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Production priorities in dynamic relationships

Jean Guillaume Forand
Department of Economics, University of Waterloo

Jan Zápal
CERGE-EI, a joint workplace of Charles University and

the Economics Institute of the Czech Academy of Sciences

We characterize optimal contracts in a dynamic principal–agent model of joint
production in which project opportunities are heterogenous, utility from these
projects is nontransferable, and the agent has the option to quit the relation-
ship at any time. To demand the production of projects that benefit her but not
the agent, the principal must commit to produce projects that benefit the agent
in the future. Production at all stages of the relationship is ordered by projects’
cost-effectiveness, which is their efficiency in transferring utility between the prin-
cipal and the agent: cost-effective demands impose relatively low costs on the
agent and cost-effective compensation imposes relatively low costs on the prin-
cipal. Over time, optimal contracts become more generous toward the agent by
adding commitments to less cost-effective compensation. In turn, because this
new compensation cannot be profitably exchanged against less cost-effective de-
mands, the principal narrows the scope of her demands.

Keywords. Dynamic contracts, incentive provision, heterogenous projects.

JEL classification. C73, D86, L24.

1. Introduction

Productive relationships generate a variety of joint project opportunities over their life-
times. This raises two related questions: what criteria guide decisions to produce some
opportunities and pass up others, and how does project selection evolve over time? In
this paper, we address these questions in a dynamic principal–agent model in which
(a) heterogenous project opportunities arrive according to an arbitrary stochastic pro-
cess, (b) utility from these projects is nontransferable (although transferable utility is

Jean Guillaume Forand: jgforand@uwaterloo.ca
Jan Zápal: j.zapal@cerge-ei.cz
We thank Georgy Egorov, Paul Klein, Colin Stewart, Jakub Steiner, Xin Zhao, seminar participants at Queen’s,
Toronto, and Wilfred Laurier, as well as audiences at the 2015 Annual Conference of the Canadian Economic
Association, the 2016 Annual Meeting of the Midwest Political Science Association, the 2016 Canadian Eco-
nomic Theory Conference, the 2016 Joint Meeting of the European Economic Association and Econometric
Society, the Fall 2016 Midwest Economic Theory Conference, and the 2017 North American Summer Meet-
ing of the Econometric Society. Finally, two anonymous referees provided excellent feedback. This paper
was previously circulated under the title “The demand and supply of favours in dynamic relationships.”
Forand acknowledges support from a SSHRC Insight Development Grant.

© 2020 The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at https://econtheory.org. https://doi.org/10.3982/TE2963

https://econtheory.org/
mailto:jgforand@uwaterloo.ca
mailto:j.zapal@cerge-ei.cz
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://econtheory.org
https://doi.org/10.3982/TE2963


862 Forand and Zápal Theoretical Economics 15 (2020)

a special case of our model), and (c) the principal is contractually committed to pro-
duction decisions, but the agent can walk away from the relationship at any time. We
characterize optimal contracts in this setting and detail the dynamics of the principal’s
demand and supply of projects (i.e., the production of projects that benefit the principal,
but are costly for the agent and vice versa).

Although we model a canonical principal–agent relationship, for the remainder of
the Introduction, we fix ideas by focusing on a manager–worker pair within a larger firm.
The simplest model of their interaction features two project opportunities: at each stage,
the manager demands effort from the worker and supplies a wage (Mirrlees 1976). We
allow for a rich set of productive activities that arise randomly over the course of this
relationship. The manager can make demands on the worker that differ in their benefits
for the manager and their costs to the worker. For example, the manager may need the
worker to deal with an emergency, like a failure in the firm’s server, or she may ask the
worker to complete a routine project that is less time-sensitive, like writing a plan for the
firm’s information technology infrastructure. Similarly, the manager can supply a num-
ber of projects to the worker in the form of both financial and nonmonetary compensa-
tion. For example, the manager can recommend the worker for a bonus, offer perks like
travel opportunities, accommodations for family issues, and better office space, or can
tilt task allocations toward those that benefit the worker’s career (e.g., involving train-
ing programs). More broadly, the (stochastic) dynamics of project opportunities within
the relationship can be driven by the business cycle, industry trends, or human capital
accumulation by both the manager and the worker.

In the case in which the manager demands effort and supplies money, it is well
known (Lazear 1981) that she benefits from delaying the worker’s compensation:
whereas current payments are sunk when the manager makes future demands for effort,
committing to pay the worker in the future motivates both current and future effort. Not
surprisingly, the optimal contracts in our model also feature backloaded compensation,
but our central task is to determine how the manager selects the projects she uses to
reward the worker. If, for example, the worker prefers increased flexibility in his sched-
ule to access to a job training program, will the manager prioritize the former type of
compensation over the latter? The answer, in general, is “no,” because focusing only
on the workers’ preferences neglects the manager’s costs from supplying projects. If job
training increases the worker’s productivity, then its net cost for the firm can be small
relative to the cost of scheduling flexibility, which offers less countervailing benefits to
the firm. If the worker does not value the two types of compensation too differently,
then the manager always benefits from substituting job training for schedule flexibility.
Therefore, she will commit to sending the worker to all available job training programs
before making any promises about future scheduling flexibility.

This intuition underlies our main result that characterizes optimal contracts. We
show that the manager always prioritizes her supply of projects according to their cost-
effectiveness, i.e., their benefit for the worker relative to their cost for the manager. At
any point in the relationship, the optimal contract identifies a threshold supply project
and projects that are more cost-effective than this threshold are supplied whenever they
arrive. Projects that are less cost-effective than the threshold are not supplied unless
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(a) the manager makes a new demand and (b) the worker’s participation constraint re-
quires fresh commitments to future compensation. Because the manager adds new sup-
ply commitments through cost-effectiveness, the threshold project transitions to less
cost-effective projects over time. How does the growth in the scope of the worker’s com-
pensation affect the manager’s demand for projects? We show that the manager de-
mands only those projects that are more cost-effective than the threshold supply project
(where cost-effectiveness for demand projects measures the benefit for the manager
relative to the cost for the worker). Therefore, the manager’s accumulation of increas-
ingly less cost-effective supply commitments is tied to rationing of her demands on the
worker, which become concentrated on the most cost-effective projects.

To further illustrate our results, suppose that the manager can demand emergency or
routine projects, with the effort cost being the same for both types of projects, but emer-
gency projects being more important for the manager. Therefore, emergency projects
are more cost-effective. Suppose also that all demands are more cost-effective than
supplying the worker with job training, but that only emergency projects are more cost-
effective than supplying the worker with schedule flexibility. Early in the relationship,
the manager demands both emergency and routine projects, and commits only to sup-
ply job training1: because the manager benefits from trading both emergency and rou-
tine projects against promises of job training, she will not pass up any demand until all
future training opportunities have been promised. Later in the relationship, the man-
ager demands only emergency projects, and supplies both job training and schedule
flexibility: because the manager prefers to scale back her demands for routine projects
to avoid promising schedule flexibility, she will pass over the former once she must sup-
ply the latter to incentivize the worker to take up emergency projects. The inefficiency
generated by the worker’s inability to commit to remain in her job is captured by the
fact that production decisions for the same project can differ over time: both parties
could be made better off ex ante if the manager could use training opportunities that
are passed over early in the relationship to incentivize demands for routine projects that
are passed over later on. In fact, we show that ex ante Pareto-efficient contracts involve a
time-invariant threshold project.

Cost-effectiveness pins down project priorities, but not the exact dynamics of pro-
duction. For example, for how long can the manager keep demanding routine projects?
Answering such questions requires determining the worker’s value from the relation-
ship at any point in time, which sets the level of his participation constraint. This value,
which is endogenous, incorporates the worker’s utility from producing projects, his time
preferences, and the availability of projects in the future: when the process driving
project opportunities is arbitrary, the value has little structure. In Section 5, we special-
ize the model to the case of Markov project processes and construct optimal contracts
directly. In doing so, we rank the manager’s demands by how expensive they are for her:
more expensive demands require that a broader scope of projects be supplied to the
worker.

1This illustrates typical dynamics of optimal contracts, the details of which depend on, among other
things, the process driving project opportunities. We revisit this example in Section 4.
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Because we study how future opportunities provide incentives for current produc-
tion, our work has connections to the literature on informal risk-sharing in the pres-
ence of stochastic endowment shocks (Thomas and Worrall 1988, Kocherlakota 1996,
Dixit et al. 2000). Important generalizations of this work incorporate hidden informa-
tion about endowment shocks or utility from production as well as sequential actions.
The former literature analyzes chips mechanisms (Möbius 2001, Hauser and Hopen-
hayn 2008), and dynamic contracts with and without commitment (Guo and Hörner
2015, Li et al. 2017, Lipnowski and Ramos 2020). The latter literature studies holdup sit-
uations (Thomas and Worrall 1994, 2018, Board 2011) and has close links to the relational
contracts literature (Levin 2003). Furthermore, our work is related to the literature on dy-
namic principal–agent interactions (Lazear 1981, Rogerson 1985, Spear and Srivastava
1987, Sannikov 2008). Our focus on selection from heterogenous project opportunities
is the key difference between these contributions and ours. Furthermore, we assume
that players are risk-neutral, so that risk-sharing plays no role in our results, we do not
rely on transfers, we place no restrictions on the process driving project opportunities,
as opposed to the standard independent and identically distributed (i.i.d.) or Markov
assumptions,2 and we abstract from information asymmetries and holdup problems.

