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We study a dynamic matching environment where individuals arrive sequentially.
There is a trade-off between waiting for a thicker market, allowing for higher-
quality matches, and minimizing agents’ waiting costs. The optimal mechanism
cumulates a stock of incongruent pairs up to a threshold and matches all others in
an assortative fashion instantaneously. In discretionary settings, a similar proto-
col ensues in equilibrium, but expected queues are inefficiently long. We quantify
the welfare gain from centralization, which can be substantial, even for low wait-
ing costs. We also evaluate welfare improvements generated by alternative priority
protocols.

Keywords. Dynamic matching, mechanism design, market design, child adop-
tion, organ donation.

JEL classification. C61, C78, D47.

1. Introduction

1.1 Overview

Many matching processes are inherently dynamic, with participants arriving and
matches being created over time. For instance, in the child-adoption process, parents
and children arrive steadily—data from one U.S. adoption facilitator who links adop-
tive parents and birth mothers willing to relinquish children for adoption indicates a
rate of about 11 new potential adoptive parents and 13 new birth mothers entering the
facilitator’s operation each month.1 While the overall statistics on the entry of parents
and children into the U.S. adoption process are not well documented, adoption touches
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details.
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upon many lives: The Census 2010 indicates that about 1�5 million or 2�4% of all chil-
dren have been adopted. Likewise, many labor markets entail unemployed workers and
job openings that become available at different periods. A similar picture emerges when
considering organ donation. According to the Organ Donation and Transplantation
Statistics, a new patient is added to the kidney transplant list every 14 minutes and about
3000 patients are added to the kidney transplant list each month. A significant fraction
of transplants are carried out using live donors—in 2014, about a third of approximately
17,000 kidney transplants that took place in the U.S. involved such donors.

Nonetheless, by and large, the extant matching literature has taken a static approach
to market design—participants all enter at the same time and the market’s operations
are restricted in their horizon (see the literature review below for several important ex-
ceptions). In the current paper, we offer techniques for extending that approach to dy-
namic settings.

All of the examples mentioned above share two important features. First, match
quality varies and agents care about whom they match with. Second, waiting for a match
is costly, be it for financial costs of keeping lawyers on retainer for potential adoptive
parents, children’s hardship from growing older in the care of social services, the lack of
wages and needed employees in labor markets, or medical risks for organ patients and
psychological waiting costs for donors. These two features introduce a crucial trade-off.
On the one hand, a thick market can help generate a greater match surplus; on the other
hand, a thin market allows for quicker matching and cuts down on waiting costs. The
goal of this paper is to characterize the resolution of this trade-off in both centralized
and relatively more decentralized environments. Namely, we identify the optimal proto-
col by which a social planner would match agents over time. We also identify conditions
under which discretionary matching processes would especially benefit from central-
ized intervention using the optimal protocol.

Specifically, we consider a market that evolves dynamically. There are two classes of
agents, which we refer to as “squares” and “rounds.” At each period, a pair consisting
of a square and a round enters the market. Squares and rounds each have two types,
one type more desirable than the other. For instance, if we think of squares and rounds
as children relinquished for adoption and potential adoptive parents, types can stand
for gender of children and wealth levels of potential adoptive parents, respectively (see
Baccara et al. 2014). Alternatively, if we think of the two classes of agents as workers
and firms, worker types can correspond to skills and firm types can correspond to vari-
ous benefit packages offered. We assume that preferences are supermodular so that the
(market-wide) assortative matching maximizes joint welfare. We also assume that, once
agents arrive at the market, waiting before being matched comes at a per-period cost.

We start by analyzing the optimal matching mechanism in such settings, the mech-
anism that maximizes the expected per-period payoffs for market participants. We
show that the optimal mechanism takes a simple form. Whenever congruent pairs of
agents—a square and round that are of the same type—are present in the market, they
are matched instantaneously. When only incongruent agents are present in the market,
they are held in a queue. When the stock of incongruent pairs in the queue exceeds a
certain threshold, they are matched in sequence, until the queue length falls back within
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the threshold. Such thresholds induce a Markov process, where states correspond to the
length of queues of incongruent agent pairs. Any threshold yields a different steady-
state distribution over possible queue lengths. We evaluate the expected welfare of such
threshold mechanisms in the steady state. The optimal mechanism utilizes the thresh-
old that maximizes welfare. When waiting costs are vanishingly small, the welfare un-
der the optimal mechanism approaches the maximum feasible, that generated by no
matches of incongruent pairs. As waiting costs increase, the welfare generated by the
optimal mechanism decreases.

This welfare decrease raises the question of the value of dynamic clearinghouses
for non-trivial waiting costs in different environments, identified by type distributions
and preferences. We therefore study the performance of a simple discretionary match-
ing process in our setting. As before, we consider agents arriving at the market in se-
quence. At each period, agents in the market declare their willingness to match with
partners of either type. After these demands have been made, the maximal number of
pairs of willing agents are matched in order of arrival (first-in-first-out, or FIFO proto-
col).2 Those who prefer to stay in the market, or have to stay for lack of willing partners,
form a queue.3 In our environment, desirable individuals waiting in the market impose
three types of externalities. First, they impose a longer wait and potentially missed desir-
able matches on those that follow them in the queue. Second, they prevent undesirable
agents present in the market from matching immediately. Last, they impose a positive
externality on desirable agents on the other side of the market, who are more likely to get
a quicker match with a preferable partner. As it turns out, the negative externalities of
waiting dominate and lead to excessive waiting in the discretionary setting. In fact, the
matching protocol induced by equilibrium in the discretionary matching process ends
up resembling the protocol corresponding to the optimal mechanism, but with higher
thresholds for the queues’ lengths.

We evaluate the difference in welfare generated by a centralized and a discretionary
process as a function of the environment’s primitives—agents’ type distribution and
waiting costs. Regarding the type distribution, as the frequency of desirable types in-
creases, the option value of waiting becomes higher and the wedge between the perfor-
mance of the centralized and discretionary processes grows. The comparative statics
with respect to waiting costs are more subtle. An increase in the cost of waiting has a di-
rect and indirect effect. The direct effect is due to the longer expected queues in the dis-
cretionary setting. Fixing the expected queue lengths corresponding to both processes,
an increase in per-period waiting costs has a multiplier effect—the generated welfare
differential is the difference between the expected time agents wait in queue under the
two processes, multiplied by the change in costs. The indirect effect is that both the opti-
mal threshold as well as the equilibrium threshold in the discretionary process decrease
with waiting costs. The difference between these two thresholds therefore narrows as
costs increase, which mutes the welfare gap between the two processes. We show that
the combination of these effects leads to a welfare wedge that is locally increasing in

2This process is reminiscent of a double auction, as each agent submits a “demand function” specifying
that types of agents she would be interested in matching with immediately.

3The process is individually rational for all under preference restrictions we provide.
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costs, but exhibits a general decreasing trend. Ultimately, when costs are prohibitively
high, both processes lead to instantaneous matches and identical welfare levels.

The discretionary process we focus on relies on the FIFO protocol. While this seems
to approximate many real-life decentralized processes, we also analyze a discretionary
setting governed by a last-in-first-out (LIFO) priority protocol. We show that this al-
ternative protocol also generates excessive waiting, but less so than the FIFO protocol.
Finally, we consider an extension of our model to general asymmetric environments.

1.2 Related literature

The interest surrounding dynamic matching is recent and the literature on this topic
is still relatively limited. Much of this literature stemmed from the organ-donation ap-
plication, and has therefore focused on compatibility-based preferences. In contrast,
we aim to speak to applications—such as child adoption and labor markets—in which
agents on both sides of the market have preferences over potential matches.

