approximations.

To compare the size of the panel SL and LLL tests for the true cointegrating rank of
one, just the results related to the two cases ψ = 0.5 and ψ = 0.75 are presented because
the results for ψ = 0.6 and ψ = 0.7 lie in between these two cases. In Table 7 both tests
exhibit similar behavior with the approximation based on asymptotic moments, i.e. they are
both undersized for small T and slightly oversized for large T . The size of the LLL test is
precisely 0.050 if T = 100 and N = 1 (no panel data). If the test statistics are approximated
with VAR(1) moments, the properties of the tests are different for small T . The panel SL
test is undersized for T = 10, whereas the LLL test is badly oversized. If T ≥ 100, the size
of the panel SL test ranges from 0.050 (for T = 200, N = 5) to 0.137 (for T = 100, N = 50),
whereas if T ≥ 25 the size of the LLL test lies between 0.010 (for T = 50, N = 50) and 0.106
(for T = 200, N = 50).

In general, with VAR(1) moments the panel SL test has better size properties for T ≤ 50,
and with asymptotic moments the test exhibits a reasonable size for T ≥ 100. With the
increase in T once more the size results of the tests based on two different approximations
converge to each other. It is apparent from Table 7 that both tests are undersized when ψ

increases from 0.5 to 0.75, whereas for T = 1000 the sizes of the tests converge to the 5%
nominal level. When the test statistics are approximated with VAR(1) moments the tests are
undersized if T ≤ 500, except for T = 10, and their sizes approach the 5% level for T = 1000.

Figures 4-5 display the power results for DGP B. The size-adjusted powers of both
tests for the true cointegrating rank of one approach unity with increasing N even for small
T . Moreover, for small T the power of the LLL test is slightly higher than the power of
the panel SL test and the approximation with VAR(1) moments delivers higher power than
the approximation with asymptotic moments. With the increase in T and N the powers
convergence to unity (see Figure 4).

In Figure 5 it is presented that the power of the LLL test is higher than the power
of the panel SL test for T = 10. The false hypothesis of one cointegrating relation cannot
be rejected for the panel SL test when it is based on asymptotic moments. In addition to this,
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Table 8: Empirical size results of the tests for DGP C and true cointegrating rank of one.

ϑi = 0 ϑi ∼ U(0, 0.5)
panel SL LLL panel SL LLL

T-1 N asymp VAR(1) asymp VAR(1) asymp VAR(1) asymp VAR(1)

10 1 0.046 0.116 0.027 0.225 0.046 0.123 0.033 0.204
5 0.010 0.090 0.007 0.412 0.011 0.083 0.005 0.320
10 0.007 0.083 0.004 0.566 0.005 0.091 0.005 0.472
25 0.000 0.065 0.002 0.816 0.000 0.062 0.000 0.671
50 0.000 0.055 0.000 0.968 0.000 0.040 0.000 0.885

25 1 0.047 0.080 0.045 0.099 0.044 0.074 0.027 0.073
5 0.018 0.064 0.024 0.142 0.020 0.066 0.006 0.035
10 0.016 0.072 0.015 0.155 0.021 0.081 0.002 0.042
25 0.012 0.082 0.011 0.236 0.011 0.072 0.000 0.025
50 0.004 0.095 0.007 0.347 0.002 0.062 0.000 0.015

50 1 0.043 0.061 0.067 0.106 0.077 0.105 0.037 0.061
5 0.053 0.089 0.053 0.121 0.069 0.104 0.013 0.039
10 0.045 0.086 0.056 0.139 0.059 0.115 0.011 0.028
25 0.020 0.070 0.036 0.156 0.059 0.126 0.001 0.019
50 0.024 0.093 0.041 0.218 0.054 0.173 0.000 0.002

100 1 0.060 0.074 0.060 0.074 0.076 0.089 0.047 0.056
5 0.065 0.078 0.068 0.098 0.078 0.112 0.021 0.032
10 0.053 0.087 0.066 0.115 0.108 0.140 0.009 0.019
25 0.042 0.073 0.055 0.109 0.108 0.174 0.003 0.008
50 0.039 0.079 0.063 0.149 0.149 0.250 0.001 0.006