Three papers are most closely related to ours. First, Ray (2002) shows that any opti-
mal principal–agent relationship backloads the agent’s compensation: by increasing the
agent’s continuation value, the principal relaxes the agent’s no-deviation constraint, so
that she can make the agent work harder and improve efficiency. In our model, this logic
is one of the forces that drive the backloading of the agent’s utility: by promising to sup-
ply the threshold project in the future, the principal gains the ability to demand projects
that are more cost-effective than this threshold. The other reason is the rationing in the
principal’s demands stemming from her accumulation of increasingly less cost-effective
supply commitments. This latter reason has no analog in Ray (2002), which features a
repeated stage game and, hence, no heterogeneity in future production opportunities.3

Second, Bird and Frug (2019a) study project production in a closely related dynamic
principal–agent model in which project arrivals follow independent Poisson processes
and are privately observed by the agent. Like us, they highlight the criterion of cost-
effectiveness for prioritizing project production. Unlike us, they show that the principal
frontloads the agent’s compensation in that she might make less cost-effective supply
commitments before exhausting all more cost-effective supply commitments. Informa-
tional asymmetries are the key to understanding why our results differ from theirs. In
their environment, the principal’s only tool to incentivize the agent to disclose the ar-
rival of a demand project is the growth in the agent’s continuation value. Therefore,
frontloading the agent’s compensation allows the principal to free up incentives for fu-
ture disclosures, and the principal trades off prioritizing cost-effective projects against

2From a technical point of view, this rules out standard recursive approaches to characterizing optimal
dynamic contracts (Spear and Srivastava 1987, Thomas and Worrall 1988, Abreu et al. 1990). In contrast,
our proofs rely on direct arguments.

3See also Bird and Frug (2019b), who study conditions under which principal–agent relationships in-
creasingly favor the agent over time.
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future flexibility.4 In our model with commonly observed project opportunities, it is the
level of the principal’s future commitments that underpins the agent’s incentives. Con-
sequently, the agent’s compensation is backloaded because the principal always follows
cost-effectiveness when making supply commitments, and the (inefficient) variability
in the set of projects that the principal demands and supplies vanishes in the long run.

Third, in a contemporaneous paper, Samuelson and Stacchetti (2017) study the
role of transfers in a version of our model with two-sided lack of commitment and an
i.i.d. process driving project opportunities. They show that the principal uses variation
in either continuation values or transfers to generate incentives when transfers are ei-
ther absent or present, respectively. Their model, however, does not admit a simple
description of the relationship’s dynamics. In our model, we can capture transfers to the
agent or to the principal through suitably defined supply and demand projects. Because
the principal follows cost-effectiveness when committing to supply projects, our results
imply that the principal will not start paying the agent until she has exhausted more
cost-effective means to reward him. Moreover, the relationship dynamics in our model
initially favor the principal and eventually favor the agent. This implies that, when avail-
able, transfers flow toward the principal early in the relationship and toward the agent
later in the relationship.

2. Model

A principal and an agent participate in a long-lived relationship in which a joint project
opportunity arises in each period t = 1�2� � � � . Specifically, let U ⊂ R

2 be a finite set
and let u = {ut}t≥1 be a U ∪ {(0�0)}-valued stochastic process that describes the ar-
rival of projects over time, where ut = (0�0) denotes the absence of a project at t. Let
ut = (u1� � � � � ut) denote a project history at t and let H denote the set of all such histo-
ries for all times t. Because optimal contracts are indeterminate at histories that occur
with zero probability, we assume that P0(u

t) > 0 for all project histories ut . This is the
only assumption that we impose on the project process u for our main results, and we
do so mainly to ease the exposition.5

Given a project ut at time t, the principal and the agent simultaneously decide
whether to participate in the production of the project, and project ut is produced if
and only if both players agree to produce it. We let ut = (uP�t�uA�t) denote the payoffs
to the principal and the agent if project ut is produced, and we normalize each player’s
payoff from no production to 0. For simplicity, we assume that the players’ stage prefer-
ences over the production of projects are strict, that is, that uA�t �= 0 and uP�t �= 0 for all
projects ut ∈ U . Therefore, player i (myopically) prefers to participate in the production
of project ut if ui�t > 0 and prefers not to participate if ui�t < 0. Finally, the players dis-
count future payoffs with common factor δ ∈ (0�1). We model projects parsimoniously,

4See also Hopenhayn et al. (2006), in which a planner rations a fixed (expected discounted) stock of rights
to future monopoly power to retain the ability to reward a sequence of competing innovators.

5Any process with zero-probability events can be expressed as the limit of a sequence of processes with-
out such events, and the limit of the corresponding sequence of optimal contracts is an optimal contract
for the limiting process.
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but we can accommodate projects that are more complicated ventures with uncertain
outcomes: in this case, ut is interpreted as the expected utilities to the principal and
the agent from these richer lotteries. Similarly, production of project ut might generate
payoffs in periods beyond t: in this case, ut is the present value to the principal and the
agent of that payoff flow.

Project histories and production decisions, and, hence, all players’ payoffs, are pub-
licly observed and verifiable. A contract κ : H → [0�1] maps project histories into pro-
duction probabilities. Given a project history ut at time t, κ(ut) (henceforth κt for short,
with history ut understood) is the probability with which contract κ specifies that the
project at t is produced. Let K denote the set of all contracts. We make the strong as-
sumption that production decisions can be verifiably conditioned on a public random-
ization device. However, our model also admits an interpretation in which all produc-
tion decisions are deterministic. Specifically, we can reinterpret κt as specifying the in-
tensity with which project ut is produced. In this view, interior production probabilities
represent reducing the scale of a project’s implementation.6

Given a contract κ and a history ut at time t, let

Ui�t = Et

∞∑
t ′=t

δt
′−tκt ′ui�t ′

denote the associated expected discounted sum of payoffs to player i starting from t.
The expectation is taken conditional on the information contained in project history
ut , but, as for contracts, we leave the history dependence of payoffs implicit to lighten
notation. Notice that the linearity of stage utilities in production probabilities implies
that intertemporal smoothing of production decisions due to risk aversion plays no role
in our results.

We assume that the principal commits to contracts. Meanwhile, the agent has the
option to irreversibly quit the relationship at the beginning of every period t, after the
arrival of project ut but before the realization of the contract’s production decision (de-
termined by κt ). If the agent remains in the relationship, then he is committed to fol-
lowing the outcome of the public randomization device for that period. Quitting yields
a payoff of 0 to both players, which is the payoff they receive when no project is ever
produced. It follows that an optimal contract κ∗ is a solution to the problem

max
κ∈K

E0UP�1

subject to UA�t ≥ 0 for all project histories ut . (IRA�t)

In words, an optimal contract maximizes the principal’s ex ante utility from the relation-
ship subject to being individually rational for the agent following all project histories.7

6Allowing the contract to depend on a richer notion of histories, which record past outcomes of the ran-
domization in production, would not change any of our results. By using this randomization, the principal
can offer the agent random continuation utility, but this randomization can only (weakly) hurt the principal
due to the convexity of the underlying utility possibility set.

7Standard arguments establish the existence of an optimal contract (e.g., Dixit et al. 2000).
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As we show below, production probabilities in optimal contracts are often bang-bang, in
which case our restriction to ex ante individual rationality constraints for the agent (i.e.,
prior to the realization of the production decision) is not constraining. However, follow-
ing some histories, the agent’s ex post individual rationality constraint could fail if the
public randomization device calls for some project to be produced. In such cases, our
results exploit the fact that the principal can provide adequate incentives to the agent ex
ante by committing to interior production probabilities.

In any period and given any project over which the preferences of the principal and
the agent are aligned, optimal contracts must specify jointly optimal production deci-
sions.8

Lemma 1. If contract κ∗ is optimal, then

(i) if uP�t�uA�t > 0, then κ∗
t = 1;

(ii) if uP�t�uA�t < 0, then κ∗
t = 0.

Common interest projects contribute to the value of the relationship, but Lemma 1
confirms that optimal contracts can be identified with the production decisions they
prescribe for those projects on which the principal and the agent disagree. To this end,
define the sets D = {u ∈ U : uP > 0 > uA} and S = {u ∈ U : uA > 0 > uP}, and assume, to
avoid trivialities, that D and S are both nonempty. Given a contract κ, we say that the
principal demands a project with probability κt at t whenever ut ∈ D and, conversely,
that the principal supplies a project with probability κt at t whenever ut ∈ S . The de-
composition of an optimal contract into the demand and supply of projects turns out
to be useful for describing project selection and its dynamics. To simplify notation, we
denote a typical element of D by v and a typical element of S by w, and any statement
referring to demand project v (respectively, supply project w) should be read as being
restricted to projects u ∈ D (respectively, u ∈ S).

3. Benchmark: Ex ante Pareto efficiency

A useful benchmark is that of ex ante Pareto-efficient contracts in which the agent can
commit to production decisions. These contracts maximize the principal’s ex ante utility
subject to a lower bound u on the agent’s ex ante utility. An efficient contract κe is a
solution to

max
κ∈K

E0UP�1 subject to E0UA�1 ≥ u�

Efficient contracts resolve many of the same trade-offs as optimal contracts. Therefore,
we introduce and discuss these key properties in this simpler setting, and in Section 4,
we detail how they are affected when the agent must be continually incentivized to sup-
port production.

Define an ordering of projects in D∪S such that u � u′ if and only |uP/uA| > |u′
P/u

′
A|.

In words, if v � v, then project v is more cost-effective to demand than project v for

8The proofs of all results are provided in the Appendix.
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Figure 1. Ex ante Pareto-efficient contracts. Here, the threshold Ue is a supply project. The
more cost-effective projects v and w are always produced, and the less cost effective v and w are
never produced.

the principal: in this case, the ratio vP/|vA|—the principal’s benefit per util cost to the
agent—measures the productivity of project v as a tool for extracting utility from the
agent. Conversely, if w � w, then project w is more cost-effective to supply than project
w for the principal: in this case, the ratio |wP |/wA—the principal’s cost per util bene-
fit to the agent—measures the productivity of project w as a tool for providing utility
to the agent. Notice that more cost-effective demands are ranked higher by �, while
more cost-effective supplies are ranked lower by �. This is illustrated in Figure 1, where
points in the plane represent projects, projects in the northwestern quadrant can be de-
manded by the principal, projects in the southeastern quadrant can be supplied, and
more cost-effective projects are represented by larger dots. For simplicity, we assume
that the ordering � is complete on D ∪ S , i.e., that all project pairs are ranked strictly by
cost-effectiveness.

