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The epistemic conditions of rationality and mth-order strong belief of rationality

(RmSBR; Battigalli and Siniscalchi (2002)) formalize the idea that players engage

in contextualized forward-induction reasoning. This paper characterizes the be-

havior consistent with RmSBR across all type structures. In particular, in a class

of generic games, R(m − 1)SBR is characterized by a new solution concept we

call an m-best response sequence (m-BRS). Such sequences are an iterative ver-

sion of extensive-form best response sets (Battigalli and Friedenberg (2012)). The

strategies that survive m rounds of extensive-form rationalizability are consistent

with an m-BRS, but there are m-BRS’s that are disjoint from the former set. As

such, there is behavior that is consistent with R(m − 1)SBR but inconsistent with

m rounds of extensive-form rationalizability. We use our characterization to draw

implications for the interpretation of experimental data. Specifically, we show that

the implications are nontrivial in the three-repeated Prisoner’s Dilemma and Cen-

tipede games.
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1. Introduction

Suppose that each player is rational, each player thinks other players are rational, and
so on ad infinitum. What are the implications for behavior? This fundamental question
has organized the epistemic game theory literature. It has been asked in the context of
both strategic-form and extensive-form games. It has been asked when rationality cor-
responds to ordinary subjective expected utility maximization, when rationality incor-
porates an admissibility requirement, and even when rationality departs from subjective
expected utility maximization. Likewise, it has been asked when the word “thinks” cor-
responds to knowledge, to belief, and to many other modalities (e.g., assumption, initial
belief, strong belief, etc).

This paper focuses on a bounded version of the basic question, “What are the im-
plications for behavior if each player is rational, each player thinks other players are
rational, and so on up to m levels, but not (m + 1) levels?” We address this question in
the context of extensive-form games, where players engage in “contextualized forward-
induction reasoning.” We go on to spell out implications for the interpretation of exper-
imental data.

Consider the game in Figure 1, Battle of the Sexes with an Outside Option (BoSOO).1

A natural first approach would involve some notion of iterated dominance—here,
extensive-form rationalizability (EFR; Pearce (1984)). EFR gives the standard forward-
induction prediction: Ann plays In-U and Bob plays L. In particular, the strategy In-D is
dominated, but In-U is not. So, under EFR, Bob believes Ann will play U conditional on
Battle of the Sexes (BoS); therefore, he plays L. Ann expects this and so plays In-U. With
this, the analyst may be tempted to conclude that, if Ann plays Out, it is not the case that
Ann is rational and reasons (in the sense of forward induction) two levels about Bob’s
rationality. However, we will see that this conclusion is incorrect.

To see this, we adopt the epistemic approach. In particular, we expand the descrip-
tion of the game to include the players’ hierarchies of beliefs about the play of the game.

4,2 0,0

0,0 2,4

U

D

R

Ann

Bob

Ann

3
*

Out In

L

Figure 1. Battle of the Sexes with an Outside Option.

1Here, and in other examples, the asterisk (∗) indicates that the payoff is irrelevant.
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To understand why this is needed, note that we will be interested in which of Ann’s
strategies are rational. The strategy Out is rational—i.e., a best response—if Ann believes
that Bob will play R; it is irrational if she believes that Bob will play L. Thus, we cannot
specify whether Out is rational or irrational without specifying Ann’s beliefs about Bob’s
play of the game.

In fact, we need to specify hierarchies of conditional beliefs about the play of the
game. To see this, consider the case where Ann believes that Bob plays R. This strategy is
rational for Bob if, conditional on BoS being played, Bob believes that Ann plays D. But,
this same strategy is irrational for Bob if, conditional on BoS being played, Bob believes
Ann plays U. Thus, to specify whether Ann is rational and believes that Bob is rational,
we need to specify both (i) Ann’s belief about the strategy Bob plays, and (ii) her belief
about Bob’s conditional belief about her own play (where the conditioning is on BoS).
Continuing along these lines, we need to specify Ann’s hierarchies of conditional beliefs
about the play of the game.

To do this, we build on the framework and analyses in Battigalli and Siniscalchi
(2002) and Battigalli and Friedenberg (2012). We describe the situation by what is called
an epistemic game. This is the game itself (e.g., BoSOO) plus an epistemic type struc-
ture. Each type in an epistemic type structure is associated with a conditional probabil-
ity system, which describes a player’s belief at every information set—including beliefs
at information sets that are, ex ante, not expected to be reached. For instance, in BoSOO,
if Bob believes Ann plays Out, he does not expect his information set to be reached. Nev-
ertheless, a conditional probability system specifies his belief conditional on this event.
This framework allows us to specify the requirement that each player is rational, thinks
the other is rational, etc.

Our baseline epistemic condition is rationality and common strong belief of ratio-
nality (RCSBR). There are two ingredients to this condition: (extensive-form) rationality
and strong belief. Extensive-form rationality requires that a player chooses a strategy
that, at each information set, maximizes her subjective expected utility given her type’s
conditional probability system. For strong belief, note that, in an extensive form, we
cannot simply require that a player “believes” an event: We must specify where, in the
game, the player believes that event.2 Strong belief requires that a player begins the
game with a belief that the event is true and maintains that hypothesis as long as it is
not contradicted by evidence. Returning to BoSOO, if Bob strongly believes Ann is ratio-
nal and reaching the BoS subgame is consistent with Ann’s rationality, then he assigns
probability 1 to her rationality conditional upon the BoS subgame. (If reaching the BoS
subgame is inconsistent with Ann’s rationality, strong belief of rationality requires only
that Bob begin the game by assigning probability 1 to Ann’s rationality.) Thus, under
RCSBR, a player rationalizes past behavior as long as possible.

Battigalli and Siniscalchi (2002) and Battigalli and Friedenberg (2012) both study the
behavioral implications of RCSBR. However, they do so under importantly different as-
sumptions. Battigalli and Siniscalchi (2002) focus on the case of a complete type struc-
ture (Brandenburger (2003)). Loosely, this corresponds to an assumption that players

2For this reason, we follow the modern literature and refrain from using the phrase “mutual belief of
rationality” for the idea that a player thinks or reasons that the other player is rational.



1608 Brandenburger, Danieli, and Friedenberg Theoretical Economics 16 (2021)

have all possible hierarchies of beliefs. (See Friedenberg (2010).) By contrast, Batti-
galli and Friedenberg (2012) depart from the complete type structure assumption. The
idea is that there may be a context to the strategic situation and that context may frame
the hierarchies of beliefs that the players consider possible. For instance, history or so-
cial/cultural norms may impact the players’ beliefs. (See, the discussion in Branden-
burger et al. (2008, Section 2.8).) Under this perspective, a complete type structure rep-
resents a special “context-free” case in which there are no restrictions on the players’
beliefs.

The distinction between the complete (context-free) versus incomplete (contextual-
ized) cases has important implications for RCSBR (and, in particular, for RCSBR behav-
ior). Battigalli and Siniscalchi (2002) show that, for a complete type structure, RCSBR
behavior corresponds to EFR. So, in BoSOO, Ann plays In-U and Bob plays L. By con-
trast, Battigalli and Friedenberg (2012) characterize RCSBR across all type structures. In
particular, it is characterized by a solution concept they call an extensive-form best re-
sponse set (EFBRS), a natural extensive-form analog to Pearce’s (1984) (strategic-form)
best response solution concept. The EFR strategy set is one EFBRS, but there are others.
For instance, in BoSOO, there is an EFBRS where Ann plays Out. This can arise if, for
instance, history leads Ann to maintain the hypothesis (throughout the game) that Bob
is “tough,” and so “goes for his best outcome” and plays R. (This is formalized as an in-
complete type structure. See Example 3.1.) This would lead any rational Ann to play Out.
Moreover, this is consistent with contextualized forward-induction reasoning. In partic-
ular, when Bob has such a reputation, the observation of In is inconsistent with Ann
being rational. As such, Bob can both strongly believe Ann is rational and, conditional
on BoS, believe that playing R would lead to his best outcome.

This paper studies the context-dependent behavioral implications of rationality and
mth-order strong belief of rationality, namely RmSBR. (We take R0SBR to mean just ra-
tionality.) As in Battigalli and Friedenberg (2012), we seek to characterize the RmSBR
behavior across all type structures. This characterization is of particular interest when
the analyst does not know the relevant type structure. As such, to infer that a strategy
is consistent versus inconsistent with RmSBR, the analyst needs the RmSBR prediction
across all type structures.

There is a natural approach to characterize the RmSBR behavior across all type
structures: “unwrap” the EFBRS solution concept, thereby converting it from a fixed-
point definition into an iterative definition. This leads to a sequence of predictions, viz.
(Q0, � � � , Qm ). We call such a sequence an m-(extensive-form) best response sequence
(m-BRS). For a given type structure, the sequence of behavior consistent with R0SBR,
� � �, R(m − 1)SBR gives rise to an m-BRS. (See Proposition 6.1.) However, there are m-
BRSs that, in a certain sense, do not reflect R(m − 1)SBR behavior. (Examples 6.1 and
6.2 make this precise.) Nonetheless, Theorem 6.1 establishes that in a class of generic
games, the m-BRSs characterize R0SBR, � � �, R(m − 1)SBR behavior. (See Definition 6.4
for the meaning of “generic.”)

There is behavior consistent with an m-BRS but inconsistent with m-EFR, i.e.,
the strategies that survive m rounds of EFR. More precisely, we can have an m-BRS
(Q0, � � � , Qm ) with Qm disjoint from the set of m-EFR strategies. This is to be expected
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given that an EFBRS may be disjoint from EFR. Both scenarios can arise because strong
belief is non-monotonic.3 (The discussion following Examples 4.1 and 4.2 elaborates on
this point.) This said, the m-EFR strategies are consistent with one m-BRS.

What does this mean for identifying levels of forward-induction reasoning from ex-
perimental data? In BoSOO, there is a 3-BRS in which Ann plays Out—something that is
inconsistent with 3-EFR. However, this fact is not surprising, given that Out is also con-
sistent with an EFBRS. In fact, in BoSOO, all undominated strategies are consistent with
an EFBRS. But there are other games where the distinction between m-BRSs and m-EFR
is both informative and important for the interpretation of experimental data. We give
two such examples.

First, we look at the three-repeated Prisoner’s Dilemma. Round for round, EFR gives
the expected theoretical prediction. Round 1 has players defect at all third-period his-
tories, round 2 has players defect at all second-period histories, and round 3 has players
defect initially. The m-BRSs give the same path of play, but they allow for additional
strategies. As such, the inference from observed behavior is more subtle. In particular,
if the experimentalist uses the direct response method and observes a subject choose to
cooperate in the second period, then—irrespective of the behavior of the other subjects—
she cannot conclude that the behavior is inconsistent with rationality and strong belief
of rationality. If, instead, the experimentalist uses the strategy method and observes a
subject choose to cooperate at every second-period history, then she can conclude that
the behavior is inconsistent with rationality and strong belief of rationality.

Second, we turn to the Centipede game (Rosenthal (1981)), where EFR corresponds
round-for-round to backward induction. Thus, one might conjecture that, if we observe
a subject play in, the behavior indicates a bound on strategic reasoning, and the longer
the subject plays in, the lower that bound. This intuition is incomplete, at least if we
take “strategic reasoning” to reflect RCSBR. In particular, we will see that the intuition is
correct for the first mover, but incorrect for the second mover.

The paper proceeds as follows. Sections 2–4 introduce the formalism and epistemic
conditions. Section 5 reviews the characterization of RCSBR. It is used as a benchmark
result to motivate our main result. Section 6 defines the m-BRS concept and shows the
main result: a characterization of R(m − 1)SBR sequences in terms of m-BRSs. Sec-
tion 7 uses the m-BRS concept to analyze the three-repeated Prisoner’s Dilemma and
Centipede. Section 8 concludes with a discussion. It highlights several issues that are
important for applying the m-BRS concept, including which games are generic, termi-
nation of the m-BRS procedure, and when arrays can replace conditional probability
systems. Proofs can be found in the Appendices.

2. Extensive-form games

Write � for a finite two-player extensive-form game with perfect recall, with (poten-
tially) simultaneous moves, and without moves by nature. The players are a (Ann) and

3Note that this is different from (strategic-form) rationalizability: Best response sets are contained in the
rationalizable strategy set. This follows from the fact that belief is monotonic, i.e., if E is believed and E ⊆ F ,
then F is believed.
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b (Bob).4 Write c for an arbitrary player in {a, b} and write −c for the player in {a, b}\{c}.
The underlying game tree has a set of nonterminal nodes (or vertices) V and a set of ter-
minal nodes Z. Write φ ∈ V for the initial node. As in Osborne and Rubinstein (1994),
we often identify nodes with histories. Let Hc be the set of information sets of c. The set
of information sets is H =Ha ∪Hb. Player c’s extensive-form payoff function is given by
�c : Z → R.

Let Sc be the set of strategies for player c and let S = Sa × Sb. Assume the game is
nontrivial in the sense that |Sa|, |Sb| ≥ 2. There is a mapping ζ : S → Z so that ζ(sa, sb )
is the terminal node reached by (sa, sb ). Say (sa, sb ) reaches h ∈ H if the path from φ to
ζ(sc , s−c ) passes through some node in h. Write S(h) for the set of strategy profiles that
reach h and write Sc(h) = projSc S(h). If a strategy sc ∈ Sc(h), then we say that sc allows
h ∈H.

Player c’s strategic-form payoff function is given by πc = �c · ζ. We extend πc to Sc ×
P(S−c ) in the usual way, i.e., πc(sc , μ) = ∑

s−c
πc(sc , s−c )μ(s−c ). Say sc ∈ Xc is optimal

under μ ∈ P(S−c ) given Xc if πc(sc , μ) ≥ πc(rc , μ) for each rc ∈Xc .

3. Type structures

This section uses type structures to implicitly model the players’ hierarchies of beliefs
about the play of the game. In defining such structures, we use the language of con-
ditional probability systems. To understand the importance of doing so, refer back to
BoSOO. Suppose Bob begins the game by assigning probability 1 to Ann playing Out.
Then, conditional upon observing Ann play In, Bob can no longer hold that belief. So,
to specify which strategy is rational for Bob, we must specify his belief conditional upon
Ann playing In.

Conditional probability systems Fix a compact metric space �. Write P(�) for the set of
Borel probability measures on �. Endow P(�) with the topology of weak convergence so
that it is again a compact metric space. Call (�, E ) a conditional probability space if E ⊆
2�\{∅} is a finite set, where each E ∈ E is Borel. The collection E is a set of conditioning
events.

Definition 3.1. An array on (�, E ) is some p = (p(·|E) : E ∈ E ) so that, for each E ∈ E ,
p(·|E) ∈ P(�) with p(E|E) = 1.

Definition 3.2. A conditional probability system (CPS) on (�, E ) is an array p =
(p(·|E) : E ∈ E ) that satisfies the following criterion: If E, F ∈ E with G ⊆ F ⊆ E, then
p(G|E) = p(G|F )p(F|E).

An array p specifies a belief, viz. p(·|E), for each conditioning event E. We refer
to the beliefs p(·|E) as conditional beliefs. If the array is a CPS, then the conditional

4The analysis extends to three or more players, provided two assumptions hold. First, a player may have
a correlated belief about other players. Second, players engage in so-called correlated rationalization, e.g.,
if they observe irrational behavior by one player, they are willing to entertain a hypothesis that other players
may also be irrational.
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beliefs must satisfy the rules of conditional probability when possible. Write A(�, E )
for the set of arrays on (�, E ) and write C(�, E ) for the set of CPSs on (�, E ). Note that
C(�, E ) ⊆ A(�, E ) ⊆ [P(�)]E . Endow [P(�)]E with the product topology and C(�, E )
with the relative topology, so that C(�, E ) is a compact metric space.

Type structures In our analysis, player c’s set of conditioning events corresponds to

Ec = {
S−c(h) : h ∈Hc ∪ {φ}

}
.

So Ann has a conditioning event that corresponds to the beginning of the game, namely,
Sb(φ) = Sb. She also has conditioning events Sb(h) corresponding to each information
set h ∈Ha at which she moves.

Definition 3.3. A �-based type structure is some T = (�; Ta, Tb; βa, βb ), where

(i) Tc is a compact metric type space for player c, and

(ii) βc : Tc → C(S−c × T−c , Ec ⊗ T−c ) is a continuous belief map for player c.

So each type of Ann, viz. ta, is associated with a CPS βa(ta ) on (Sb × Tb, Ea ⊗ Tb ),
and similarly for Bob. When � is a simultaneous-move game, the set of CPSs is the set of
probability measures and so βc : Tc → P(S−c × T−c ).

For any given game �, there are infinitely many �-based type structures. Write
T(�) for the family of �-based type structures. Battigalli and Siniscalchi (1999) construct
a canonical type structure that induces all possible hierarchies of conditional beliefs.
Their type structure T ∗ = (�; T ∗

a , T ∗
b ; β∗

a, β∗
b ) has the property that it is type-complete

(Brandenburger (2003)), i.e., for each CPS pc ∈ C(S−c × T ∗−c , Ec ⊗ T ∗−c ), there is a type
tc with βc(tc ) = pc . Other type structures model an assumption that some event is (what
is called) common full belief. (See Appendix A in Battigalli and Friedenberg (2009) for a
formal treatment.) The following example informally illustrates such an assumption.

Example 3.1. Consider BoSOO. Suppose it is commonly understood that “Bob is tough”
and, so, whenever a BoS game is played, he attempts to go for his best option and play
R. In particular, the following conditions hold:

Tough 1. At both the start of the game and conditional on BoS, Ann believes that Bob
plays R.

Tough 2. At both the start of the game and conditional on BoS, Bob believes Tough 1.

Tough 3. At both the start of the game and conditional on BoS, Ann believes Tough 2.

And so on. This is a restriction on the hierarchies of beliefs that the players consider
possible. There are no additional restrictions on the players’ beliefs.

We can capture this restriction on beliefs by a type structure T = (�; Ta, Tb; βa, βb )
that satisfies the following properties:

• Each βa(ta )(·|Sb × Tb ) assigns probability 1 to {R} × Tb.
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• For each CPS pa with pa({R} × Tb|Sb × Tb ) = 1, there is a type ta with βa(ta ) = pa.

• For each CPS pb, there is a type tb with βb(tb ) = pb.

The first requirement says that, at the start of the game, each type of Ann assigns proba-
bility 1 to “Bob plays R.” By the conditioning requirement, this implies that, conditional
on BoS, each type continues to assign probability 1 to “Bob plays R.” The second re-
quirement says that, for each CPS that satisfies the first requirement, there is a type of
Ann that holds that belief. Likewise, the third requirement says that for each CPS of Bob,
there is a type of Bob that holds that belief. The second and third requirements capture
the idea that there are no additional restrictions on the players’ beliefs. The fact that
such a type structure exists follows from Battigalli and Friedenberg (2009). ♦

Epistemic game For a given game �, write T(�) for the family of �-based type struc-
tures. Since � is nontrivial, there is an uncountable number of elements in T(�). An
(extensive-form) epistemic game is some pair (�, T ) with T ∈ T(�). The epistemic game
is the exogenous description of the strategic situation.

In what follows, we fix an extensive-form game �. So, each epistemic game can be
identified with a type structure in T(�). As such, we often conflate “type structure” with
“epistemic game.” No confusion should result.