200 1 0.073 0.077 0.091 0.099 0.082 0.085 0.050 0.058
5 0.074 0.082 0.071 0.089 0.107 0.117 0.024 0.027
10 0.055 0.063 0.078 0.093 0.108 0.120 0.012 0.016
25 0.065 0.074 0.071 0.099 0.150 0.170 0.006 0.011
50 0.052 0.064 0.074 0.106 0.197 0.232 0.001 0.001

500 1 0.069 0.069 0.055 0.056 0.090 0.091 0.057 0.057
5 0.073 0.073 0.064 0.065 0.115 0.116 0.028 0.029
10 0.058 0.059 0.058 0.059 0.107 0.108 0.019 0.019
25 0.060 0.063 0.057 0.057 0.151 0.160 0.007 0.007
50 0.061 0.062 0.081 0.079 0.242 0.255 0.000 0.000

1000 1 0.074 0.075 0.073 0.073 0.089 0.089 0.044 0.044
5 0.064 0.064 0.055 0.054 0.129 0.129 0.018 0.017
10 0.067 0.067 0.061 0.059 0.135 0.139 0.011 0.011
25 0.069 0.072 0.073 0.072 0.183 0.191 0.002 0.002
50 0.069 0.075 0.080 0.074 0.259 0.269 0.001 0.001
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Figure 6: Empirical size-adjusted power results of the tests for DGP C and true cointegrating rank of one when the hypothesized rank
is zero. • panel SL-asymp, N −−−− panel SL-VAR(1), ◦........ LLL-asymp, △ − · − · −· LLL-VAR(1).
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if VAR(1) moments are used the power of the LLL test for T = 10 approaches unity, which
is not the case for the panel SL test. On the contrary, the panel SL test shows better power
than the LLL test with an increase in T to 50. Furthermore, the power of both tests decreases
if ψ increases, which is in line with the simulation results of DGP A.

Hence, for DGP B we can conclude that the panel SL test shows better size properties
than the LLL test. As outlined above the power of the LLL test based on the approximation
with VAR(1) moments is the highest among the considered tests and approximations.

5.4.3 Simulation Results for DGP C

If there is no correlation and the test statistics are approximated with asymptotic moments,
both panel tests are undersized for small T and their sizes are around the 5% level for large
T (see Table 8). Based on VAR(1) moments, the size of the panel SL test ranges from 0.055
(for T = 10, N = 50) to 0.095 (for T = 25, N = 50), especially for N ≤ 5. On the contrary,
if the LLL test statistic is approximated with VAR(1) moments, the test is oversized for
T ≤ 200, and its size is close to the 5% level for T ≥ 500. Based on the approximation with
asymptotic moments, the panel SL test has slightly better size properties than the LLL test
for T = 100, 200.

In addition to this, if the asymptotic moments are used and there is correlation between
the components of the DGP, the panel SL test is undersized for T = 10, 25 and it becomes
oversized with an increase in T and N , e.g. 0.259 (for T = 1000 and N = 50). However, the
size of the panel SL test is 0.054 for T = 50, N = 50. If asymptotic moments are used, the
LLL test is undersized for almost all T values. Furthermore, based on VAR(1) moments for
almost all combinations of T and N , the panel SL test is oversized, whereas the LLL test is
just oversized if T = 10, and it becomes undersized as T and N rise. Thus, the size of the
LLL test does not approach the 5% level, except for T ≥ 50 and N = 1. However, then the
LLL test is just the standardized version of the multivariate Johansen trace test which allows
a linear time trend in the data.

The size-adjusted power results are similar for both tests, independent of which approx-
imation method is used (see Figure 6). The power of the tests converge to unity with an
increase in N , even for small T . This means that the probability of rejecting the false hy-
pothesis of no cointegrating relation is one. If T ≥ 50, the powers of the tests converge to
unity even for N = 1. The panel SL test has slightly lower power than the LLL test, but the
difference disappears as T rises.

For DGP C the panel SL test has again the best size properties. Both tests are size
distorted when there is correlation between the components of the process. Hence, the power
of the LLL test is slightly higher than for the panel SL test.