Zenios (1999) develops a queueing model to explain the differences between wait-
ing times of different categories of patients anticipating a kidney transplant. In the con-
text of kidney exchange, Ünver (2010) focuses on a market in which donors and recip-
ients arrive stochastically, and the central planner’s objective is to minimize total dis-
counted waiting costs. He shows that when multiway matches are possible, some two-
way matches could be optimally withheld in order to allow future multiway matches.4

Akbarpour et al. (2020), like us, inspect the benefits of different mechanisms in a
dynamic matching environment. In their setting, however, preferences are based on
compatibility. Agents in the system become “critical” at random dates, and perish im-
mediately if they are unmatched. Therefore, when waiting costs are negligible, the goal
of the planner is to minimize the number of perished agents. Market thickness is ben-
eficial in that it guarantees the availability of immediate matches for agents who be-
come critical. In contrast with our setting, left to their own devices, agents would match
quickly and useful mechanisms induce agents to wait. While the welfare benchmark in
Akbarpour et al. (2020) is that of an omniscient planner, our different focus allows us to
fully characterize the optimal mechanism, which serves as our benchmark for welfare
comparisons.

Loertscher et al. (2018) follow up on our paper and focus on the optimal mechanism
when the planner and participants discount future utilities. The interpretation of the ob-
jective function in their setting is subtle. When two agents of identical types who arrived
at different times are matched at date t, the agents experience different discounted utili-
ties, but the planner’s utility from the two matches is identical. Similarly, when assessing
future matches, the planner cares only about when they are formed. That is, individual
costs of delay do not enter the planner’s objective function. Doval and Szentes (2019)
also follow up on this paper and consider a planner who benefits from the discounted
utility agents receive in steady state. In their setting, once agents have been in the mar-
ket for a while, their impact on welfare becomes vanishingly small. The planner is then

4Some recent models in inventory control have a similar flavor to the compatibility-based matching
process considered by Ünver (2010); see, e.g., Gurvich and Ward (2014) and Hu and Zhou (2018).
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willing to “store” agents for a long while in hopes of them allowing new arrivals to match
quickly. While the fully-optimal mechanism is not analyzed, results suggest that, natu-
rally, the planner may impose more waiting on individuals than they themselves would
in a discretionary FIFO protocol.

Dynamic assignments, where only one side of the market has agency, have received
attention in the queueing literature. For instance, Naor (1969) illustrates that individ-
uals who decide whether to join a FIFO queue for some service may wait excessively.
Waiting agents impose a purely negative externality by increasing expected wait time
of others joining the queue. Hassin (1985) shows that a LIFO queue yields equilibrium
behavior that emulates the socially optimal. The negative externality in these papers is
also present in ours. However, the two-sided nature of our setting introduces additional
positive externalities. Consequently, the analysis of our decentralized process is quite
different. In particular, LIFO protocols do not generally yield socially-optimal outcomes.

Related, Leshno (2019) studies a one-sided market in which potentially-
heterogeneous objects are allocated to agents who wait in a queue. With incomplete
information on agents’ preferences, a policy that introduces delays can be beneficial.5  

Anderson et al. (2017) study an environment in which each agent is endowed with an
item that can be exchanged with an item owned by someone else and compatibility
is stochastic. They find that a policy that maximizes immediate exchanges performs
nearly optimally.6,7

There is recent work that studies discretionary matching processes that are dy-
namic, considering both informational and time frictions (e.g., Ferdowsian et al. 2020,
Haeringer and Wooders 2011, and Pais 2008). In that literature, the number of agents on
each side of the market is fixed at the outset, but interactions occur over time. Time and
information frictions constitute obstacles to stability.

The search and matching literature is also related (e.g., Burdett and Coles 1997, Eeck-
hout 1999, and the survey by Rogerson et al. 2005). There, each period, workers and
firms randomly encounter each other and decide jointly whether to pursue a match and
leave the market or separate and wait further. With assortative preferences, as time fric-
tions vanish, generated outcomes approximate a stable matching. A crucial difference
with our setting is the market’s stationarity—the perceived distribution of potential part-
ners does not change with time, and each side of the market solves an option value prob-
lem.

Last, a large literature considers dynamic matching of buyers and sellers and in-
spects protocols that increase efficiency or allow for Walrasian equilibrium outcomes
to emerge with increasingly patient agents (see, e.g., Satterthwaite and Shneyerov 2007
and Taylor 1995).

5See also Bloch and Cantala (2017), Ortoleva et al. (2020), and Schummer (2019).
6On the benefits of creating thicker pools in sparse dynamic allocation settings, see also Ashlagi et al.

(2014), Ashlagi et al. (2019), and references there.
7While most of this literature has focused on market design, Doval (2020) introduces a notion of stability

in dynamic environments and provides conditions under which dynamically stable allocations exist.
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2. Setup

We study an infinite-horizon dynamic matching market. There are two kinds of agents:
squares and rounds. Squares and rounds can stand for potential adoptive parents and
children relinquished for adoption, workers and employers, patients and (good samar-
itan) donors, etc. At each time t ∈ {1�2� � � � }, one square and one round arrive at the
market. Each square can be of either type “high” (H) or “low” (L) with probability p or
1 −p, respectively, and each round can be of type “high” (h) or “low” (l) with probability
p or 1 − p, respectively. These types correspond to the attributes of participants—they
can stand for the wealth of parents and race of children in the adoption application, level
of education of employees, and social benefits or promotion likelihoods for employers
in labor markets, age or tissue types in the organ donation context, etc.8

In our model, squares seek to match with rounds and vice versa. We denote byUx(y)
the surplus for a type-x participant from matching with a type-y participant. We as-
sume that preferences are assortative: H-squares are more desirable for all rounds and
h-rounds are more desirable for all squares. That is,

UH(h) >UH(l)� UL(h) >UL(l)�

Uh(H) >Uh(L)� Ul(H) >Ul(L)�

It will be convenient to denote:

UHh ≡UH(h)+Uh(H)� UHl ≡UH(l)+Ul(H)�
ULh ≡UL(h)+Uh(L)� ULl ≡UL(l)+Ul(L)�

as well as

U ≡UHh +ULl −UHl −ULh�
We will further assume thatU > 0 so that the utilitarian-efficient matching in a static

market creates the maximal number of (H�h) and (L� l) pairs. The value of U captures
the efficiency gain from the assortative matching relative to the antiassortative match-
ing. Notice thatU > 0 is tantamount to assuming supermodular assortative preferences
(à la Becker 1974) andU can be thought of as the degree of supermodularity preferences
exhibit. We assume that each square and round suffer a cost c > 0 for each period they
spend on the market waiting to be matched, and that agents leave the market only by
matching.9

8In some markets, wages differ across individual employees and can be thought of as transfers, which
this paper does not handle. However, Hall and Krueger (2012) suggest that a large fraction of jobs have
posted wages that do not appear to reflect general equilibrium wages tailored to the precise composition of
the market. Our model speaks to this segment of the market.

9In the working-paper version, Baccara et al. (2018), we provide bounds on agents’ utility from remaining
unmatched that assure this assumption is consistent with individual rationality. Specifically, we show that
individual rationality holds when all agents are acceptable and when any l-round receives a utility lower
than Ul(L)− p

1−p [Uh(H)−Uh(L)] when leaving the market unmatched (analogously for L-squares).
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Several assumptions merit discussion. We assume that preferences are supermodu-
lar and that waiting costs are identical for squares and rounds for presentation simplic-
ity. These assumptions are common in the literature, and as we describe in Section 5,
lead to a conservative comparison of the optimal and discretionary matching proto-
cols.10

The assumption that the distribution of round types mirrors that of squares also sim-
plifies our analysis. It implies that if we drew a large population of rounds and squares,
the realized distributions of types would be approximately balanced with high proba-
bility. This may be a fairly reasonable assumption for certain applications, such as or-
gan donation. Indeed, the literature does not report differences in tissue-type distribu-
tions of donors and patients.11 Our assumption also approximately holds for certain
attributes in the online-dating world (see Hitch et al. 2010). The techniques we intro-
duce can, however, be used even without this symmetry assumption. In Section 7, we
discuss how to replicate some of our analysis for general asymmetric environments.