4. Epistemic conditions

Fix an epistemic game (�, T ). It induces a set of states Sa×Ta×Sb×Tb. A state describes
the strategies played and the beliefs held. We focus on the set of states that satisfy ratio-
nality and mth-order strong belief of rationality. We begin with rationality.

Definition 4.1. Say sc is a sequential best response under pc ∈ A(S−c , Ec ) if, for each
h ∈Hc with sc ∈ Sc(h), sc is optimal under pc(·|S−c(h)) given Sc(h).

Write BR[pc ] for the set of strategies sc that are a sequential best response under
pc ∈ A(S−c , Ec ). So sc ∈ BR[pc ] if and only if sc is optimal under each of the conditional
beliefs pc(·|S−c(h)), provided h is an information set allowed by sc .

Each βc(tc ) induces a CPS in C(S−c , Ec ) via marginalization. The marginal CPS
margS−c

βc(t−c ) is a CPS pc ∈ C(S−c , Ec ) with pc(·|S−c(h)) = margS−c
βc(tc )(·|S−c(h)×T−c )

for each S−c(h) ∈ Ec .

Definition 4.2. Say (sc , tc ) is rational if sc ∈ BR[margS−c
βc(tc )].

So (sc , tc ) is rational if sc is a sequential best response under the marginal CPS
margS−c

βc(tc ).

Definition 4.3 (Battigalli and Siniscalchi (2002)). Say an array p ∈ A(�, E ) strongly be-
lieves an event F if, for each conditioning event E ∈ E , E ∩ F �= ∅ implies p(F|E) = 1.

Definition 4.4. A type tc strongly believes an event E−c ⊆ S−c × T−c if βc(tc ) strongly
believes E−c .
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Strong belief asks that a type maintain a hypothesis so long as it is not contradicted
by observed play. Thus, it requires that a type rationalize past behavior when possible.
In this sense, it captures forward-induction reasoning (relative to the type structure T ).
See Battigalli and Siniscalchi (2002) and Battigalli and Friedenberg (2012) for a more
complete discussion.

Set R0
c (T ) = Sc × Tc . Let R1

c (T ) be the set of rational strategy-type pairs (sc , tc ). In-
ductively define sets Rm

a (T ) and Rm
b (T ) by

Rm+1
c (T ) =Rm

c (T ) ∩ [
Sc × {

tc : tc strongly believes Rm−c(T )
}]

.

Set R∞
c (T ) = ⋂

m≥0 R
m
c (T ). Write Rm(T ) = Rm

a (T ) × Rm
b (T ) and R∞(T ) = R∞

a (T ) ×
R∞
b (T ).

Definition 4.5. The set Rm+1(T ) is the set of strategy-type pairs (in (�, T )) at which
there is rationality and mth-order strong belief of rationality (RmSBR). The set R∞(T ) is
the set of strategy-type pairs (in (�, T )) at which there is rationality and common strong
belief of rationality (RCSBR).

Note that the set of rational strategy-type pairs depends on the epistemic game
(�, T ). In this paper, we fix � but not necessarily the associated type structure. As such,
we write R1(T ) to indicate the set of states at which there is rationality in the epistemic
game associated with T , Analogously for Rm(T ).

Observe that projSa×Sb
Rm+1(T ) is the set of RmSBR predictions for the type struc-

ture T . A natural conjecture is that the set of RmSBR predictions is the set of strategies
that survive (m+ 1) rounds of extensive-form rationalizability (EFR; Pearce (1984)). EFR
sequentially eliminates strategies that are not sequential best responses. Battigalli and
Siniscalchi (2002, Proposition 6) show that when the type structure T ∗ is type-complete,
the set of RmSBR predictions is the set of strategies that survive (m + 1) rounds of EFR.
However, this need not be the case for a type-incomplete structure T . In that case, the
set of RmSBR predictions may be disjoint from the set of strategies that survive (m + 1)
rounds of EFR. The following examples illustrate this point.

Example 4.1. Consider BoSOO. There is no CPS so that In-D is a sequential best re-
sponse. However, for each strategy sa ∈ {Out, In-U} (resp. sb ∈ {L, R}), there is some CPS
under which sa (resp. sb) is a best response. Thus, one round of EFR gives

EFR1
a × EFR1

b = {Out, In-U} × {L, R}.

Now observe that a CPS on Sa that strongly believes EFR1
a must assign probability 1 to

In-U conditional on BoS; L is the unique sequential best response under any such CPS.
As such,

EFR2
a × EFR2

b = {Out, In-U} × {L}.

So, In-U is the unique sequential best response under any CPS on Sb that strongly be-
lieves EFR2

b. Thus,

EFR3
a × EFR3

b = {In-U} × {L}.

As such, there is one EFR strategy profile, (In-U, L).
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Battigalli and Siniscalchi (2002) show that, if T ∗ is type-complete, then EFR corre-
sponds round-for-round to RmSBR in the associated epistemic game. That is, for each
m, projSa×Sb

Rm(T ∗ ) = EFRm
a × EFRm

b . So the EFR predictions are the RmSBR predictions
when the type structure is type-complete. ♦

Example 4.2. Again, consider BoSOO. Let T be the type structure from Example 3.1,
representing the case where it is commonly understood that “Bob is tough.” Now, for
each m ≥ 1, projSa×Sb

Rm(T ) = {Out} × {L, R}. So, for each m ≥ 1, there are types tma and
tmb so that (Out, tma , R, tmb ) ∈Rm(T ). ♦

Let us review the difference between Examples 4.1 and 4.2. Begin with Example
4.2. Observe that there is a type t2

b ∈ Tb that, at the initial node, assigns probability 1
to {Out} × Ta and, conditional on Ann playing In, assigns probability 1 to {In-D} × Ta.
Certainly (R, t2

b ) is rational. In addition, t2
b strongly believes the event that “Ann is ra-

tional” in the epistemic game (�, T ), viz. R1
a(T ): At the initial node, the type assigns

probability 1 to the event R1
a(T ) and the event R1

a(T ) is inconsistent with Ann playing
In. Now turn to Example 4.1 and an associated complete type structure T ∗. There is also
a type t2∗

b ∈ T ∗
b that, at the initial node, assigns probability 1 to {Out} × T ∗

a and, condi-
tional on Ann playing In, assigns probability 1 to {In-D} × T ∗

a . However, this type does
not strongly believe the event that “Ann is rational” in the epistemic game (�, T ∗ ), viz.
R1
a(T ∗ ), since

R1
a

(
T ∗) ∩ (

{In-U, In-D} × T ∗
a

) �= ∅
and, in particular, is contained in {In-U} × T ∗

a . The key is

{Out} = projSa R
1
a(T ) � projSa R

1
a

(
T ∗) = {Out, In-U}.

As such, we can have a CPS that assigns positive probability to {In-D} × Ta conditional
on BoS and strongly believes R1

a(T ), but there is no CPS that assigns positive probability
to {In-D}×T ∗

a conditional on BoS and strongly believes R1
a(T ∗ ). This is possible because

of the non-monotonicity of strong belief.

5. The EFBRS benchmark

We focus on the case where the analyst does not know the players’ type structure. Thus,
we are interested in characterizing the RmSBR predictions across all type structures. We
begin with the RCSBR benchmark, where the analogous characterization is known.

Fix a type structure T . The set of RCSBR predictions for T is

projSa×Sb
R∞(T ) = projSa R

∞
a (T ) × projSb R

∞
b (T ).

Fix a predicted strategy sa ∈ projSa R
∞
a (T ) and a type ta so that (sa, ta ) ∈ R∞

a (T ). Write
pa for the marginal CPS of ta, i.e., pa = margSb βa(ta ). Observe that (sa, pa ) must satisfy
three properties: First, sa must be a sequential best response under pa. (This follows
from the fact that (sa, ta ) is rational.) Second, pa must strongly believe Bob’s RCSBR pre-
diction for T , namely projSb R

∞
b (T ). (This follows from the fact that ta strongly believes
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R∞
b (T ).) Finally, if ra is also a sequential best response under pa, ra must be contained in

projSa R
∞
a (T ), i.e., ra must be one of Ann’s RCSBR predictions for T . (This follows from

the property: If (ra, ta ) is rational and (sa, ta ) satisfies RCSBR for T , then (ra, ta ) satisfies
RCSBR for T .) This last property can be viewed as a maximality condition. These three
properties motivate the definition of an EFBRS.

Definition 5.1. Call Qa × Qb ⊆ Sa × Sb an extensive-form best response set (EFBRS) if,
for each sc ∈Qc , there exists some CPS pc ∈ C(S−c , Ec ) so that

(i) sc ∈ BR[pc ],

(ii) pc strongly believes Q−c , and

(iii) if rc ∈ BR[pc ], then rc ∈Qc .

An EFBRS is a subset of strategies Qa × Qb that satisfies a certain fixed-point re-
quirement: For each sa ∈ Qa, there exists a CPS pa defined only on Sb so that (i) sa is a
sequential best response under pa, (ii) pa strongly believes Bob’s prediction Qb, and (iii)
Qa satisfies a requisite maximality property. These correspond to the properties derived
from RCSBR, but are properties defined on the game � itself.

Proposition 5.1 (Battigalli and Friedenberg (2012)).

(i) For each type structure T , projS R
∞(T ) is an EFBRS.

(ii) Given an EFBRS Qa × Qb, there exists a type structure T so that projS R
∞(T ) =

Qa ×Qb.

Corollary 5.1. For each game �,

S∞ :=
⋃

Qa×Qb is an EFBRS

(Qa ×Qb ) =
⋃

T ∈T(�)

projS R
∞(T ).

Corollary 5.1 says that the union over all EFBRSs corresponds to the union of the
RCSBR predictions. So a strategy sc is consistent with RCSBR if and only if sc ∈ projSc S

∞.

Example 5.1. Return to Figure 1. We will show that

S∞ = (
{Out} × {L, R}

) ∪ (
{In-U} × {L}

)
.

First, each EFBRS Qa × Qb ⊆ S∞. To see this, fix an EFBRS Qa × Qb. Since, at the start
of the game, In-D is dominated, by property (i) of Definition 5.1, Qa ⊆ {Out, In-U}. So
if In-U ∈ Qa, then Qb = {L}. (This follows from properties (i) and (ii) of Definition 5.1.)
Thus, Qa × Qb ⊆ S∞. Next, {Out} × {L, R} and {In-U} × {L} are both EFBRSs.5 Take
Qa ×Qb = {Out} × {L, R}. Out is the unique sequential best response under a CPS that,
at each information set, assigns probability 1 to {R} ⊆ Qb; L (resp. R) is the unique se-
quential best response under a CPS that initially assigns probability 1 to Qa = {Out} and,

5So is {Out} × {R}.
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conditional on BoS, assigns probability 1 to {In-U} (resp. {In-D}). And, analogously for
{In-U} × {L}.

Finally, note that S∞ is not itself an EFBRS. Observe that it is not a product set. But,
more importantly, R is not a best response given a CPS that strongly believes projSa S

∞ =
{Out, In-U}. ♦

6. The m-BRS

The EFBRS concept can be viewed as a collection of sets, each of which satisfy a certain
fixed-point property: If sa is contained in Ann’s solution Qa, then sa is a sequential best
response under a CPS that strongly believes Bob’s solution Qb. The EFBRS inherits this
fixed-point property from RCSBR itself. If (sa, ta ) ∈ R∞

a (T ), then ta strongly believes an
event of the same order, namely R∞

b (T ).
To obtain a finite-order analog, we need to depart from this fixed-point property—

converting it into an iterative property. This is because RmSBR is not a fixed-point
concept: If (sa, ta ) ∈ R3

a(T )\R4
a(T ), then ta does not strongly believe the event R3

b(T );
that is, ta does not strongly believe the event of the same order. Instead, ta strongly
believes the lower-order events R0

b(T ), R1
b(T ), and R2

b(T ). More generally, if (sa, ta ) ∈
Rm
a (T )\Rm+1

a (T ), then ta strongly believes the lower-order events R0
b(T ), � � � , Rm−1

b (T ).
We will build off this fact to go from the EFBRS concept to an iterative property. That
property applies to a decreasing sequence of product sets.

Definition 6.1. Say (Q0, � � � , Qm ) is a decreasing sequence of product sets if (i) Q0 = Sa×
Sb, (ii) each Qn =Qn

a ×Qn
b is a product set, and (iii) for each n = 0, � � � , m− 1, Qn+1 ⊆Qn.

Definition 6.2. Say X = Xa × Xb satisfies the (extensive-form) best response property
relative to (Q0, � � � , Qm ) if (Q0, � � � , Qm, X ) is a decreasing sequence of product sets sat-
isfying the following property: For each sc ∈ Xc , there exists a CPS pc ∈ C(S−c , Ec ) so
that

(BRP.1) sc ∈ BR[pc ],

(BRP.2) pc strongly believes Q0−c , � � � , Qm−c , and

(BRP.3) if rc ∈ BR[pc ], then rc ∈Xc .

Definition 6.2 appears similar to Definition 5.1. The central difference arises in con-
dition (BRP.2). Instead of the CPS strongly believing X−c , the CPS strongly believes the
lower-order sets Q0−c , � � � , Qm−c . (Note that X−c ⊆Qm−c ⊆ Qm−1−c ⊆ · · · ⊆ Q0−c .)

Definition 6.3. Let m≥ 1. Say (Q0, � � � , Qm ) forms an (extensive-form) m-best response
sequence (m-BRS) if Q1 �= ∅ and, for each n = 0, � � � , m − 1, Qn+1 satisfies the best re-
sponse property relative to (Q0, � � � , Qn ).

Remark 6.1. For each m ≥ 2, (Q0, � � � , Qm ) is an m-BRS if and only if (i) (Q0, � � � , Qm−1 )
is an (m − 1)-BRS, and (ii) Qm satisfies the best response property relative to (Q0, � � � ,
Qm−1 ).
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A 1-BRS is some (Q0, Q1 ) = (Sa × Sb, Q1
a ×Q1

b ), where

Q1
c =

⋃
pc∈Ec

BR[pc ]

for some nonempty Ec ⊆ C(S−c , Ec ). An (m+ 1)-BRS is some (Q0, � � � , Qm, Qm+1 ), where
(Q0, � � � , Qm ) is an m-BRS and Qm+1 satisfies the best response property relative to
(Q0, � � � , Qm ).6 Thus, it is an iterative procedure that is a natural analog to the EFBRS. In
fact, the following holds:

Proposition 6.1. For each T , the sequence (projS R
0(T ), � � � , projS R

m(T )) forms an m-
BRS.

Say Q ⊆ S is consistent with an m-BRS if there exists some (m − 1)-BRS, viz.
(Q0, � � � , Qm−1 ), so that Q satisfies the extensive-form best response property relative
to (Q0, � � � , Qm−1 ). By Proposition 6.1,⋃

T ∈T(�)

projS R
m(T ) ⊆

⋃
Q is consistent with an m-BRS

Q =: Sm.

That is, the union over the m-BRSs provides an upper bound on the behavior consistent
with R(m− 1)SBR across all type structures. We denote the union over m-BRSs by Sm.

A natural analog to Corollary 5.1 is that

Sm =
⋃

Q is consistent with an m-BRS

Q =
⋃

T ∈T(�)

projS R
m(T ), (1)

i.e., the union over the m-BRSs is the set of strategies consistent with R(m − 1)SBR in
some type structure. In fact, there is a natural conjecture that would imply Equation (1):
For each m-BRS (Q0, � � � , Qm ), there exists a type structure T so that

Qn ⊆ projS R
n(T ) for all n = 1, � � � , m. (2)

However, this conjecture is incorrect. The next series of examples illustrates the issues
involved.

Counterexamples We begin by showing that Equation (2) cannot be strengthened to
require equality.

Example 6.1. Consider the game in Figure 2. Let (Q0, Q1, Q2 ) be the decreasing se-
quence of product sets with

Q1
a ×Q1

b = Sa × {y1q1, y1q2, y2} and Q2
a ×Q2

b = {x2} ×Q1
b.

Note this is a 2-BRS.7 But we show that there is no type structure T with Q1 ⊆ projS R
1(T )

and Q2 = projS R
2(T ).

6Note that if (Q0, � � � , Qm, Qm+1 ) is an (m+ 1)-BRS and Qm = Qm
a ×Qm

b with Qm
a = ∅, then Qm+1

b = ∅.
7Let us point to three features of the example. First, x1z1 and x2 are both sequential best responses under

a CPS that assigns probability 1 to y2; x1z2 is a unique sequential best response under a CPS that assigns
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Figure 2. A 2-BRS that is not a R1SBR prediction.

Suppose otherwise. Then there exists a type ta so that (x1z1, ta ) ∈ R1
a(T ). Observe

that at each information set, βa(ta ) must assign probability 1 to {y2} × Tb. But, y2 is
a sequential best response under every CPS and, so, {y2} × Tb ⊆ R1

b(T ). With this, ta
strongly believes R1

b(T ) and so (x1z1, ta ) ∈R2
a(T ). Thus, Q2

a �= projSa R
2
a(T ). ♦

Example 6.1 shows that we may have a 2-BRS (Q0, Q1, Q2 ) so that there is no type
structure T with both Q1 = projS R

1(T ) and Q2 = projS R
2(T ). But this is immate-

rial from the perspective of delivering Equation (1): There is some T , with both Q1 ⊆
projS R

1(T ) and Q2 ⊆ projS R
2(T ). In fact, this conclusion holds more generally.

Proposition 6.2.

(i) For each 1-BRS (Q0, Q1 ), there exists some T so that Q1 = projS R
1(T ).

(ii) For each 2-BRS (Q0, Q1, Q2 ), there exists some T so that Q1 = projS R
1(T ) and

Q2 ⊆ projS R
2(T ).

In light of Proposition 6.2, Equation (1) does indeed hold for m = 1, 2. However, we
next see that an analog of Proposition 6.2 does not hold for 3-BRSs.

Example 6.2. Return to the game in Figure 2. Consider (Q0, Q1, Q2, Q3 ), where
(Q0, Q1, Q2 ) is the 2-BRS described in Example 6.1 and

Q3
a ×Q3

b = Q2
a × {y1q1, y2}.

probability 1 to y3; and x2 is a unique sequential best response under a CPS that assigns probability 1 to
{y1q1, y1q2}. Second, y1q1 (resp. y1q2) and y2 are the only strategies that are a sequential best response
under a CPS that assigns probability 1 to x2 at the initial information set and then assigns probability 1 to
x1z2 (resp. x1z1) conditional on observing x1. Third, y2 is a unique sequential best response under a CPS
that assigns probability 1 to x1z2.
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We will show that there is no type structure T so that Qn ⊆ projS R
n(T ) for each n =

1, 2, 3.
Suppose, contra hypothesis, that such a type structure T exists. Since Q3 ⊆

projS R
3(T ), there exists some tb with (y1q1, tb ) ∈ R3

b(T ). Then βb(tb ) must assign pos-
itive probability to {x1z2} × Ta conditional on {x1z1, x1z2} × Ta. We will argue that
({x1z1} × Ta ) ∩ R2

a(T ) �= ∅ but ({x1z2} × Ta ) ∩ R2
a(T ) = ∅, contradicting the fact that tb

strongly believes R2
a(T ).