Our first result shows that the principal’s demand and supply of projects in efficient
contracts are determined by cost-effectiveness.

Proposition 1. Fix any ex ante Pareto-efficient contract κe and any time t. The princi-
pal demands and supplies projects that are more cost-effective than some threshold: there
exists a project Ue such that

κe
t =

{
1 if vt �Ue�

0 if Ue � vt
and κe

t =
{

1 if Ue �wt�

0 if wt �Ue�9
(1)

9Recall that, by our notational convention, statements like vt � Ue should be read as applying only to
histories with ut ∈ D, and statements like Ue � wt should be read as applying only to histories ut with
ut ∈ S .
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Efficient production decisions can be represented by a history-independent thresh-
old project: at any point in the relationship, those projects that are more cost-effective
than Ue (these lie above the thick solid line in Figure 1, which is drawn for the case when
Ue is a supply project) are produced and those that are less cost-effective than Ue (these
lie below the thick solid line) are not. What drives this result is that the principal can
always profitably reallocate production decisions that do not follow cost-effectiveness.
If the principal supplied a less cost-effective project w following some project history
but declined to supply a more cost-effective project w following another history, then
she could gain by shifting some production probability from w to w while keeping the
agent’s ex ante utility fixed. The same logic applies if the principal demanded a less cost-
effective project v while some opportunities to demand a more cost-effective project v
following some histories were still available: she would gain by exhausting all opportuni-
ties to demand project v before making any demands for v.10 This implies that the prin-
cipal demands only projects more cost-effective than some threshold demand project
and supplies only projects more cost-effective than some threshold supply project.

These threshold demand and supply projects are connected by a straightforward
cost–benefit calculation. Returning to Figure 1, suppose that project Ue is supplied with
interior probability following some history so that, by our arguments above, w is always
supplied and w is never supplied. The threshold supply Ue identifies both the principal’s
incentive cost of additional demands and her potential savings from reduced demands.
Therefore, the principal cannot pass over any opportunity to demand project v, which
is more cost-effective than Ue: she could gain by increasing production of both v and
Ue while keeping the agent’s ex ante utility fixed. Also, the principal can never demand
project v, which is less cost-effective than Ue: in this case, she could gain by decreasing
production of both v and Ue. Therefore, if the principal ever supplies Ue with interior
probability, then she always demands the more cost-effective v and never demands the
less cost effective v.11 If, instead, the threshold Ue is a demand project, then it identifies
both the principal’s return from supplying more projects to the agent and her opportu-
nity cost to scaling back the agent’s compensation. Therefore, for the same reason as
above, the principal must supply all projects more cost-effective than Ue with probabil-
ity 1 and no less cost-effective project is ever supplied.

Our description of ex ante Pareto-efficient contracts appears to ignore important
factors like the scale of project opportunities (i.e., the absolute values of uP and uA),
the players’ time preferences (i.e., the common discount factor δ), and the dynamics
of project opportunities (i.e., the properties of the project process u). On the one hand,
Proposition 1 states that the principal establishes production priorities among heteroge-
nous projects by relying only on the cost-effectiveness criterion. On the other hand,
any factor that hinders the principal’s ability to reward the agent by supplying projects
throughout the relationship will restrict her ability to make demands and, hence, affect
the level of the threshold Ue. Put differently, if, for example, all demands that can be

10Two features of our model are critical for these intertemporal reallocation arguments: the players’ com-
mon discount factor and the ability to commit to follow the outcomes of the public randomization device,
which allows for the production of projects with interior probability.

11The proof of Proposition 1 deals with the corner case when no production probability is ever interior.
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made of the agent impose a high stage cost on him, if players are impatient or if sup-
plied projects arrive only late in the relationship, then ex ante Pareto-efficient contracts
will be more generous toward the agent: the threshold project Ue will be ranked higher
by �, which, in turn, means that the principal’s demands will be restricted to a smaller
set of more cost-effective projects, while her supplies will include a larger set of less
cost-effective projects.

Proposition 1 does not specify production decisions at the threshold project Ue. This
is due to payoff-irrelevant multiplicity in efficient contracts: the agent’s ex ante util-
ity constraint identifies the total (expected discounted) quantity of production at the
threshold project (and, hence, also the principal’s ex ante payoff), but the linearity of
the players’ payoffs in production probabilities allows that production to be distributed
arbitrarily across project histories. Because efficient production is organized by cost-
effectiveness, this indeterminacy is restricted to the threshold project: given two ex ante
Pareto-efficient contracts κe and κ′e with the same ex ante utility to the agent, we have
Ue =U ′e.

4. Optimal contracts

In an optimal contract, the agent must have incentives to participate in all production
decisions. However, because the agent benefits from projects that are supplied, his in-
dividual rationality constraint can only bind when a project is demanded. Correspond-
ingly, our paper’s main result below shows that the supply of projects in optimal con-
tracts follows a threshold rule analogous to that from efficient contracts. In contrast, the
demand for projects does not follow a simple threshold rule. This is because the princi-
pal can be prevented from reallocating production from less cost-effective to more cost-
effective demands by the agent’s individual rationality constraints. Instead, mirroring
the cost–benefit calculation from efficient contracts, we describe the set of demanded
projects from the threshold supply project. Finally, because the principal overcomes
binding individual rationality constraints by committing to supply more projects in the
future, the threshold supply project can change over time.

Proposition 2. Fix any optimal contract κ∗ and any project history ut−1.

(i) The principal supplies projects that are more cost-effective than some threshold:
there exists a supply project W ∗

t−1 such that

κ∗
t =

{
1 if W ∗

t−1 �wt�

0 if wt �W ∗
t−1.

(2)

(ii) The principal demands projects that are more cost-effective than those that are
supplied:

κ∗
t

⎧⎨
⎩
> 0 if vt � min�

{
w �W ∗

t−1
}
�

= 0 if max�
{
W ∗

t−1 �w
} � vt�

(3)
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(iii) Over time, the principal increases her supply of projects and decreases her de-
mands: if ut−1 is a subhistory of ut

′−1, then either W ∗
t ′−1 = W ∗

t−1 or W ∗
t ′−1 �W ∗

t−1.12

The principal makes different sequences of demands along different project histo-
ries ut−1, and she provides incentives for these demands by adjusting her commitments
to supply projects in the future. Part (i) says that the supply commitments inherited
from ut−1 can be captured by a threshold supply project W ∗

t−1, which in turn determines
current supply decisions: at t, projects more cost-effective than W ∗

t−1 are supplied and
projects less cost-effective than W ∗

t−1 are not. The supply of the threshold project (i.e.,
when wt =W ∗

t−1) may involve interior production probabilities, which we discuss below.
Part (ii) says that the threshold supply project also describes the principal’s de-

mand for projects: loosely speaking, following history ut−1, the principal demands only
projects that are more cost-effective than W ∗

t−1. More precisely, let the supply project
W t−1 = min�{w � W ∗

t−1} be the most cost-effective project among those that, from part
(i), we know the principal has not yet committed to supply. It follows that if the princi-
pal were to make additional demands on the agent at t, project W t−1 is an upper bound
on the incentive costs of these demands. Therefore, the principal cannot pass over an
opportunity to demand some project vt more cost-effective than W t−1: the principal
could gain by increasing production of both vt and W t−1 while keeping the agent’s ex
ante utility fixed. We discuss this further below, but notice for now that (3) requires
only that vt is demanded with positive probability. In Figure 2, we illustrate the thresh-
old supply project W ∗

t−1 = w following history ut−1. Parts (i) and (ii) then imply that the
set of produced projects at t is contained in the shaded area. To complete the descrip-
tion of part (ii), let the supply project W t−1 = max�{W ∗

t−1 � w} be the least cost-effective
project among those that, from part (i), the principal is committed to always supply.
The project W t−1 is a lower bound on the savings that the principal could achieve by
curtailing her demands, so that any demand vt that is less cost-effective than W t−1 is
surplus-destroying for the principal: the principal could gain by decreasing production
of both vt and W t−1 while keeping the agent’s ex ante utility fixed. Finally, the demand
for projects W t−1 � vt � W t−1 depends in part on production decisions at the threshold
supply project, as we discuss below.

Not only does the optimal supply threshold W ∗
t−1 vary across project histories at any

given time, but part (iii) says that along any given history, it becomes more generous to-
ward the agent over time by transitioning to less cost-effective projects. Combined with
part (ii), it follows that the principal’s demands become concentrated on successively
smaller sets of more cost-effective projects. This is illustrated in Figure 2 in which, given
t ′ > t, a shift in the threshold from W ∗

t−1 =w to the less cost-effective W ∗
t ′−1 =w leads to a

clockwise shift in the region containing produced projects, which is now the dotted area.
Why can the threshold supply project never become more cost-effective? Because, as in
the case of efficient contracts, the principal never supplies any less cost-effective project
before all her future opportunities to supply more cost-effective projects have been ex-
hausted: otherwise, the principal could commit to substitute the future supply of more

12History ut−1 is a subhistory of ut
′−1 if ut

′−1 = (ut−1�ut � � � � � ut′−1).
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Figure 2. Optimal contracts. Between times t and t ′ > t, the threshold supply project transi-
tions from w to the less cost-effective w.

cost-effective projects against the current supply of less cost-effective projects while
maintaining the agent’s incentives.13 Why can the threshold supply project become less
cost-effective? Because new demands may violate the agent’s individual rationality con-
straint if his rewards remain determined by the current supply threshold. In this case,
the principal must commit to supply more projects in the future, and these additional
commitments are typically less cost-effective than the current threshold because of the
limited (expected discounted) production possibilities of the threshold project. In par-
ticular, the threshold moves in the direction of the agent only if a binding individual
rationality has been met: if any history ut is such that W ∗

t � W ∗
t−1, then we have that the

principal made a demand at t and that U∗
A�t = 0.

