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1 Introduction

Several studies have documented that investment decisions are affected by geographical
location within a country. Both institutional investors (e.g. Coval and Moskovitz, 2001)
as well as retail investors (e.g. Ivkovic and Weisbrenner, 2005) allocate a disproportion-
ately large fraction of their portfolios to firms that are close to their offices or homes.
Possible reasons for such investment patterns are informational advantages and behav-
ioral preferences for familiarity. Provided that investor sentiment or information arrival
is locally correlated, geographical distance could affect return correlations across stocks.
Pirinsky and Wang (2006) and Barker and Loughran (2007) test this conjecture and
conclude that the correlation of stock returns increases with decreasing distance.

However, there is some debate on the appropriate methodology for measuring the
effect of distance on correlation. Barker and Loughran (2007), for example, question
the approach of Pirinsky and Wang (2006). One contribution of our paper is therefore
methodological. We modify the regression analysis suggested by Barker and Loughran
(2007) and complement it with an approach from spatial statistics, the mark correlation
function. For the stocks contained in the Standard and Poor’s 500 index (S&P 500)
that we examine, both approaches lead to similar results: correlation increases with
decreasing distance. Contrary to previous studies, however, we obtain that differences
in distance do not matter much once the firms’ headquarters are more than 40 miles
apart. Also, proximity only leads to a higher correlation if two firms are located in
the same federal state. This finding is not only relevant for correlation modelling. It
also suggests a new route for uncovering the drivers of local correlation effects. Federal
borders might well dampen investor interaction and information flow, which means that
our results are consistent with the explanations favored in the literature. However, the
strength of the finding suggests that one should also investigate the role of policy–driven
differences between states. Differences in taxes, industrial policy or infrastructure could
lead to fundamental proximity effects which do not require local correlation of investor
behavior.

Using a simulation study, we then show that distance can significantly affect portfolio
risk. If the number of stocks in a portfolio is fixed, portfolio risk increases considerably
if the portfolio is composed of nearby firms. The increase in risk is large enough to neu-
tralize the return advantage on local investments that has been documented by Ivkovic
and Weisbrenner (2005).

The remainder of the paper is organized as follows. Section 2 describes the data,
Section 3 the methodology. The empirical results on the relationship between distance
and correlation are summarized in Section 4. Section 5 shows how distance affects
portfolio risk. Section 6 concludes.

2 Data

Our analysis is based on firms contained in the S&P 500. Monthly stock returns are
obtained from the Center for Research in Security Prices (CRSP). Address information
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(state, city and five digit zip–code) for the location of headquarters along with the Stan-
dard Industrial Classification (SIC) code are from the annual COMPUSTAT Database.
Information on population numbers for each location is taken from http://www.city-
data.com, which derive from the census 2000 carried out by the U.S. Census Bureau.

We restrict our sample to firms with headquarters located in the USA, which reduces
the number of firms to 465 from a total of 500 firms in the S&P 500. We consider
monthly stock returns for the years 2000–2004 resulting in a total of 27900 firm–months,
60 months for each firm. The final sample is constructed by generating a cross–product
of the set of considered firms. Due to symmetry reasons each pair of firms only needs to
be considered once. Hence the final sample compasses 107880 = 465(465-1)/2 pairwise
observations.

For each pair of firms, we compute the distance between headquarter locations based
on the geographical coordinates of the five digit zip–code. Applying the correction for
the curvature of the earth, the distance d(i, j) between two firms i and j is given by

d(i, j) = ρ arccos(cos(lati) cos(latj) cos(longi − longj) + sin(lati) sin(latj)),

where ρ is the earth circumference (ρ = 3959.871 miles) and (lati, longi) are the geo-
graphical coordinates, i.e. the latitude and longitude in radian (Zwillinger, 1995), of firm
i. Geographical coordinates for US zip–codes can be obtained from http://www.census.gov.

Figure 1 shows the distribution of the population numbers of locations as well as of
the distances between firm pairs. 36% of firms are located in cities with less than 100000
inhabitants, which we will refer to as small cities. The mean population number of
headquarter locations is 1.1 million. A map cutout of the firm locations for three federal
states can be found in Figure 2. Headquarter cities exceeding a population of 100000 are
marked with +, otherwise with −. Note that two cities can be close, but still located in
different federal states which will also be subject to later analysis.

Figure 1: Sample characteristics: Proportion of population numbers measured in one
hundred thousands for headquarter locations and proportion of distances between firm
pairs measured in hundred miles.
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Figure 2: Map cutout of headquarter locations: Small (−) and big (+) cities.

A summary of the sample with respect to federal states is presented in Table 1. For
each federal state the number of firms, the number of firms in large cities and the average
distance between all firms is tabulated.

State Firms Large d State Firms Large d
cities cities

Alabama 5 4 230.8 Minnesota 14 9 41.9
Arizona 4 4 4.7 Missouri 8 6 111.2
Arkansas 5 2 127.0 Nebraska 2 2 12.5
California 68 43 196.8 Nevada 2 2 333.7
Colorado 7 4 11.4 New Hampshire 1 0 -
Connecticut 13 6 243.0 New Jersey 17 1 22.5
Delaware 3 0 0.0 New York 58 45 106.5
District of Columbia 2 2 3.9 North Carolina 13 10 58.8
Florida 11 8 135.3 Ohio 25 21 111.4
Georgia 13 12 34.4. Oklahoma 3 3 65.4
Idaho 2 2 8.4 Oregon 2 0 15.7
Illinois 32 14 40.8 Pennsylvania 20 15 143.8
Indiana 6 3 82.3 Rhode Island 4 1 18.9
Iowa 2 1 32.7 Tennessee 10 7 192.1
Kentucky 5 4 55.9 Texas 41 37 135.7
Louisiana 2 1 216.5 Utah 1 1 -
Maryland 8 2 25.6 Virginia 10 4 59.6
Massachusetts 18 4 14.0 Washington 9 6 10.2
Michigan 11 4 76.7 Wisconsin 8 5 15.4

Table 1: State distribution: Number of headquarters of firms, number of headquarters
of firms in large cities and average distance d [miles] between firms for each federal state.