First, observe that (x1z1 ) ∈ Q1
a and so, by assumption, (x1z1 ) ∈ projSa R

1
a(T ). Thus,

repeating the argument in Example 6.1 above, (x1z1 ) ∈ projSa R
2
a(T ). Second, observe

that x1z2 is only a sequential best response under a CPS that assigns positive probability
to {y3}×Tb at the initial information set. Since y3 is dominated, no such CPS can strongly
believe R1

b(T ). Thus, x1z2 /∈ projSa R
2
a(T ). ♦

Example 6.2 gives a 3-BRS so that if Q1 ⊆ projS R
1(T ), then there exists some strategy

in Q3 that is not contained in projS R
3(T ). The key is that there is a strategy in Q3

b that is
a sequential best response under a CPS that strongly believes Q2

a. But that CPS cannot
strongly believe projSa R

2
a(T ); this arises because Q2

a is a strict subset of projSa R
2
a(T ).

Let us review what led to the situation where Q2
a � projSa R

2
a(T ). The strategy x1z1 is

a sequential best response under a CPS pa on Sb. However, for any CPS p̂a on Sb × Tb

with pa = margSb p̂a, we have that p̂a strongly believes that “Bob is rational.” With this in
mind, we now restrict attention to a class of games that are generic; in such games, this
phenomenon (essentially) cannot arise.

Generic games Say two strategies sc and rc are equivalent if they induce the same plan
of action, i.e., ζ(sc , ·) = ζ(rc , ·). Write [sc ] for the set of strategies that are equivalent to sc ,
and observe that, since the game is nontrivial, each [sc ] � Sc . So, if sc and rc are equiva-
lent, then πc(sc , ·) = πc(rc , ·). It follows that sc ∈ BR[pc ] if and only if [sc ] ⊆ BR[pc ].8

Definition 6.4. Call a game generic if the following property holds: There exists a CPS
pc ∈ C(S−c , Ec ) so that sc ∈ BR[pc ] if and only if there exists a CPS qc ∈ C(S−c , Ec ) so that
[sc ] = BR[qc].

Thus, a game is generic if any sequential best response is a “unique” sequential best
response under some—perhaps different—CPS. Here, “unique” is taken to mean “up to
equivalent strategies.” Section 8 discusses which games are generic.

By restricting attention to generic games, we solve the problem that arose in Exam-
ples 6.1 and 6.2. To see this, observe that x1z1 is only a sequential best response under
a CPS that assigns probability 1 to y2. But, y2 is a sequential best response under ev-
ery CPS. That is, there is no CPS pb so that y2 is not a sequential best response under
pb. This occurs despite the fact that y1q1 is a sequential best response under some CPS.
Genericity requires that, if y1q1 is a sequential best response under some CPS, then we
can choose the CPS, viz. p∗

b, so that y1q1 is the unique sequential best response under

8In BoSOO, Out-L and Out-R are two equivalent strategies. We have simply been writing Out ; our nota-
tion formally describes an equivalence class of strategies.
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Figure 3. Construction of type structure.

p∗
b. (In this game form, [y1q1] = {y1q1}.) If that were the case, then there would be a CPS

under which y2 is not a sequential best response—namely p∗
b. As such, we would be able

to construct a type structure and a type ta so that (x1z1, ta ) is rational but ta does not
strongly believe that “Bob is rational.” (We would require that the type structure have
types ta and tb with βa(ta )((y2, tb )|Sb ×Tb ) = 1 and margSa βb(tb ) = p∗

b.) This would solve
the problem seen in Examples 6.1 and 6.2.

When a game is generic, the predictions of RmSBR are exactly captured by the sets
consistent with an (m+ 1)-BRS.

Theorem 6.1. Suppose � is generic. The following hold for each m.

(i) For each type structure T , (projS R
0(T ), � � � , projS R

m(T )) forms an m-BRS.

(ii) If (Q0, � � � , Qm ) forms an m-BRS, then there exists some type structure T so that
(projS R

0(T ), � � � , projS R
m(T )) = (Q0, � � � , Qm ).

Part (i) is a special case of Proposition 6.1. Part (ii) is specific to generic games. It says
that, for a generic game and an associated m-BRS, we can construct a type structure so
that, for each n = 0, � � � , m − 1, the predictions of RnSBR are exactly captured by Qn+1.
Thus, for generic games, Equation (1) does hold.

Sketch of proof We provide a sketch of the proof of Theorem 6.1(ii). (The proof can be
found in Appendix B.) Suppose � is generic and fix a 2-BRS (Q0, Q1, Q2 ). The goal is to
construct a type structure T so that projS R

1(T ) = Q1 and projS R
2(T ) =Q2.

Figure 3a illustrates the set of strategy-type pairs for player c. The horizontal axis
corresponds to the set of strategies; it illustrates Q2

c ⊆ Q1
c ⊆ Sc . The vertical axis corre-

sponds to the set of types that we now construct. Specifically, we take Tc = Q1
c

⊔
Q2

c ;
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that is, Tc is the disjoint union of Q1
c and Q2

c . In doing so, we think of each sc ∈ Q2
c ⊆ Q1

c

as being associated with two types: a 1-type labeled s1
c and a 2-type labeled s2

c . For each
i = 1, 2 and sc ∈ Qi

c , we refer to (sc , sic ) as an i-strategy-type pair. We will be interested in a
modified notion of the diagonal of Qi

c ×Qi
c—one that accounts for equivalent strategies.

So we think of the diagonal of Qi
c ×Qi

c as

diagic =
⋃

sc∈Qi
c

(
[sc ] × [

sic
])

.

In Figure 3a, the diagonal of Q1
c × Q1

c is the union over gray boxes along the pictorial
diagonal of Q1

c × Q1
c . The diagonal of Q2

c × Q2
c is the union over black boxes along the

pictorial diagonal of Q2
c × Q2

c . The off-diagonal of Q1
c × Q1

c is the white area in Q1
c × Q1

c

(formally, (Q1
c ×Q1

c )\diagic).
The idea is to construct belief maps so that R1

c (T ) is contained in the union of
squares (Q1

c × Q1
c ) ∪ (Q2

c × Q2
c ) and R2

c (T ) is contained in the square (Q2
c × Q2

c ). More-
over, the belief maps will separate 1-types and 2-types based on whether (or not) they
strongly believe rationality. Specifically, we will ask that the following properties hold:

(DIAG.1) If (sc , s1
c ) ∈ Q1

c × Q1
c , then (sc , s1

c ) is rational and does not strongly believe
rationality.

(DIAG.2) If (sc , s2
c ) ∈ Q2

c ×Q2
c , then (sc , s2

c ) ∈ Q2
c ×Q2

c is rational and strongly believes
rationality.

Since (sc , sic ) ∈R1
c (T ) implies [sc ] × {sic } ⊆R1

c (T ), these properties of belief maps give

diag2
c ⊆R2

c (T ) ⊆ (
Q2

c ×Q2
c

)
and diag1

c ⊆R1
c (T )\R2

c (T ) ⊆ (
Q1

c ×Q1
c

)
.

We may well have diag2
c �R2

c (T ) ⊆ (Q2
c ×Q2

c ). That is, pictorially, R2
c (T ) may well contain

both the diagonal black boxes and the (off-diagonal) striped box. However, we require
that diag1

c = R1
c (T )\R2

c (T ) ⊆ (Q1
c ×Q1

c ). With this, each off-diagonal point in Q1
c ×Q1

c is
irrational. The role of this requirement will become clear below.

First, we construct the beliefs associated with 2-types. By definition of a 2-BRS,
for each sc ∈ Q2

c , there is a CPS jc(s2
c ) on (S−c , Ec ) so that [sc ] ⊆ BR[jc(s2

c )] ⊆ Q2
c and

jc(s2
c ) strongly believes Q1−c . Choose βc(s2

c ) so that margS−c
βc(s2

c ) = jc(s2
c ). Moreover, if

S−c(h)∩Q1−c �= ∅, we require that βc(s2
c )(·|S−c(h)×T−c ) be concentrated on the diagonal

of Q1−c ×Q1−c . (We can do this since, in that case, jc(s2
c )(Q1−c|S−c(h)) = 1.)

Next construct the beliefs associated with 1-types. Since the game is generic, for
each sc ∈ Q1

c , there is a CPS jc(s1
c ) on (S−c , Ec ) so that [sc ] = BR[jc(s1

c )]. For the purpose
of illustrating the construction, suppose that Q1−c has at least two non-equivalent strate-
gies.9 Figure 3b illustrates this case; note that the off-diagonal (illustrated by the gray
filling) is nonempty. Moreover, the off-diagonal meets each strategy in Q1−c . (Formally,
for each s−c ∈ Q1−c , ({s−c }×T−c )∩ ((Q1−c ×Q1−c )\diag1−c ) �= ∅.) We can then choose βc(s1

c )
so that (i) margS−c

βc(s1
c ) = jc(s1

c ), (ii) for each h, βc(s1
c )(S−c ×Q1−c|S−c(h) ×T−c ) = 1, and

9The proof treats the case of Q1−c = [s−c ] differently. There, by genericity, we can choose jc(s1
c ) so that it

does not strongly believe Q1−c .
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Figure 4. Prisoner’s Dilemma.

(iii) for each h, βc(s1
c )(diag1−c |S−c(h) × T−c ) = 0. So each βc(s1

c ) has beliefs that are con-
centrated on 1-strategy-type pairs, but off the diagonal.

Observe that under the construction,

R1
c (T ) =

⋃
i=1,2

⋃
sic∈Qi

c

(
BR

[
jc

(
sic

)] × {
sic

}) = diag1
c ∪

⋃
s2
c∈Q2

c

(
BR

[
jc

(
s2
c

)] × {
s2
c

})
.

Since the same holds for the other player −c, the off-diagonal points of Q1−c × Q1−c are
irrational and the diagonal points of Q1−c × Q1−c are rational. Thus, each 1-type s1

c does
not strongly believe R1−c(T ), while each 2-type s2

c strongly believes R1−c(T ). As such,

R2
c (T ) =

⋃
s2
c∈Q2

c

(
BR

[
jc

(
s2
c

)] × {
s2
c

})
.

From this it follows that projSc R
1
c (T ) = Q1

c and projSc R
2
c (T ) = Q2

c : By construction,
Q1

c ⊆ projSc R
1
c (T ) and Q2

c ⊆ projSc R
2
c (T ). Moreover, each BR[jc(s2

c )] ⊆ Q2
c ⊆ Q1

c . So
projSc R

1
c (T ) ⊆Q1

c and projSc R
2
c (T ) ⊆Q2

c .

7. Analyzing games

Write EFRm = EFRm
a × EFRm

b for the set of strategies that survives m rounds of EFR. We
have that (S, EFR1, � � � , EFRm ) is an m-BRS. So EFRm is contained in Sm. However, the
containment may be strict. In particular, there may be an m-BRS (Q0, Q1, � � � , Qm ) with
EFRm ∩ Qm = ∅. This can already be seen from BoSOO (Figure 1). There, for each m,
(Out, R) ∈ Sm, but R /∈ EFR2

b and Out /∈ EFR3
a. This can arise because strong belief is

non-monotonic. (See Examples 4.1 and 4.2.)
With Theorem 6.1 in mind, we turn to analyzing games via the m-BRS. We provide

two examples: the three-repeated Prisoner’s Dilemma and the Centipede game (Rosen-
thal (1981)). Both have a somewhat subtle relationship to EFR. This, in turn, has impli-
cations for the interpretation of experimental data.

Repeated Prisoner’s Dilemma Consider the Prisoner’s Dilemma in Figure 4, where ζ >

κ > δ > γ and 2κ > ζ + γ. For notational simplicity, we focus on the three-repeated
game. Corollary D.1 establishes that the game is generic. Thus, Theorem 6.1 applies and
so we can focus on m-BRSs.

Write V t for the set of t-period nodes. Each nonterminal node is associated with
a sequence of moves; for instance, (φ, (C, D)) is the two-period node that follows Ann
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playing C in the first period and Bob playing D in the first period. So V 1 = {φ}, V 2 =
{φ} × {C, D}2, and V 3 = {φ} × {C, D}4. Since, at each node, all past moves are known, we
can write a strategy of player c as a mapping sc : V → {C, D}.

We begin with the EFR benchmark. Write EFR0
c = Sc . Then, for each m= 0, 1, 2,

EFRm+1
c = {

sc ∈ EFRm
c : for each v ∈ V 3−m with sc ∈ Sc(v), sc(v) = D

}
.

(See Corollary D.1.) For each m ≥ 3, EFRm+1
c = EFRm

c . So if sc ∈ EFR1
c\EFR2

c , then sc plays
D at each three-period node it allows, but it plays C at some two-period node it allows.
Likewise, if sc ∈ EFR2

c\EFR3
c , then sc plays D at each two-period and three-period node it

allows, but it plays C at the initial node φ.
We know that, for each m, EFRm ⊆ Sm. In fact, the two sets are equivalent for m = 1.

However, this is not the case for m≥ 2. In particular, the following hold:

Proposition 7.1.

(i) S1
c = EFR1

c .

(ii) S2
c is the set of strategies sc ∈ EFR1

c so that

(a) D ∈ sc({(φ, (sc(φ), C )), (φ, (sc(φ), D))}), and

(b) if 2δ > β+ γ, then sc(φ) = C implies sc(φ, (C, C )) =D.

(iii) S3
c is the set of strategies sc ∈ S2

c so that sc(φ) =D.

(iv) For each m≥ 4, Smc is the set of strategies sc ∈ S3
c with sc(φ, (D, D)) =D.

So, S2
c requires that a strategy sc play D at some second-period node that it allows,

but it does not require that sc play D at each second-period node. This, in turn, implies
that a strategy in S3

c initially plays D. With this, S4
c is the set of strategies sc ∈ EFR1

c that
satisfy (i) sc(φ) = D, and (ii) sc(φ, (D, D)) = D. But note that EFR4

c � S4
c : It may well be

that sa(φ, (D, C )) (resp. sb(φ, (C, D))) is C.
An implication of Proposition 7.1 is that, for each m, Sm is outcome equivalent to

EFRm. More precisely, (i) for each (sa, sb ) ∈ Sm, there exists some (ra, rb ) ∈ EFRm so that
ζ(sa, sb ) = ζ(ra, rb ), and (ii) for each (sa, sb ) ∈ EFRm, (sa, sb ) ∈ Sm. However, for each
m≥ 2, EFRm � Sm.

The distinction between Sm and EFRm has important implications for the inferences
that can be made from experimental data. To understand why, focus on the case where
β+ γ ≥ 2δ. Consider an experimental data set obtained by the direct response method,
where we observe Ann play C in the second period. Conventional wisdom would sug-
gest that this indicates Ann cannot both be rational and “reason” that Bob is rational.
Indeed, this is the conclusion that EFR would suggest. However, this behavior is indeed
consistent with R1SBR. (In fact, if in the first period, Ann and Bob played (D, C ), then
this behavior is consistent with RmSBR for all m.) Suppose, instead, that the experimen-
tal data set is obtained by the strategy method and we observe Ann play C at each (rele-
vant) second-period node (i.e., we observe sa(φ, (sa(φ), C )) = sa(φ, (sa(φ), D)) = C). In
that case, we can conclude that Ann’s behavior is indeed inconsistent with R1SBR.
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Figure 5. Centipede game.

It is, of course, well understood that a benefit of the strategy method is that it pro-
vides additional data that may not be observed from the direct response method. (See,
e.g., the opening example in Brandts and Charness (2011).) Typically this occurs be-
cause Ann has a choice that can only be observed if Bob plays a particular prior action;
in the direct response method, Bob may not play the action and so we may not be able to
observe Ann’s choice. The situation here is different: If we only use the direct response
method and we observe Ann choose D in the final period, then we cannot contradict
the hypothesis that “Ann is rational and strongly believes Bob is rational” independent
of what Bob plays. However, if we use the strategy method, we can observe Ann’s behav-
ior at each second-period node and so there is potentially observed behavior that would
contradict this hypothesis.10

Centipede game Figure 5 depicts the Centipede game. We order the nonterminal nodes
as v = 1, 2, � � � , |V |, where |V | ≥ 3. (So, v = 1 indicates the initial node and v = |V | indi-
cates the last nonterminal node.) If the game ends after outv is played and v is odd (resp.
even), then the payoffs are (x+ (v− 1)y, x+ (v− 2)y ) (resp. (x+ (v− 3)y, x+vy )), where
x, y > 0.11 If the game ends after in|V | is played and |V | is odd (resp. even), then the pay-
offs are (x+ (|V | − 2)y, x+ (|V | + 1)y ) (resp. (x+ |V |y, x+ (|V | − 1)y )). Figure 5 depicts
|V | odd.

Write  for the last player and − for the second-to-last player. If |V | is odd, then 

is Ann and − is Bob; if |V | is even, then  is Bob and − is Ann. Let [out, v]c be the set
of strategies of player c that allow v and then play outv. Likewise, let [in]c be the set that
contains the (unique) strategy of player c that specifies inv at every node v.

Let us point to four (related) features of the game. First, the player who moves at
node v ≤ |V | − 1 strictly prefers outv+2 (resp. in|V | if v = |V | − 1) to outv and strictly
prefers outv to outv+1. Second, the player who moves at node |V | strictly prefers out|V | to
in|V | . Third, for each v ≤ |V | −1 (resp. v = |V |), [out, v]c is the set of best responses under
a CPS that strongly believes [out, v + 1]−c (resp. [in]−c). Fourth, the game is generic.
(This follows from the second and third features.) Thus, Theorem 6.1 applies and, so, we
can focus on m-BRSs.12

10This, of course, presumes that the strategy method works, in that a strategy is optimal in the strategy-
method game if and only if it is optimal in the direct-response game. Siniscalchi (2020) provides founda-
tions for the strategy method.

11The first component in the payoff vector is Ann’s payoffs.
12Reny’s (1993) Take it Or Leave it game also satisfies these properties. Anything we say about Centipede

also applies to that game.
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A useful benchmark is m rounds of EFR. Observe that

EFR1
 × EFR1− = (

S\[in]
) × S− and EFR2

 × EFR2− = EFR1
 × (

S−\[in]−
)
.

Moreover,

EFRm
 × EFRm− =

{(
EFRm−1

 \[out, |V | + 3 −m
]


) × EFRm−1
− if m = 3, � � � , |V | is odd,

EFRm−1
 × (

EFRm−1
− \[out, |V | + 3 −m

]
−

)
if m = 4, � � � , |V | is even.

For all m ≥ |V | + 1, EFRm
 × EFRm− = EFR|V |

 × EFR|V |
− . Note that this also corresponds

round-for-round with the backward-induction algorithm.
Unlike EFR, the m-BRS procedure has very different implications for the first mover

(Ann) and the second mover (Bob).

Proposition 7.2. In the Centipede game, the following hold for each finite m≥ 1:

(i) Sma = EFRm
a .

(ii) If |V | is odd, then Smb = Sb. If |V | is even, then Smb = (Sb\[in]b ).