The production dynamics from Proposition 2 have close connections to the semi-
nal results of Thomas and Worrall (1988), who study the wages paid by a risk-neutral
firm to a risk-averse worker who receives i.i.d. outside offers each period. There, op-
timal wages are increased when some individual rationality constraint for the worker
binds, while between updates, the optimal contract tracks some efficient contract. In
Thomas and Worrall (1988), wage updates are driven by the exogenous arrival of out-
side offers and efficiency requires constant wages between updates due to risk aversion.
In our model, contract updates take the form of decreasing the cost-effectiveness of the
threshold supply project, they are driven endogenously by the principal’s decision to de-
mand a project, and efficiency requires that the threshold project be constant between
updates. Our results are not driven by risk aversion, so that production decisions and
the agent’s utility need not be constant between updates.

13Contrary to the case of efficient contracts, such intertemporal reallocations of production must be
constructed within histories and in such a way that no intervening individual rationality constraints are
violated.
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Outside of special cases, the threshold project W ∗
t−1 is not constant (either within or

across histories) and optimal contracts are not efficient. In efficient contracts, the prin-
cipal’s total (expected discounted) supply of projects provides incentives for the agent
to respect the principal’s total (expected discounted) demands, irrespective of the tim-
ing of the supplies and demands. When the agent can quit the relationship at any time,
past rewards are sunk and provide no incentives for his current production decisions.
Therefore, relative to efficient contracts, the principal undersupplies projects early in
the relationship and underdemands projects late in the relationship. This is illustrated
in Figure 2: the revision of W ∗

t−1 to W ∗
t ′−1 means that the principal may demand v early,

but would never demand it late, while she does not supply w early, but may supply it late.
Nevertheless, the inefficiencies associated with any optimal contract eventually vanish.
Because the threshold project W ∗

t−1 is monotone along any project history and there is
a finite number of projects, W ∗

t−1 converges to the threshold associated to some ex ante
Pareto-efficient contract.14

Proposition 2 does not specify supply decisions at the threshold project W ∗
t−1. As

in the case of efficient contracts, there is scope for payoff-irrelevant multiplicity in pro-
duction decisions at the threshold project: in particular, given two optimal contracts
κ∗ and κ′∗, W ∗

t−1 = W ′∗
t−1 for all histories ut−1. It would be possible to resolve this mul-

tiplicity through an appropriate selection from the set of optimal contracts. The cost
of this approach is that it requires a characterization that is substantially more intricate
than that of Proposition 2 while yielding few additional insights.15 Its benefit is that we
could more thoroughly describe the principal’s demand for those projects that have a
cost-effectiveness near the threshold. To be more concrete, return to Figure 2. Fix his-
tory ut−1 and suppose that, as illustrated, the threshold project is the most cost-effective
supply project (i.e., W ∗

t−1 = w). Suppose further that the principal has an opportunity to
demand a project at t (i.e., vt ∈ {v� v}). Part (i) of Proposition 2 subsumes two possibil-
ities: either (a) the principal is committed to supply the threshold project w whenever
it occurs following ut or (b) some future production opportunities for project w have
not yet been promised. In case (a), the principal can provide incentives for demands
at t only by committing to produce the less cost-effective project w. Therefore, because
v � w � v, the principal can profitably demand v but not v. In case (b), the principal
can still provide additional incentives by committing to supply the threshold project w.
Therefore, because v � v � w, the principal can demand both v and v. Only project v is
demanded in both cases (a) and (b), and this demand is financed, at worst, by commit-
ting to project w. This is captured by part (ii) of Proposition 2 because W t−1 = w, but
by construction this neglects the possibility of a demand for vt = v in case (b). Clearly,
when the set of projects is rich, the substantive impact of our simplified characterization
is small.

14Note that any supply project w is the threshold project of an ex ante Pareto-efficient contract with
appropriately chosen ū in the optimization problem defining ex ante Pareto-efficient contracts.

15In contrast to the case of efficient contracts, multiplicity in optimal contracts cannot be trivially re-
solved because arbitrary distributions of production decisions at the threshold may violate some of the
agent’s individual rationality constraints. In our working paper (Forand and Zápal 2017), we show that it
is without loss of generality for optimal payoffs to consider contracts represented by time thresholds that
frontload demands and backload supplies.
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Proposition 2 shows that, in contrast to efficient contracts, optimal contracts treat
the demand and supply of projects asymmetrically. In particular, part (i) says that supply
projects above the threshold are produced with probability 1, whereas part (ii) says only
that demand projects above the (adjusted) threshold must be produced with positive
probability. To understand this better, return to Figure 2. Fix history ut−1 and suppose
that, as illustrated, the threshold project is the most cost-effective supply project (i.e.,
W ∗

t−1 = w). Suppose further that the principal is committed to producing the threshold
project if it is available at t (as in case (a) from the previous paragraph). What if w is very
costly for the principal? This does not matter because in this case its high rank in cost-
effectiveness means that w is very valuable to the agent. The principal would benefit
from scaling back her supply of w at t, but she committed to producing it in exchange
for some demand at some time prior to t because that promise was the most profitable
way to reward the agent at that time. Now suppose that the most cost-effective demand
v is available at t. Because v � w = W t−1, part (ii) says that v cannot be passed over.
Because the agent cannot commit, the scale of the principal’s demand for v will depend
on the stringency of the agent’s individual rationality constraint. Therefore, if v is very
costly for the agent, if w is not very beneficial to the agent, or if the relationship following
(ut−1� v) offers sufficiently few opportunities for the principal to reward the agent, then
the agent cannot be provided with incentives to produce v with probability 1.16

Example. We return to the manager–worker application from the Introduction, in
which potential projects are U = {v� v�w�w} and v � w � v � w: the manager can de-
mand emergency and routine projects (v and v, respectively), supply job training or
schedule flexibility (w and w, respectively), emergency projects are more cost-effective
than routine projects, and because some of the firm’s costs of providing job training are
offset by the benefits of having higher skilled workers, training is more cost-effective
than job flexibility, which delivers more targeted benefits to the worker. These projects
are illustrated in Figure 2. Consider two scenarios in which job training opportunities
are either growing or declining over time. Suppose, for example, that the firm employ-
ing the manager and the worker operates in an industry that is young and innovative. In
this case, expansion in the industry’s technological frontier would increase the benefits
of continued investments in human capital both for the worker’s career prospects and
for the firm’s productivity. These opportunities would be fewer and less valuable in a
maturing industry with a stable production process. We will show that there are stark
differences in production dynamics and efficiency across these two scenarios.

To make the example as simple as possible, suppose that the two project processes
are identical except for the availability of job training opportunities and that, further-
more, the arrival of nontraining projects is history-independent: given any time t > 1,
any project history ut−1, and any project u ∈ {v� v�w}, we assume that ut = u with prob-
ability pu in both the growth and decline scenarios. We also assume that the arrival
of job training opportunities depends on histories only through time index t. Specifi-
cally, if training opportunities are growing, then given any time t > 1 and any project

16For similar reasons, a property similar to (2) fails for demand projects: it is possible that the optimal
contract prescribes κ∗

t ∈ (0�1) for two histories (ut−1� vt) and (ut−1� v′
t ) with vt � v′

t .
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history ut−1, we assume that ut = w with probability γt , where γt+1 > γt . Alternatively,
if training opportunities are declining, then given any time t > 1 and any history ut−1,
we assume that ut = w with probability βt , where βt+1 < βt .17 In this case, we also as-
sume that training opportunities become exceedingly rare over time: limt→∞βt = 0. To
isolate the effect of how job training opportunities are distributed over time, we fix their
(expected discounted) quantity across both scenarios:

∑∞
t=2 δ

t−1γt = ∑∞
t=2 δ

t−1βt . This
means that when training opportunities are growing, the manager has few of them to
offer the worker initially relative to the case of decline, but that the opposite is true later
in the relationship.

We make further assumptions to tighten the link between optimal and efficient con-
tracts in this example. First, because optimal contracts are conditioned on the arrival
of a first demand by the manager and ex ante Pareto-efficient contracts depend on the
workers’ individual rationality constraint evaluated prior to the realization of an initial
project, we assume that the project at time t = 1 is v. Second, because optimal con-
tracts deliver all ex ante surplus to the manager, we focus on those efficient contracts
that yield expected utility u= 0 to the worker. Notice that given our assumption that the
ex ante quantities of all projects are fixed whether training opportunities are growing or
declining, efficient contracts are identical in both scenarios. Finally, suppose that the ef-
ficient contract is such that the manager always demands both emergency and routine
projects, and always supplies job training but never supplies schedule flexibility.

If training opportunities are growing, the manager’s ability to reward the worker
increases over time and her potential demands are time-invariant: for any time t >

2,
∑∞

t ′=t δ
t ′−1γt ′ >

∑∞
t ′=2 δ

t ′−1γt ′ and
∑∞

t ′=t δ
t ′−1pu = ∑∞

t ′=2 δ
t ′−1pu for all u ∈ {v� v�w}.

Therefore, in this case the efficient contract satisfies the worker’s individual rationality
constraint at all times t ≥ 1 and is optimal. In contrast, optimal contracts in the de-
clining scenario cannot be efficient. First, because v � w, the manager must eventually
supply schedule flexibility in exchange for continued demands for emergency projects
when her commitments to job training no longer provide meaningful incentives to the
worker. Second, because w � v, the manager must stop demanding routine projects
when she starts rewarding the worker through commitments to schedule flexibility. In
the long run, production in the declining scenario is essentially reduced to exchanging
emergency projects against scheduling flexibility (although job training is provided in
the rare cases when it is available).