For the analysis of pairwise comovements of stock returns, we consider (a) raw stock
returns and (b) residual stock returns from a factor analysis. Residual returns are
analyzed in order to control for the possibility that geographical clustering of firms with
similar characteristics leads to higher correlations of nearby firms. The analysis of raw
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stock returns is in particular interesting from the perspective of undiversified investors
with a tilt towards local stocks. Since those investors are undiversified with respect to
distance as well as with respect to industry and other factors, their portfolio risk will be
affected by correlation effects of distance as such but also by geographical clustering of
similar firms. Neglecting the latter in the assessment of diversification losses would lead
to an underestimation of such losses.

Residual returns are obtained from a linear regression with the excess return R−RF
as dependent variable, where R is the monthly stock return and RF denotes the risk–free
return. The set of independent variables includes the following five factors1

- Fama and French (1993) show that common variation in stock returns can be
explained to a large part by three factors: market excess return RM − RF , the
return of small minus big stocks (SMB) and the return of high book–to–market
minus low book–to–market stocks (HML) .

- Following Carhart (1997) we add a momentum factor (MOM).

- Barker and Loughran (2007) find that correlation between returns of firms oper-
ating in the same industry is 2.5 times larger than that of two average firms in
different industries. In order to control for industrial clustering, we include the
difference between mean industry return and market return RI − RM as an ad-
ditional factor. We consider the 48 industry classes defined in Fama and French
(1997), which are based on the four digit SIC code. The corresponding monthly
mean industry returns RI are not based on our sample of 465 firms but are taken
from Kenneth French’s data library, who computes the mean by industry classes
over all stocks traded on the AMEX, NYSE and NASDAQ.

Residuals are obtained by first running a five–factor regression of the form

Rj,t − RFt = aj + bj(RMt − RFt) + sjSMBt + hjHMLt

+ mjMOMt + cj(RIj,t − RMt) + εj,t (1)

separately for each firm j in the sample. Here, RIj,t denotes the mean industry return
at time t for industry class of firm j. The corresponding estimated residuals are then
given by

ε̂j,t = (Rj,t − RFt) − âj − b̂j(RMt − RFt) − ŝjSMBt

− ĥjHMLt − m̂jMOMt − ĉj(RIj,t − RMt) , (2)

where (âj , b̂j , ŝj, ĥj , m̂j, ĉj) denotes the least squares estimator of
(aj , bj , sj, hj ,mj , cj).

Note that the mean correlation of raw returns over all firm pairs considered is 0.191
whereas the correlation for estimated residual stock returns is 0.008 on average.

1 We use the data provided by Kenneth French; see
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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Barker and Loughran (2007) have chosen a different approach to account for factors
that might affect correlations. They regress pairwise correlations of raw stock returns on
distance as well as a set of control variables. To capture industry effects, for example,
Barker and Loughran (2007) include the mean industry correlation as an explanatory
variable; to capture differences in systematic risk, they include the differences of the
Fama–French 3–factor betas. However, we favor the factor model approach as it bet-
ter captures firm characteristics. Consider three firms from the same industry, two of
them exhibiting average exposure to industry risk, one a lower exposure (e.g. because
some operations belong to another industry). In the Barker–Loughran model one would
implicitly assume that the correlation of these three firms is the same. In our model,
differences will be captured through the industry coefficient in the factor regression.
Similarly, consider two pairs of firms: the betas of the pair {firm 1, firm 2} are β1 = 0.5
and β2 = 1, the betas of {firm 3, firm 4} are β3 = 1 and β4 = 1.5. The beta difference
used as an explanatory variable by Barker and Loughran (2007) is the same for each
pair. Ceteris paribus, firms 3 and 4 should have a higher correlation than firms 1 and 2,
though.

3 Methodology

We introduce two approaches for the analysis of spatial correlations, namely a linear
regression model and the mark correlation function. The main difference between these
two approaches relates to the order in which the data is analyzed. Our data consists of a
number of measurement locations (the 465 locations of firms’ headquarters) and a num-
ber of measurement times (60 months in our sample). This data is decomposed in two
different ways: in the regression approach, we first average over time by computing the
time series correlation for each pair (i, j) of the 465 headquarter locations individually,
then we average over space by analyzing the drivers of these correlations. On the other
hand, computing the mark correlation function, we get a functional correlation estimate
for each month which is then averaged over time.

3.1 Regression Model

The effect of distances between headquarter locations on the correlation of stock returns
is first analyzed by means of an ordinary least squares (OLS) regression. Pairwise cor-
relation is regressed on a set of dummy variables that capture the distance between two
headquarter locations. For this purpose we define distance classes and set the respective
dummy to one if the distance between two firms belongs to a certain distance class, i.e.
for some m < m′ we put

Dm,m′

i,j =

{
1 if m miles ≤ distance between firm i and firm j < m′ miles,

0 else.
(3)
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The empirical correlation CORRi,j of firms i and j is computed based on 60 monthly
observations. When we use raw returns the correlation is estimated by

CORRi,j =

∑60
t=1(Ri,t − R̄i)(Rj,t − R̄j)√∑60

t=1(Ri,t − R̄i)2
∑60

t=1(Rj,t − R̄j)2
, (4)

where Ri,t denotes the return of firm i at time t and R̄i is the mean return of firm i.
When we analyze correlations based on residual stock returns we replace Ri,t and R̄i in
equation (4) by the respective values for residual returns obtained from (2).