In our setting, a pair of agents arrives at the market in each period. The analysis
would remain virtually identical were we to assume that pairs arrive at random times fol-
lowing, say, a Poisson distribution. Moreover, our results extend directly to markets with
multiple pairs arriving each period. The assumption that participants arrive in pairs is,
however, important for our techniques. It ensures that the market is balanced through-
out the matching process. It is a reasonable assumption for some applications. For
example, in the adoption process, Baccara et al. (2014) follow one adoption facilitator
over several years. They document a similar volume of potential adoptive parents and
children available for adoption appearing each month.12

In our model, agents incur a fixed cost c for every period they spend unmatched.
Additive waiting costs are a natural way to capture flow costs that agents incur while un-
matched in the system. For example, in the child-adoption setting, families seeking to
adopt a child retain attorneys until a match is found. Similarly, pregnant women plan-
ning to relinquish their newborns for adoption are responsible for their own living and

10Our analysis carries through fully if participants are horizontally differentiated. In particular, if H-
squares and h-rounds prefer one another and L-squares and l-rounds prefer one another, the utilitarian-
efficient static matching is assortative without further assumptions. This may be relevant in some child-
adoption contexts if both adoptive parents and birth mothers display what is often termed “homophilic
preferences,” preferring to match with individuals of their own race. We describe our results assuming
assortative preferences since they are a leading example in the extant literature and potentially tie to more
applications.

11Furthermore, the age of a donor is known to have a strong impact on the expected survival of a graft
(see, e.g., Gjertson 2004 and Øien et al. 2007) and younger recipients have been suggested as the natural
recipients of higher-quality organs (see Stein 2011). Our assumptions then fit a world in which both patients
and donors are classified as “young” or “mature” and patients’ and donors’ age distributions are similar.

12Allowing for independent arrivals of squares and rounds introduces new challenges. Indeed, consider
a symmetric environment in which a square arrives with probability q each period and, similarly, a round
arrives with probability q each period. In this setting, there is a probability that a long queue of squares
(or rounds) would form with no round (or square) available, of whichever type. In contrast with the setting
that we study in the paper, for any fixed value of the outside option, the optimal mechanism involves retir-
ing agents from the market without matches when a sufficiently long queue of individuals of their type is
formed.
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medical costs during the pregnancy until matched, when the agreed-upon adoptive par-
ents often cover these expenses. An alternative way to model waiting costs would be to
consider agents’ payoffs as discounted match utilities. As a first step, our criterion al-
lows us for greater tractability. To see why, notice that, in the presence of discounting,
the benefits of matching an agent would depend on the number of periods that agent al-
ready spent on the market. The relevant state space for the designer would then be vast.
Also, the randomness inherent in the environment suggests that the timing of matches
is potentially a random variable. Keeping track of expected exponentially discounted
values then introduces nontrivial complications.13

Last, we assume there are only two types of squares and rounds for tractability. While
this corresponds to a coarse description of many applications, the insights delivered by
our binary-type analysis are useful for tackling environments with richer type sets (for
more details, see Baccara et al. 2018).

3. Optimal dynamic matching

3.1 The matching process

At any time t ∈ {1�2� � � � }, after a new square-round pair enters the market, a queue cor-
responds to a vector st = (sH� sL� sh� sl), where each entry is the stock of squares or rounds
of a particular type waiting in line. We represent the profile of matches created at time t
by the vector mt = (mHh�mHl�mLh�mLl). For every st ∈ Z

4+, a match profile mt ∈ Z
4+ has

to satisfy a feasibility condition

mxh +mxl ≤ sx for x ∈ {H�L}�
mHy +mLy ≤ sy for y ∈ {h� l}�

The surplus generated by the matches is

S(m)≡
∑

(x�y)∈{H�L}×{h�l}
mxyUxy�

We denote the volume of remaining agents by kt = (kH�kL�kh�kl), where

kx = sx − (mxh +mxl) for x ∈ {H�L}�
ky = sy − (mHy +mLy) for y ∈ {h� l}�

The total waiting costs incurred by the remaining agents in period t are then

C(s�m)≡ c
( ∑
x∈{H�L�h�l}

kx

)
�

Finally, the welfare generated at time t is

w(s�m)≡ S(m)−C(s�m)�

13See Section 1.2 for a discussion of several follow-up papers to ours that introduce discounting without
fully characterizing the optimal mechanism.
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if the profile of matches m is feasible given the stock s, and w(s�m) = −∞ otherwise.
At time t + 1, the queue st+1 is determined by the number of remaining agents kt and
the types of agents arriving at t + 1. As an initial condition, we have k0 = (0�0�0�0).
A mechanism μ is any rule governing matching profiles. We evaluate a mechanism by
considering the average welfare it generates:

v(μ)≡ lim inf
T→∞

1
T
Eμ

[
T∑
t=1

w
(
st �mt

)]
�

For any mechanism μ, v(μ) ∈ R ∪ {−∞}, and the average welfare is bounded above by
UHh. This criterion allows us to focus on the long-run performance of mechanisms. We
say that μ∗ is optimal if v(μ∗)= supμ v(μ).

14

We will consider the class of mechanisms that satisfy the following two assumptions.
Restricting attention to mechanisms that satisfy Assumptions 1 and 2 implies no loss of
generality, but simplifies the presentation (see Lemma A1 in the Appendix for details).

Assumption 1. (H�h) and (L� l) pairs are matched as soon as they become available.

Assumption 2. No more than U
2c squares (and rounds) are ever held in the market.

Assumption 1 requires an immediate match of congruent pairs. Intuitively, the only
reason to hold on to, say, an (H�h) pair is to create future (H� l) or (L�h) pairs. How-
ever, super-modularity implies that this is inferior to matching immediately the (H�h)
pair and then matching the future (L� l) pair. To understand Assumption 2, recall thatU
captures the extent of supermodularity of preferences—the utilitarian benefit of match-
ing congruent over incongruent pairs. Suppose more than U/2c squares (equivalently,
rounds) are held in the market. This implies that at least one pair has been waiting for
more than U/2c periods. The utility benefit for that pair is at most U , while the per-
period cost is 2c. It would have been more efficient to match that pair immediately.
Assumptions 1 and 2 guarantee that the relevant state space, corresponding to possi-
ble queue realizations, is finite. Standard techniques (see Ross 2014, and details in the
Appendix) allow us to focus on the set of stationary and deterministic mechanisms (SD-
mechanisms). The matches created by a SD-mechanism μSD : Z4+ → Z

4+ at every period
depend only on the queue in place at that period.

3.2 Structure of optimal dynamic mechanisms

Assumptions 1 and 2 imply that, at any point in time, an optimal dynamic mechanism
entails queues of only H-squares and l-rounds, or only L-squares and h-rounds. That

14This is a fairly standard approach; see, e.g., Ross (2014). We could have, in fact, applied an even stronger
notion of optimality following Puterman (2005), where a mechanism μ would be called “optimal” if

lim inf
T→∞

1
T
Eμ

[
T∑
t=1

w
(
st �mt

)]≥ lim sup
T→∞

1
T
Eμ′

[
T∑
t=1

w
(
st �mt

)]

for any other mechanism μ′.
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Figure 1. Structure of optimal and decentralized matching processes.

is, the queue can take the form of either (k�0�0�k) or (0�k�k�0), for some k ≥ 0. The
optimal dynamic mechanism is then identified by the maximal stock ofH-squares (and
l-rounds) and the maximal stock of h-rounds (and L-squares) that are kept waiting in
queue. In the following proposition, we characterize the structure of the optimal mech-
anism.15

Proposition 1 (Optimal mechanisms). An optimal dynamic mechanism is identified
by a pair of thresholds (k̄H� k̄h) ∈ Z+ such that:

(i) if more than k̄H H-squares are present, excess (H� l) pairs are matched immedi-
ately, and

(ii) if more than k̄h h-rounds are present, excess (L�h) pairs are matched immediately.