After observing a manager extend both job training and schedule flexibility to a
worker, it would be natural to interpret this as a sign that the firm has a plentiful sup-
ply of rewards to offer its workforce. Our results suggest the opposite interpretation:
an increase in the scope of the worker’s nonmonetary compensation points to scarcity
in those rewards that are most effective from the firm’s perspective. Because the man-
ager benefits from substituting job training for schedule flexibility, observing the latter
means that the bound on the availability of training opportunities is binding. Similarly,
it would be natural to conjecture that a worker receiving nonmonetary compensation

17Recall that project processes take values in U ∪ {(0�0)}, so that the growth and decline scenarios will
have different probabilities of having no project arrive at any given time. For simplicity we leave these and
other feasibility constraints on the two processes implicit.
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from a variety of sources would produce more for the firm. Again, our results predict
the opposite: diversified rewards are tied to rationing in the worker’s tasks. Because the
manager benefits from substituting decreased schedule flexibility for routine projects, a
worker who is rewarded by job flexibility cannot be profitably asked to work on routine
projects. ♦

5. Markov project processes

From Section 4, we know that the optimal supply threshold can only transition to less
cost-effective supply projects if the principal makes additional demands. However, in
general, we cannot identify which project histories, and, in particular, which demands,
lead to changes in the threshold supply project. In this section, we sharpen our results
by assuming that the project process u is Markov.

Proposition 3. Suppose that the project process is Markov and fix any optimal con-
tract κ∗. For all demands v, there exists a supply project W v such that, given any history
ut with ut = v, the optimal threshold project W ∗

t is the least cost-effective of projects W ∗
t−1

and W v:

W ∗
t = max�

{
W ∗

t−1�W
v
}
�

In the Markov case, the updating rule for the optimal supply threshold has a simple
form: following any history (ut−1� v), the supply threshold is updated to W v if this project
is less cost-effective than W ∗

t−1, while it remains at W ∗
t−1 otherwise. We provide more

details about the relationship between the threshold W v and its associated demand v

below. Here we note that W v captures the minimal level of future supply commitments
(and, correspondingly, the maximal level of future demands) that provide incentives for
a demand for v. Therefore, if W ∗

t−1 is more cost-effective than W v, then the agent’s in-
dividual rationality constraint at t binds as a result of the principal’s demand for v and
the optimal contract must become more generous toward the agent by adding commit-
ments to less cost-effective projects (and, correspondingly, dropping less cost-effective
demands). Furthermore, because the project process is Markov and the threshold W v is
history-independent, the continuation contracts following all histories at which a bind-
ing individual rationality constraint is met at demand v are identical. This stationary up-
dating rule and corresponding “amnesia property” for optimal contracts are analogous
to well known results in related models, notably those of Thomas and Worrall (1988) and
Kocherlakota (1996) for the i.i.d. case and of Ligon et al. (2002) for the Markov case.

We can use Proposition 3 to order demands by the scale of the incentives that must
be supplied to the agent so as to produce them. If demand projects v and v are such
that W v is less cost-effective than W v, then we say that demand v is more expensive for
the principal than demand v: in return for v, the principal must commit to supply more
projects to (and demand less from) the agent in the future. An important note is that
the expensiveness of a demand v is different from its cost-effectiveness: the latter is the
ratio of the principal’s benefit from v to the agents’ cost, while the former is a measure
of the stringency of the agent’s individual rationality constraint following v. Intuitively,
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expensiveness depends on two potentially countervailing factors: the agent’s stage cost
from producing v (given by |vA|) and the value to the agent of future project opportuni-
ties conditional on having reached project v, which depends on both the discount factor
δ and the project process. However, if the project process is i.i.d., then the relationship’s
future production opportunities are history-independent. In that case, a demand’s ex-
pensiveness is determined solely by its cost to the agent.

Corollary 1. Suppose that the project process is i.i.d. If demands v and v are such that
|vA| ≥ |vA|, then v cannot be more expensive for the principal than v.

This is analogous to a result from Thomas and Worrall (1988). In their model, the
agent’s opportunity cost from outside offers (which are i.i.d.) stands for the cost of the
principal’s demand in that state, and the level of the corresponding optimal wage stands
for the expensiveness of this demand for the principal. In line with Corollary 1, their
Proposition 3 shows that optimal wages are nondecreasing in outside market wages. For
the general Markov case, we derive the ranking of demands by expensiveness through
our construction of optimal contracts in the proof of Proposition 3, and it tracks the
solutions to a recursive sequence of reduced problems: v1, the most expensive demand
for the principal, has the least cost-effective threshold W v1

, over all v ∈ D, associated to
the problem of finding an optimal contract subject only to (a) the initial project being
v (i.e., u1 = v) and (b) the individual rationality constraint for the agent at time 1 (i.e.,
UA�1 ≥ 0). Then v2, the second most expensive demand for the principal, has the least

cost-effective threshold W v2
, over all v ∈ D \ {v1}, to the problem of finding an optimal

contract for the principal subject only to (a) u1 = v, (b) UA�1 ≥ 0, and (c) the fact that the

threshold transitions to W v1
whenever v1 arrives, and so on. As opposed to the i.i.d. case,

the ranking of demands by expensiveness depends on the project process. For example,
the most expensive demand v1 might impose a low cost on the agent if the continuation
process following v1 provides few opportunities to reward him.

Our final goal in this section is to derive sufficient conditions for ranking demands
by their expensiveness in the non-i.i.d. case. To this end, fix two demands v and v.
First, Condition 1 is that for v to be more expensive than v, it is more costly for the
agent: |vA| ≥ |vA|. Second, note that the thresholds associated to both demands v and v

must take into account future transitions to thresholds associated to demands that are
more expensive than both of them (as in constraint (c) of the reduced problem defin-
ing v2 in the previous paragraph). Correspondingly, Condition 2 is that the distributions
over these future transitions are identical following v and v: for all t > 1, Pv[ut = u] =
Pv[ut = u] for all u /∈ S , where Pv stands for the distribution of process u conditional
on u1 = v.18 Third, the expensiveness of demand v should capture the idea that the
principal has worse opportunities to supply projects following v. Because production
decisions are ordered by cost-effectiveness, this requires that the project process puts
less weight on more cost-effective supply projects following v. However, such a condi-
tion would not be sufficient on its own, as less cost-effective supplies may yield high

18For related reasons, Condition 2 also requires that the distribution of projects that are neither supply
nor demand projects (i.e., projects in (U ∪ {(0�0)}) \ (D ∪ S)) are also identical following v and v.
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stage benefits to the agent, so that the effect on the agent’s utility following v would be
ambiguous. Correspondingly, Condition 3 is a joint restriction on the cost-effectiveness
and the stage benefit of supply opportunities following v and v: for all t > 1 and all c ≥ 0,

Pv

[|wP�t |/wA�t ≤ c
]
Ev

[
wA�t ||wP�t |/wA�t ≤ c

]
≤ Pv

[|wP�t |/wA�t ≤ c
]
Ev

[
wA�t ||wP�t |/wA�t ≤ c

]
� (4)

Condition 3 says that, given any fixed supply threshold, the agent’s expected rewards are
higher following v than following v.

Corollary 2. Suppose that the project process is Markov. If demands v and v satisfy
Conditions 1–3, then v cannot be more expensive for the principal than v.

Conditions 1–3 are clearly stringent, but our preceding remarks highlight that this is
to some degree by necessity. Notice that Conditions 2 and 3 are satisfied if the project
process is i.i.d. Returning to the Example, what would be needed to conclude that rou-
tine projects cannot be more expensive for the manager than emergency projects? We
have assumed that the agent is indifferent between producing both types of projects,
so that Condition 1 is satisfied. Ignoring Condition 2, Condition 3 can be satisfied if job
training programs are more likely to arrive following a routine project, so that the worker
can expect to be compensated more often with the manager’s preferred supply project.
But because the agent prefers schedule flexibility to job training, the former cannot ar-
rive too rarely following a routine project. Otherwise, the agent’s expected compensa-
tion could be lower following routine projects when the principal rewards the agent with
both job training and schedule flexibility.

6. Conclusion

We recap our main results by discussing their relationship to two key assumptions of our
model: that no transfers are available to support production and that the principal can
commit production decisions.

Transfers. While we have not explicitly allowed for monetary payments between the
principal and the agent, models with transfers are special cases of our model. Indeed, a
transfer of k dollars to the agent can be represented by a supply project mS = (−k�k) ∈
S , while a transfer of k dollars to the principal can be represented by a demand project
mD = (k�−k) ∈ D, where mS and mD are equally cost-effective. The flexibility of the
project process allows for different specifications of transfer opportunities. On the one
hand, if all nonmonetary projects are followed by transitions to both mS and mD, and
if k is large, then transfers are always available and essentially unrestricted in size. On
the other hand, if mS arrives at fixed intervals, then the principal has infrequent but reg-
ular opportunities to pay a bonus to the agent. While our results apply to all models
with transfers, they provide specific implications for the use of money in the dynamic
relationships captured by our environment. First, the principal’s ability to use trans-
fers to reward the agent does not crowd out supply through production: the principal
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does not start paying the agent until she has committed to supply projects that are more
cost-effective than money in all their future occurrences. Furthermore, in an optimal
contract the principal may even supply projects that are less cost-effective than money
if the availability of future transfer opportunities is sufficiently constrained. However, if
k is large and transfer opportunities are frequent, then the principal would always use
money instead of less cost-effective projects. Second, the direction of the flow of money
between the principal and the agent varies over the relationship’s lifetime: the principal
demands transfers from the agent early in the relationship and supplies transfers to the
agent later in the relationship.