At first glance, part (i) of Proposition 7.2 may appear trivial: For eachm, EFRm
a ×EFRm

b

is consistent with an m-BRS. Thus, EFRm
a ⊆ Sma . However, the key is to show that Sma ⊆

EFRm
a and, as we have seen, this is not the case for the second mover, Bob. (Appendix D.2

explains why this is the case.)
Proposition 7.2 points to a distinction between the first mover and the second

mover—one that is important for interpreting experimental data. Consider the case
where |V | is odd, so that the first mover is the last mover. First, for each m, Sma = EFRm

a .
So, for instance, if we observe the first mover play out|V |−2, then we can conclude that the
first mover’s behavior is consistent with R3SBR but inconsistent with R4SBR. Second, for
each m, Smb = Sb. So, in particular, any strategy that we observe the second mover play
is consistent with RmSBR for each m. (In fact, any strategy that we observe the second
mover play is consistent with RCSBR.) This contradicts the conventional wisdom that
observing the second player choose in indicates that the second player exhibits some
form of “bounded reasoning about rationality.”

To understand the difference between the first mover and the second mover, note
that when |V | is odd, [out, 1]a × Sb is an EFBRS. Thus, Sb ⊆ S∞

b . But, for any nonempty
EFBRS Qa ×Qb, we have Qa = [out, 1]a.13 Thus, S∞

a = [out, 1]a.

8. Discussion

13Suppose not. Then there is some (sa, sb ) ∈ Qa ×Qb where Ann plays in1. Consider the strategy profile
that results in the maximum path of play of in: Specifically, it results in in1-· · · -inv and the player, viz. −c,
who moves at v+ 1 plays outv+1. Let sc be a strategy in Qc that plays in up to and including v. Any CPS that
strongly believes Q−c must, at v, assign probability 1 to −c playing outv+1. Thus, sc cannot be a sequential
best response under any CPS that strongly believes Q−c .
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Generic games Theorem 6.1 shows that, in generic games, m-BRSs characterize the
R(m− 1)SBR sequences. This raises the question: “Which games are generic?” We begin
with no relevant ties.

Definition 8.1 (Battigalli (1997)). A game satisfies no relevant ties (NRT ) if πc(sc , s−c ) =
πc(rc , s−c ) implies ζ(sc , s−c ) = ζ(rc , s−c ).

A game satisfies no relevant ties if, whenever player c is decisive over two distinct ter-
minal nodes z and z∗ (i.e., if there exists (sc , s−c ) and (rc , s−c ) with ζ(sc , s−c ) �= ζ(rc , s−c )),
she is not indifferent between those terminal nodes.

We may have a game that satisfies NRT that is nongeneric. (See Example E.1.) How-
ever, there is a subclass of NRT games that are generic—ones in which a strategy that is
a best response under some CPS is a best response under a “degenerate CPS.” (See Def-
inition E.2 and Proposition E.1.) Perfect-information games satisfy that condition and,
so, a perfect-information game satisfying NRT is generic. (See Proposition E.2.)

There is a related condition that ensures genericity. Fix some X−c ⊆ S−c and some
information set h ∈ Hc with sc ∈ Sc(h). Say rc supports sc with respect to (X−c , h)
if there exists σ ∈ P(Sc(h)) with (i) σ(rc ) > 0; and (ii) for all s−c ∈ X−c ∩ S−c(h),∑

rc∈Sc(h) πc(rc , s−c )σ(rc ) = πc(sc , s−c ). If sc /∈ Sc(h), then no rc supports sc with respect
to (X−c , h).

Definition 8.2. A game satisfies no relevant convexities (NRC) if, for each h ∈ Hc , the
following holds: If sc ∈ Sc(h) and rc supports sc with respect to some (X−c , h), then
ζ(sc , s−c ) = ζ(rc , s−c ) for each s−c ∈X−c ∩ S−c(h).

Informally, a game satisfies NRC if strategies in the support of a mixture σ ∈ P(Sc )
induce the same path of play as sc whenever player c is indifferent between σ and sc .
Corollary E.1 (Appendix E.2) establishes that a game that satisfies NRC is generic.

Termination of the m-BRS procedure Fix a decreasing sequence of strategies (Q0, Q1,
Q2, � � �), where each (Q0, � � � , Qm ) forms an m-BRS. Since Qm+1 ⊆ Qm, (Q0, Q1, Q2, � � �)
defines an iterative elimination procedure.14 We refer to this as an m-BRS elimination
procedure. Note that there may be many such elimination procedures, corresponding
to distinct (Q0, Q1, Q2, � � �) and (Q̂0, Q̂1, Q̂2, � � �).

Because the strategy set is finite, this elimination procedure must terminate; i.e.,
there exists some M so that, for each m ≥ M , Qm = QM . If the analyst knew at which M

this occurred, they could use that fact to determine that the elimination procedure has
stopped.

At first glance, there may appear to be a straightforward route to determine M .
Typically, an elimination procedure stops shrinking at the first round where no strat-
egy is eliminated for either player. However, this same principle does not apply to
the m-BRS elimination procedure. We may have Qm+1 � Qm = Qm−1. To see this, re-
fer to the simultaneous-move game given by Figure 6. For each m, there is an m-BRS

14Importantly, an m-BRS is not an order of elimination of iterated conditional dominance (Chen and
Micali (2012)).
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Figure 6. Pause is not termination.

with (Q0, � � � , Qm ), so that (i) for each n ≤ m, Qn = {U , D} × {L, R}, and (ii) Qm+1 =
{U , D} × {R}. Thus, the (m + 1)-BRS procedure has no shrinkage up until round m,
but a shrinkage at round (m + 1). Since m can be any number, we can have arbitrar-
ily long pauses before shrinkage. To understand why this can occur, note that we can
have Rm+1(T ) � Rm(T ), but projS R

m+1(T ) = projS R
m(T ). When this happens, it may

well be that projS R
m+2(T ) � projS R

m+1(T ).
Despite this, we can provide a bound on the elimination procedure (S0, S1, S2, � � �),

i.e., we can find some M so that, for all m≥M , Sm = SM . To understand why, consider an
m-BRS procedure (Q0, Q1, Q2, � � �) with a pause at round m, i.e., Qm+1 =Qm but Qm+2 �

Qm+1. The key is that any eliminated strategy—i.e., any strategy in Qm+1
c \Qm+2

c —
must be contained in Sm+2. That is, there must exist some other m-BRS procedure
(Q̂0, Q̂1, Q̂2, � � �) so that Qm+1\Qm+2 ⊆ Q̂m+2. This follows from the following:

Observation 8.1. If (Q0, � � � , Qm ) is an m-BRS with Qm =Qm−1, then Qm−1 is an EFBRS.

Fix some (Q0, Q1, Q2, � � �) where (i) for each m, (Q0, � � � , Qm ) is an m-BRS, and (ii)
Qn+1 = Qn. Then Qn is an EFBRS. We can define a new sequence (Q̂0, Q̂1, Q̂2, � � �) so
that (i) for each m ≤ n, Q̂m = Qm, and (ii) for each m > n, Q̂m = Qn. Then, for each m,
(Q̂0, � � � , Q̂m ) is an m-BRS. So, for each m, Qm ⊆ Q̂m ⊆ Sm. From this, we get the following
termination result.

Proposition 8.1. Set

M =
{

2 min
{|Sa|, |Sb|

} − 1 if |Sa| �= |Sb|,
2 min

{|Sa|, |Sb|
} − 2 if |Sa| = |Sb|.

Then, for all m≥M , Sm = S∞.

Proposition 8.1 provides a bound M for the procedure (S0, S1, S2, � � �). Thus, it suf-
fices to compute all the M-BRSs, (Q0, � � � , QM ).

In practice, it is often not necessary to compute all the M-BRSs. Refer to Figure 7.
Begin with Q0 = S and identify all the 1-BRSs (Q0, Q1 ). Use these 1-BRSs to iden-
tify all the 2-BRSs (Q0, Q1, Q2 ). And so on. Notice that along any given M-BRS path
(Q0, Q1, � � � , QM ), we can stop at m<M if Qm =Qm+1.
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Figure 7. The m-BRS elimination tree.

Computing an m-BRS: NRC games Games that satisfy NRC have a simple characteri-
zation of the m-BRS concept, one that allows for a “simpler” computation of the m-BRS
concept.

Proposition 8.2. Suppose � satisfies NRC. Then (Q0, � � � , Qm ) forms an m-BRS if and
only if

(i) Q1 is nonempty, and

(ii) for each n= 1, � � � , m and each sc ∈ Qn
c , there exists pc ∈ A(S−c , Ec ) with sc ∈ BR[pc ]

and pc strongly believes Q0−c , � � � , Qn−1−c .

Fix a decreasing sequence of product sets (Q0, � � � , Qm−1, Qm ) so that (Q0, � � � , Qm−1 )
is an (m − 1)-BRS. We seek to determine whether (Q0, � � � , Qm ) is also an m-BRS. If the
game satisfies NRC, Proposition 8.2 provides two ways that simplify making that deter-
mination. First, we can replace CPSs with arrays. Second, we can eliminate the maxi-
mality criterion. Appendix E.5 explains why each of these simplifications may fail absent
NRC. It also shows that when we reduce the definition in this way, repeated application
of a simplex algorithm determines whether or not (Q0, � � � , Qm ) is an m-BRS.

Beyond generic games It would be desirable to have a procedure that determines the
sets Sm in nongeneric games. One possibility would be to amend the definition of an m-
BRS. In light of Example 6.2, one might suggest the following: If sa ∈ Q1

a\Q2
a, then there

exists some CPS pa that satisfies conditions (BRP.1), (BRP.2), and (BRP.3), and does not
strongly believe Q1

b. However, under that amendment, we loose an analog of Proposition
6.1; for a given T , (projS R

0(T ), � � � , projS R
m(T )) may fail the new property.

Example 6.2 illustrates that, for a given m-BRS (Q0, Q1, � � � , Qm ), there may be no T
so that Qn ⊆ projS R

n(T ) for each n = 1, � � � , m. The example leaves open the possibility
that there may be an alternate m-BRS (Q̂0, Q̂1, � � � , Q̂m ) so that the following hold: (i)
Q̂m = Qm, and (ii) there exists some type structure T so that Q̂n ⊆ projS R

n(T ) for each
n = 1, � � � , m. If correct, it would say that Equation (2) does hold for all games. We neither
know this to be true nor have a counterexample.

Finite-order type structures Type structures induce hierarchies of conditional beliefs
about the strategies played, i.e., mth-order beliefs for all m. This suggests that play-
ers can contemplate sentences of the form “I think that you think that I think � � �.” As
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such, one might incorrectly hypothesize that our analysis requires that players have an
unlimited ability to engage in interactive reasoning, despite the fact that they exhibit
“bounded reasoning about rationality” (formalized as RmSBR, but not R(m + 1)SBR).
However, there is no such requirement. The key observation is that hierarchies of be-
liefs beyond level m do not affect R(m − 1)SBR. Formally, consider two types ta and ua
with the same mth-order beliefs about the strategies played. For any strategy sa, the
strategy-type pair (sa, ta ) is consistent with R(m − 1)SBR if and only if (sa, ua ) is con-
sistent with R(m − 1)SBR. Thus, the higher-order beliefs become a consequence of our
formalism and do not have implications for our characterization result. In particular,
we could instead adapt the finite-order type structure approach proposed in Kets (2010)
and Heifetz and Kets (2018)—amended for CPSs—and apply R(m− 1)SBR in that frame-
work. We would reach analogous conclusions. (Appendix A in Heifetz and Kets (2018),
makes a similar point, in a different context.)

Heifetz–Kets rationalizability Heifetz and Kets (2018) define a notion of rationalizabil-
ity for finite-order settings. It is quite different from the analysis here. They focus on
simultaneous-move games of incomplete information and use a finite-order type struc-
ture to model incomplete information. Strategic uncertainty is captured implicitly by
their rationalizability concept, which we call HK rationalizability. Importantly, their no-
tion of rationalizability is different from the standard notion (to which ours reduces in
simultaneous-move games). If we apply their concept to a game of complete informa-
tion, a strategy may survive two rounds of HK rationalizability even though it does not
survive two rounds of Bernheim (1984) and Pearce (1984) rationalizability. This arises
for the same reason that a level-2 type in the cognitive hierarchy model (Camerer et al.
(2004)) may not play a 2-rationalizable strategy. A level-2 type in the cognitive hierarchy
model assigns positive probability to a level-0 type and, so, may assign positive proba-
bility to a dominated strategy.15

Appendix A: Preliminaries

This appendix provides preliminary lemmas that are used in subsequent results.

Marginalization property of belief

Lemma A.1. If βc(tc ) strongly believes E−c ⊆ S−c × T−c , then margS−c
βc(tc ) strongly be-

lieves projS−c
E−c .

Proof. Suppose βc(tc ) strongly believes E−c ⊆ S−c ×T−c . Fix some S−c(h) ×T−c ∈ Ec ⊗
T−c . If projS−c

E−c ∩ S−c(h) �= ∅, then there exists (s−c , t−c ) ∈ E−c so that s−c ∈ S−c(h). It
follows that E−c ∩ (S−c(h) × T−c ) �= ∅ and so βc(E−c|S−c(h) × T−c ) = 1. Now note that

margS−c
βc

(
projS−c

E−c|S−c(h)
) = βc

(
projS−c

E−c × T−c|S−c(h) × T−c
)

≥ βc
(
E−c|S−c(h) × T−c

) = 1.

15This does not occur in the level-k model (Costa-Gomes et al. (2001)) and, as such, a level-2 type in the
level-k model does survive two rounds of rationalizability.
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It follows that margS−c
βc(projS−c

E−c|S−c(h) × T−c ) = 1, as desired.

Image CPSs Fix a CPS pc ∈ C(S−c , Ec ) and a measurable mapping τ−c : S−c → S−c ×T−c .
Define qc as follows: For each conditioning event S−c(h) ×T−c ∈ Ec ⊗T−c and each Borel
E−c ⊆ S−c × T−c , set

qc
(
E−c|S−c(h) × T−c

) = pc
(
(τ−c )−1(E−c )|S−c(h)

)
.

We refer to qc as the image CPS of pc under τ−c . So defined, qc is indeed a CPS. See
Battigalli et al. (2012, Part III, Chapter 4). Moreover, if τ−c(s−c ) ∈ {s−c } ×T−c for each s−c ,
then the image CPS of pc under τ−c , viz. qc , has margS−c

qc = pc . As a consequence, for
any given CPS pc ∈ C(S−c , Ec ), we can find some CPS qc ∈ C(S−c × T−c , Ec ⊗ T−c ) so that
margS−c

qc = pc .

Structure of games and sequential best responses By perfect recall, we have the following
properties. (i) For each h, h′ ∈ Hc , either S(h) ⊆ S(h′ ), S(h′ ) ⊆ S(h), or S(h) ∩ S(h′ ) = ∅.
(ii) For each h ∈ Hc , S(h) = Sc(h) × S−c(h). The second of these implies the following
lemma.

Lemma A.2. Fix h, h′ ∈ Hc so that S(h) ∩ S(h′ ) = ∅. If S−c(h) ∩ S−c(h′ ) �= ∅, then Sc(h) ∩
Sc(h′ ) = ∅.

Proof. Fix h, h′ ∈Hc so that Sc(h) ∩ Sc(h′ ) �= ∅ and S−c(h) ∩ S−c(h′ ) �= ∅. Then there ex-
ists sc ∈ Sc(h) ∩ Sc(h′ ) and s−c ∈ S−c(h) ∩ S−c(h′ ). It follows that (sc , s−c ) ∈ Sc(h) × S−c(h)
and (sc , s−c ) ∈ Sc(h′ ) × S−c(h′ ). By perfect recall, S(h) = Sc(h) × S−c(h) and S(h′ ) =
Sc(h′ ) × S−c(h′ ). Thus, S(h) ∩ S(h′ ) �= ∅.

Lemma A.3. Fix h∗, h∗∗ ∈ Hc so that S(h∗∗ ) ⊆ S(h∗ ). Let μc ∈ P(S−c ) with μc(S−c(h∗ )) =
1 and μc(S−c(h∗∗ )) > 0. If sc ∈ Sc(h∗∗ ) is optimal under μc given all strategies in Sc(h∗ ),
then sc is optimal under μc(·|S−c(h∗∗ )) given all strategies in Sc(h∗∗ ).

Proof. Suppose that there exists some rc ∈ Sc(h∗∗ ) so that∑
s−c

[
πc(rc , s−c ) −πc(sc , s−c )

]
μc

(
s−c|S−c

(
h∗∗))> 0.

Construct a strategy r̃c so that

r̃c(h) =
{
rc(h) if S(h) ⊆ S

(
h∗∗),

sc(h) otherwise.

Fix some s−c ∈ S−c(h∗∗ ) and observe that (sc , s−c ) and (rc , s−c ) are both contained in
S(h∗∗ ) = Sc(h∗∗ ) × S−c(h∗∗ ). (This follows from perfect recall.) Thus, ( r̃c , s−c ) ∈ S(h∗∗ )
and so r̃c ∈ Sc(h∗∗ ) ⊆ Sc(h∗ ).

We will show that

(i) ζ(rc , s−c ) = ζ( r̃c , s−c ) if s−c ∈ S−c(h∗∗ ), and
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(ii) ζ(sc , s−c ) = ζ( r̃c , s−c ) if s−c ∈ S−c(h∗ )\S−c(h∗∗ ).

From this, it follows that∑
s−c

[
πc( r̃c , s−c ) −πc(sc , s−c )

]
μc(s−c ) > 0,

contradicting the hypothesis that sc is optimal under μc given all strategies in Sc(h∗ ).
First, fix some s−c ∈ S−c(h∗∗ ) and note that, by perfect recall,

(sc , s−c ), (rc , s−c ), ( r̃c , s−c ) ∈ Sc
(
h∗∗) × S−c

(
h∗∗) = S

(
h∗∗).

Suppose, contra hypothesis, that ζ(rc , s−c ) �= ζ( r̃c , s−c ). Then there exists some h ∈Hc so
that (rc , s−c ), ( r̃c , s−c ) ∈ S(h) = Sc(h) × S−c(h) but rc(h) �= r̃c(h) = sc(h). By construction,
it is not the case that S(h) ⊆ S(h∗∗ ). Since S(h∗∗ ) ∩ S(h) �= ∅, it follows that S(h∗∗ ) �
S(h). Thus, we have established that sc(h) �= rc(h) and (sc , s−c ), (rc , s−c ) ∈ S(h∗∗ ); but,
this contradicts perfect recall.

Second, fix some s−c ∈ S−c(h∗ )\S−c(h∗∗ ) and suppose, contra hypothesis, that
ζ(sc , s−c ) �= ζ( r̃c , s−c ). Then there exists some h ∈ Hc with (sc , s−c ), ( r̃c , s−c ) ∈ S(h) =
Sc(h) × S−c(h) and sc(h) �= r̃c(h) = rc(h). By construction, S(h) ⊆ S(h∗∗ ), contradicting
the assumption that s−c ∈ S−c(h∗ )\S−c(h∗∗ ).