As will soon be stated formally, the symmetry of our environment assures that,
generically, an optimal mechanism corresponds to symmetric thresholds: k̄≡ k̄H = k̄h.
A dynamic mechanism with symmetric thresholds (k̄� k̄) as defined in Proposition 1 is
depicted in Figure 1, where kHh ≡ kH − kh captures the difference between the length
of the queue of H-squares and the length of the queue of h-rounds. We call kHh the
(signed) length of theH-h queue.

This process induces the following Markov chain. Let ktHh denote the number ofH-
squares (or l-rounds) minus the number of h-rounds (or L-squares) at the end of time
t, after the arrival of that period’s square-round pair and any matches imposed by the
mechanism. If an (H�h) or an (L� l) pair arrive in period t + 1, the mechanism matches
an (H�h) or an (L� l) pair immediately, and the state remains the same: ktHh = kt+1

Hh .
Suppose an (H� l) pair arrives in period t + 1. As long as 0 ≤ ktHh < k̄, the mechanism

creates no matches and kt+1
Hh becomes ktHh + 1. If ktHh < 0, the mechanism creates one

(H�h) match and one (L� l) match, and kt+1
Hh becomes ktHh + 1. Finally, if ktHh = k̄, the

mechanism creates one (H� l) pair, and kt+1
Hh remains the same: kt+1

Hh = ktHh = k̄. Analo-
gous transitions occur with the arrival of an (L�h) pair. Therefore, we can describe the

15In principle, there could be multiple mechanisms that are identified with the same thresholds. For

instance, consider a mechanism in which an (H� l) pair is matched whenever there are k̄H + 1 or k̄H + 2
H-squares present. Such a mechanism would be equivalent to a mechanism that matches (H� l) pairs only
when there are precisely k̄H +1H-squares present. We focus only on the thresholds with the minimal mag-
nitude, which identify outcomes fully, and ignore multiplicity that arises from prescriptions of the social
planner over events that are never reached.
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probabilistic transition as follows. Denote by

xt ≡ (xt−k̄� xt−k̄+1
� � � � � xt

k̄−1
�xt
k̄

)tr ∈ {0�1}2k̄+1

the timed vector capturing the state, xti = 1(ktHh = i). That is, xti is an indicator that takes
the value of 1 if the state is i and 0 otherwise. Then

xt+1 = Tk̄xt �

where

Tk̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −p(1 −p) p(1 −p) � � � 0 0
p(1 −p) 1 − 2p(1 −p) � � � 0 0

0 p(1 −p) � � �
���

���
� � �

���
���

� � � p(1 −p) 0
0 0 � � � 1 − 2p(1 −p) p(1 −p)
0 0 � � � p(1 −p) 1 −p(1 −p)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

This Markov chain is ergodic (i.e., irreducible, aperiodic, and positively recurrent).
Therefore, an optimal mechanism corresponds to a matching process that reaches a
steady state with a unique stationary distribution. For Tk̄, the steady-state distribution
is uniform so that each state kHh = −k̄� � � � � k̄ occurs with an equal probability of 1

2k̄+1
.

3.3 Optimal thresholds

In order to characterize the optimal threshold, we first evaluate the welfare correspond-
ing to any arbitrary symmetric threshold. First, we compute the average total waiting
costs incurred by agents waiting in line for one period of time. Since during the transi-
tion from time t−1 to time t, 2|kt−1

Hh | agents wait in line, the total costs of waiting incurred

during this one time period is 2|kt−1
Hh |c. Thus, a mechanism with threshold k̄ results in

expected total costs of waiting equal to

1

2k̄+ 1

(
k̄∑

kHh=−k̄
2|kHh|

)
c = 2k̄(k̄+ 1)c

2k̄+ 1
�

Next, we compute the average total surplus generated during one time period, track-
ing the Markov process described above. A newly-arrived pair is of type (H�h) with
probability p2, in which case the optimal mechanism generates a surplus equal to UHh.
Similarly, when a new pair of type (L� l) arrives, which occurs with probability (1 −p)2,
the optimal mechanism generates a surplus equal to ULl. Suppose an (H� l) pair arrives
at time t. If kt−1

Hh < 0, the mechanism creates one (H�h) pair and one (L� l) pair, gener-

ating a surplus equal to UHh +ULl. If 0 ≤ kt−1
Hh < k̄, the mechanism creates no matches

(and no additional surplus), and if kt−1
Hh = k̄, the mechanism creates one (H� l) pair and

generates a surplus equal to UHl. Analogous conclusions pertain to the case in which



1232 Baccara, Lee, and Yariv Theoretical Economics 15 (2020)

an (L�h) pair arrives. Thus, a mechanism with threshold k̄ generates an expected total
surplus equal to

p2UHh + (1 −p)2ULl + 2p(1 −p)
2k̄+ 1

[
k̄(UHh +ULl)+ UHl +ULh

2

]

= pUHh + (1 −p)ULl − p(1 −p)U
2k̄+ 1

�

Therefore, the net expected total welfare per period, accounting for waiting costs, is

pUHh + (1 −p)ULl − p(1 −p)U
2k̄+ 1

− 2k̄(k̄+ 1)c

2k̄+ 1
� (1)

The optimal threshold k̄opt maximizes the welfare as given in (1). The following
proposition summarizes our discussion and provides the full characterization of the op-
timal mechanism.

Proposition 2 (Optimal thresholds). The threshold

k̄opt =
⌊√

p(1 −p)U
2c

⌋

identifies an optimal dynamic mechanism. In this optimal mechanism, all available
(H�h) and (L� l) pairs, and any number of (H� l) or (L�h) pairs exceeding k̄opt, are
matched immediately. Furthermore, the optimal mechanism is generically unique.16

The optimal threshold increases with the probability of any incongruent pair, p(1 −
p), and with the degree of supermodularity U , which reflects the value of assortative
matches. It decreases with waiting costs. In fact, when waiting costs are prohibitively
high, namely when c > p(1−p)U

2 , the maximal queue length is k̄opt = 0 and all matches
are instantaneous.

3.4 Welfare

We now turn to the expected per-period welfare in the steady state under the optimal
mechanism. Were we to consider no costs of waiting, the optimal mechanism would
naturally entail long waits to get the maximal possible match surplus asymptotically by
matching only congruent pairs. We denote the resulting welfare by S∞ ≡ pUHh + (1 −
p)ULl.

The optimal threshold identified in Proposition 2 allows us to characterize the wel-
fare achieved by the optimal mechanism through equation (1) and to get the following
corollary.

Corollary 1 (Optimal welfare). The welfare under the optimal mechanism is given
by W opt(c) = S∞ − �(c), where �(c) is continuous, increasing, and concave in c,
limc→0�(c)= 0, and �(c)= p(1 −p)U for all c ≥ p(1−p)U

2 .

16Multiplicity arises only when
√
p(1−p)U

2c is an integer.
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As waiting costs approach 0, the welfare induced by the optimal mechanism ap-
proaches S∞. For costs large enough, the optimal mechanism matches all square-round
pairs instantaneously as they arrive and the resulting welfare is S∞ −p(1 −p)U . For in-
termediate costs, the optimal mechanism generates welfare that is naturally in between
these two values.17,18 The observation that welfare under the optimal mechanism de-
creases as c increases is rather intuitive. Indeed, suppose c1 > c2. Were we to implement
the optimal mechanism with waiting cost c1 when the waiting cost is c2, the distribution
of matches would remain identical, while waiting costs would go down, thereby lead-
ing to greater welfare overall. Thus, the optimal mechanism generates greater welfare
with waiting cost c2 than c1. The amount by which welfare decreases when waiting costs
increase depends on the number of agents expected to wait in line in the steady state.
The higher the waiting costs, the lower the number of agents waiting in line on average.
Therefore, the impact of an increase in costs by a fixed increment is greater at smaller
costs, yielding the concavity of �(c).19

4. Discretionary matching

Many dynamic matching processes are in essence discretionary, in the sense that par-
ticipants have the choice of declining a match they do not wish to form: child adoption
in the US and abroad, job searches in many industries, etc. It is therefore important to
understand the implications of discretionary dynamics, particularly when considering
centralized interventions. In this section, we provide a framework for analyzing a class
of discretionary matching processes.