The general regression model for empirical correlations has the form

CORRi,j = α + β⊤Di,j + ui,j, (5)

where u denotes the error term, D is a vector of dummy distance variables considered, β⊤

is the transposed vector of respective coefficients, and α denotes the regression constant.
By construction the observations in our sample are not independent. Each firm

contributes to multiple observations because we consider pairwise correlations. Con-
sequently, the OLS standard errors are biased downward, which leads to inflated t–
statistics for α and β. Following Barker and Loughran (2007) we address this problem
by estimating the standard errors through a bootstrap simulation. More precisely, we
generate 1000 bootstrap samples by randomly drawing 465 firms with replacement from
the set of all firms and constructing all possible pairwise combinations (pairwise com-
binations for the same firm are omitted). We then run an OLS regression for each
bootstrap sample to get the 1000 bootstrap coefficient estimates for α and β. Finally,
the standard errors are set to the standard deviations of the respective 1000 bootstrap
coefficient estimates. Note that in our data analysis (see Section 4) the means of the
bootstrap coefficient estimates are similar to the values obtained from an OLS regression
for the original sample.

In a first approach to the problem in question, we consider various distance classes
for the specification of the regression model given in (5). We begin with 15 distance
classes each capturing a distance of 100 miles: 0− 100, 100 − 200, . . . , 1400 − 1500 miles
and a reference class for all distances larger than 1500 miles. This first analysis reveals
(see Section 4 below) that correlations of stock returns are significantly higher if firm
headquarters are located not further apart than 100 miles; beyond that, distance effects
are relatively small or not significant. As a consequence we focus on distances less than
100 miles and analyze whether a more detailed statement can be made on the structure of
spatial correlations within this range. For this purpose we let the reference class include
all distances larger than 100 miles and consider five further distance classes, each for a
distance of 20 miles (i.e. 0 − 20, . . . , 80 − 100 miles). We will refer to this specification
as Model 1.

In our sample approximately 60% of all pairs of firm headquarters located within a
distance of 100 miles are located in the same federal state. Here the question arises as
to what extent correlations of returns are due to geographical proximity or to the simple
fact that two firms are located in the same federal state. In order to capture the border
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effect, i.e. two firms are located in different federal states, we define a binary border
variable B as

B =

{
1 if two firms separated by a federal border,

0 else.

We then expand Model 1 by including five additional covariates, each being the product
of the border variable and a distance class. The resulting linear regression model is
referred to as Model 2.

A third model (Model 3) analyzes the hypothesis that the correlation of returns can be
attributed to the fact that the respective firms are located in the same city. In analogy
to Model 2, we enlarge Model 1 by including the covariate C(1−B)D0,20, where C is a
dummy variable set to one if two firms are located in different cities and zero otherwise.
The dummy C(1 − B)D0,20 captures the cases in which two firms with a distance of
at most 20 miles are located in the same federal state, but in different cities. We only
include the product of the city and distance class dummies for distances less than 20
miles since for firm pairs further apart only 0.005% are located in the same city.

3.2 Mark Correlation Function

Besides the regression approach explained in Section 3.1 we use a method from spatial
statistics, which is based on the so–called mark correlation function for marked point
processes (Illian et al., 2008). In order to analyze the spatial correlations of stock returns,
we then consider the locations of firm headquarters as points Xi on the (spherical) surface
of the earth and their raw stock returns and residual stock returns, respectively, as marks
Ri of these points. The sequence (X1, R1), (X2, R2), . . . of all firm locations together with
their stock returns is considered as a marked point process on the sphere Sρ ⊂ R

3, where
Sρ has its midpoint at the origin and circumference ρ = 3959.871 miles.

More precisely, since the headquarters of S&P 500 firms considered in the present
paper are located within the USA, we can consider the sequence (X1, R1), (X2, R2), . . .
as the restriction of a (more comprehensive) marked point process on Sρ, which is re-
stricted to the territory of the USA. The latter point process on the whole sphere Sρ is
assumed to be isotropic, which means that its distribution is invariant with respect to
arbitrary rotations of the (spherical) coordinate system. Furthermore, we will use the
notion of independent marking, where the synonymic notion of independent labelling is
also used by some authors. The marked point process (X1, R1), (X2, R2), . . . is called in-
dependently marked if the marks R1, R2, . . . are independent and identically distributed
random variables, which are independent of the sequence X1,X2, . . ..

The mark correlation function κ(r) of the marked point process (X1, R1), (X2, R2), . . .
gives information on how the values of the marks of points that are located a given
distance r > 0 apart are stochastically correlated. Heuristically speaking, positive values
of κ(r) indicate that pairs of points with distance r have similar marks, while negative
values of κ(r) indicate that pairs of points with distance r tend to have rather different
marks. In case of independent marking, it can be shown that κ(r) ≡ 0 holds for any r > 0.
The mark correlation function of (X1, R1), (X2, R2), . . . can therefore be interpreted as a
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quantitative characteristic of the spatial interaction between the marks Ri of the points
Xi.

A more formal definition of the mark correlation function κ(r) can be found, e.g. in
Illian et al. (2008), where numerous applications of this point process characteristic are
discussed. Further examples of statistical correlation analysis for spatial marked point
patterns are investigated, e.g. in Eckel et al. (2008), where the temporal trend of the
geographical correlations of the purchasing power in Baden–Württemberg, Germany, is
analysed by means of the mark correlation function, and in Mattfeldt et al. (2008), which
presents a spatial correlation analysis of labelling patterns for mammary carcinoma cell
nuclei.

For any r ∈ (0, rmax), where rmax is a suitably chosen maximum distance, a statistical
estimator κ̂(r) for κ(r) can be given by

κ̂(r) =

∑

Xi,Xj∈W,i6=j

kh(r − |Xi − Xj|)(Ri − µ̂)(Rj − µ̂)

∑

Xi,Xj∈W,i6=j

kh(r − |Xi − Xj |)

/
σ̂2 , (6)

where |Xi − Xj | is the spherical distance of Xi and Xj , while kh is the Epanechnikov
kernel with bandwidth h = 20 miles, and W denotes the sampling window (in our case,
the territory of the USA). Furthermore,

µ̂ =
1

#{n : Xi ∈ W}
∑

Xi∈W

Ri

and

σ̂2 =
1

#{i : Xi ∈ W} − 1

∑

Xi∈W

(Ri − µ̂)2

are estimators for the mean and variance of the marks, respectively. Note that an edge–
correction of the estimator κ̂(r) proposed in (6) is not straightforward for the spherical
case. However, it can be omitted in this study, since we consider only short–range
correlations.