No commitment for the principal. If the principal cannot commit to production de-
cisions, then the model must be augmented with history-dependent individual ratio-
nality constraints for the principal that cap her supply of projects. Cost-effectiveness
still drives project selection decisions, but with an important qualification: if the princi-
pal supplies a less cost-effective project, then she must also supply more cost-effective
projects in all succeeding histories in which none of her individual rationality con-
straints has been binding. This implies that some characterization of the optimal con-
tract in terms of threshold supply projects would still be possible without commitment
by the principal, but that pinning down general properties of the optimal contract dy-
namics would be difficult. Recall that if both sides can commit to production decisions,
then the threshold supply project is fixed over time, and if only the principal has com-
mitment power, then the threshold becomes more favorable to the agent over time to
incentivize demands. If the principal cannot commit either, then she must have incen-
tives to supply projects, which would imply a threshold that becomes less favorable to
the agent following some histories. Therefore, in contrast to our results, the optimal
contract typically does not stabilize in the long run. Absence of commitment power
for the principal would generate an inefficiency closely related to that discussed in Sec-
tion 4: the principal and the agent would be better off if past demands could incentivize
the principal’s current supply of projects, but without commitment, these can only be
supported by future demands.

Appendix

Proof of Lemma 1. Suppose, toward a contradiction, that κ∗ is optimal and that, for
some project history ut such that uP�t�uA�t > 0, we have that κ∗

t < 1. Fix a contract κ̃ that
is identical to κ∗ except that κ̃t = 1 at ut . It follows that κ̃ is individually rational because
κ∗ is individually rational. Furthermore, ŨP�t > U∗

P�t , yielding the desired contradiction.
The proof for the case of ut such that uP�t�uA�t < 0 is similar and is omitted.

We prove Proposition 2 before proving Proposition 1 to avoid repeating several argu-
ments that simplify in the context of Proposition 1.

Proof of Proposition 2. We proceed in a number of steps.
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Step 1. Fix an optimal contract κ∗, project history ut , its superhistories ut
′

and ut
′′
,

and projects w � w. Suppose that (i) ut ′ = w and (ii) ut ′′ =w and

t ′′−1∑
s=t+1

κ∗
s Ius∈DIU∗

A�s=0 = 0�19

We show that

if κ∗
t ′ < 1� then κ∗

t ′′ = 0�

To see this suppose, toward a contradiction, that κ∗
t ′ < 1 at ut

′
and that κ∗

t ′′ > 0 at ut
′′
.

Now consider an alternative contract κ̃, identical to κ∗ except that (i) κ∗
t ′ < κ̃t ′ ≤ 1 at ut

′
,

(ii) 0 ≤ κ̃t ′′ < κ∗
t ′′ at ut

′′
, (iii)

ŨA�t −U∗
A�t = δt

′−t
Pt

(
ut

′)[
κ̃t ′ − κ∗

t ′
]
wA − δt

′′−t
Pt

(
ut

′′)[
κ∗
t ′′ − κ̃t ′′

]
wA = 0� (5)

and (iv) U∗
A�r + δt

′′−r
Pr(u

t ′′)[κ̃t ′′ − κ∗
t ′′ ]wA ≥ 0 for any history ur that is a proper superhis-

tory of ut and a proper subhistory of ut
′′

(i.e., with t + 1 ≤ r ≤ t ′′ − 1), and such that κ∗
r > 0

and ur ∈ D. Because U∗
A�r > 0 for any history ur in (iv), such a contract always exists.

Furthermore, κ̃ is individually rational for the agent. To see this, first note that because
ŨA�t = U∗

A�t ≥ 0, we have that κ̃ satisfies (IRA�r ) for all times r ≤ t. Second, because

ŨA�t ′ >U∗
A�t ′ ≥ 0, it follows that given any time r > t and history ur that is not a subhis-

tory of ut
′′
, we have that ŨA�r ≥U∗

A�r ≥ 0. Third, even though we have that ŨA�t ′′ <U∗
A�t ′′ ,

because κ̃t ′′uA�t ′′ = κ̃t ′′wA ≥ 0 it also follows that

ŨA�t ′′ ≥ δEt ′′U
∗
A�t ′′+1

≥ 0�

Finally, consider history ur that is a proper superhistory of ut and a proper subhistory of
ut

′′
(i.e., with t + 1 ≤ r ≤ t ′′ − 1). Suppose κ̃ satisfies (IRA�r+1) for ur+1 that is a subhistory

of ut
′′
. If κ̃ruA�r ≥ 0, then it follows that

ŨA�r ≥ δErŨA�r+1

≥ 0�

If κ̃ruA�r < 0, then κ̃r = κ∗
r > 0 and ur ∈ D, and from (iv) it follows that

ŨA�r =U∗
A�r + δt

′′−r
Pr

(
ut

′′)[
κ̃t ′′ − κ∗

t ′′
]
wA ≥ 0�

19Throughout,
∑t′′−1

s=t+1 κ
∗
s Ius∈DIU∗

A�s=0 = 0 denotes that, given history ut and its superhistory ut
′′

, for any

history us that is a proper superhistory of ut and a proper subhistory of ut
′′

(i.e., with t + 1 ≤ s ≤ t ′′ − 1),
either κ∗

s = 0 or us /∈ D or U∗
A�s > 0.
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It thus follows recursively that κ̃ satisfies (IRA�r ) for all times t + 1 ≤ r ≤ t ′′ − 1. It remains

only to note that, by (5), we have

ŨP�t −U∗
P�t = −δt

′−t
Pt

(
ut

′)[
κ̃t ′ − κ∗

t ′
]|wP | + δt

′′−t
Pt

(
ut

′′)[
κ∗
t ′′ − κ̃t ′′

]|wP |

= δt
′′−t

Pt
(
ut

′′)[
κ∗
t ′′ − κ̃t ′′

]|wP |
[

1 − |wP |/wA

|wP |/wA

]

> 0�

where the inequality follows because w � w, contradicting the optimality of κ∗.

Step 2. Step 1 implies that to any optimal contract κ∗ there corresponds a history-

dependent threshold project mapping W ∗ :H → S such that, for all times t and histories

ut ,

κ∗
t =

{
1 if W ∗

t �wt�

0 if wt �W ∗
t �

where for simplicity we denote W ∗(ut) by W ∗
t , with the project history understood. For

any history ut = (ut−1�ut), the threshold is given by

W ∗(ut) = max�

{{
W ∗(ut−1)} ∪

{
w : Pt

(
κ∗
t ′ > 0�ut ′ =w�

t ′−1∑
s=t+1

κ∗
s Ius∈DIU∗

A�s=0 = 0

)
> 0

}}
�

where we set W ∗(u0) = min� S .20 By construction, W ∗
t is nondecreasing with re-

spect to � and is such that, given any history ut and its superhistory ut
′
, W ∗

t ′ = W ∗
t if∑t ′

s=t+1 κ
∗
s Ius∈DIU∗

A�s=0 = 0. This proves parts (i) and (iii) of Proposition 2.

Step 3. Fix an optimal contract κ∗ and project history ut = (ut−1� vt), where vt �
min�{w � W ∗

t−1}. We show that κ∗
t > 0. To see this suppose, toward a contradiction, that

κ∗
t = 0. Because κ∗

t = 0, we have W ∗
t−1 = W ∗

t . Hence, because vt � min�{w � W ∗
t−1}, there

exists ut+1 = (ut−1� vt�wt+1) such that vt � wt+1 � W ∗
t , where wt+1 � W ∗

t and part (i) of

Proposition 2 imply κ∗
t+1 = 0. Now consider an alternative contract κ̃, identical to κ∗

except that (i) κ∗
t < κ̃t ≤ 1 at ut , (ii) κ∗

t+1 < κ̃t+1 ≤ 1 at ut+1, and (iii)

ŨA�t −U∗
A�t = [

κ̃t − κ∗
t

]
vA�t + δPt

(
ut+1)[κ̃t+1 − κ∗

t+1
]
wA�t+1 = 0� (6)

Such a contract always exists. Furthermore, κ̃ is individually rational for the agent:

because ŨA�t = U∗
A�t ≥ 0, κ̃ satisfies (IRA�r ) for all times r ≤ t, and because ŨA�t+1 ≥

U∗
A�t+1 ≥ 0, κ̃ satisfies (IRA�r ) for all times r ≥ t + 1. It remains only to note that, by (6),

20Throughout, Pt (κ
∗
t′ > 0�ut′ = w�

∑t′−1
s=t+1 κ

∗
s Ius∈DIU∗

A�s=0 = 0) denotes Pt (u
t′) of a superhistory ut

′
of ut

with κ∗
t′ > 0, ut′ = w, and

∑t′−1
s=t+1 κ

∗
s Ius∈DIU∗

A�s=0 = 0.
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we have

ŨP�t −U∗
P�t = [

κ̃t − κ∗
t

]
vP�t + δPt

(
ut+1)[κ̃t+1 − κ∗

t+1
]
wP�t+1

= [
κ̃t − κ∗

t

]
vP�t

[
1 − |wP�t+1|/wA�t+1

vP�t/|vA�t |
]

> 0�

where the inequality follows because vt �wt+1, contradicting the optimality of κ∗.
Step 4. Fix an optimal contract κ∗ and project history ut = (ut−1� vt), where

max�{W ∗
t−1 � w} � vt . We show that κ∗

t = 0. To see this suppose, toward a contradic-
tion, that κ∗

t > 0. We have either W ∗
t = W ∗

t−1 or W ∗
t � W ∗

t−1. Hence, because max�{W ∗
t−1 �

w} � vt , there exists ut+1 = (ut−1� vt�wt+1) such that W ∗
t � wt+1 � vt , where W ∗

t � wt+1

and part (i) of Proposition 2 imply κ∗
t+1 = 1. Now consider an alternative contract κ̃,

identical to κ∗ except that (i) 0 ≤ κ̃t < κ∗
t at ut , (ii) 0 ≤ κ̃t+1 < κ∗

t+1 at ut+1, and (iii)

U∗
A�t − ŨA�t = [

κ∗
t − κ̃t

]
vA�t + δPt

(
ut+1)[κ∗

t+1 − κ̃t+1
]
wA�t+1 = 0� (7)

Such a contract always exists. Furthermore, κ̃ is individually rational for the agent. To
see this, first note that because ŨA�t =U∗

A�t ≥ 0, κ̃ satisfies (IRA�r ) for all times r ≤ t. Sec-

ond, even though we have that ŨA�t+1 <U∗
A�t+1, because κ̃t+1wA�t+1 ≥ 0, it also follows

that

ŨA�t+1 ≥ δEt+1U
∗
A�t+2

≥ 0

and, hence, κ̃ satisfies (IRA�r ) for all times r ≥ t + 1. It remains only to note that, by (7),
we have

U∗
P�t − ŨP�t = [

κ∗
t − κ̃t

]
vP�t + δPt

(
ut+1)[κ∗

t+1 − κ̃t+1
]
wP�t+1

= [
κ∗
t − κ̃t

]
vP�t

[
1 − |wP�t+1|/wA�t+1

vP�t/|vA�t |
]

< 0�

where the inequality follows because wt+1 � vt , contradicting the optimality of κ∗. Steps
3 and 4 jointly imply part (ii) of Proposition 2.