Appendix B: Proofs of Propositions 6.1 and 6.2

Proof of Proposition 6.1. The proof is by induction on m.
m= 1. If sc ∈ projSc R

1
c (T ), then there exists some tc ∈ Tc so that (sc , tc ) ∈R1

c (T ). Take
pc = margS−c

βc(tc ). Note that sc ∈ BR[pc ]. Moreover, if rc ∈ BR[pc ], then (rc , tc ) ∈ R1
c (T )

and so rc ∈ projSc R
1
c (T ).

m ≥ 2. Assume the claim holds for m and fix some (projS R
0(T ), � � � , projS R

m(T ),
projS R

m+1(T )). Then, by the induction hypothesis, (projS R
0(T ), � � � , projS R

m(T ))
forms an m-BRS. Thus, it suffices to show that projS R

m+1(T ) = projSa R
m+1(T ) ×

projSb R
m+1(T ) satisfies the extensive-form best response property relative to

(projS R
0(T ), � � � , projS R

m(T )).
Fix some sc ∈ projSc R

m+1(T ). There exists some tc ∈ Tc so that (sc , tc ) ∈ Rm+1
c (T ).

Take pc = margS−c
βc(tc ). Since (sc , tc ) ∈ R1

c (T ), sc ∈ BR[pc ]. Moreover, βc(tc ) strongly
believes R0−c(T ), � � � , Rm−c(T ). So applying Lemma A.1, margS−c

βc(tc ) strongly believes
projS−c

R0−c(T ), � � � , projS−c
Rm−c(T ). Finally, if rc ∈ BR[pc ], then (rc , tc ) ∈ Rm+1

c (T ) and so
rc ∈ projSc R

m+1
c (T ).

Proof of Proposition 6.2. Begin with part (i). Fix a 1-BRS (Q0, Q1 ). Construct T as
follows: Set Tc = Q1

c . For each sc ∈ Tc = Q1
c , choose βc(sc ) so that margSc βc(sc ) is a CPS

pc with [sc] ∈ BR[pc ] ⊆ Q1
c . (The fact that such a CPS exists follows from the definition of

a 1-BRS.) It follows that projSc R
1
c (T ) = Q1

c .
Turn to part (ii). Fix a 2-BRS (Q0, Q1, Q2 ). For each sc ∈ Q1

c , there exists some CPS
jc(sc ) so that sc ∈ BR[jc(sc )] ⊆ Q1

c . Moreover, if sc ∈ Q2
c , we can take jc(sc ) to strongly

believe Q1−c and so BR[jc(sc )] ⊆Q2
c .
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With this in mind, set Tc = Q1
c and define βc(sc ) so that margS−c

βc(sc ) = jc(sc ). More-
over, for each h with S−c(h) ∩Q1−c �= ∅ and each s−c ∈ S−c(h) ∩Q1−c , set

βc(sc )
(
(s−c , s−c )|S−c(h) × T−i

) = jc(sc )
(
s−c|S−c(h)

)
.

Then

R1
c (T ) =

⋃
sc∈Q1

c

(
BR

[
jc(sc )

] × {sc }
) =⇒ projSc R

1
c (T ) =Q1

c .

Moreover, if sc ∈ Q2
c , type sc strongly believes R1−c(T ). So, Q2

c ⊆ projSc R
2
c (T ).

Appendix C: Proof of Theorem 6.1

To show Theorem 6.1, it will be useful to introduce a strong justification property. With
this in mind, refer to a set Xc ⊆ Qc as an effective singleton if there exists some sc so that
Xc = [sc ]. If Xc ⊆Qc is not an effective singleton, then we simply say it is nonsingleton.

Definition C.1. Fix an m-BRS (Q0, � � � , Qm ). Say that the m-BRS satisfies the strong
justification property if, for each player c and each n= 1, � � � , m, we can find a mappings
jnc : Qn

c → C(S−c , Ec ) that satisfy the following criteria:

(j.1) For each sc ∈Q1
c , BR[j1

c (sc )] = [sc ]. Moreover, if Q1−c is effectively a singleton, then
j1
c (sc ) does not strongly believe Q1−c .

(j.2) For each n = 2, � � � , m and each sc ∈ Qn
c , sc ∈ BR[jnc (sc )] ⊆ Qn

c and jnc (sc ) strongly
believes Q0−c , � � � , Qn−1−c .

Observe that, by definition of an m-BRS, we can always find mappings jnc : Qn
c →

C(Q−c , Ec ) that satisfy condition (j.2). But, condition (j.1) is stronger than that required
by an m-BRS. If we find mappings jc = (j1

c , � � � , jmc ) that satisfy these requirements, say
that jc strongly justifies the m-BRS for player c or ja and jb strongly justify the m-BRS.
Theorem 6.1 follows from the following two propositions.

Proposition C.1. Fix an m-BRS (Q0, � � � , Qm ) that satisfies the strong justification prop-
erty. Then there exists a type structure T so that, for each n = 1, � � � , m, projS R

n(T ) = Qn.

Proposition C.2. If the game is generic, then any m-BRS satisfies the strong justification
property.

We now turn to prove these two results.

C.1 Proof of Proposition C.1

Throughout we fix an m-BRS (Q0, � � � , Qm ) that satisfies the strong justification property.
Thus, for each player c, there are mappings jc = (j1

c , � � � , jmc ) that strongly justify the m-
BRS.
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Description of the type structure For each player c and each n = 1, � � � , m, set Um
c ≡ Qm

c

and write υn
c : Qn

c → Un
c for the identity map. The type set for player c is Tc = ⊔m

n=1 U
n
c .

We refer to types in Un
c as the n-types for player c.

It will be convenient to specify the diagonal of Qn
c ×Un

c . This is

diagnc =
⋃

sc∈Qn
c

(
[sc ] × υn

c

(
[sc]

))
.

Observe that, if [sc ] = [rc ], then υn
c ([sc ]) = υn

c ([rc]) and so [sc ] × υn
c ([rc]) ⊆ diagnc . More-

over, if Qn
c is nonsingleton, then, for each sc ∈ Qn

c , there exists a type tc ∈ Un
c so that

(sc , tc ) ∈ (Qn
c ×Un

c )\diagnc .
For each n = 1, � � � , m, define a mapping τn−c : S−c → S−c ×T−c with τn−c(s−c ) ∈ {s−c }×

T−c . In addition, the mappings satisfy the following: For n = 1, if Q1−c is nonsingleton,
then the range of τ1−c is concentrated on S−c ×U1−c but off of diag1−c , i.e., each τ1−c(s−c ) ∈
(S−c × U1−c )\diag1−c . For n = 2, � � � , m and each s−c ∈ Q1−c , τn−c(s−c ) is in the maximal
diagonal (≤ n− 1) consistent with s−c . Specifically, for a given s−c ∈Q1−c , let = max{k =
1, � � � , n− 1 : s−c ∈Qk−c } and set τn−c(s−c ) = (s−c , υ−c(s−c )).

The belief map is such that, for each υn
c (sc ) ∈Un

c , βc(υn
c (sc )) is the image CPS of jnc (sc )

under τn−c . Observe that, for each sc ∈Qn
c , margQ−c

βc(υn
c (sc )) = jnc (sc ).

Analysis It will be convenient to define sets of n-strategy-type pairs of the players. In
particular, for each player c and each n= 1, � � � , m, set

Qn
c =

⋃
sc∈Qn

c

(
BR

[
jnc (sc )

] × {
υn
c (sc )

})
.

By conditions (j.1) and (j.2) of strong justification, diagnc ⊆Qn
c .

Lemma C.1. For each n = 1, � � � , m, projSc Q
n
c =Qn

c .

Proof. If sc ∈ Qn
c , then sc ∈ BR[jnc (sc )] and so (sc , υn

c (sc )) ∈ Qn
c . Fix some (sc , υn

c (rc )) ∈
Qn

c . Then rc ∈Qn
c and sc ∈ BR[jnc (rc )]. It follows that sc ∈ BR[jnc (rc )] ⊆ Qn

c , as required.

Lemma C.2. For each n = 1, � � � , m, Rn
a(T ) ×Rn

b(T ) = ⋃m
k=n(Qk

a ×Qk
b ).

Proof. The case of n = 1 is immediate from the construction. Thus, we show n =
2, � � � , m. The proof is by induction on n.

Fix some n = 2, � � � , m, some k = n − 1, � � � , m, and some (rc , υk
c (sc )) ∈ BR[jkc (sc )] ×

{υk
c (sc )} ⊆Qk

c . Since the claim holds for n = 1, it suffices to show the following:

(i) If k = n− 1, then υk
c (sc ) does not strongly believe Rn−1−c (T ).

(ii) If k = n, � � � , m, then υk
c (sc ) strongly believes Rn−1−c (T ).

n = 2: Fix some k = 1, � � � , m and some (rc , υk
c (sc )) ∈ BR[jkc (sc )] × {υk

c (sc )} ⊆ Qk
c . We

show that (i) and (ii) hold. To do so, we make use of the following properties: R1−c(T ) =⋃m
k=1 Q

k−c and Q1−c = projS−c

⋃m
k=1 Q

k−c = projS−c
R1−c(T ) (Lemma C.1).
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First, suppose that k= 1 and Q1−c is an effective singleton. By condition (j.1) of strong
justification, j1

c (sc ) does not strongly believe Q1−c , i.e., there exists some information set
h with Q1−c ∩ S−c(h) �= ∅ and j1

c (sc )(S−c\Q1−c|S−c(h)) > 0. Since Q1−c = projS−c
R1−c(T ),

R1−c(T ) ∩ (S−c(h) × T−c ) �= ∅. Moreover, βc(υ1
c (sc ))((S−c\Q1−c ) × T−c|S−c(h) × T−c ) > 0

and, again using the fact that Q1−c = projS−c
R1−c(T ), ((S−c\Q1−c ) × T−c ) ∩ R1−c(T ) = ∅.

Thus, υ1
c (sc ) does not strongly believe R1−c(T ).

Second, suppose that k = 1 and Q1−c is nonsingleton. Observe that, in this case,

βc
(
υ1
c (sc )

)(
S−c ×U1−c

)\diag1−c |S−c × T−c ) = 1.

By condition (j.1) of strong justification, if (s−c , t−c ) ∈ (S−c × U1−c )\diag1−c , then sc /∈
BR[j1−c(tc )] and so (s−c , t−c ) /∈R1−c(T ). Thus, υ1

c (sc ) does not strongly believe R1−c(T ).
Finally, suppose that k = 2, � � � , m. Fix a conditioning event S−c(h) × T−c so that

R1−c(T ) ∩ (S−c(h) × T−c ) �= ∅. Since Q1−c = projS−c
Q1−c = projS−c

R1−c(T ), it follows that

Q1−c ∩ S−c(h) �= ∅. So, using the fact that jkc (sc ) strongly believes Q1−c , it follows that
jkc (sc )(Q1−c|S−c(h)) = 1. Now observe that, by construction,

βc
(
υk
c (sc )

)(k−1⋃
l=1

diagl−c |S−c(h) × T−c

)
= jkc (sc )

(
Q1−c|S−c(h)

) = 1.

Since
⋃k−1

l=1 diagl−c ⊆ ⋃m
l=1 Q

l−c and R1−c(T ) = ⋃m
l=1 Q

l−c (the result shown for n = 1), it
follows that βc(υk

c (sc ))(R1−c(T )|S−c(h) × T−c ) = 1, as desired.
n ≥ 3: Let n = 3, � � � , m and suppose the result was shown for n − 1. Fix some k =

n− 1, � � � , m and some (rc , υk
c (sc )) ∈ BR[jkc (sc )] × {υk

c (sc )} ⊆Qk
c . We show (i) and (ii).

First, suppose that k = n − 1. Fix (s−c , t−c ) with βc(υk
c (sc ))((s−c , t−c )|S−c × T−c ) > 0

and note that, by construction, t−c = υk−1−c (sc ). By the induction hypothesis (part (i)),
υk−1−c (sc ) does not strongly believe Rn−2

c (T ). Thus, υk
c (sc ) does not strongly believe

Rn−1−c (T ).
Second, suppose that k = n, � � � , m. Fix a conditioning event S−c(h) × T−c so that

Rn−1−c (T ) ∩ (S−c(h) × T−c ) �= ∅. By the induction hypothesis and Lemma C.1,

projS−c
Rn−1−c (T ) = projS−c

m⋃
k=n−1

Qk−c =Qn−1−c ,

and so Qn−1−c ∩ S−c(h) �= ∅. Since jkc (sc ) strongly believes Qn−1−c , jkc (sc )(Qn−1−c |S−c(h)) = 1.
Now observe that, by construction,

βc
(
υk
c (sc )

)( k−1⋃
l=n−1

diagl−c |S−c(h) × T−c

)
= jkc (sc )

(
Qn−1−c |S−c(h)

) = 1.

Since
⋃k−1

l=n−1 diagl−c ⊆ ⋃m
l=n−1 Q

l−c and, by the induction hypothesis, Rn−1−c (T ) =⋃m
l=n−1 Q

l−c , it follows that βc(υk
c (sc ))(Rn−1−c (T )|S−c(h) × T−c ) = 1, as desired.

The proof of Proposition C.1 is immediate from Lemmas C.1 and C.2.
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C.2 Proof of Proposition C.2

Say a strategy sc is justifiable if there exists some CPS pc so that sc ∈ BR[pc ]. Proposition
C.2 follows from the following lemma.

Lemma C.3. Suppose that the game is generic and let [s∗−c] � S−c . If s∗c is justifiable, then
there exists some CPS pc so that [s∗c ] = BR[pc ] and pc does not strongly believe [s∗−c].

To show the lemma, it is useful to begin with a number of preliminary results.

Lemma C.4. Fix a CPS pc ∈ C(S−c , Ec ) so that [sc ] = BR[pc ] and some rc /∈ [sc ]. There exists
some h ∈Hc ∪ {φ} so that sc , rc ∈ Sc(h) and sc(h) �= rc(h). Moreover, for any such h,∑

s−c∈S−c(h)

[
πc(sc , s−c ) −πc(rc , s−c )

]
pc

(
s−c|S−c(h)

)
> 0.

Proof. Fix [sc ] ⊆ BR[pc ] and rc /∈ [sc ]. Then, for all h ∈ Hc ∪ {φ} with sc , rc ∈ Sc(h),∑
s−c∈S−c(h)

[
πc(sc , s−c ) −πc(rc , s−c )

]
pc

(
s−c|S−c(h)

) ≥ 0. (3)

Since rc /∈ [sc ], there exists some h∗ ∈ Hc so that sc , rc ∈ Sc(h∗ ) and sc(h∗ ) �= rc(h∗ ). We
suppose that Equation (3) holds with equality at h = h∗ and construct a new strategy r∗c
with r∗c /∈ [sc ] and r∗c ∈ BR[pc ]. This will establish the result.

Construct the strategy r∗c as follows. First, for each information set h with either
S(h) ∩ S(h∗ ) = ∅ or S(h∗ ) � S(h), set r∗c (h) = sc(h). Second, for each information set h
with S(h) ⊆ S(h∗ ) and pc(S−c(h)|S−c(h∗ )) > 0, set r∗c (h) = rc(h). Finally, for all remaining
information sets, choose r∗c to satisfy the following condition: If r∗c ∈ Sc(h), then r∗c solves

max
Sc(h)

∑
s−c∈S−c(h)

πc(·, s−c )pc
(
s−c|S−c(h)

)
. (4)

The fact that we can choose r∗c in this way follows from Lemma A.3.16

Observe that r∗c /∈ [sc ]. Also observe that r∗c is optimal under pc(·|S−c(h∗ )) given
Sc(h∗ ). To see this, fix some s−c ∈ Supppc(·|S−c(h∗ )). Since (sc , s−c ), (rc , s−c ) ∈ Sc(h∗ ) ×
S−c(h∗ ) = S(h∗ ), it follows from the construction that (r∗c , s−c ) ∈ S(h∗ ). Thus, r∗c ∈ Sc(h∗ ).
Moreover, by construction, if s−c ∈ Supppc(·|S−c(h∗ )), then ζ(r∗c , s−c ) = ζ(rc , s−c ). So,
since rc is optimal under pc(·|S−c(h∗ )) given Sc(h∗ ), it follows that r∗c is also optimal
under pc(·|S−c(h∗ )) given Sc(h∗ ).

We will show that r∗c ∈ BR[pc]. Specifically, fix an information set h ∈ Hc\{h∗} with
r∗c ∈ Sc(h). We will show that r∗c is optimal under pc(·|S−c(h)) given Sc(h).

16Specifically: Let H̄0
c be the set of all h ∈ Hc with S(h) ⊆ S(h∗ ), pc(S−c(h)|S−c(h∗ )) = 0, and rc ∈ Sc(h).

Choose some h1 ∈ H̄0
c and note that r∗c ∈ Sc(h1 ). Choose r1

c to solve Equation (4) for h = h1 and set
r∗c (h) = r1

c (h). Then define H̄1
c to be the set h ∈ H̄0

c so that r1
c ∈ Sc(h) and, if S−c(h) ⊆ S−c(h1 ), then

pc(S−c(h)|S−c(h1 )) = 0. Proceed inductively, until some H̄K
c = ∅ has been constructed. Then “fill in” r∗c (h)

arbitrarily at all information sets h for which it has not been defined. (Note that r∗c precludes those infor-
mation sets.)
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First, suppose that S(h∗ ) ∩ S(h) = ∅. Fix some pc(s−c|S−c(h)) > 0. By construction,
ζ(r∗c , s−c ) = ζ(sc , s−c ). Since sc is optimal under pc(·|S−c(h)) given Sc(h), it follows that
r∗c is also optimal under pc(·|S−c(h)) given Sc(h).

Second, suppose that h �= h∗, S(h) ⊆ S(h∗ ), and pc(S−c(h)|S−c(h∗ )) > 0. Since r∗c is
optimal under pc(·|S−c(h∗ )) given Sc(h∗ ), Definition 3.2 and Lemma A.3 give that r∗c is
optimal under pc(·|S−c(h)) given Sc(h). Third, suppose that h �= h∗, S(h) ⊆ S(h∗ ), and
pc(S−c(h)|S−c(h∗ )) = 0. In that case, by assumption, r∗c is optimal under pc(·|S−c(h))
given Sc(h).

Finally, suppose that S(h∗ ) � S(h). Fix some pc(s−c|S−c(h)) > 0. If s−c /∈ S−c(h∗ ),
then ζ(r∗c , s−c ) = ζ(sc , s−c ). (This is by construction.) If s−c ∈ S−c(h∗ ), then ζ(r∗c , s−c ) =
ζ(rc , s−c ): Observe that S−c(h∗ ) ⊆ S−c(h); so, by Definition 3.2, pc(s−c|S−c(h)) > 0
implies pc(s−c|S−c(h∗ )) > 0. By construction, for any s−c with pc(s−c|S−c(h∗ )) > 0,
ζ(r∗c , s−c ) = ζ(rc , s−c ).

Let α = pc(S−c(h)\S−c(h∗ )|S−c(h)). If α > 0, let μc be pc(·|S−c(h)) conditional on
S−c(h)\S−c(h∗ ). If α = 0, let μc be the zero measure. Then∑

s−c∈S−c(h)

[
πc(sc , s−c ) −πc

(
r∗c , s−c

)]
pc

(
s−c|S−c(h)

)
= α

∑
s−c∈S−c(h)

[
πc(sc , s−c ) −πc

(
r∗c , s−c

)]
μ(s−c )

+ (1 − α)
∑

s−c∈S−c(h)

[
πc(sc , s−c ) −πc

(
r∗c , s−c

)]
pc

(
s−c|S−c

(
h∗)).