We also remark that for the definition and estimation of the mark correlation function
it is convenient to consider so–called simple point patterns only, i.e., there is at most
one mark Ri at any location Xi, which means that Ri = Rj if Xi = Xj . Thus, we
aggregate the (raw or residual) returns of firms with the same zip code to one (raw or
residual) return, where we use the mean (raw or residual) return of the affected firms
as joint mark. This leaves us with the 356 locations, i.e. 356 points Xi in the point
pattern. The estimator κ̂(r) given in (6) for the mark correlation function κ(r) has been
implemented using the Java–based GeoStoch library, which has been developed during
the last 10 years at Ulm University (Mayer et al., 2004).

3.3 Confidence Intervals

Besides computing estimates for the model characteristics β and κ(r) introduced in Sec-
tions 3.1 and 3.2, respectively, we determine confidence intervals for these characteristics.
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We first consider the regression model introduced in Section 3.1 and construct ap-
proximative 95% confidence intervals for the components β1, . . . , βℓ of the vector β⊤ =
(β1, . . . , βℓ) of regression coefficients, which are based on the OLS estimator β̂⊤ =

(β̂1, · · · , β̂ℓ) for β and on the bootstrap estimates β̂(i)⊤ = (β̂
(i)
1 , . . . , β̂

(i)
ℓ ), where ℓ

denotes the number of distance classes considered in the respective regression model;
i = 1, . . . , 1000. For each k = 1, . . . , ℓ, we compute the mean value βk and the respective
standard error SE(βk), where

βk =
(
β̂

(1)
k + . . . + β̂

(1000)
k

)
/1000 and

SE(βk) =

√√√√ 1

999

1000∑

n=1

(
β̂

(n)
k − βk

)2
. (7)

Then, assuming that the quotient (β̂k − βk)/SE(βk) is drawn from a distribution which
is close to the standard normal distribution, an approximative 95% confidence interval
for the k-th component βk of β is given by

(
β̂k − z0.975SE(βk), β̂k + z0.975SE(βk)

)
, where

z0.975 is the 0.975 quantile of the standard normal distribution. Note that the use of
formula (7) for the standard error SE(βk) is justified by the application of bootstrapping.

In order to construct (pointwise) 95% confidence intervals for the values κ(r) of the
mark correlation function we can proceed in a similar way. For any r ∈ (0, rmax) and
for each of the 60 months we can compute the estimates κ̂(1)(r), . . . , κ̂(60)(r) using the
formula for κ̂(r) given in (6). Then, we compute the mean value κ(r) and the standard
error SE(κ(r)), where

κ(r) =
(
κ̂(1)(r) + . . . + κ̂(60)(r))

/
60 and

SE(κ(r)) =

√√√√ 1

59

60∑

n=1

(
κ̂(n)(r) − κ(r))2 . (8)

Assuming again that the quotient
√

60(κ(r)−κ(r))/SE(κ(r)) is drawn from a distribu-
tion which is close to the standard normal distribution, an approximative 95% confidence
interval for κ(r) is given by

(
κ(r) − 1√

60
z0.975SE(κ(r)), κ(r) +

1√
60

z0.975SE(κ(r))
)
.

The formula for the standard error SE(κ(r)) is based on the assumption that the esti-
mated values κ̂(1)(r), . . . , κ̂(60)(r) are independently sampled. This independence prop-
erty can be tested by standard statistical procedures for time series, e.g. Fisher’s g–test
(Brockwell and Davis, 1991).

Note that it is also possible to compute confidence intervals for the values κ(r) of
the mark correlation function based on bootstrap estimates of κ(r), where a method
suggested in Mattfeldt et al. (2006) can be used. Here, to obtain bootstrap confidence
intervals for κ(r), we create 1000 bootstrap samples S1, . . . , S1000 with 60 items from the
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original sample {κ̂(1)(r), . . . , κ̂(60)(r)} for each r separately. The sampling is independent
and with replacement. For all 1000 bootstrap samples their corresponding mean values

κ̄i(r) = 1
60

∑60
j=1 κ̂

(j)
i (r), i = 1, . . . , 1000 are computed, where κ̂

(j)
i (r) denotes the j-th

item in Si. A 95% confidence interval of κ(r) is then given by (κ̄∗
26(r), κ̄

∗
975(r)), where

the sequence κ̄∗
1(r), . . . , κ̄

∗
1000(r) is the values κ̄1(r), . . . , κ̄1000(r) sorted by size.

4 Empirical Results

In the following we present the results of our spatial correlation analysis of stock returns
which we obtained by means of the regression approach introduced in Section 3.1 as well
as the results of our analysis using the mark correlation function explained in Section 3.2.

First, the results for residual stock returns are presented in Section 4.1, whereas in
Section 4.2 we compare some of these results with corresponding results for raw stock
returns.

4.1 Analysis of Residual Stock Returns

4.1.1 A First Look at the Effects of Distance on Correlation

We first consider 15 distance classes, each for a distance of 100 miles with the reference
class capturing all distances larger than 1500 miles, i.e.,

CORRi,j = α +

15∑

k=1

βkD
100(k−1),100k
i,j + ui,j. (9)

Coefficient estimates are presented in the first column of Table 2. We see a significant
increase in correlation with respect to the reference class only for distances less than 100
miles. We find this observation confirmed in the results presented in columns 2 to 4. Here
the specification (9) has been modified with respect to the number of included dummy
variables. Columns 2 and 3 show regression results when including dummy variables for
distances of 100 miles up to a distance of 1000 and 500 miles, respectively. In column 4
the specification also takes into account dummies capturing distances between 500 and
1000 as well as between 1000 and 1500 miles.