In our discretionary matching process, we assume individuals join the market in se-
quence and decide when to match with a potential partner immediately and when to
stay in the market and wait for a potentially superior match. While the discretionary
setting we study still requires some centralized governance, as matches occur accord-
ing to some order, it provides a convenient benchmark for studying dynamic matching
markets that are lightly regulated.

We assume that at each period t there are three stages. First, a square and round
enter the market with random attributes as before: with probability p the square is an
H-square and with probability p the round is an h-round. Second, individuals of each
type are ordered by some priority rule that we describe formally below. In the third stage,
each square and round declare their demands—whether a square will match only with
an h-round, or is willing to match with either an h-round or an l-round, and whether
a round will match only with an H-square, or with either an H-square or an L-square.

17The value of S∞ is effectively the analogue of the value generated by an “omniscient” planner in our
setting, which is used as one benchmark in Akbarpour et al. (2020). Corollary 1 suggests that the omniscient
planner’s value is a valid feasible benchmark when waiting costs vanish.

18In the Appendix, we provide the analytical formula for�(c) in terms of the fundamental parameters of
our setting. In fact, simple algebraic manipulations imply that

S∞ −√2p(1 −p)Uc − c ≤W opt(c)≤ S∞ −√2p(1 −p)Uc + c�
19Continuity follows directly from concavity. Alternatively, fix any mechanism that is optimal for some

waiting costs. An increase in waiting costs reduces the resulting welfare continuously, in fact linearly.
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Given the order and the participants’ demands, the market clears sequentially according
to the priority rule. Any remaining participants proceed to period t + 1 at the additional
cost of c.

4.1 The matching process

In each period t, one square wt and one round rt arrive at the market, and their types
are realized. Upon their arrival, a period-t stage-game begins:

Gt ≡
{
It� (Di)i∈It �φ�

(
ui(·;φ) :

∏
i∈It

Di →R

)
i∈It

}
�

The components of Gt are defined as follows. The set of players is It ≡Ht ∪Lt ∪ ht ∪ lt ,
where Ht ⊆ {xt ′ : 1 ≤ t ′ ≤ t} is the set of H-squares present in the market in period t,
and the other sets, Lt , ht , and lt , are defined similarly. Each H-square, say player i, in
It chooses an action in Di = {h� l}, with h denoting a demand for only h-rounds and l
denoting a demand for either type of round.20 Action sets for other agents’ types are
defined analogously. A priority rule φ assigns a linear order over each set Ht , Lt , ht ,
and lt . First, we consider a first-in-first-out (FIFO) protocol, which assigns a linear order
� over, say,Ht such that

∀xt ′�xt ′′ ∈Ht� xt
′ � xt ′′ ⇐⇒ t ′ < t ′′ ≤ t�

There is anecdotal evidence that order of arrivals affects the order of matches in
many markets, and FIFO is a commonly used protocol. For instance, in the child adop-
tion context, many countries follow a FIFO protocol to match relinquished children to
adoptive parents.21 In Section 6, we discuss alternative priority protocols.

The stage-game payoffs are determined by sequential market clearing. First, we take
H-squares and h-rounds in the order induced by φ and form as many (H�h) pairs as
possible (regardless of their demands).22 If there are remainingH-squares demanding l-
rounds, they are matched with l-rounds sequentially according to φ and independently
of the demands made by the l-rounds. h-rounds demanding L-squares are matched
analogously. All remaining L-squares and l-rounds who are flexible in their demands
form matches sequentially in the order induced by φ. The stage-game payoff for a type-
x agent matched with a type-y agent isUx(y). If a player remains unmatched, her stage-
game payoff is −c.

We complete the definition of a dynamic discretionary matching game by charac-
terizing the evolution of the stage games Gt , and each player’s dynamic-game payoff.

20This restriction on the action space is made for simplicity of exposition. An equilibrium similar to the
one we describe below arises if we allow players to demand only inferior matches on the other side of the
market, or to submit a demand for no one at all.

21For example, see the protocol adopted by the China Center of Children’s Welfare and Adoption (CC-
CWA) here: http://www.aacadoption.com/programs/china-program.html.

22This market-clearing assumption allows us to simplify some steps of the proofs, and avoid inefficient
equilibria in which (H�h) pairs remain on the market unmatched.

http://www.aacadoption.com/programs/china-program.html
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The initial set of players is I0 ≡ ∅. All players in It who remain unmatched in period t,
together with new arrivals, form It+1. Consider a player i, who arrives in period t and is
matched at t ′′ ∈ Z+ ∪ {∞}. Such a player receives stage-game payoffs (uti�u

t+1
i � � � � ), and

a dynamic-game payoff
∑∞
t ′=t ut

′
i (∈ R ∪ {−∞}), where ut

′′
i is i’s match utility, ut

′
i = 0 for

t ′ > t ′′, and ut
′
i = −c for any t ′ < t ′′.

The dynamic game has complete information and arbitrary (dynamic) strategies.
Each player i, say anH-square, chooses a demand every period she remains in the mar-
ket, since her arrival until she matches. A (dynamic) strategy σi indicates the probability
of demanding an h-round in each of these periods and can depend on the complete
history from t = 0. As before, let st = (stH� s

t
L� s

t
h� s

t
l ) be the state (or stock) at period t,

and let qti ∈ Z+ be player i’s rank according to φ in period t.23 Let θti ≡ (st � qi) denote an
augmented state for player i.

Definition 1. A strategy σi is a stationary and deterministic strategy (SD-strategy) for
anH-square i if there existsψHi : {(s�q) ∈Z5+} → {h� l} such that, for any t such that i ∈Ht

and θti = (st� qti), player i demands ψHi (s
t� qti).

We similarly define SD-strategies for L-squares, h-rounds, and l-rounds. A symmet-
ric, stationary, and deterministic strategy profile, which we name stationary∗ strategy
profile, is a profile of SD-strategies, such that all players of the same type use the same
strategy, i.e., ψxi =ψx for all t, i ∈ xt , and x=H�L�h� l. We denote a stationary∗ strategy
profile by	= (ψH�ψL�ψh�ψl).

Definition 2. A stationary∗ strategy-profile 	 is a stationary∗ equilibrium if it is an
equilibrium of the dynamic matching game.24

For simplicity, we assume a symmetric setting (results pertaining to asymmetric set-
tings appear in Section 7):

UH(h)−UH(l)=Uh(H)−Uh(L) and UL(h)−UL(l)=Ul(H)−Ul(L)�
and that the environment is regular: p(UH(h) − UH(l)) �= kc for all natural numbers
k ∈ N. Regularity assures that neither squares nor rounds are ever indifferent between
waiting in queue and matching immediately with an available partner.25

4.2 Equilibrium characterization with the FIFO protocol

In this section, we present necessary conditions for a stationary∗ equilibrium that are
sufficient to compute equilibrium welfare. We guarantee the existence of stationary∗
equilibria and provide their characterization in the Appendix.

23That is, under FIFO, qti = 1 if player i arrived before all other H-squares in Ht , qti = 2 if player i arrived
second among all otherH-squares inHt , and so on.

24In a stationary∗ equilibrium, we allow a player’s deviation to be any dynamic strategy, including history
dependent and random.