Proof of Proposition 1. We specialize the results of Proposition 2 for optimal con-
tracts to establish our results for efficient contracts. Recall that efficient contracts are
solutions to

max
κ∈K

E0UP�1 subject to E0UA�1 ≥ u�

Fix any efficient contract κe and consider histories ut and ut
′
. First, arguments closely

mirroring those of Step 1 in the proof of Proposition 2 show that

if κet < 1� then κet ′ = 0 if either wt ′ �wt or vt � vt ′ �
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Second, arguments mirroring those of Steps 3 and 4 show that

if κe
t < 1� then κe

t ′ = 1 if vt ′ �w�

if κe
t > 0� then κe

t ′ = 0 if wt � vt ′ �

In fact, all the arguments from the previous steps are simplified because the only indi-
vidual rationality constraint for the agent is the ex ante one. Third, define the following
sets of projects:

Se
1 = {

w : κe
t = 1 for any ut with ut =w

}
� De

1 = {
v : κe

t = 1 for any ut with ut = v
}
�

Se
0 = {

w : κe
t = 0 for any ut with ut =w

}
� De

0 = {
v : κe

t = 0 for any ut with ut = v
}
�

Se
i = S \ (

Se
1 ∪ Se

0
)
� De

i = D \ (
De

1 ∪De
0
)
�

Note that from our preceding results we have that

given any u ∈ De
0 ∪De

i ∪ Se
1 ∪ Se

i � u� v implies v ∈ De
0 and u�w implies w ∈ Se

1 �

given any u ∈ De
i ∪De

1 ∪ Se
i ∪ Se

0 � v � u implies v ∈ De
1 and w � u implies w ∈ Se

0 �
(8)

Therefore, De
i and Se

i each include at most one project and at most one of these sets is
nonempty so that even De

i ∪ Se
i includes at most one project. Therefore, we can set

Ue

⎧⎪⎪⎨
⎪⎪⎩

∈ De
i ∪ Se

i if De
i ∪ Se

i �=∅�

= max� De
0 ∪ Se

1 if De
i ∪ Se

i =∅ and De
0 ∪ Se

1 �= ∅�

= min� D ∪ S if De
i ∪ Se

i =∅ and De
0 ∪ Se

1 = ∅�

Proposition 1 then follows from (8).
Notice that our results above do not pin down production probabilities at projects in

De
i ∪Se

i . However, a simple selection from the set of efficient contracts allows a complete
characterization of κe. Specifically, given the linearity of payoffs in production proba-
bilities, it is immediate that it is without of loss of generality for optimal payoffs to as-
sume that κe prescribes equal production probability at all histories ut with ut ∈ De

i ∪Se
i :

we can restrict attention to contracts such that κe
t = k∗

D ∈ [0�1] for any history ut with
ut ∈ De

i and κe
t = k∗

S ∈ [0�1] for any history ut with ut ∈ Se
i . Now define threshold project

u∗ =Ue ∈ D ∪ S along with threshold production probability k∗ ∈ [0�1] as

k∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − k∗
D if u∗ ∈ De

i �

k∗
S if u∗ ∈ Se

i �

1 if De
i ∪ Se

i = ∅ and De
0 ∪ Se

1 �=∅�

0 if De
i ∪ Se

i = ∅ and De
0 ∪ Se

1 =∅�

The reason for expressing k∗ = 1 − k∗
D when u∗ ∈ De

i will become clear in the proof of
Proposition 3 below, where we apply our results on efficient contracts to characterize
optimal contracts when the project process is Markov. There we order demands v ∈ D
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by their expensiveness to the principal, so that whether the threshold u∗ is a demand
or a supply project, our formulation of the threshold production probability k∗ always
identifies the scale of the principal’s costs. Finally, by (8), it follows that, given any history
ut , we have that

κe
t =

⎧⎪⎪⎨
⎪⎪⎩

1 if vt � u∗�
1 − k∗ if vt = u∗�
0 if u∗ � vt

(9)

and that

κe
t =

⎧⎪⎪⎨
⎪⎪⎩

1 if u∗ �wt�

k∗ if wt = u∗�
0 if wt � u∗�

(10)

Proof of Proposition 3. Our characterization of optimal contracts with Markov
project processes in Proposition 3 shows how to define the cutoff supply project from
Proposition 2 through a recursive rule involving fixed threshold {W v}v∈D associated to
all demand projects. Our proof of this result follows from the construction of an optimal
contract. We proceed in a number of steps.

Step 1. Fix project v′ ∈ D and suppose that u1 = v′. We define the reduced problem

max
κ∈K

UP�1 subject to UA�1 ≥ 0. (11)

Notice that problem (11) is a special case of the problem solved by efficient contracts.
Therefore, as in the proof of Proposition 1, we can conclude that the solution κ∗ to (11)
can be characterized by threshold project u∗ and production probability k∗, as described
in (9) and (10).

Step 2. We can rank the solutions to (11) for various v′ ∈ D for which u1 = v′ in terms
of how expensive they are to the principal. Specifically, fix v� v ∈ D and consider the as-
sociated solutions κ∗ and κ∗ to the problem (11) with u1 = v and u1 = v, respectively. If
either u∗ � u∗ or u∗ = u∗ and k

∗
> k∗, then we say that the contract κ∗ is more expen-

sive for the principal than contract κ∗. In words, when these conditions are met, then
κ∗ demands less of every project v ∈ D and supplies more of every project w ∈ S than
does κ∗. Formally, this is a different definition of expensiveness for demand projects as
that in the text, and all references to expensiveness in the remainder of the proof refer to
this definition. The notion of expensiveness in the text, which is based on the thresholds
W v defined in this proof, is easily seen to be a consequence of the notion defined here.
Fix any project u and some history ut such that ut = u, and let Ui denote the payoff to
i from contract κ∗ starting from ut and let Ui denote the payoff to i from contract κ∗
starting from ut : these payoffs are history-independent because u is Markov and both
contracts κ∗ and κ∗ are stationary. Furthermore, it follows that if κ∗ is more expensive
for the principal than κ∗, so then we have that UA ≥ UA. An implication is that, for any
t, contract κ∗ must still satisfy (IRA�t ) if ut = v, but that contract κ∗ does not in general
satisfy (IRA�t ) if ut = v.
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Step 3. Let v1 ∈ D be the project for which the solution κ1∗ to problem (11) with
u1 = v1 is the most expensive for the principal among all solutions to (11) with u1 = v′ for
some v′ ∈ D. Suppose that κ1∗

1 = 0. We show that, for all demand projects v′ ∈ D, the solu-
tion κv′∗ to (11) given u1 = v′ has κv′∗

t = 0 at all histories ut . First, if κ1∗
1 = 0, then (i) there is

no project u ∈ U such that uP�uA > 0 and (ii) κ1∗
t = 0 for all histories (ut−1�wt). Suppose,

toward a contradiction, that uP�uA > 0 for some u ∈ U or that κ1∗
t > 0 for some history

(ut−1�wt). Then there exists history ut such that κ1∗
t uA�t > 0 and, because contract κ1∗ is

stationary, there exists history u2 such that κ1∗
2 uA�2 > 0. Because κ1∗ is the most expen-

sive for the principal among all solutions to (11) with u1 = v′ for some v′ ∈ D, U1∗
A�t ≥ 0

at any ut . Hence, κ1∗
1 = 0 and κ1∗

2 uA�2 > 0 imply U1∗
A�1 > 0, a contradiction because then

there exists an alternative contract κ̃ identical to κ1∗ except that κ̃1 > 0, ŨA�1 ≥ 0, and
ŨP�1 > U1∗

P�1. Second, because κ1∗
t = 0 for all histories (ut−1�wt) and because κ1∗ is the

most expensive for the principal among all solutions to (11) with u1 = v′ for some v′ ∈ D,
we have, for all v′ ∈ D, κv′∗

t = 0 for all histories (ut−1�wt) and, hence, because there are
no projects u ∈ U with uP�uA > 0, κv′∗

t = 0 also for all histories (ut−1� vt). In this case,
which arises if and only if uP�uA > 0 for no project u ∈ U and w � v for all w ∈ S and
v ∈ D, our construction of the optimal contract is completed and the optimal contract
calls for no production for all projects u ∈ D ∪ S . Therefore, to proceed to the next step
we can assume that κ1∗

1 > 0.
From Step 2, we know that following any history ut with t ≥ 2, contract κ1∗ satis-

fies (IRA�t ). Also, note that by the construction of problem (11), no individually rational
contract delivers a higher payoff to the principal than κ1∗ at any history ut with ut = v1.