Note that

α
∑

s−c∈S−c(h)

[
πc(sc , s−c ) −πc

(
r∗c , s−c

)]
μ(s−c ) = 0,

since μc(s−c ) > 0 implies ζ(sc , s−c ) = ζ(r∗c , s−c ). Also note that

(1 − α)
∑

s−c∈S−c(h)

[
πc(sc , s−c ) −πc

(
r∗c , s−c

)]
pc

(
s−c|S−c

(
h∗)) = 0,

since both sc and r∗c are optimal under pc(·|S−c(h∗ )). Thus,∑
s−c∈S−c(h)

[
πc(sc , s−c ) −πc

(
r∗c , s−c

)]
pc

(
s−c|S−c(h)

) = 0.

Now it follows from the fact that sc ∈ Sc(h∗ ) ⊆ Sc(h) is optimal under pc(·|S−c(h)) given
Sc(h) that rc is also optimal under pc(·|S−c(h)) given Sc(h).

Lemma C.5. Fix some h∗ ∈ Hc ∪ {φ} so that s∗c ∈ Sc(h∗ ), s∗−c /∈ S−c(h∗ ) and, for all h ∈
Hc ∪ {φ} with S(h∗ ) � S(h), s∗−c ∈ S−c(h). Then ζ(s∗c , s∗−c ) = ζ(rc , s∗−c ) implies rc ∈ Sc(h∗ ).

Proof. We show the contrapositive. Suppose that rc /∈ Sc(h∗ ). There exists some
(s∗c , r−c ) ∈ S(h∗ ) so that (rc , r−c ) /∈ S(h∗ ). Let v be the last common predecessor of
ζ(s∗c , r−c ) and ζ(rc , r−c ). Note that there exists some h ∈ Hc so that v ∈ h and s∗c (h) �=



Theoretical Economics 16 (2021) Finite-order reasoning 1637

rc(h). Observe that S(h) ∩ S(h∗ ) �= ∅. As such, either S(h) ⊆ S(h∗ ) or S(h∗ ) ⊆ S(h). Since
rc ∈ Sc(h) but rc /∈ Sc(h∗ ), it follows that S(h∗ ) � S(h). By construction, s∗−c ∈ S−c(h).
Thus, ζ(s∗c , s∗−c ) �= ζ(rc , s∗−c ).

Proof of Lemma C.3. Since the game is generic and s∗c is justifiable, there exists some
CPS pc so that [s∗c ] = BR[pc ]. If pc does not strongly believe [s∗−c], then we are done. So
throughout we suppose otherwise. We will show that we can “tilt” pc to construct a new
CPS that satisfies the desired properties. We divide the argument into two cases.

Case A. Suppose that, for each h ∈ Hc with s∗c ∈ Sc(h), s∗−c ∈ S−c(h). So, for each
h ∈ Hc with s∗c ∈ Sc(h), pc(s∗−c|S−c(h)) = 1. Lemma C.4 then implies that πc(s∗c , s∗−c ) >
πc(sc , s∗−c ) for all sc ∈ Sc\[s∗c ].

Since S−c\[s∗−c] �= ∅, we can choose r∗−c ∈ S−c\[s∗−c]. For each ε ∈ (0, 1), construct a
CPS qε

c so that

qεc
(
s∗−c|S−c

) = 1 − ε and qεc
(
r∗−c|S−c

) = ε,

and, for each h ∈ Hc with S−c(h) ∩ {s∗−c , r∗−c } = ∅, qεc (·|S−c(h)) = pc(·|S−c(h)). Note that
the unique CPS qε

c that satisfies these conditions does not strongly believe [s∗−c].
Now observe that we can find some ε̄ > 0 so that for each ε ∈ (0, ε̄), the following

holds: If h ∈Hc with s∗c ∈ Sc(h), then∑
s−c∈S−c

[
πc

(
s∗c , s−c

) −πc(rc , s−c )
]
qεc (s−c|S−c )

= (1 − ε)
[
πc

(
s∗c , s∗−c

) −πc
(
sc , s∗−c

)] + ε
[
πc

(
s∗c , r∗−c

) −πc
(
sc , r∗−c

)]
> 0

for each rc ∈ Sc(h). Thus, BR[qε
c ] = [s∗c ] for all ε ∈ (0, ε̄).

Case B. Suppose that there exists some h∗ ∈ Hc so that s∗c ∈ Sc(h∗ ) but s∗−c /∈ S−c(h∗ ).
Choose h∗ so that, if S(h∗ ) � S(h), then s∗−c ∈ S−c(h). Let μ∗

c = pc(·|S−c(h∗ )) and observe
that μ∗

c ([s∗−c]) = 0 since s∗−c /∈ S−c(h∗ ). For each ε ∈ (0, 1), construct a CPS qε
c so that

qεc (s−c|S−c ) =
{

1 − ε if s−c = s∗−c ,

εμ∗
c (s−c ) if s−c �= s∗−c .

and, for each h ∈ Hc , with S−c ∩ ({s∗−c } ∪ Suppμ∗
c ) = ∅, qεc (·|S−c(h)) = pc(·|S−c(h)). Note

that the unique CPS qε
c that satisfies these conditions does not strongly believe [s∗−c]. We

show that we can choose ε > 0 so that BR[qε
c ] = [s∗c ]. There are three steps.

Step 1. We begin by showing that, for each rc ∈ Sc , there exists some ε̄(rc ) > 0 so that
the following holds: For all ε ∈ (0, ε̄(rc )),

∑
s−c∈S−c

[
πc

(
s∗c , s−c

) −πc(rc , s−c )
]
qεc (s−c|S−c )

{
> 0 if ζ

(
rc , s∗−c

) �= ζ
(
s∗c , s∗−c

)
,

≥ 0 if ζ
(
rc , s∗−c

) = ζ
(
s∗c , s∗−c

)
.

(5)

First, suppose that ζ(rc , s∗−c ) �= ζ(s∗c , s∗−c ). Then there exists some h̃ so that (s∗c , s∗−c ),
(rc , s∗−c ) ∈ S(h̃) and s∗c (h̃) �= rc(h̃). Moreover, pc(s∗−c|S−c(h̃)) = 1. Thus, applying Lemma
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C.4, πc(s∗c , s∗−c ) > πc(rc , s∗−c ). It follows that there exists some ε̄(rc ) > 0 so that, for all
ε ∈ (0, ε̄(rc )), ∑

s−c∈S−c

[
πc

(
s∗c , s−c

) −πc(rc , s−c )
]
qεc (s−c|S−c )

= (1 − ε)
[
πc

(
s∗c , s∗−c

) −πc
(
rc , s∗−c

)]
+ ε

∑
s−c∈S−c

[
πc

(
s∗c , s−c

) −πc(rc , s−c )
]
μ∗
c (s−c ) > 0.

Second, suppose that ζ(rc , s∗−c ) = ζ(s∗c , s∗−c ). In this case, πc(s∗c , s∗−c ) −πc(rc , s∗−c ) = 0.
Moreover, if s∗c ∈ Sc(h∗ ), then rc ∈ Sc(h∗ ). (See Lemma C.5.) Since s∗c is optimal under μ∗

c

given Sc(h∗ ), it follows that∑
s−c∈S−c

[
πc

(
s∗c , s−c

) −πc(rc , s−c )
]
μ∗
c (s−c ) ≥ 0.

As such, ∑
s−c∈S−c

[
πc

(
s∗c , s−c

) −πc(rc , s−c )
]
qεc (s−c|S−c )

= (1 − ε)
[
πc

(
s∗c , s∗−c

) −πc
(
rc , s∗−c

)]
+ ε

∑
s−c∈S−c

[
πc

(
s∗c , s−c

) −πc(rc , s−c )
]
μ∗
c (s−c ) ≥ 0

for all ε > 0.
Step 2. Take ε̄ = min{ε̄(rc ) : rc ∈ Sc }. We show that [s∗c ] ⊆ BR[qε

c ] for all ε ∈ (0, ε̄).
To do so, begin by noting that Equation (5) holds for all rc ∈ Sc , provided ε ∈ (0, ε̄). To
complete the argument, it suffices to show that if h ∈ Hc with s∗c ∈ Sc(h), then either
qεc (·|S−c(h)) = qεc (·|S−c ) or qεc (·|S−c(h)) = pc(·|S−c(h)). From this the conclusion follows.

First, suppose that S(h∗ ) � S(h). In that case, qεc (·|S−c(h)) = qεc (·|S−c ). Second, sup-
pose that S(h) ⊆ S(h∗ ). In that case, qεc (·|S−c(h)) = pc(·|S−c(h)). Finally, suppose that
S(h∗ ) ∩ S(h) = ∅. In that case, s∗c ∈ Sc(h∗ ) ∩ Sc(h) and so S−c(h∗ ) ∩ S−c(h) = ∅. (See
Lemma A.2.) From this, qεc (Suppμ∗

c |S−c(h)) = 0 and so qεc (·|S−c(h)) = pc(·|S−c(h)).
Step 3. We now show that, for all ε ∈ (0, ε̄), BR[qε

c ] ⊆ [s∗c ]. To see this, fix some rc /∈
[s∗c ]. Then there exists some h ∈Hc ∪ {φ} so that s∗c , rc ∈ Sc(h) and∑

s−c∈S−c

[
πc

(
s∗c , s−c

) −πc(rc , s−c )
]
pc

(
s−c|S−c(h)

)
> 0.

(See Lemma C.4.) If qεc (·|S−c(h)) = pc(·|S−c(h)), then certainly rc /∈ BR[qε
c ]. If qεc (·|

S−c(h)) �= pc(·|S−c(h)), then S(h∗ ) � S(h). In that case,∑
s−c∈S−c

[
πc

(
s∗c , s−c

) −πc(rc , s−c )
]
pc

(
s−c|S−c(h)

) = πc
(
s∗c , s∗−c

) −πc
(
rc , s∗−c

)
> 0.

Thus, ζ(s∗c , s∗−c ) �= ζ(rc , s∗−c ) and so by (5), rc /∈ BR[qε
c ].
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Appendix D: Analyzing games

D.1 Repeated Prisoner’s Dilemma

It is convenient to adopt the following notational convention: Fix some player c and
write (φ, (α1

c , α1−c )) ∈ V 2 for a second-period history (resp. (φ, (α1
c , α1−c ), (α2

c , α2−c )) ∈ V 3

for a third-period history). Note that when we write (αt
c , αt−c ), we refer to a vector that

first specifies a t-period action of player c and then specifies a t-period action of player
−c. So when we fix some player c and look at the history (φ, (C, D)), we mean the history
where, in the first period, player c chooses C and player −c chooses D. Write ÊFR

1
c for

the set of sc so that sc(v) =D for each v ∈ V 3 with sc ∈ Sc(v).

D.1.1 Unique best responses We begin by recording results about best responses. This
serves three purposes. First, we will use the results to establish that the game is generic.
Second, we will use the results to establish that ÊFR

1
c = EFR1

c , a claim made in the text.
Third, we will use the results to prove Proposition 7.1.

Lemma D.1. Let s∗c ∈ ÊFR
1
c be such that one of the following conditions holds:

(i) s∗c (φ) = C and s∗c (φ, (C, C )) = D;

(ii) s∗c (φ) = D and s∗c (φ, (D, D)) =D;

(iii) s∗c (φ) = D, s∗c (φ, (D, D)) = C, and s∗c (φ, (D, C )) = D; or

(iv) if ζ + γ > 2δ, s∗c (φ) = C, s∗c (φ, (C, C )) = C, and s∗c (φ, (C, D)) =D.

Then there exists some pc ∈ C(S−c , Ec ) and some s∗−c ∈ ÊFR
1
−c so that BR[pc ] = [s∗c ] and pc

strongly believes [s∗−c].

Lemma D.2. Let s∗c ∈ ÊFR
1
c be such that one of the following conditions holds:

(i) s∗c (φ) = C and s∗c (φ, (C, C )) = C; or

(ii) s∗c (φ) = D, s∗c (φ, (D, C )) = C, and s∗c (φ, (D, D)) = C.

Then there exists some pc ∈ C(S−c , Ec ) so that BR[pc ] = [s∗c ].

As a corollary of these lemmas we have the following result.

Corollary D.1.

(i) The three-repeated Prisoner’s Dilemma is generic.

(ii) EFR1
c = ÊFR

1
c .

Proof. It is immediate that EFR1
c ⊆ ÊFR

1
c . Thus, both parts follow if, for each strategy

sc ∈ ÊFR
1
c , there is a CPS pc so that BR[pc ] = [sc ]. This follows from Lemma D.1(i)–(iii)

and Lemma D.2(i) and (ii).
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The proofs of Lemmas D.1 and D.2 proceed as follows. We begin by fixing a strat-
egy s∗−c and showing that πc(s∗c , s∗−c ) ≥ πc(rc , s∗−c ) for each rc ∈ ÊFR

1
c with ζ(s∗c , s∗−c ) �=

ζ(rc , s∗−c ). Next, we observe that there is exactly one v∗ ∈ V 2 so that s∗c ∈ Sc(v∗ ) and
s∗−c /∈ S−c(v∗ ). (This follows since each player has two actions.) We then fix a strat-

egy r∗−c ∈ S−c(v∗ ) and show that, for each rc ∈ ÊFR
1
c ∩ Sc(v∗ ) with ζ(s∗c , r∗−c ) �= ζ(rc , r∗−c ),

πc(s∗c , r∗−c ) ≥ πc(rc , r∗−c ). Moreover, for each rc ∈ ÊFR
1
c\[s∗c ], either πc(s∗c , s∗−c ) >πc(rc , s∗−c )

or πc(s∗c , r∗−c ) >πc(rc , r∗−c ).17 Now consider a CPS pc so that

(i) pc({s∗−c } | S−c(v)) = 1, if s∗−c ∈ S−c(v); and

(ii) pc({r∗−c } | S−c(v)) = 1, if s∗−c /∈ S−c(v) but r∗−c ∈ S−c(v).

(All other choices are arbitrary.) Then BR[pc ] = [s∗c ] and pc strongly believes [s∗−c]. In the

specific case of Lemma D.1, we choose s∗−c ∈ ÊFR
1
−c , allowing for a stronger conclusion.

Remark D.1. There is one case of interest not covered by Lemma D.1: namely ζ + γ =
2δ. In that case, there is one other strategy—called rc in the proof—so that π(s∗c , s∗−c ) =
π(rc , s∗−c ) and rc /∈ Sc(v∗ ). In that case, under the construction, BR[pc ] = [s∗c ] ∪ [rc]. We
will make use of that fact.

We now complete the non-common features of the proofs.

Proof of Lemma D.1(i). Let s∗−c be a strategy with s∗−c(φ) = C, s∗−c(φ, (C, C )) = C,

s∗−c(φ, (D, C )) = D, and, for each v ∈ V 3, s∗−c(v) = D. Note that s∗−c ∈ ÊFR
1
−c . Observe

that πc(s∗c , s∗−c ) = κ + ζ + δ. Fix some rc ∈ ÊFR
1
c with ζ(rc , s∗−c ) �= ζ(s∗c , s∗−c ). There are

three possible cases:

• rc(φ) = D and rc(φ, (D, C )) = C: πc(rc , s∗−c ) = ζ + γ + δ,

• rc(φ) = D and rc(φ, (D, C )) = D: πc(rc , s∗−c ) = ζ + 2δ, and

• rc(φ) = C and rc(φ, (C, C )) = C: πc(rc , s∗−c ) = 2κ+ δ.

In each case, πc(s∗c , s∗−c ) >πc(rc , s∗−c ).
There is a single history v∗ ∈ V 2 so that s∗c ∈ Sc(v∗ ) but s∗−c /∈ S−c(v∗ ), namely v∗ =

(φ, (C, D)). We will choose distinct strategies r∗−c based on whether s∗c (v∗ ) = C or
s∗c (v∗ ) =D.

First, suppose sc(v∗ ) = C. Let r∗−c be such that r∗−c(φ) = D and, for each v ∈ V 2 ∪ V 3,
r∗−c(v) = C if and only if v = (·, (αt−1

c , αt−1−c )) with αt−1
c = C. Then πc(s∗c , r∗−c ) = γ + κ+ ζ.

Fix rc ∈ ÊFR
1
c ∩ Sc(v∗ ) with ζ(rc , r∗−c ) �= ζ(s∗c , r∗−c ). Thus, rc(v∗ ) = D and so πc(rc , r∗−c ) =

γ + ζ + δ < πc(s∗c , r∗−c ).
Second, suppose sc(v∗ ) = D. Let r∗−c be such that r∗−c(v) = D for each v ∈ V . Then

πc(s∗c , r∗−c ) = γ + 2δ. Fix rc ∈ ÊFR
1
c ∩ Sc(v∗ ) with ζ(rc , r∗−c ) �= ζ(s∗c , r∗−c ). Thus, rc(v∗ ) = C

and so πc(rc , r∗−c ) = 2γ + δ < πc(s∗c , r∗−c ).

17A detail in how this is implemented in the proof: For each rc ∈ ÊFR
1
c\[s∗c ], either ζ(s∗c , s∗−c ) �= ζ(rc , s∗−c )

or ζ(s∗c , r∗−c ) �= ζ(rc , r∗−c ). This again follows from the fact that each player has two actions.
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Remark D.2. The proof of Lemma D.1(i) establishes that we can take s∗−c so that
s∗−c(φ) = C, s∗−c(φ, (C, C )) = C, s∗−c(φ, (D, C )) =D, and, for each v ∈ V 3, s∗−c(v) = D.

Proof of Lemma D.1(ii). Let s∗−c be a strategy with s∗−c(v) = D for each v ∈ V . Note

that s∗−c ∈ ÊFR
1
−c . Observe that πc(s∗c , s∗−c ) = 3δ. Fix some rc ∈ ÊFR

1
c with ζ(rc , s∗−c ) �=

ζ(s∗c , s∗−c ). Then either (i) rc(φ) = C, or (ii) rc(φ) = D, and rc(φ, (D, D)) = C. As such,
πc(rc , s∗−c ) ≤ 2δ+ γ < πc(s∗c , s∗−c ).

There is a single history v∗ ∈ V 2 so that s∗c ∈ Sc(v∗ ) but s∗−c /∈ S−c(v∗ ), namely v∗ =
(φ, (D, C )). We will choose distinct strategies r∗−c based on whether s∗c (v∗ ) = C or
s∗c (v∗ ) =D.

First, suppose sc(v∗ ) = C. Let r∗−c be such that (i) r∗−c(φ) = C, (ii) for each v ∈ V 2,
r∗−c(v) = C if and only if v = (φ, (D, ·)), and (iii) for each v ∈ V 3, r∗−c(v) = C if and only if

v = (·, (·, ·), (C, ·)). Note that πc(s∗c , r∗−c ) = 2ζ + κ. Fix rc ∈ ÊFR
1
c ∩ Sc(v∗ ) with ζ(rc , r∗−c ) �=

ζ(s∗c , r∗−c ). Then rc(v∗ ) = D and so πc(rc , r∗−c ) = 2ζ + δ < πc(s∗c , r∗−c ).
Second, suppose sc(v∗ ) = D. Let r∗−c be such that (i) r∗−c(φ) = C, and (ii) for each v ∈

V 2 ∪V 3, r∗−c(v) =D. Note that πc(s∗c , r∗−c ) = ζ+2δ. Fix rc ∈ ÊFR
1
c ∩Sc(v∗ ) with ζ(rc , r∗−c ) �=

ζ(s∗c , r∗−c ). Then rc(v∗ ) = C and so πc(rc , r∗−c ) = ζ + γ + δ < πc(s∗c , r∗−c ).