The results presented in the last column of Table 2 show coefficient estimates for a
model including D0,100, D100,500, D500,1000 and D1000,1500 as explanatory variables. We
again observe a significant increase in correlation of residual stock returns for distances
less than 100 miles. Additionally, we find a statistically significant increase for distances
between 100 and 500 miles. Yet, the increase is rather moderate, only 0.008. The
increase for the first distance class is twice as large.

4.1.2 Detailed Analysis of Short–range Correlations

In the following we report results for a detailed analysis of short–range correlations, i.e.
Models 1 to 3 introduced in Section 3.1. Note that the effects captured by Models 2 and
3 cannot be investigated by the mark correlation function introduced in Section 3.2.
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1 2 3 4 5

D0,100 0.016 0.015 0.014 0.016 0.016
(2.745) (2.595) (2.482) (2.757) (2.745)

D100,200 0.006 0.005 0.004 0.006
(1.084) (0.891) (0.772) (1.063)

D200,300 0.009 0.007 0.007 0.009
(1.795) (1.652) (1.563) (1.783)

D300,400 0.008 0.007 0.006 0.008
(1.776) (1.675) (1.602) (1.845)

D400,500 0.007 0.006 0.005 0.007
(1.302) (1.145) (1.06) (1.303)

D500,600 0.004 0.003
(0.944) (0.74)

D600,700 0.004 0.003
(0.893) (0.638)

D700,800 0.003 0.002
(0.751) (0.51)

D800,900 0.002 0.001
(0.313) (0.121)

D900,1000 0.001 -0.001
(0.114) (-0.121)

D1000,1100 0.005
(0.986)

D1100,1200 0.001
(0.18)

D1200,1300 -0.003
(-0.41)

D1300,1400 0.001
(0.192)

D1400,1500 0.007
(1.158)

D100,500 0.008
(2.134)

D500,1000 0.003 0.003
(0.901) (0.933)

D1000,1500 0.003 0.003
(0.867) (0.877)

Const 0.004 0.005 0.006 0.004 0.004
(1.631) (2.631) (3.444) (1.704) (1.631)

Adjusted R2 0.0012 0.0010 0.0008 0.0009 0.0008
Firm pairs 107186 107184 107184 107184 107186

Table 2: Regression results for residual stock returns: Dependent variable is the
pairwise correlation of residual stock returns. Independent variables are distance dummy
variables. t–statistics are in parentheses. Adjusted R2 and firm pairs are averages from
1000 bootstrap simulations.
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Model 1: The first model considers 5 distance classes, each capturing a distance of
20 miles, and a reference class for all distances exceeding 100 miles, i.e.,

CORRi,j = α +

5∑

k=1

βkD
20(k−1),20k
i,j + ui,j . (10)

Regression results for residual stock returns are shown in the first column of Table 3.
Detailed results for the mark correlation function are omitted in the following for lack
of space. The respective estimated spatial correlations (with pointwise 95% confidence
intervals) are shown in Figure 3, where Figure 3(a) presents results for the regression
approach and Figure 3(b) for the mark correlation function. For the regression approach
we graph estimated coefficients for distance dummies included in Model 1.2

Both approaches used for the analysis of spatial correlations indicate similar results:
correlations of residual stock returns are clearly recognizable for distances less than 40
miles. Yet, the correlation declines with distance and for firms further apart than 40
miles, we find no significant correlation of returns. A closer comparison of the results
of the two methods shows that the principle form of the curves is identical. Moreover,
the magnitude of the spatial correlations is similar. However, using the mark correlation
function the detected significance of spatial correlations appears more clearly. Confidence
intervals in Figure 3(b), which have been computed for the mark correlation function,
are shorter than those computed in Figure 3(a). To examine whether this is due to
the aggregation of locations for the mark correlation function as mentioned at the end
of Section 3.2, we reran the regression analysis on the aggregated data. However, we
found that this does not narrow the confidence intervals shown in Figure 3(a). We
also computed bootstrap confidence intervals for the mark correlation function using
the method mentioned at the end of Section 3.3, where we obtained results which are
practically identical to those shown in Figure 3(b). Note that Fisher’s g–test has been
applied in order to test whether the estimates κ̂(1)(r), · · · , κ̂(60)(r) of the mark correlation
function considered in Figure 3(b) are independently sampled. The null hypothesis of
independence was not rejected.

Model 2: In the second model considered, we add variables capturing the border
effect for distance classes considered in Model 1, resulting in the following regression
specification:

CORRi,j = α +
5∑

k=1

(
βkD

20(k−1),20k
i,j + γkBD

20(k−1),20k
i,j

)
+ ui,j, (11)

with binary variable B set to one if two firms are located in different federal states.
Analyzing the regression results reported in the second column of Table 3 we find that
coefficient estimates for distance dummies D0,20 and D20,40 in Model 2 increase both in
absolute value and in significance as compared to Model 1. In other words, we observe

2 Graphics are provided for a better comparison. The illustration of results from the regression analysis
derives from a linear interpolation of the estimated coefficients of five distance classes, whereas the
mark correlation function provides “quasi-continuous” values.
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All observations

Model 1 Model 2 Model 3
D0,20 0.025 0.030 0.038

(2.471) (2.743) (2.285)
D20,40 0.016 0.028 0.015

(1.755) (2.223) (1.749)
D40,60 -0.002 -0.005 -0.002

(-0.292) (-0.382) (-0.279)
D60,80 -0.002 0.013 -0.002

(-0.163) (0.541) (-0.199)
D80,100 -0.005 -0.008 -0.005

(-0.534) (-0.341) (-0.555)
BD0,20 -0.043 -0.051

(-2.033) (-2.184)
BD20,40 -0.033

(-1.75)
BD40,60 0.004

(0.246)
BD60,80 -0.020

(-0.75)
BD80,100 0.003

(0.128)
C(1 − B)D0,20 -0.018

(-0.924)
Constant 0.007 0.007 0.007

(4.3805) (4.414) (4.507)