25The assumption of regularity simplifies presentation but is not crucial. Similar analysis follows without
it for any arbitrary tie-breaking rule.
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By construction, at the beginning of a period, the queue cannot entail both H-
squares and h-rounds. As before, we denote the (signed) length of the H-h queue
after an arrival of a new pair by sHh ≡ sH − sh, and after agents form matches by
kHh ≡ kH − kh. We first consider the decisions of H-squares (analogous analysis holds
for h-rounds). Suppose an H-square arrives at the market and an h-round is available,
one that had either been waiting in the queue or one that has just arrived as well. In
this case, an H-square is matched immediately to an h-round, the identities of whom
are prescribed by the order of arrival. In particular, if the arrivingH-square is the first in
line, that square is matched to an h-round. If there are H-squares already in queue, the
available h-round must have arrived with our H-square, and is matched with the first
H-square in the queue. The newly arrived H-square then has a choice between waiting
in line and matching with an l-round. However, this square’s decision is equivalent to
that of the last H-square who arrived and decided to wait. Therefore, in a stationary∗

equilibrium, the newH-square waits and the queues remain as they were.
Suppose now that anH-square enters the market and no h-round is available. Then

there is at least one l-round available. Thus, the H-square has to decide whether to
match immediately with an l-round or to wait, based on the number of H-squares al-
ready waiting. An immediate match with an l-round delivers UH(l), whereas waiting in
line until eventually matching with an h-round delivers UH(h) at an uncertain waiting
cost.

Note that if an H-square decides to wait in the queue, she will wait until matching
with an h-round, rather than match with an l-round at a later point. Indeed, as matches
form on a FIFO basis, theH-square’s position in the queue moves up over time, and the
expected time until matching with an h-round becomes shorter. The expected waiting
time until a match with an h-round is therefore solely determined by the number of
other H-squares who precede her in the queue. The following result identifies bounds
on the size of theH-h queue.

Lemma 1 (FIFO thresholds). In all stationary∗ equilibria under FIFO, in all periods,
−k̄fifo ≤ kHh ≤ k̄fifo, where26

k̄fifo ≡
⌊
p
(
UH(h)−UH(l)

)
c

⌋
=
⌊
p
(
Uh(H)−Uh(L)

)
c

⌋
� (2)

Intuitively, the time until an h-round enters the market is distributed geometrically
(with parameter p), so the expected time until an h-round arrives at the market is 1

p . An
H-square who is kth in line in the queue will be matched when the kth h-round arrives,
which is expected to occur in k

p periods. The expected waiting costs are therefore kc
p ,

which generate an increase in match utility of UH(h)−UH(l) (relative to matching with
an l-round immediately). AnH-square will wait as long as the expected benefit of wait-
ing exceeds its costs, i.e., whenever kcp < UH(h)−UH(l), which is the comparison under-
lying the maximal size of the queue described in Lemma 1. Our regularity assumption

26In the Appendix, we show that in all stationary∗ equilibria the full support of the H-h queue is

{−k̄fifo� ��� k̄fifo}. Therefore, the bounds described in this lemma are achieved in equilibrium.
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further guarantees that an H-square or an h-round are never indifferent between wait-
ing in line and matching immediately. Whenever there are fewer than k̄fifo H-squares
in the queue, a new H-square will wait in the market. Whenever there are k̄fifo or more
H-squares in the queue, the new H-square prefers to match with an l-round imme-
diately. An analogous description holds for h-rounds and our symmetry assumptions
assure that the maximal queue length is identical forH-squares and h-rounds.

We now turn to the decisions of L-squares and l-rounds. An l-round (similarly, an
L-square) may decide to wait, hoping to match with anH-square who will become avail-
able when the line forH-squares exceeds k̄fifo. In principle, there are two effects at work.
The first is similar to that experienced by the H-squares waiting in line: the longer the
queue of l-rounds already waiting, the longer a new l-round has to wait. The second
effect is due to H-squares’ equilibrium behavior: the longer is the queue, the closer H-
squares are to the threshold k̄fifo and to the point of accepting matches with l-rounds.
As it turns out, at least the last l-round in the queue has an incentive to match immedi-
ately with any square. Intuitively, consider the first l-round, say player i, arriving at the
market. There cannot be other H-squares waiting in the market since any such squares
would have arrived with l-rounds, contradicting our l-round being first in line. Suppose
player i arrives with an L-square. By Lemma 1, the first k̄fifo H-squares wait in line until
they are matched with an h-round. Thus, player i has to wait for the arrival of at least
k̄fifo + 1H-squares to match with anH-square. This wait is too long for agent i to justify
turning down a match with an L-square. Indeed, the expected cost of waiting until the

(k̄fifo + 1)-th arrivingH-square is (k̄fifo+1)c
p , which is strictly greater than the benefit from

waiting since

Ul(H)−Ul(L) <Uh(H)−Uh(L)=UH(h)−UH(l) <
(
k̄fifo + 1

)
c

p
�

where the last inequality follows from the definition of k̄fifo. It follows that our player
i would therefore prefer to match with an L-square, who is available, immediately. In
fact, this intuition generalizes and yields the following result.

Lemma 2 (Equilibrium under FIFO). There exists a stationary∗ equilibrium such that
there are never both an L-square and an l-round waiting in the market.

Lemma 2 implies that there exists a stationary∗ equilibrium that follows a protocol
similar to that implemented by the optimal mechanism, though the threshold governing
when incongruent matches are formed, k̄fifo, may differ from the optimal threshold k̄opt.
Lemma 1 and its discussion in the Appendix guarantee that, since the behavior of H-
squares and h-rounds is the same in all stationary∗ equilibria, so is the welfare generated
by matches involving H-squares and h-rounds. Therefore, the stationary∗ equilibrium
described by Lemma 2, in which L-squares and l-rounds do not delay matching with
one another, is the one that maximizes welfare, as stated in the following corollary.

Corollary 2. The stationary∗ equilibrium in which there are never both an L-square
and an l-round waiting in the market is welfare-maximizing among all stationary∗ equi-
libria under FIFO.
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4.3 Steady state of discretionary matching

As for the optimal mechanism, the length of the H-h queue kHh in the equilibrium de-
scribed in Lemma 2 and Corollary 2 is characterized by a Markov chain with a transition
matrix analogous to that described in Section 3.2. Similar analysis allows the charac-
terization of the equilibrium steady state of the discretionary process under the FIFO
protocol.

Proposition 3 (Discretionary steady state). The welfare-maximizing stationary∗ equi-
librium under FIFO is associated with a unique steady-state distribution over queue
lengths, such that the length of theH-h queue kHh = kH−kh is uniformly distributed over
{−k̄fifo� � � � � k̄fifo} and, in any period, the queues contain only H-squares and l-rounds or
only h-rounds and L-squares.

The threshold k̄fifo is determined by the decisions of H-squares and h-rounds to
wait, as specified in Lemma 1. The crucial difference between the discretionary and
optimal mechanism is the threshold placed on the maximal stock of H-squares or h-
rounds waiting. A decision to wait in the market by, say, a square imposes a negative
externality on succeeding squares, as it potentially affects their waiting time, and pos-
sibly the quality of their matches,27 as well as on the round she would otherwise match
with. However, a decision to wait can also impose a positive externality on future de-
sirable agents on the other side of the market, who would find a ready desirable agent
upon arrival.