Remark D.3. The proof of Lemma D.1(ii) establishes that we can take s∗−c so that
s∗−c(v) = D for each v ∈ V .

Proof of Lemma D.1(iii). Let s∗−c be a strategy with s∗−c(φ) = C and, for each v ∈ V 2 ∪
V 3, s∗−c(v) = D. Note that s∗−c ∈ ÊFR

1
−c . Observe that πc(s∗c , s∗−c ) = ζ + 2δ. Fix some

rc ∈ ÊFR
1
c with ζ(rc , s∗−c ) �= ζ(s∗c , s∗−c ). There are three possible cases:

• rc(φ) =D and rc(φ, (D, C )) = C: πc(rc , s∗−c ) = ζ + γ + δ,

• rc(φ) = C and rc(φ, (C, C )) =D: πc(rc , s∗−c ) = γ + 2δ, and

• rc(φ) = C and rc(φ, (C, C )) = C: πc(rc , s∗−c ) = 2γ + δ.

In each case, πc(s∗c , s∗−c ) >πc(rc , s∗−c ).
There is a single history v∗ ∈ V 2 so that s∗c ∈ Sc(v∗ ) but s∗−c /∈ S−c(v∗ ), namely v∗ =

(φ, (D, D)). Let r∗−c be such that (i) r∗−c(φ) = D, (ii) for each v ∈ V 2, r∗−c(v) = C if and
only if v = (φ, (D, ·)), and (iii) for each v ∈ V 3, r∗−c(v) = C if and only if v = (·, (·, ·), (C, ·)).

Note that πc(s∗c , r∗−c ) = δ+ κ+ ζ. Fix rc ∈ ÊFR
1
c ∩ Sc(v∗ ) with ζ(rc , r∗−c ) �= ζ(s∗c , r∗−c ). Then

rc(v∗ ) =D and so πc(rc , r∗−c ) = 2δ+ ζ < πc(s∗c , r∗−c ).

Remark D.4. The proof of Lemma D.1(iii) establishes that we can take s∗−c so that
s∗−c(v) = D for each v ∈ V 2 ∪ V 3.

Proof of Lemma D.1(iv). Let s∗−c be a strategy with (i) s∗−c(φ) = D, (ii) for each v ∈ V 2,
s∗−c(v) = C if and only if v = (φ, (C, ·)), and (iii) for each v ∈ V 3, s∗−c(v) = D. Note that

s∗−c ∈ ÊFR
1
−c . Observe that πc(s∗c , s∗−c ) = γ + ζ + δ. Fix some rc ∈ ÊFR

1
c with ζ(rc , s∗−c ) �=

ζ(s∗c , s∗−c ). There are three possible cases:
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• rc(φ) = D and rc(φ, (D, C )) = C: πc(rc , s∗−c ) = 2δ+ γ,

• rc(φ) = D and rc(φ, (D, C )) = D: πc(rc , s∗−c ) = 3δ, and

• rc(φ) = C and rc(φ, (C, D)) = C: πc(rc , s∗−c ) = γ + κ+ δ.

In each case, πc(s∗c , s∗−c ) >πc(rc , s∗−c ). (Here we use the fact that γ + ζ > 2δ.)
There is a single history v∗ ∈ V 2 so that s∗c ∈ Sc(v∗ ) but s∗−c /∈ S−c(v∗ ), namely v∗ =

(φ, (C, C )). Let r∗−c be such that (i) r∗−c(φ) = C, (ii) for each v ∈ V 2, r∗−c(v) = C if and only
if v = (φ, (C, ·)), and (iii) for each v ∈ V 3, r∗−c(v) = C if and only if v = (·, (·, ·), (C, ·)).

Note that πc(s∗c , r∗−c ) = 2κ + ζ. Fix rc ∈ ÊFR
1
c ∩ Sc(v∗ ) with ζ(rc , r∗−c ) �= ζ(s∗c , r∗−c ). Then

rc(v∗ ) =D and so πc(rc , r∗−c ) = κ+ ζ + δ < πc(s∗c , r∗−c ).

Remark D.5. Fix s∗c (φ) = C, s∗c (φ, (C, C )) = C, and s∗c (φ, (C, D)) = D. Suppose γ + ζ =
2δ. Then the proof of Lemma D.1(iv) establishes that there exists some CPS pc and some
s∗−c ∈ ÊFR

1
−c so that [s∗c ] ⊆ BR[pc ] and pc strongly believes [s∗−c].

Proof of Lemma D.2 (i). Construct a strategy s∗−c with s∗−c(φ) = C and, for each v ∈
V 2 ∪ V 3, s∗−c(v) = C if and only if v = (·, (αt−1

c , αt−1−c )) with αt−1
c = C. Observe that

πc(s∗c , s∗−c ) = 2κ+ ζ. Fix some rc ∈ ÊFR
1
c with ζ(rc , s∗−c ) �= ζ(s∗c , s∗−c ). There are three pos-

sible cases:

• rc(φ) = D and rc(φ, (D, C )) = C: πc(rc , s∗−c ) = 2ζ + γ,

• rc(φ) = D and rc(φ, (D, C )) = D: πc(rc , s∗−c ) = ζ + 2δ, and

• rc(φ) = C and rc(φ, (C, C )) =D: πc(rc , s∗−c ) = κ+ ζ + δ.

In each case, πc(s∗c , s∗−c ) >πc(rc , s∗−c ). (Here we use the assumption that 2κ > ζ + γ.)
There is a single history v∗ ∈ V 2 so that s∗c ∈ Sc(v∗ ) but s∗−c /∈ S−c(v∗ ), namely v∗ =

(φ, (C, D)). We will choose distinct strategies r∗−c based on whether s∗c (v∗ ) = C or
s∗c (v∗ ) =D.

First, suppose sc(v∗ ) = C. Let r∗−c be a strategy so that r∗−c(φ) = D and, for each

v ∈ V 2 ∪ V 3, r∗−c(v) = s∗−c(v). Then πc(s∗c , r∗−c ) = γ + κ + ζ. Fix rc ∈ ÊFR
1
c ∩ Sc(v∗ ) with

ζ(rc , r∗−c ) �= ζ(s∗c , r∗−c ). Thus, rc(v∗ ) =D and so πc(rc , r∗−c ) = γ + ζ + δ < πc(s∗c , r∗−c ).
Second, suppose sc(v∗ ) = D. Let r∗−c be a strategy so that, for each v ∈ V , r∗−c(v) =

D. Then πc(s∗c , r∗−c ) = γ + 2δ. Fix rc ∈ ÊFR
1
c ∩ Sc(v∗ ) with ζ(rc , r∗−c ) �= ζ(s∗c , r∗−c ). Thus,

rc(v∗ ) = C and so πc(rc , r∗−c ) = 2γ + δ < πc(s∗c , r∗−c ).

Proof of Lemma D.2(ii). Construct a strategy s∗−c with (i) s∗−c(φ) = C, (ii) s∗−c(φ, (α1
c ,

·)) = C if and only if α1
c = D, and (iii) s∗−c(·, (α2

c , ·)) = C if and only if α2
c = C. Observe

that πc(s∗c , s∗−c ) = 2ζ + κ. Fix some rc ∈ ÊFR
1
c with ζ(rc , s∗−c ) �= ζ(s∗c , s∗−c ). There are three

possible cases:

• rc(φ) = D and rc(φ, (D, C )) = D: πc(rc , s∗−c ) = 2ζ + δ,

• rc(φ) = C and rc(φ, (C, C )) = C: πc(rc , s∗−c ) = κ+ γ + ζ, and
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• rc(φ) = C and rc(φ, (C, C )) =D: πc(rc , s∗−c ) = 2κ+ ζ.

In each case, πc(s∗c , s∗−c ) >πc(rc , s∗−c ).
There is a single history v∗ ∈ V 2 so that s∗c ∈ Sc(v∗ ) but s∗−c /∈ S−c(v∗ ), namely v∗ =

(φ, (D, D)). Let r∗−c be a strategy so that (i) r∗−c(φ) = D, (ii) r∗−c(φ, (α1
c , ·)) = C if and only

if α1
c = D, and (iii) r∗−c(·, (α2

c , ·)) = C if and only if α2
c = C. Then πc(s∗c , r∗−c ) = δ + κ + ζ.

Fix rc ∈ ÊFR
1
c ∩ Sc(v∗ ) with ζ(rc , r∗−c ) �= ζ(s∗c , r∗−c ). Then rc(v∗ ) = D and so πc(rc , r∗−c ) =

2δ+ ζ < πc(s∗c , r∗−c ).

D.1.2 m-BRSs Corollary D.1 establishes part (i) of Proposition 7.1: S1
c = EFR1

c = ÊFR
1
c .

To show part (ii), it will be useful to have the following lemmas.

Lemma D.3. Fix a strategy sc ∈ EFR1
c so that

(i) D ∈ sc({(φ, (sc(φ), C )), (φ, (sc(φ), D))}); and

(ii) if 2δ > ζ + γ, then sc(φ) = C implies sc(φ, (C, C )) = D.

Then there exists some 2-BRS (Q0, Q1, Q2 ) so that sc ∈Q2
c ⊆ S2

c .

Proof. Fix a strategy sc as in the statement of the lemma. By Corollary D.1, sc ∈
ÊFR

1
c . Moreover, by Lemma D.1, Remark D.5, and Corollary D.1, there exists some

s−c ∈ ÊFR
1
−c = EFR1−c and a CPS pc that strongly believes [s−c] so that [sc] ⊆ BR[pc ].

Construct Q1
c = Q2

c = BR[pc ], Q1−c = [s−c], and Q2−c = ∅. Applying Lemmas D.1 and D.2,
(S, Q1 ) is a 1-BRS. As such, (S, Q1, Q2 ) is a 2-BRS with sc ∈Q2

c ⊆ S2
c .

Lemma D.4. Fix an (m+ 1)-BRS (Q0, � � � , Qm, Qm+1 ), where m ≥ 1. If v ∈ V 2 with Qm−c ∩
S−c(v) �= ∅, then, for each sc ∈Qm+1

c ∩ Sc(v), sc(v) =D.

Proof. Fix v ∈ V 2 with Qm−c ∩ S−c(v) �= ∅ and sc ∈ Qm+1
c ∩ Sc(v). Then there exists μ ∈

�(Sc(v)) with (i) π(sc , μ) ≥ π(rc , μ) for each rc ∈ Sc(v), and (ii) μ(Qm−c ) = 1. Note that,
since m ≥ 1, each s−c ∈ Qm−c ∩ S−c(v) has s−c(v′ ) = D for all v′ ∈ V 3 with s−c ∈ S−c(v′ ).
Thus, sc(v) = D.

Proof of Proposition 7.1(ii). Lemma D.3 implies that each strategy specified in the
result is contained in S2

c . So we focus on the converse.

Fix a strategy sc ∈ EFR1
c = ÊFR

1
c . Suppose there is a 2-BRS, viz. (Q0, Q1, Q2 ),

with sc ∈ Q2
c . This implies that there exists some CPS pc so that sc ∈ BR[pc ] and pc

strongly believes Q1−c . Thus, Q1−c �= ∅. As such, there is some v ∈ V 2 with sc ∈ Sc(v)
and Q1−c ∩ S−c(v) �= ∅. By Lemma D.4, sc(v) = D. So either sc(φ, (sc(φ), C )) = D or
sc(φ, (sc(φ), D)) =D.

For the remainder of the proof, suppose that sc(φ) = C, sc(φ, (C, C )) = C, and
sc(φ, (C, D)) =D. It suffices to show that, for each s−c ∈Q1−c , s−c(φ) = D. If so, then∑

s−c∈S−c

πc(sc , s−c )p
(
{s−c } | S−c

) ≤ γ + ζ + δ.
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But there is an alternate strategy rc with∑
s−c∈S−c

πc(rc , s−c )p
(
{s−c } | S−c

) ≥ 3δ.

(In particular, take rc(v) =D for all v ∈ V .) Since sc ∈ BR[pc ], ζ + γ ≥ 2δ.
We now show that, for each s−c ∈ Q1−c , s−c(φ) = D: Since sc is a best response un-

der pc(· | S−c(φ, (C, C ))), there must be some s−c and v ∈ V 3 with pc({s−c } | S−c(φ, (C,
C ))) > 0, s−c(v) = C, and s−c ∈ S−c(v). This implies that pc(Q1−c | S−c(φ, (C, C ))) < 1.
Given that pc strongly believes Q1−c , Q1−c ∩ S−c(φ, (C, C )) = ∅; that is, each s−c ∈ Q1−c

specifies s−c(φ) =D.

Lemma D.5. Fix a strategy sc ∈ S2
c with sc(φ) = D and sc(φ, (D, D)) = D. Then, for each

m, sc ∈ Smc .

Proof. Let s−c be such that s−c(v) = D for all v ∈ V . Lemma D.1 and Remark D.3
imply that [sc] × [s−c] is an EFBRS. Define Q1 = · · · = Qm = [sc ] × [s−c] and note that
(S, Q1, � � � , Qm ) is an m-BRS.

Proof of Proposition 7.1(iii). Fix a 3-BRS (Q0, Q1, Q2, Q3 ) and some sc ∈ Q3
c . Then

there exists some CPS pc so that [sc ] ⊆ BR[pc ] and pc strongly believes Q2−c . Suppose,
contra hypothesis, that sc(φ) = C. Then Q2−c �= ∅. Moreover, for each s−c ∈ Q2−c and
each v ∈ V 2 ∪ V 3 with (sc , s−c ) ∈ S(v), sc(v) = s−c(v) = D. (See Lemma D.4.) So, for each
s−c ∈Q2−c , either πc(sc , s−c ) = κ+2δ or πc(sc , s−c ) = γ+2δ. Since p(Q2−c | S−c ) = 1, there
exists some q ∈ [0, 1] with∑

s−c∈S−c

πc(sc , s−c )p
(
{s−c } | S−c

) = qκ+ (1 − q)γ + 2δ.

Consider an alternate strategy rc with rc(v) = D for each v ∈ V . Observe that∑
s−c∈S−c

πc(rc , s−c )p
(
{s−c } | S−c

) ≥ qζ + (1 − q)δ+ 2δ.

This contradicts [sc ] ⊆ BR[pc ].
Now fix some sc ∈ S2

c with sc(φ) = D. We show that there exists a 3-BRS (Q0, Q1, Q2,
Q3 ) with sc ∈ Q3

c . If sc(φ, (D, D)) = D, this follows from Lemma D.5. So suppose that
sc(φ, (D, D)) = C. It is convenient to define strategies rc and s−c . In particular, take
rc ∈ ÊFR

1
c so that (i) rc(φ) = C, (ii) rc(φ, (C, C )) = C, and (iii) rc(φ, (C, D)) = D. Take

s−c ∈ ÊFR
1
−c so that (a) s−c(φ) = C and (b) for each v ∈ V 2 ∪ V 3, s−c(v) = D. Set Q1

c =
[sc ] ∪ [rc ] and Q2

c = Q3
c = [sc ]. Set Q1−c = Q2−c = [s−c] and Q3−c = ∅. By Lemmas D.1 and

D.2 and Remark D.2, (S, Q1, Q2, Q3 ) is a 3-BRS.

The proof of Proposition 7.1(iv) is immediate from Lemmas D.4 and D.5.
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D.2 Centipede

Throughout this subsection, fix an m-BRS (Q0, Q1, � � � , Qm ) of the Centipede game. We
will show that Qm

a ⊆ EFRm
a . Begin with the following observation.

Observation D.1. Note that [in] ∩Q1
 = ∅ and so Q1

 ×Q1− ⊆ EFR1
 × EFR1−.

Lemma D.6. One of the following must hold:

(i) [in]− ∩Q2− = ∅, or

(ii) [out, |V |] ∩Q1
 = ∅ and |V | = 3.

Proof. First, suppose that [out, |V |] ⊆ Q1
 . In that case, any CPS strongly believes Q1



must assign probability 1 to [out, |V |] at node |V | − 1. (This uses Observation D.1, i.e.,
the fact that [in]∩Q1

 = ∅.) Thus, [in]− is not a sequential best response at node |V | −1.
From this, [in]− ∩Q2− = ∅.

Second, suppose that [out, |V |] ∩Q1
 = ∅. Let p− be a CPS that strongly believes Q1



and note that p−(·|S ) must assign probability 1 to{
s : s(v) = outv for some v ≤ |V | − 2

}
.

(That is, ex ante, p− assigns probability 1 to the game ending at some node v ≤ |V | − 2,
independent of the strategy that − plays.) If |V | ≥ 4, then there is some node ṽ ≤ |V | − 3
at which − moves and p−([out, ṽ+1]|S(ṽ)) = 1. Thus, at node ṽ, [out, ṽ]− is a unique
best response. So certainly [in]− ∩Q2− = ∅.

Lemma D.7. Fix some m = 3, � � � , |V | − 1. If m is odd, then either

(i) [out, |V | + 3 −m] ∩Qm
 = ∅, or

(ii) [out, |V | + 2 −m]− ∩Qm−1
− = ∅ and |V | ≤m+ 1.

If m is even, then either

(i) [out, |V | + 3 −m]− ∩Qm− = ∅, or

(ii) [out, |V | + 2 −m] ∩Qm−1
 = ∅ and |V | ≤m+ 1.

Proof. We show the base cases of m = 3, 4. The inductive step simply repeats those
arguments up to relabeling. Note that, since |V | − 1 ≥ m≥ 3, |V | ≥ 4. So, by Lemma D.6,
[in]− ∩Q2− = ∅. We repeatedly use this fact below.

m = 3. Throughout, we suppose that [out, |V |] ⊆ Q1
 . (If not, then we are done.)

From this, Lemma D.6 gives that [in]− ∩ Q2− = ∅. We divide the argument into two
cases.

First, suppose that [out,|V|-1]− ⊆ Q2−. In that case, any CPS strongly believes Q2−

must assign probability 1 to [out,|V|-1]− at node |V | − 2. (This uses the fact that [in]− ∩
Q2− = ∅.) Thus, [out, |V |] is not a best response at node |V | − 2. From this [out, |V |] ∩
Q3

 = ∅.
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Second, suppose that [out, |V | − 1]− ∩Q2− = ∅. Thus,

([ out, |V | − 1]− ∪ [in]− ) ∩Q2− = ∅.

So, any CPS p that strongly believes Q2− must have

p({s− : s−(v) = outv for some v ≤ |V | − 3}|S−) = 1.

(That is, ex ante, p assigns probability 1 to the game ending at some node v ≤ |V | − 3,
independent of the strategy that  plays.) If |V | ≥ 5, then there is some node ṽ ≤ |V | − 4
at which  moves and p([out, ṽ + 1]−|S−(ṽ)) = 1. Thus, at node ṽ, [out, ṽ] is a unique
best response. So certainly [out, |V |] ∩Q3

 = ∅.
m = 4. Throughout, we suppose that [out, |V | − 1]− ⊆ Q2−. (If not, then we are

done.) From this, the base case of m = 3 gives that [out, |V |] ∩ Q3
 = ∅. We divide the

argument into two cases.
First, suppose that [out, |V | − 2] ⊆ Q3

 . In that case, any CPS that strongly believes
Q3

 must assign probability 1 to [out, |V | − 2] at node |V | − 3. (This uses the fact that

([out, |V |] ∪ [in] ) ∩Q3
 = ∅.) Thus, [out, |V | − 1]− is not a best response at node |V | − 3.