Adjusted R2 0.0010 0.0015 0.0014
Firm pairs 107187 107196 107186

Table 3: Regression results for residual stock returns: Dependent variable is the
pairwise correlation of residual stock returns. t–statistics are in parentheses. Model 1
includes dummy variables for five distance classes. Model 2 additionally captures the
interaction of distance classes and federal borders. Model 3 controls for city borders in
the closest distance class. Adjusted R2 and firm pairs are averages from 1000 bootstrap
simulations.
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Figure 3: Estimated spatial correlations for residual stock returns of all S&P 500 firms
using (left) regression analysis and (right) the mark correlation function. Dashed lines
are pointwise 95% confidence intervals.

a stronger increase in correlation relative to the reference class if two nearby firms are
located in the same federal state. We also observe that for each distance class coefficient
estimates of the distance dummy variable D and the respective variable capturing the
interaction between distance and federal border BD are opposite in sign and close in
magnitude, e.g. for the first distance class the estimate for the distance dummy coefficient
is β̂1 = 0.030 with the coefficient estimate of BD0,20 being γ̂1 = −0.043. In other
words, if two firms are located in the same federal state and the distance between their
headquarters is at most 20 miles we find an increase in correlation of residual returns by
0.03. Yet, if two firms are located in distinct federal states we would expect no increase
in residual correlation (0.030 − 0.043 = −0.013) despite their geographical proximity. A
test of the null hypothesis H0 : βi+γi = 0 for each distance class i = 1, . . . , 5 confirms the
observed relation. t–statistics deduced from 1000 bootstrap estimates range from −0.703
to −0.043. Hence, we cannot reject the null hypothesis at a reasonable significance level
for any of the distance classes and conclude that correlation of stock returns due to
geographical proximity is only nonzero if firms are located in the same federal state and
the distance between headquarter locations is less than 40 miles.

Model 3: A similar conclusion is to be drawn for Model 3, where we distinguish
between firm pairs located in the same or in distinct cities. The question of interest here
is whether for two nearby firms the fact that these are located in different cities does
intensify the border effect seen in Model 2. We analyze this question by including the
dummy variable C(1−B)D0,20 in the regression equation. This variable equals one only
if two firms with a distance of less than 20 miles are located in the same federal state,
but in different cities. Formally, Model 3 is specified by

CORRi,j = α +
5∑

k=1

βkD
20(k−1),20k
i,j + δ1C(1 − B)D0,20

i,j + ui,j. (12)

Regression results are presented in the third column of Table 3. For nearby firms located
in the same city, we find an increase in residual correlation of 0.038, significant at the
5% significance level. On the other hand, if two nearby firms are separated by a fed-
eral border (and hence are located in different cities) we find the results from Model 2
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confirmed. The respective coefficients add up to −0.013 and we again reject the null
hypothesis H0 : β1 + γ1 = 0 based on a t–statistic of −0.7713. For firms located in
the same federal state but in different cities, we observe a less pronounced decline to
0.038 − 0.018 = 0.02. The remaining increase in correlation is marginally significant,
with the t–statistic for the null hypothesis H0 : β1 + δ1 = 0 being 1.7936. Overall, we
see a noticeably stronger effect of a federal border as compared to a city border on the
correlation of stock returns for nearby firms.

Summarizing, we can conclude that after controlling for other factors which might
influence the comovements of stock returns (e.g. industry), residual stock returns show
a larger correlation if the respective firms are located in the same city or in the same
federal state and if they are not further apart than 40 miles.

4.1.3 Correlation Analysis for Different City Sizes

In addition to a city or state border we consider the size (i.e. population number) of
headquarter cities as a further potential factor to influence the relation of distance and
stock return comovements. Previous findings concerning the city size are controversial.
Pirinsky and Wang (2006) report that correlation of stock returns is higher in larger
cities. Barker and Loughran (2007) draw the opposite conclusion from the observation
that the difference in the populations of headquarter cities does not explain correlations.
Note that the approach chosen by Barker and Loughran (2007) does not distinguish
between pairs of small cities and large cities. Consider two large and two small firms, both
pairs equally sized. Consequently, the difference in populations for the large and for the
small pair is zero and does not control for the difference between the pairs. We therefore
choose to control for differences in population numbers by separating the sample with
respect to population. Specifically, we classify cities as large if the population number
exceeds 100000 and as small otherwise. This results in a total of 43365 firm pairs located
in large cities and 14365 firm pairs located in small cities. Regression results as well as
results from the analysis using the mark correlation function are presented in Table 4
and Figure 4 for each subsample. As for the regression results we present coefficient
estimates for Model 1.

From the regression analysis on the entire sample discussed in Section 4.1.2, we have
seen that a federal border has an impact on the stock return correlation of a closely
located firm pair. For this reason we introduce border variables for the first two distance
classes in addition to the five distance dummies in the regression specification for the
subsamples.

When controlling for size of headquarter cities, we find that the results reported in
Table 3 and Figure 3 are mainly driven by large cities (see Figures 4(a) and (b)). If
firms are located in small cities, we find no significant correlation of residual stock
returns (see Figures 4(c) and (d)). Furthermore, using the mark correlation function, we
unexpectedly detect slight, but significant negative correlations for firms located about
50 – 80 miles apart (see Figure 4(b)).
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Large cities Small cities

Model 1 Model 2 Model 1 Model 2
D0,20 0.039 0.041 -0.003 0.004

(2.583) (2.587) (-0.229) (0.274)
D20,40 0.010 0.022 0.009 0.008

(0.51) (0.846) (0.558) (0.438)
D40,60 -0.005 -0.004 -0.002 -0.003

(-0.239) (-0.228) (-0.139) (-0.169)
D60,80 -0.006 -0.006 -0.008 -0.007

(-0.187) (-0.213) (-0.396) (-0.376)
D80,100 -0.006 -0.006 0.018 0.020

(-0.428) (-0.446) (0.802) (0.853)
BD0,20 -0.022 -0.063

(-0.336) (-1.637)
BD20,40 -0.031 -0.004

(-0.537) (-0.123)
Constant 0.007 0.007 0.008 0.008

(3.326) (3.268) (2.422) (2.518)