To glean some intuition for the relative strength of these externalities, consider the
extreme case in which, in the discretionary process, matches are immediate (k̄fifo = 0),
which happens when c

p > UH(h)−UH(l). In such a market, consider an (H� l) pair ar-
riving when no other agents are present. In the discretionary setting, the pair would
match immediately. Might a social planner want to keep this pair waiting? Suppose the
planner holds on to the (H� l) pair until an h-round arrives with a square of either type.
At that point, the H-square is to be matched with the h-round, while the l-round is to
be matched with the newly-arrived square. To simplify our illustration, suppose that all
other participants are matched instantaneously. The H-square certainly does not ben-
efit from this imposed wait (else, she would wait even in the discretionary setting). The
cost imposed on the l-round entailed by waiting for an h-round is c/p. Now, the antic-
ipated h-round may arrive with either an H-square, with probability p, or with an L-
square, with probability 1 −p. In the latter case, the positive externality of ourH-square
on this h-round comes to light—the h-round matches with anH-square instead of anL-
square he would match with otherwise, generating a marginal benefit of UH(h)−UH(l)
(since match payoffs are symmetric across market sides). This positive externality is
overwhelmed by the cost of waiting incurred by the l-round, even ignoring all other
negative externalities on the match qualities of the original l-round as well as the square

27From a welfare perspective, the externality on the quality of the match is of less importance. As long
as a social planner views identical agents as interchangeable, an immediate mismatch or a later mismatch
have similar welfare consequences.
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arriving with the h-round, since c
p > UH(h)−UH(l) > (1−p)(UH(h)−UH(l)). In partic-

ular, delaying a match is suboptimal from the social planner’s perspective. This intuition
extends—the negative externalities dominate and the optimal mechanism is always gov-
erned by a smaller threshold for waiting than the one selected through equilibrium in
the discretionary process.

Corollary 3 (Thresholds’ comparison). Maximal waiting queues are longer under
FIFO than they are under the optimal mechanism. That is, k̄opt ≤ k̄fifo, with strict in-
equality for sufficiently small waiting costs c.

4.4 Welfare

Since the protocols are similar except for the queues’ thresholds, the expected per-
period welfare in the steady state characterized in Proposition 3 can be found using an
analogous derivation to that carried out for the optimal mechanism. This derivation
leads to an expression mirroring equation (1), accounting for the discretionary process’
threshold k̄fifo. Namely, the expected per-period net welfare is given by

W fifo(c)= S∞ − p(1 −p)U
2k̄fifo + 1

− 2k̄fifo(k̄fifo + 1
)
c

2k̄fifo + 1
�

where k̄fifo is defined in (2). To summarize, we have the following corollary.

Corollary 4 (Decentralized welfare). The maximum equilibrium welfare under FIFO
is given by W fifo(c) = S∞ − 	(c), where limc→0	(c) = p(UH(h) − UH(l)), and 	(c) =
p(1 −p)U for all c ≥ p(UH(h)−UH(l)).

Recall Corollary 1, which characterized the welfare under the optimal mechanism.
By definition, the welfare generated under the optimal mechanism is higher than that
generated by the discretionary process, so that �(c) ≤	(c) for all c. While the optimal
mechanism generates welfare that is decreasing in waiting costs, this is not necessarily
the case under the discretionary process. Furthermore, while the welfare under the op-
timal mechanism approaches S∞ as waiting costs diminish, this is not the case under
the discretionary process. As waiting costs become very small, there is a race between
two forces. For any given threshold, the overall waiting costs decline. However, in equi-
librium, discretionary thresholds increase, leading to greater expected wait times. As
it turns out, the balance between these two forces generates significant welfare losses,
given by p(UH(h)−UH(l)), even for vanishing costs.

5. Welfare comparisons

By construction, the optimal mechanism generates welfare that is at least as high as
that generated by the discretionary process.28 In this section, we inspect how the wel-
fare wedge responds to the underlying parameters of the environment, suggesting the

28It is possible to show that the optimal mechanism generally presents a Pareto improvement with re-
spect to the decentralized setting. In fact, it is easy to see that L-squares and l-rounds are better off under



1240 Baccara, Lee, and Yariv Theoretical Economics 15 (2020)

settings in which centralized intervention might be particularly useful. The following
proposition captures the effects on the welfare wedge W opt(c)−W fifo(c) of the waiting
costs c, the frequency p of H-squares or h-rounds, and the utility benefit of desirable
types from matching with desirable types relative to less desirable ones.

Proposition 4 (Welfare wedge—comparative statics). (i) For any interval [c� c), where
c > 0, there is a partition {[ci� ci+1)}M−1

i=1 , where c = c1 < c2 < · · ·< cM = c, such that
W opt(c)−W fifo(c) is continuous and increasing over (ci� ci+1) and

W opt(ci)−W fifo(ci) > W
opt(ci+1)−W fifo(ci+1)

for all i= 1� � � � �M − 1.

(ii) As c becomes vanishingly small, the welfare gap W opt(c)−W fifo(c) converges to a
value that is increasing in p ∈ (0�1) and in UH(h)−UH(l).

To see the intuition for the comparative statics corresponding to waiting costs, no-
tice that an increase in costs has two effects on the welfare gap. Since the equilibrium
threshold under the discretionary process is greater than the optimal threshold (Corol-
lary 3), an increase in waiting costs has a direct effect of magnifying the welfare gap.
Nonetheless, there is also an indirect effect of an increase in waiting costs that arises
from the potential changes in the induced thresholds. Consider a slight increase in wait-
ing costs such that the optimal threshold does not change, but the discretionary thresh-
old decreases. The discretionary process is then “closer” to the optimal process—both
the matching surplus and the waiting costs are closer and the welfare gap decreases. In
fact, as costs become prohibitively high, both processes lead to instantaneous matches
and identical welfare levels. As we show in the proof of Proposition 4, the indirect effect
overwhelms the direct effect at precisely such transition points and acts to shrink the
welfare gap. The construction of the partition is done as follows. Each atom [ci� ci+1)

of the partition corresponds to constant thresholds under the discretionary process.
Over these intervals, only the direct effect operates and the welfare gap is increasing.
Each of the endpoints {ci}i corresponds to a decrease of the discretionary threshold by
one. Therefore, when comparing two such endpoints, the indirect effect kicks in and
the decreasing trend of the welfare gap emerges. Figure 2 depicts the resulting pattern
the welfare gap exhibits for UH(h) = Uh(H) = 3, UH(l) = Uh(L) = UL(h) = Ul(H) = 1,
UL(l) = Ul(L) = 0, and p = 0�3. As suggested by the proposition, W opt(c) −W fifo(c) is
piecewise increasing in c. Nevertheless, overall, the gap has a decreasing trend.

To glean some intuition on the comparative statics the welfare gap displays with re-
spect to p, consider two type distributions governed by p1 and p2 such that p1 < p2 =
mp1, m > 1. The individual incentives to wait for H-squares and h-rounds are higher
under p2 than under p1. In fact, in the discretionary setting, the distribution of steady-
state queue length is the uniform distribution where, from (2), underp2, roughly 1−1/m

the optimal mechanism (as it implies better matches and shorter waiting times). Moreover, one can show
that, as long as k̄opt ≥ 2, the expected payoff of H-squares and h-rounds as they enter the market is higher
under the optimal mechanism than under the discretionary process as well.
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Figure 2. Welfare gap between optimal and discretionary matching (FIFO) as a function of
costs.

of the probability mass is allocated to queue lengths larger than those realized under p1.
For each of these large steady-state queue lengths, we have more pairs of agents wait-
ing, i.e., increased per-period waiting costs. The optimal mechanism internalizes the
negative externalities, so the effect of the increased waiting costs is weaker. On the other
hand, the benefit of this increase in queue length is a lower chance of producing mis-
matches. However, for sufficiently low c, the match surplus under p1 is already close to
its optimum of S∞ and this effect is weak; in particular, the difference in terms of match
surplus that the optimal and discretionary processes generate is similar under p1 and
p2. Therefore, for sufficiently low c, the dominant effect is the one produced by the dif-
ference in expected waiting costs, which generates our comparative statics.29 Note that
as p approaches 0 or 1, both the optimal mechanism and the discretionary processes
generate similar welfare levels as in those cases incongruent pairs arrive at a vanish-
ing rate. The intuition for the comparative statics pertaining to UH(h)−UH(l) follows
identical lines.