From this, [out, |V | − 1]− ∩Q4− = ∅.
Second, suppose that [out, |V | − 2] ∩Q3

 = ∅. Thus,

([out, |V | − 2] ∪ [out, |V |] ∪ [in] ) ∩Q3
 = ∅.

So any CPS p− that strongly believes Q3
 must have

p−({s : s(v) = outv for some v ≤ |V | − 4}|S) = 1.

(That is, ex ante, p− assigns probability 1 to the game ending at some node v ≤ |V | − 4,
independent of the strategy that − plays.) If |V | ≥ 6, then there is some node ṽ ≤ |V | − 5
at which − moves and p−([out, ṽ + 1]−|S(ṽ)) = 1. Thus, at node ṽ, [out, ṽ]− is a
unique best response. So certainly [out, |V | − 2]− ∩Q4− = ∅.

Corollary D.2. If |V | = m, then either Q|V |
a = [out, 1]a or Q|V |

a = ∅.

Proof. We show the result for |V | odd. (The case of |V | even is analogous.) If Q|V |−2
a /∈

{[out, 1]a, ∅}, the claim is immediate. So, suppose otherwise. By Observation D.1, [in]a /∈
Q

|V |−2
a . By Lemma D.6, for each m≤ |V | − 2 odd, [out, |V | + 3 −m]a ∩Q

|V |−2
a = ∅. So,

Q
|V |−2
a ∈ {[out, 1]a ∪ [out, 3]a, [out, 3]a}.

In either of these cases, Q
|V |−1
b ∈ {[out, 2]b, ∅}. From this, it follows that Q

|V |
a ∈

{[out, 1]a, ∅}.
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Appendix E: Proofs for Section 8

E.1 Canonical CPS

We begin with a mathematical step useful in several results below. Given a strategy s∗c
and an array pc ∈ A(S−c , Ec ) with s∗c ∈ BR[pc ], we can construct a canonical CPS. Under
that CPS, s∗c remains a sequential best response. Moreover, the CPS preserves strong
belief.

Fix a strategy s∗c and some array pc ∈ A(S−c , Ec ) with s∗c ∈ BR[pc ]. We inductively
construct the canonical CPS for (s∗c , pc ), viz. qc = (qc(·|S−c(h)) : h ∈Hc ∪ {φ}) as follows.
Let H0

c = Hc ∪ {φ}. Choose h0 = φ ∈ H0
c and observe that S−c(φ) = S−c . Set qc(·|S−c ) =

pc(·|S−c ). Define H
0
c to be the set of h ∈ Hc so that S−c(h) ⊆ S−c and qc(S−c(h)|S−c ) > 0.

For each h ∈H
c
0, set

qc(s−c|S−c(h)) = qc(s−c|S−c )
qc(S−c(h)|S−c )

for all s−c ∈ S−c(h). Note that h0 ∈H
0
c .

Assume the sets Hk
c and H

k
c have been defined. Set Hk+1

c = Hk
c \Hk

c . If Hk+1
c = ∅,

then we are done. If not, choose some hk+1 ∈ Hk+1
c that satisfies the following require-

ments.

Property 1: Either s∗c ∈ Sc(hk+1 ) or, for all h ∈Hk+1
c , s∗c /∈ Sc(h).

Property 2: There is no h ∈Hk+1
c so that S−c(hk+1 ) � S−c(h).

Property 3: If h ∈ Hk+1
c with S−c(hk+1 ) = S−c(h), then either Sc(h) ⊆ Sc(hk+1 ) or

Sc(h) ∩ Sc(hk+1 ) = ∅.

Set qc(·|S−c(hk+1 )) = pc(·|S−c(hk+1 )). Define H
k+1
c to be the set of h ∈ Hk+1

c so that
S−c(h) ⊆ S−c(hk+1 ) and qc(S−c(h)|S−c(hk+1 )) > 0. For each h ∈ H

c
k+1, set

qc(s−c|S−c(h)) = qc(s−c|S−c(h))

qc(S−c(h)|S−c
(
hk+1 ))

for all s−c ∈ S−c(h).
It might be useful to recap the construction: We begin by identifying information

sets h0, h1, � � � , hK . Refer to these as basic information sets. (Note that they depend
on both pc and s∗c .) We set qc(·|S−c(hk )) to coincide with the original array pc(·|hk ).
For any non-basic information set h, there is exactly one basic information hk so that
S−c(h) ⊆ S−c(hk ) and qc(S−c(h)|S−c(hk )) > 0. Thus, we construct the belief qc(·|S−c(h))
from qc(·|S−c(hk )) by conditioning on S−c(h). The construction obviously yields a CPS.

Lemma E.1. Fix a strategy s∗c and some array pc ∈ A(S−c , Ec ) with s∗c ∈ BR[pc ]. Let qc ∈
C(S−c , Ec ) be the canonical CPS for (s∗c , pc ). The following hold:

(i) [s∗c ] ⊆ BR[qc]; and

(ii) if pc strongly believes E−c , then qc strongly believes E−c .
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To prove Lemma E.1, it will be useful to have the following lemma.

Lemma E.2. If h ∈ H
k
c and s∗c ∈ Sc(h), then S(h) ⊆ S(hk ).

Proof. Fix h ∈ H
k
c with s∗c ∈ Sc(h). Then, by construction, s∗c ∈ Sc(h) ∩ Sc(hk ) �= ∅. Sup-

pose, contra hypothesis, that S(h) is not contained in S(hk ). By perfect recall, either
S(hk ) � S(h) or S(h) ∩ S(hk ) = ∅. First, assume that S(hk ) � S(h). Again employing
perfect recall,

S
(
hk

) = Sc
(
hk

) × S−c
(
hk

)
� Sc(h) × S−c(h) = S(h).

Using the fact that S−c(hk ) ⊆ S−c(h) and Property 2 of the construction, S−c(hk ) =
S−c(h). So Sc(hk ) � Sc(h). But then, by Property 3 of the construction, Sc(h)∩Sc(hk ) = ∅,

a contradiction. Second, assume that S(h) ∩ S(hk ) = ∅. Since h ∈ H
k
c , then ∅ �= S−c(h) ⊆

S−c(hk ). It follows from Lemma A.2 that Sc(h) ∩ Sc(hk ) = ∅, a contradiction.

Proof of Lemma E.1. First, we show that s∗c ∈ BR[qc ]. (That implies [s∗c ] ⊆ BR[qc ].) To-
ward that end, fix some h ∈ Hc with s∗c ∈ Sc(h). Observe that there exists a k such that

h ∈ H
k
c , i.e., there exists a basic hk such that qc(·|S−c(h)) is derived from pc(·|S−c(hk ))

by conditioning. (Note that h may well be hk.) By construction, s∗c is optimal under
qc(·|S−c(hk )) given all strategies in Sc(hk ). It follows from Lemmas E.2 and A.3 that s∗c is
optimal under qc(·|S−c(h)) given all strategies in Sc(h).

Second, we show that if pc strongly believes E−c , then qc strongly believes E−c . Fix
an information set h ∈ Hc so that E−c ∩ S−c(h) �= ∅. There exists some hk ∈ Hc so that
S−c(h) ⊆ S−c(hk ), pc(S−c(h)|S−c(hk )) > 0, and, for every s−c ∈ S−c(h),

qc(s−c|S−c(h)) = pc(s−c|S−c(hk
)

)

pc(S−c(h)|S−c(hk ))
.

Since S−c(h) ⊆ S−c(hk ), E−c ∩ S−c(hk ) �= ∅. If pc strongly believes E−c , then p(E−c|
S−c(hk )) = 1 and so q(E−c|S−c(h)) = 1.

E.2 Generic games: No relevant ties

We first observe that a game can satisfy NRT, even though it is nongeneric. We then give
two classes of NRT games (one a subclass of the other) that are generic.

Example E.1. The game in Figure 8 satisfies no relevant ties. Yet it is not generic: D
is a sequential best response under pa if and only if pa(L|Sb ) = pa(R|Sb ) = 1/2. Thus,
BR[pa] = {U , M , D} and there is no qa with BR[qa] = [D]. ♦

Note that in Example E.1, D is justifiable, but not optimal under any CPS that in-
volves point beliefs.

Definition E.1. Given a conditional probability space (�, E ), call a CPS p ∈ C(�, E )
degenerate if, for each conditioning event E, there exists some ω ∈E with p(ω|E) = 1.
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Figure 8. No relevant ties.

So, a CPS is degenerate if each conditional belief is a point belief.

Definition E.2. Call a game degenerately justifiable if, whenever sc is justifiable, there
exists some degenerate CPS pc ∈ C(S−c , Ec ) so that sc ∈ BR[pc ].

Example E.1 is not degenerately justifiable.

Proposition E.1. A degenerately justifiable game that satisfies NRT is generic.

Proof. Fix a degenerately justifiable game satisfying NRT and a justifiable strategy sc .
Then there exists a degenerate CPS pc ∈ C(S−c , Ec ) so that sc ∈ BR[pc ]. We will show that
if rc /∈ [sc ], then rc /∈ BR[pc].

Fix some rc /∈ [sc ]. Then there exists some h ∈Hc with sc , rc ∈ Sc(h) and sc(h) �= rc(h).
Let s−c ∈ S−c(h) with pc(s−c|S−c(h)) = 1. Since sc is a sequential best response under
pc , πc(sc , s−c ) ≥ πc(rc , s−c ). But since ζ(sc , s−c ) �= ζ(rc , s−c ), NRT implies πc(sc , s−c ) >
πc(rc , s−c ). Thus, rc /∈ BR[pc ].

Lemma E.3. A perfect-information game satisfying NRT is degenerately justifiable.

Proof. Let sc be a justifiable strategy. Then, by Lemma 1.2.1 in Ben Porath (1997), for
each S−c(h) ∈ Ec with sc ∈ Sc(h), we can find some sh−c ∈ S−c(h) so that πc(sc , sh−c ) ≥
πc(rc , sh−c ) for all rc ∈ Sc(h). Use the collection (sh−c : h ∈ Hc ∪ {φ}) to form a degener-
ate array pc with sc ∈ BR[pc ]. Then, the canonical CPS qc is degenerate and, by Lemma
E.1, sc ∈ BR[qc].

The following result is now immediate from Proposition E.1 and Lemma E.3.

Proposition E.2. A perfect-information game satisfying no relevant ties is generic.

E.3 Generic games: No relevant convexities

Given a strategy s∗c and an array pc ∈ A(S−c , Ec ) with s∗c ∈ BR[pc ], we can construct a
canonical CPS that preserves strong belief and, moreover, s∗c remains a sequential best
response. (See Lemma E.1.) We now show that if the game satisfies NRC, then we can
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choose the CPS so that the set of best responses is simply [s∗c ]. This proves Proposition
8.2 and establishes that a game that satisfies NRC is generic.

Say (s∗c , pc ) satisfies Property [*] if the following holds:

Property [*]. For each h ∈ Hc with s∗c ∈ Sc(h), if rc ∈ Sc(h) is optimal under pc(·|S−c(h))
among strategies in Sc(h), then ζ(sc , s−c ) = ζ(rc , s−c ) for all s−c ∈ Supppc(·|S−c(h)).

Lemma E.4. Fix a strategy s∗c and some array pc ∈ A(S−c , Ec ) with s∗c ∈ BR[pc ]. Suppose
(s∗c , pc ) satisfies Property [*]. Then the canonical CPS for (s∗c , pc ), viz. qc ∈ C(S−c , Ec ),
satisfies:

(i) [s∗c ] = BR[qc], and

(ii) if pc strongly believes E−c , then qc strongly believes E−c .

Proof. By Lemma E.1, it suffices to show that BR[qc] ⊆ [s∗c ]. Fix some rc ∈ BR[qc]\[s∗c ].
Then there is an information set h ∈ Hc so that s∗c , rc ∈ Sc(h) and s∗c (h) �= rc(h). Let k

be such that h ∈ H
k
c and note that rc is a optimal under qc(·|S−c(hk )) = pc(·|S−c(hk ))

given Sc(hk ). Fix some s−c ∈ S−c(h) ⊆ S−c(hk ) such that qc(s−c|S−c(h)) > 0. Observe
that ζ(s∗c , s−c ) �= ζ(rc , s−c ) and pc(s−c|S−c(hk )) > 0. This contradicts the fact that (s∗c , pc )
satisfies Property [*].

Lemma E.5. Suppose � satisfies NRC. Let s∗c and pc ∈ A(S−c , Ec ) be such that s∗c ∈ BR[pc ].
Then there exists an array p̂c ∈ A(S−c , Ec ) so that

(i) (s∗c , p̂c ) satisfies Property [*],

(ii) s∗c ∈ BR[p̂c ], and

(iii) pc strongly believes E−c if and only if p̂c strongly believes E−c .

Proof. For each h ∈ Hc with s∗c ∈ Sc(h), we can choose p̂c(·|S−c(h)) so that (a) rc ∈ Sc(h)
is optimal under p̂c(·|S−c(h) among all strategies in Sc(h) if and only if rc supports s∗c
given (Supppc(·|S−c(h)), h), and (b) Supp p̂c(·|S−c(h)) = Supppc(·|S−c(h)). (See Lem-
mas D.2–D.4 in Brandenburger et al. (2008).) Requirement (i) follows from the construc-
tion and NRC; requirements (ii) and (iii) follow immediately from the construction.

The proof of Proposition 8.2 is immediate from Lemmas E.4 and E.5.

Corollary E.1. If a game satisfies NRC, then it is generic.

Proof. Fix some sc ∈ BR[pc ] for some pc ∈ C(S−c , Ec ). By Lemmas E.4 and E.5, there
exists some qc ∈ C(S−c , Ec ) with [sc ] = BR[qc].

One implication of Proposition 8.2 is that, when NRC is satisfied, we can forgo us-
ing CPSs and focus on arrays. This would not be the case absent NRC. The central dif-
ficulty comes from condition (BRP.3) of the m-BRS. Specifically, begin with a decreas-
ing sequence of product sets (Q0, � � � , Qm−1, Qm ). In addition, suppose that sc ∈ Qm

c so
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Figure 9. A perfect-information game satisfying NRT.

that, for some array pc ∈ A(S−c , Ec ), conditions (BRP.1), (BRP.2), and (BRP.3) are satisfied.
The canonical CPS qc ∈ C(S−c , Ec ) satisfies conditions (BRP.1) and (BRP.2), but condition
(BRP.3) may fail. (An example is available upon request.)

A second implication of Proposition 8.2 is that we can use a weaker maximality cri-
terion. This need not hold in a perfect-information game satisfying NRT, despite the fact
that such games are generic.

Example E.2. The game in Figure 9 is a perfect-information game satisfying NRT.18 As
such, it is generic. But, the conclusion of Proposition 8.2 does not hold. To see this, let
(Q0, Q1, Q2 ) be a decreasing sequence of product sets, so that

Q1
a ×Q1

b = {
O, L′R′′, R′L′′, R′R′′} × {

o, lr′, rr′′
}

and

Q2
a ×Q2

b = {O} × {o}.

Observe that Q1 corresponds to the set of strategies that survive one round of EFR. Thus,
(Q0, Q1 ) is a 1-BRS. We argue that (Q0, Q1, Q2 ) satisfies the requirements of Proposition
8.2, but is not a 2-BRS.

Note that O is a unique sequential best response under a CPS that ex ante assigns
probability 1 to lr ′ and strongly believes Q1

b. An array of Bob that strongly believes Q1
a

must assign zero probability to L′L′′ conditional upon Bob’s first information set being
reached. Thus, o is a sequential best response under an array pb that strongly believes
Q1

a if and only if, conditional on Bob’s first information set being reached, the array as-
signs probability 2/3 : 1/3 to L′R′′ : R′L′′. So (Q0, Q1, Q2 ) satisfies the requirements of

18A three-player version appears in Battigalli (1997).
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Proposition 8.2. But, it is not a 2-BRS, since BR[pb] = {o, lr′, rr′′} is not contained in
Q2

b. ♦

E.4 Termination of the procedure

Call Q = (Q0, Q1, � � �) a BR-sequence if, for each m, (Q0, � � � , Qm ) is an m-BRS.

Proof of Proposition 8.1. For each BR-sequence Q = (Q0, Q1, � � �), there is a finite
M(Q) so that QM(Q) = QM(Q)+1. Choose the lowest such M(Q) and note that

M(Q) ≤
{

2 min
{|Sa|, |Sb|

} − 1 if |Sa| �= |Sb|,
2 min

{|Sa|, |Sb|
} − 2 if |Sa| = |Sb|.

Take M to be the maximum of all such M(Q) and observe that it, too, is less than or equal
to 2 min{|Sa|, |Sb|} − 1 (resp. 2 min{|Sa|, |Sb|} − 2) if |Sa| �= |Sb| (resp. |Sa| = |Sb|).

Now note that SM = S∞: Certainly S∞ ⊆ SM . Fix s ∈ SM and note that there exists
some Q = (Q0, Q1, � � �) with s ∈QM and QM ⊆Q for some EFBRS Q. So s ∈Q ⊆ S∞.

E.5 Computing m-BRSs

Suppose � satisfies NRC. Proposition 8.2 offers an alternate approach to computing m-
BRSs, one that makes use of arrays. This allows us to use the simplex algorithm to search
for appropriate beliefs.

Fix some (Q0, � � � , Qm−1, Qm ) where (Q0, � � � , Qm−1 ) is an (m− 1)-BRS. Also fix some
h ∈Hc and write n(h) = max{n : Qn−c ∩ S−c(h) �= ∅}. Then enumerate

Qn(h)−c ∩ S−c(h) = {
s1−c , � � � , sK−c

}
and Sc(h) = {

s1
c , � � � , sLc

}
.

Say a strategy sc ∈ Qm
c passes the test at h if either sc /∈ Sc(h) or there exist nonnegative

numbers μ1, � � � , μK with
∑K

k=1 μ
k = 1, so that sc maximizes

∑K
k=1 πc(·, sk−c )μk among

all strategies in Sc(h) = {s1
c , � � � , sLc }. A strategy sc passes the test if it passes the test at

each h ∈Hc .
The simplex algorithm can be used to determine whether or not sc passes the test at

h. Specifically, when sc ∈ Sc(h), the problem is equivalent to choosing (μ1, � � � , μK , τ1, � � � ,
τL ) to solve

maximize
K∑

k=1

πc
(
sc , sk−c

)
μk

subject to
K∑

k=1

[
πc

(
sc , sk−c

) −πc
(
slc , sk−c

)]
μk + τl = 0 for each l = 1, � � � , L

μ1 +μ2 + · · · +μK = 1(
μ1, � � � , μK , τ1, � � � , τL

) ≥ (0, � � � , 0).
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We can apply the simplex algorithm to this linear programming problem. The algorithm
terminates by either (a) concluding that there is no feasible solution, (b) providing an
optimal solution, or (c) concluding that the objective function is unbounded over the
feasible region. (See Chapter 2 in Bradley et al. (1977).) In the first scenario sc fails the
test; in the latter two scenarios, sc passes the test.
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