6 Conclusions

In this study a new likelihood-based panel cointegration test (i.e. the panel SL test) was
introduced. It allows for a linear time trend in the DGP and is an extension of the multivariate
cointegration test (LRGLS

trace test) of Saikkonen & Lütkepohl (2000). To find out the finite
sample properties of the panel SL test, in a Monte Carlo study three different DGPs were
considered and the results were compared with those for the Larsson et al. (2001) test (i.e.
the LLL test), which allows a linear time trend in the data.
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The simulation results indicate size distortions for small T . The sizes of both tests come
close to the nominal 5% significance level as T increases. In general the panel SL test has
better size properties than the LLL test, especially if there is no correlation between the
components of the DGP. Also for small T , if VAR(1) moments are used the panel SL test
delivers better size properties in comparison to the LLL test, which is severely oversized for
small T independent of the approximation chosen. Moreover, the sizes of both tests with
different approximations converge to each other with an increase in T .

With the introduction of correlation between stationary and nonstationary components
of the process, size distortions are observed, however the panel SL test has still reasonable size
for large T . In addition to this we found that, if the DGP consists of a nearly nonstationary
component, then the tests become size distorted.

In general, the powers of both panel cointegration tests approach unity with an increase
in N even when T is small. Additionally, for small T the approximation based on VAR(1)
moments delivers tests with higher power than the approximation based on asymptotic mo-
ments. When there is a nearly stationary component in the DGP, than larger T and N are
necessary so that the test has high power.

7 Appendix

Our proof of Theorem 1 relies on the following Lemma 1, which states that the fourth moments
of the statistic ZT,d defined in (18) are uniformly bounded in T . For the sake of simplicity,
we present here the proof only for d = 1. The extension to the general case d ≥ 1 is similar
as in Karaman Örsal & Droge (2009) for a related statistic and therefore omitted.

Lemma 1. Let ZT,d be defined as in (18). Then there exist some constants a and b such
that, for all T ,

(i.) E[Z2
T,d] < a,

(ii.) E[Z4
T,d] < b.

Proof of Lemma 1. Let εt ∼ Nd(0,Ω) i.i.d, ε = (ε1, . . . , εT )′ and ε̃ = (ε1 − ε, . . . , εT − ε)′

with ε = T−1
∑T

t=1 εt. Then the statistic ZT,d may be rewritten as

ZT,d = tr[B′
TA

−1
T BT ] = tr[ε̃′P̃

Ỹ
ε̃], (27)

where

A =




1 0 · · · · · · 0
1 1 0 · · · 0
...

...
. . .

. . .
...

...
...

. . .
. . . 0

1 · · · · · · · · · 1



, B =




0 · · · · · · · · · 0
1 0 · · · · · · 0
0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0



,

and

P̃
Ỹ

= BAε̃(ε̃′A′B′BAε̃)−1ε̃′A′B′ (28)

is the random projection matrix onto the column space of Ỹ = BAε̃. Moreover, if JT denotes
the (T ×T ) matrix of ones, then P = 1

T JT and Q = (IT −P ) are orthogonal projections with
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PQ = 0 and it follows ε̃ = Qε. Thus,

0 ≤ ZT,d = tr[ε̃′P̃
Ỹ
ε̃] ≤ tr[ε̃′ε̃] = tr[ε′Qε] ≤ tr[ε′ε]. (29)

This shows that all moments of ZT,d exists because ε′ε is Wishart distributed 9, more precisely
ε′ε ∼Wd(T,Ω), and all moments of a Wishart distributed matrix exist (see Letac & Massam,
1999; Graczyk et al., 2005).