Adjusted R2 0.0027 0.0029 0.0009 0.0016
Firm pairs 43311 43165 14144 14224

Table 4: Regression results for residual stock returns (subsamples): Dependent

variable is the pairwise correlation of residual stock returns. Model 1 includes dummy
variables for five distance classes. Model 2 additionally captures the interaction of dis-
tance classes and federal borders for the first two distance classes. t–statistics are in
parentheses. Subsamples analyzed are firm pairs located in cities with more than or less
than 100000 inhabitants. Adjusted R2 and firm pairs are averages from 1000 bootstrap
simulations.
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Figure 4: Estimated spatial correlations for residual stock returns for S&P 500 firms in
large and small cities, respectively, using (left) regression analysis and (right) the mark
correlation function. Dashed lines are pointwise 95% confidence intervals.

4.2 Analysis of Raw Stock Returns

For a comparison of the results obtained in Section 4.1 for residual stock returns with
those for raw stock returns we also perform a short–range correlation analysis for raw
stock returns of all S&P 500 firms with headquarters located in the USA. For the re-
gression approach we again use Models 1, 2 and 3.

It can be seen from Table 5 and Figure 5 that we detect significant spatial correlations
up to a distance of 40 miles for all three regression models as well as for the mark
correlation function. A comparison of these results with those obtained in Section 4.1
from the analysis of residual stock returns shows that the distance up to which we
detect significant spatial correlations is similar, but the magnitude has changed. The
geographical comovement of residual stock returns is less strong than in the case of raw
stock returns. A possible explanation is that some (but not all) of the geographical
effects are already captured by the five–factor regression analysis discussed in Section 2.

5 Implication of Geographical Proximity on Portfolio

Performance

In the previous section we have seen that after controlling for other factors, stock returns
of firms located closely to each other (up to 40 miles) exhibit a higher correlation than
firms further apart from each other. In order to analyze the implication of this result on
portfolio performance we simulate portfolios that differ in the average distance between
portfolio constituents.
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All observations

Model 1 Model 2 Model 3
D0,20 0.087 0.097 0.093

(4.5304) (4.6483) (4.403)
D20,40 0.055 0.077 0.055

(3.4603) (3.9664) (3.458)
D40,60 0.006 -0.026 0.006

(0.2696) (-0.6963) (0.269)
D60,80 0.040 0.060 0.040

(2.3974) (1.7336) (2.400)
D80,100 0.038 -0.004 0.038

(2.1712) (-0.1105) (2.173)
BD0,20 -0.067 -0.085

(-2.1558) (-2.589)
BD20,40 -0.056

(-2.0493)
BD40,60 0.059

(1.3719)
BD60,80 -0.028

(-0.6906)
BD80,100 0.048

(1.2602)
C(1-B)D0,20 0.009

(0.283)
Constant 0.186 0.186 0.186

(26.9944) (26.9944) (27.002)

Adjusted R2 0.0079 0.0094 0.0089
Firm pairs 107184 107184 107186

Table 5: Regression results for raw stock returns: Dependent variable is the pair-
wise correlation of raw stock returns. t–statistics are denoted in parentheses. Model 1
includes dummy variables for five distance classes. Model 2 additionally captures the
interaction of distance classes and federal borders. Model 3 controls for city borders in
the closest distance class. Adjusted R2 and firm pairs are averages from 1000 bootstrap
simulations.
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Figure 5: Estimated spatial correlations for raw stock returns of all S&P 500 firms using
(left) regression analysis of Model 1 and (right) the mark correlation function. Dashed
lines are pointwise 95% confidence intervals.

We construct three types of equally weighted portfolios based on the following rules:

1. Close portfolio: Given a randomly chosen firm sort all remaining firms with
respect to distance and select the n − 1 closest firms for a portfolio size of n.

2. Far portfolio: Given a randomly chosen firm, select n − 1 firms at random that
are further away than a prespecified distance d. If less than n − 1 firms fulfill this
condition, allow for firms at a distance closer than d miles, but with headquarters
in distinct federal states.

3. Random portfolio: Select n firms at random.

We set the portfolio size to n = 100 and n = 30, respectively, and simulate 1000 portfolios
of each type. The minimum distance for far portfolios is set to d = 50 miles, ensuring
that pairwise correlation between firms is low. For each of the simulated portfolios, we
compute the portfolio return µP and volatility σP as

µP =
1

n

n∑

i=1

µi and σP =
( 1

n2

n∑

i=1

n∑

j=1

σi,j

)1/2
,

where µi denotes the mean monthly return3 of asset i and σi,j is the covariance of returns
of assets i and j.

Furthermore, we consider the portfolio performance as measured by the coefficient
a from the factor analysis (see equation (1)) as well as the residual variance σε. The
respective values for a portfolio are given by

αP =
1

n

n∑

i=1

ai and σε
P =

( 1

n2

n∑

i=1

n∑

j=1

σε
i,j

)1/2
,

where ai is the constant term of the factor analysis for firm i and σε
i,j is the covariance

of residual stock returns of assets i and j.

3 Both, the mean and volatility of returns are estimated using 60 monthly observations for the years
2000 to 2004.
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Table 6 displays the mean characteristics for 1000 simulated portfolios. Panels A and
B show values for raw stock returns and residual stock returns, respectively. Results are
presented for all three portfolio types each of size n = 100 and n = 30, respectively.