Step 4. Define the set of projects V 1 = {v1} with associated set of contracts K1 = {κ1∗}.
Now inductively fix a set of projects V n−1 = {v1� � � � � vn−1} and associated set of contracts
Kn−1 = {κ1∗� � � � �κn−1∗}. Assume that (i) each κj∗ is individually rational following all
histories and that (ii) no individually rational contract delivers a higher payoff to the
principal than κj∗ following any history ut with ut = vj . Further assume that (iii) the
contracts in Kn−1 are ordered by their expensiveness for the principal (with κ1∗ the most
expensive and κn−1∗ the least expensive). Fix any project v′ ∈ D \ V n−1 and suppose that
u1 = v′. We define the reduced problem

max
κ∈K

UP�1 subject to UA�1 ≥ 0 and

κ= κj∗ following all histories with vt = vj ∈ V t−1 and ut ′ /∈ V n−1 for all t ′ < t. (12)

This problem corresponds closely to the problem (11), with the additional requirement
that the contract κj∗ be adopted following the first arrival of an opportunity to demand
project vj ∈ V n−1 (knowing that, following that history, the agent’s individual rational-
ity constraint binds). As in Step 1 for problem (11), it is clear that the arguments from
the proof of Proposition 1 can be adapted to show that there exists a solution κ∗ to (12)
that, for all histories ut with ut ′ /∈ V n−1 for all t ′ ≤ t, is characterized by threshold project
u∗ and production probability k∗. In words, these thresholds are valid until the con-
tract transitions to κj∗ for some j ∈ {1� � � � � n − 1}. Furthermore, given simple adapta-
tions of the arguments in Step 2 for problem (11), it can be shown that solutions to (12)
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for projects v′ ∈ D \ V n−1 can be ranked according to how expensive they are for the
principal.

Step 5. Let vn ∈ D \ V n−1 be the project for which the solution κn∗ to problem (12)
with u1 = vn is the most expensive for the principal among all solutions to (12) with
u1 = v′ for some v′ ∈ D \ V n−1. By an argument along the lines of Step 3, it can be shown
that if κn∗

1 = 0, then for all demand projects v′ ∈ D \ V n−1, the solution κv′∗ to (12) has
κv

′∗
t = 0 for any history (ut−1�wt) and (ut−1� vt) prior to the transition to some contract

in Kn−1. In this case, which arises if and only if uP�uA > 0 for no project u ∈ U and w � v

for all w ∈ S and v ∈ D \V n−1, our construction of the optimal contract is completed and
this contract calls for no production for all projects u ∈ (D \ V n−1) ∪ S until a transition
to some contract in Kn−1 occurs. Therefore, to proceed to the next step, we can assume
that κn∗

1 > 0.
Arguments as in Step 3 for problem (11) establish that contract κn∗ is such that (i) it

satisfies (IRA�t ) following any history ut and (ii) no individually rational contract delivers
a higher payoff to the principal than κn∗ at any history ut with ut = vn.

Step 6. It remains to be verified that the contracts κn−1∗ and κn∗ are ranked by
their expensiveness for the principal (with κn−1∗ being more expensive). Let v = vn and
v = vn−1. First, note that by construction, the contract κn−1∗ that solved the version of
problem (12) at stage n − 1 (given sets V n−2 and Kn−2) with u1 = v was less expensive
than κn−1∗. Second, given u1 = v, problem (12) at stage n differs from the version of this
problem at stage n − 1 only through the additional constraint that the contract transi-
tions to κn−1∗ following all histories with ut = v. Because following all such histories the
agent’s payoff is higher under κn−1∗ than under κn−1∗, it follows that κn∗ is less expen-
sive for the principal than κn−1∗, which in turn is less expensive than κn−1∗, yielding the
desired result.

The previous step concludes the inductive construction of the optimal contract. The
final issue is to relate this contract to its characterization in Proposition 3. Given any v ∈
D for which the construction above assigns some stage j at which v is the most expensive
demand for the principal, let uj∗ denote the threshold project that characterizes κj∗. In
this case, define W v = uj

∗
if uj∗ ∈ S and W v = max�{max�{uj∗ � w}�min� S} if uj∗ ∈ D.

Given any other demand project v, define W v = min� S .

Proof of Corollary 1. Suppose that the project process u is i.i.d., fix some history ut

along with a contract κ, consider the agent’s payoff

UA�t = κtuA�t + δEtUA�t+1�

and note that EtUA�t+1 is independent of ut . It follows that if |vA| ≥ |vA|, then the so-
lution to problem (11) with u1 = v cannot be more expensive for the principal than the
solution to problem (11) with u1 = v. The same property holds for solutions to problem
(12). The threshold projects u∗ and u∗ associated to projects v and v thus satisfy either
u∗ = u∗ or u∗ � v∗, and, hence, either W v = W v or W v �W v.

Proof of Corollary 2. The result follows by showing that if Conditions 1–3 are satis-
fied, then given any stage n of the construction of the optimal contract in Proposition 3,
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the solution to problem (12) with u1 = v cannot be more expensive for the principal
than the solution to problem (12) with u1 = v (we omit the simpler argument showing
the same property for solutions to problem (11)). To this end, fix a set of projects V n−1

with v� v /∈ V n−1 and consider the solution from problem (12) given u1 = v, which spec-
ifies production probability κ∗

1 at t = 1 along with threshold u∗ and production proba-

bility k
∗

at all times t > 1 (prior to reaching some project v ∈ V n−1). Let U
∗
A�1 denote the

agent’s utility from this contract conditional on u1 = v, with UA�1 being the correspond-
ing expression for the same contract conditional on u1 = v. Given any time t > 1, let Ht

S
be the set of histories of length t in which only supply projects have occurred between
times 2 and t: that is, Ht

S = {ut : ut ′ ∈ S for all 2 ≤ t ′ ≤ t}. By Condition 2 and the fact

that the project process is Markov, it follows that the difference between UA�1 and U
∗
A�1

depends only on histories in Ht
S :

UA�1 −U
∗
A�1 = κ∗

1
[|vA| − |vA|] +

∑
t>1

δt
[
Pv

[
u∗ �wt�H

t
S
]
Ev

[
wA�t |u∗ �wt�H

t
S
]

− Pv

[
u∗ �wt�H

t
S
]
Ev

[
wA�t |u∗ �wt�H

t
S
]

+ [
Pv

[
wt = u∗�Ht

S
] − Pv

[
wt = u∗�Ht

S
]]
k

∗
u∗
A

]
≥ k

∗
Iu∗∈S

∑
t>1

δt
[
Pv

[|wP�t |/wA�t ≤ ∣∣u∗
P/u

∗
A

∣∣�Ht
S
]

×Ev
[
wA�t ||wP�t |/wA�t ≤ ∣∣u∗

P/u
∗
A

∣∣�Ht
S
]

− Pv

[|wP�t |/wA�t ≤ ∣∣u∗
P/u

∗
A

∣∣�Ht
S
]
Ev

[
wA�t ||wP�t |/wA�t ≤ ∣∣u∗

P/u
∗
A

∣∣�Ht
S
]]

+ (
1 − k

∗
Iu∗∈S

)∑
t>1

δt
[
Pv

[|wP�t |/wA�t <
∣∣u∗

P/u
∗
A

∣∣�Ht
S
]

×Ev
[
wA�t ||wP�t |/wA�t <

∣∣u∗
P/u

∗
A

∣∣�Ht
S
]

− Pv

[|wP�t |/wA�t <
∣∣u∗

P/u
∗
A

∣∣�Ht
S
]
Ev

[
wA�t ||wP�t |/wA�t <

∣∣u∗
P/u

∗
A

∣∣�Ht
S
]]
�

where the inequality follows from Condition 1. To show that UA�1 −U
∗
A�1 ≥ 0 and, hence,

that the contract associated to project v in problem (12) cannot be more expensive for
the principal than the contract associated to project v, we show that for all c ≥ 0, in-
equality (4) in Condition 3 implies the inequality

Pv

[|wP�t |/wA�t ≤ c�Ht
S
]
Ev

[
wA�t ||wP�t |/wA�t ≤ c�Ht

S
]

≤ Pv
[|wP�t |/wA�t ≤ c�Ht

S
]
Ev

[
wA�t ||wP�t |/wA�t ≤ c�Ht

S
]
� (13)

Note that the versions of (4) and (13) with the strict inequality |wP�t |/wA�t < c must hold
if (4) and (13), respectively, hold because U is finite. It is straightforward to compute that
(13) follows from (4) if, for any time t > 1 and any w ∈ S ,

Pv
[(
ut−1�w

)
/∈Ht

S
] = Pv

[(
ut−1�w

)
/∈ Ht

S
]
�

and this latter property can be shown by induction. If t = 2, then the claim follows be-
cause Pv[(v�w) /∈ H2

S ] = Pv[(v�w) /∈ H2
S ] = 0 for all w ∈ S . If the claim holds for all t − 1
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with t > 2, then note that, for any w ∈ S and any v ∈ {v� v},

Pv
[(
ut−1�w

)
/∈Ht

S
] =

∑
u∈U\S

Pv[ut−1 = u]Pv[ut =w|ut−1 = u]

+
∑
w′∈S

Pv
[(
ut−2�w′) /∈Ht−1

S
]
Pv

[
ut =w|ut−1 = w′]�

The conclusion follows from the facts that Pv[ut−1 = u] = Pv[ut−1 = u] for all u /∈ S by
Condition 2, that Pv[ut = w|ut−1 = u] and Pv[ut = w|ut−1 = w′] are independent of v be-
cause the project process is Markov, and that Pv[(ut−2�w′) /∈ Ht−1

S ] is independent of v
by the induction hypothesis.
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