However, to establish the result we have to verify that the second (fourth) moments of
ZT,d are uniformly bounded in T . To accomplish this, we write, with D = BA,

ZT,d = ε′QDQε
[
ε′QD′DQε

]−1
ε′QD′Qε. (30)

Consider now the case d = 1 and assume, without loss of generality, Ω = 1, i.e.
εt ∼ N(0, 1) i.i.d. Then it holds

ε′QDQε = ε′QSQε with S =
D +D′

2
=

1

2
(JT − IT ) =

(
T − 1

2

)
P −

(
1

2

)
Q. (31)

Because of PQ = 0, it follows

R = QSQ = −1

2
Q, (32)

so that (30) may be expressed as

ZT,1 =
U2

1

U2
with U1 = ε′Rε and U2 = ε′Hε, (33)

where H = QD′DQ = QFQ and F = D′D. Clearly,

U1 = −1

2
ζ1 with ζ1 = χ2

T−1. (34)

Moreover, let λ1, λ2, . . . , λT and v1, v2, . . . , vT be the (ordered) eigenvalues and the associated
orthonormal eigenvectors, respectively, of the symmetric and positive semidefinite matrix H.
Then ξt := ε′vt ∼ N(0, 1) i.i.d. (t = 1, . . . , T ) and thus

U2 =
T∑

t=1

λtε
′vtv

′
tε =

T∑

t=1

λtξ
2
t , (35)

where ξ2t ∼ χ2
1 i.i.d for t = 1, . . . , T .

The eigenvalues of the positive semidefinite matrix H = QFQ are10

λt =
1

2 − 2 cos
(

tπ
T

) for t = 1, . . . , T − 1, λT = 0, (36)

9If X = Y ′Y , in which the (n×m) matrix Y is N(0, In ⊗ Σ), then X follows a Wishart distribution with
n degrees of freedom and covariance matrix Σ; i.e. X ∼Wm(n,Σ) where m denotes the size of the matrix X.
Note that In ⊗Σ is the covariance matrix of y = vec(Y ′). Moreover, the Wm(n,Σ) distribution has a density
function when n ≥ m (see Muirhead, 1982).

10The positive eigenvalues of the matrix H are the same as the eigenvalues of the inverse of the following
tridiagonal matrix:

G = (−1)




−2 1 0 0 . . . 0 0
1 −2 1 0 . . . 0 0
0 1 −2 1 . . . 0 0
...

...
...

...
...

...
0 0 0 0 . . . 1 −2



.

The eigenvalues of such a matrix are discussed in Yueh (2005).
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with λ1 > λ2 > . . . > λT−1 > λT . The series expansion of the cosine function provides, for a
fixed t,

1 − cos

(
tπ

T

)
=

(tπ)2

2T 2
+ o(T−3) (as T → ∞) (37)

and therefore

1

λt
=

c1

T 2
+ o(T−3) for some c1 ∈ (0,∞) (as T → ∞). (38)

To prove (i.), we first apply the Cauchy-Schwarz inequality, which leads to

E(Z2
T,1) = E

(
U4

1

U2
2

)
≤
√

E(U8
1 )E

(
1

U4
2

)
(see (33)). (39)

Because of (34) we obtain

E(U8
1 ) =

1

28
E(ζ8

1 ) =
1

28
28 Γ

(
8 + T−1

2

)

Γ
(

T−1
2

) = c2T
8 + o(T 8) for some c2 ∈ (0,∞). (40)

On the other hand, (35) implies for T > 9 the lower bound

U2 ≥ λ9z1 with z1 =
9∑

t=1

ξ2t ∼ χ2
9 (41)

and consequently, on account of (38) and E(z−4
1 ) = 1

105 ,

E

(
1

U4
2

)
≤ 1

λ4
9

E

(
1

z4
1

)
=

c3

T 8
+ o(T−8) for some c3 ∈ (0,∞) (as T → ∞). (42)

In view of (40), (42) and recalling that all moments of ZT,d exist, (39) yields

E(Z2
T,1) ≤ a for some a ∈ (0,∞) and all T. (43)

The proof of (ii.) is analogous and thus omitted. The main difference is to replace
in equality (41) λ9 by λ17 (which is also of order T 2), because the eighth moment of the
inverse-χ2

17 distribution is finite.

Proof of Theorem 1. Because of (18) the result follows if {Z2
T,d} is uniformly integrable

(see Theorem A on p.14 in Serfling, 1980). A sufficient condition for the uniform integrability
of {Z2

T,d} is that E|ZT,d|2+δ is uniformly bounded for some δ > 0, i.e sup
T

E|ZT,d|2+δ < ∞.

But this is an immediate consequence of Lemma 1 (ii.), which completes the proof.
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