Both raw and residual stock returns show the same patterns with respect to volatility.
Volatility is smallest for portfolios composed of distant firms and largest for portfolios
including only firms that are located closely together. For portfolios combining n = 30
stocks, return volatility of the far portfolio is more than one percentage point lower
than that of the close portfolio; per annum (p.a.), the difference is a sizeable (6.20% −
4.95%)

√
12 = 4.33%. The p.a. difference in residual volatility between the far and the

close portfolio is 0.8% and 1.21% for a portfolio size of n = 100 and n = 30, respectively.
A test of the null hypothesis for equality of portfolio volatilities is rejected for each

pairwise comparison. The lowest t–statistics (in absolute value) observed are 4.983 and
10.643 (comparing the volatility of random and close portfolios of size n = 100 and
n = 30, respectively).

The simulation results also suggest that close portfolios have a lower mean return
than both far and random portfolios, further increasing the advantage of far portfolios.
The patterns in the portfolio alphas differ. Here far portfolios have a lower value of α
compared to the other two portfolios. Overall, we would not overinterpret the result
because they are likely to be incidental. By chance or for some reason not captured
in our factor analysis, returns and alphas may differ across regions. For example, the
mean return of firms located in the north–east is 1.05%, lower than the overall average
of 1.21%. This affects the mean returns of the far and the close portfolio because
their average geographical distribution departs from the sample distribution. The far
portfolios are geographically more dispersed than the firms in the sample, which leads
to an underrepresentation of firms belonging to the low–return cluster in the north–east.
The converse is true for the close portfolios.

When translating the risk differences into return differentials, we therefore opt to be
conservative and assume that the mean return is the same for all portfolios. Consider a
portfolio of size n = 30. Given a risk–free rate4 of RF = 0.22% and a mean return of
µP = 1.21% then the lower volatility of the far portfolio can be translated into a monthly
return advantage of 0.0684% (= 0.0121−(RF + 4.95

5.31 (0.0121−RF ))) and 0.2034% relative
to the random and close portfolio, respectively. On an annual basis this amounts to 0.8%
and 2.4%, which appears to be economically significant. For an equally weighted portfolio
with a fixed number of stocks, investors can therefore benefit from selecting stocks based
on distance. Put differently, investors who focus on local stocks because they hope to
exploit informational advantages should be aware of the increased risk. Ivkovic and
Weisbrenner (2005, Table V) find that investors’ return advantage from selecting local
S&P 500 stocks is 0.8% to 2.1%, depending on the regression specification. Based on
our simulation results, the median investor, who owns just two stocks in the sample of
Ivkovic and Weisbrenner (2005), should expect that such gains are neutralized by an
increase in risk relative to more a geographically dispersed portfolio.

4 We set the risk–free rate to the average one–month treasury bill rate, which over the period 2000–2004
was RF = 0.22%.
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Panel A: Portfolio characteristics — Raw returns

Portfolio size n = 100 Portfolio size n = 30
Far Random Close Far Random Close

Return µp 1.25% 1.21% 1.17% 1.27% 1.21% 1.14%
(0.08%) (0.11%) (0.12%) (0.17%) (0.19%) (0.21%)

Volatility σp 4.56% 5.06% 5.22% 4.95% 5.31% 6.20%
(0.17%) (0.32%) (0.91%) (0.46%) (0.60%) (2.55%)

Panel B: Portfolio characteristics — Residual returns

Portfolio size n = 100 Portfolio size n = 30
Far Random Close Far Random Close

αP 0.45% 0.55% 0.49% 0.49% 0.55% 0.53%
(0.09%) (0.13%) (0.29%) (0.22%) (0.24%) (0.40%)

Residual volatility σε
p 1.02% 1.16% 1.27% 1.71% 1.77% 2.06%

(0.09%) (0.15%) (0.29%) (0.22%) (0.25%) (0.83%)

Table 6: Portfolio simulation: Mean characteristics for 1000 simulated portfolios con-
sisting only of firms far apart from each other, only of firms close by to each other or of
firms with a random location. Panel A shows the mean return and the mean volatility
of raw stock returns. Panel B tabulates mean values for α and mean residual volatility.
Respective standard deviations are in parenthesis.

6 Conclusion

We have examined returns of stocks contained in the S&P 500 and found that the
correlation is larger for nearby firms. This result, however, holds only for firms located
in the same federal state and for firms that are less than 40 miles apart. Once the
distance is larger than 50 miles, it matters little or nothing how large it is. The findings
should help to detect the drivers of distance effects. Based on our results, it seems likely
that it is local rather than regional effects which are at work, and that policy–based
differences between states partly explain the observed patterns.

The findings differ from the ones reported by Pirinsky and Wang (2006) and Barker
and Loughran (2007) showing that the choice of a research methodology is crucial for
examining the effects of distance on cross–correlation. Barker and Loughran (2007)
criticize the methodology by Pirinsky and Wang (2006) and obtain different results for
large firms. We further modify the regression approach by Barker and Loughran (2007)
and get results which are broadly consistent but differ in some aspects: The irrelevance
of distance beyond 40 miles, the role of federal borders and city sizes. We also suggest
an alternative approach from spatial statistics. The results are similar to the ones from
our modified regression approach, strengthening confidence in the robustness of results.
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An advantage of the mark correlation function is that it leads to shorter confidence
intervals in contrast to those obtained from the regression analysis. Moreover, the mark
correlation function is a quasi-continuous function, i.e. for each distance r of a dense grid
of distances we obtain an estimate of the spatial correlation κ(r). Thus, considering the
mark correlation function, there is no need to aggregate the data into distance classes.
On the other hand, an advantage of the regression approach is the higher flexibility of
the model, e.g. it is straightforward to account for firms being located in different federal
states.

Using simulations, we show that it matters for portfolio risk whether stock selection
is based on distance. Portfolio risk can be significantly reduced if one avoids nearby
firms. This result is also relevant for judging the value of local information. While
return advantages appear to exist (Ivkovic and Weisbrenner, 2005), it seems doubtful
whether the typical, undiversified investor benefits from those advantages in terms of an
improved risk–return–ratio.
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