Going back to our assumption of supermodular preferences, the construction of the
optimal mechanism would remain essentially identical were preferences submodular
(with an appropriate relabeling of market participants). However, in the discretionary
setting, submodular preferences would lead to a negative welfare effect compounding
the negative externalities present in our setup. Namely, individual incentives would be
misaligned with market-wide ones. In that respect, our comparison of optimal and dis-
cretionary processes assuming supermodular preferences is a conservative one.

Similarly, considering waiting costs that differ across the two sides of the market
would lead to a greater welfare wedge as well. Intuitively, suppose that squares expe-
rience a waiting cost of cS and rounds experience a waiting cost of cR, where cS > cR,

29In fact, we can show that for any 
p> 0, there exists δ > 0 such that for every c < δ and p ∈ [0�1 −
p],
the welfare wedge under p+
p and c is greater than under p and c. Furthermore, δ→ 0 as 
p→ 0.
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with an average cost of c = (cS + cR)/2. The optimal mechanism with asymmetric costs
would coincide with that corresponding to identical costs of c since per-pair costs are
the same in both cases. In the discretionary process,H-squares would be willing to wait
when the queue of H-squares is no longer than k̄fifo

S and h-rounds would be willing to

wait when the queue of h-rounds is no longer than k̄fifo
R , where k̄fifo

S = �p(UH(h)−UH(l))cS
�

and k̄fifo
R = �p(Uh(H)−Uh(L))cR

�. Suppose p(UH(h)−UH(l))
cx

∈ N for x = S�R to avoid round-

ing issues. From convexity, it follows that the threshold k̄fifo corresponding to identical
costs of c satisfies k̄fifo ≤ (k̄fifo

S + k̄fifo
R )/2. Therefore, the excessive waiting discretionary

processes exhibit would be even more pronounced when costs are asymmetric across
market sides.

6. Alternative protocols

So far, we have shown that intervention in dynamic matching markets can have a sub-
stantial impact on welfare, at least when centralization utilizes the optimal dynamic
mechanism. Nonetheless, the full-fledged optimal mechanism may be hard to imple-
ment. It requires that the formation of matches, even those of individuals who would
prefer to wait in the market, be within the purview of the centralized planner. It also
requires the central planner to monitor the market continuously to determine when
matches should be formed, which may be administratively costly. Improvements to dis-
cretionary settings under FIFO can be achieved by mechanisms that relax one of these
two requirements. To address the first issue, one can consider a discretionary setting in
which per-period taxes are introduced for the agents that decide to wait. Our charac-
terization of the optimal mechanism allows the identification of a budget-balanced tax
scheme that implements the optimal welfare levels without distorting agents’ incentives
to enter the market to begin with. To address the second issue, one can consider an al-
ternative protocol in which the centralized clearinghouse matches all available agents
every fixed number of periods. Details of these alternative protocols are available in the
working-paper version (Baccara et al. 2018).

In this section, we analyze an alternative setting that does not require continuous
market monitoring and can provide substantial welfare improvements over the discre-
tionary matching process under FIFO. While the FIFO protocol we analyze resembles
discretionary processes in various applications, it generates excessive waiting. It is then
natural to consider alternative protocols in which waiting is disciplined. We consider
here the often discussed last-in-first-out (LIFO) protocol (see, e.g., Hassin 1985, and
more recently, Platz and Østerdal 2017, as well as references therein). Under the LIFO
protocol, waiting is disciplined as it entails a transition to a bad position in the queue
and, consequently, may improve on the welfare generated by the FIFO protocol. It is
important to keep in mind, however, that protocols such as LIFO face well-known im-
plementation hurdles.30

30In particular, they are subject to manipulation as they introduce incentives to leave and reenter queues
(see Margaria 2019). They are also considered “unfair” in that individuals who exert no cost of waiting are
catered to first, while identical others who have been waiting remain in the queue.
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Formally, we study a discretionary setting that has the same structure described in
Section 4.1 but, once every agent on the market has specified their demands, matches
form according to a LIFO protocol. This protocol assigns a linear order � over, say, Ht

such that ∀xt ′�xt ′′ ∈Ht , xt
′′ � xt ′ ⇐⇒ t ′ < t ′′ ≤ t.

We first consider the decisions ofH-squares (and omit the analogous discussion for
h-rounds). If anH-square finds an h-round upon arrival, theH-square matches with the
last arrived h-round. If no h-round is available, the H-square needs to decide whether
to match with the last l-round, who must have just arrived together with the H-square,
or to wait in the queue. Under LIFO, this decision is independent of other H-squares
who have been waiting in the queue. Rather, the decision depends on the anticipated
behavior of H-squares who will arrive at the market in future periods. We consider an
SD-strategy ψH for H-squares relying on a threshold k̄H . If no h-round is available, an
H-square, say player i, waits by demanding an h-round as long as her rank qi according
to LIFO is at most k̄H . To gain intuition for our equilibrium characterization, suppose
that allH-squares, including player i, use the threshold k̄H = 1. If player i finds no avail-
able h-round upon arrival, then she waits by demanding an h-round. In the next period,
player i continues to wait if either a pair (H�h) or a pair (L� l) arrive, since in these sce-
narios her rank according to LIFO remains the same. However, if an (H� l) pair arrives,
the newH-square, who also uses k̄H = 1, demands an h-round. According toψH , player
i then demands an l-round and leaves the market. Finally, if an (L�h) pair arrives, player
i matches to the h-round. To summarize, player i exits the market matched with either
an h-round or an l-round, with probability 1/2 each, as soon as the first incongruent pair
arrives. Since the expected number of periods until the first arrival of an incongruent
pair is 1

2p(1−p) , the expected payoff for player i is

UH(h)+UH(l)
2

− c

2p(1 −p)�

Consider a possible deviation of player i in which i demands an l-round when she finds
no available h-rounds upon her arrival. This deviation is not strictly profitable if and
only if

UH(l)≤ UH(h)+UH(l)
2

− c

2p(1 −p)�

which we can rewrite as

p(1 −p)(UH(h)−UH(l)
)

c
≥ 1 = k̄H(k̄H + 1)

2
� (3)

Consider another potential deviation by player i: if one more H-square arrives af-
ter player i and no h-round is available, player i, instead of demanding an l-round, in-
creases her threshold to k̄′

H = 2 indefinitely and remains in the market. If player i uses
the threshold k̄′

H = 2, while all other H-squares use k̄H = 1, player i will match to an
h-round for sure. We use an absorbing Markov chain to compute the expected continu-
ation payoff for player i. In what follows, we normalize time to event time, denoted by τ,
which increases upon each arrival of an incongruent pair (which, in expectation, occurs
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every 1/2p(1 −p) periods). The state space is {1�2�h}: the two transient states (1 and 2)
denote the H-square’s rank, and the absorbing state (h) denotes player i matching an
h-round. The matrix of transition probabilities pij from state i to state j is

P =
[
Q R

0 1

]
� whereQ=

[
0 1/2

1/2 1/2

]
and R=

[
1/2
0

]
�

The matrixQ represents transition probabilities between transient states.31 Let

T ≡ (I2 −Q)−1 · 1 = 4

[
1/2 1/2
1/2 1

][
1
1

]
=
[

4
6

]
�

where I2 is the 2 × 2 identity matrix. If the initial state of the absorbing Markov chain
is 2, it is well-known in the absorbing Markov chain literature (see, e.g., Kemeny and
Snell 1960) that the chain will be absorbed by state h within T2 = 6 expected periods
of event time. Therefore, if player i deviates by increasing her threshold perpetually
to k̄′

H = 2, the expected continuation payoff is UH(h) − 6c
2p(1−p) . Such deviation is not

strictly profitable if

UH(l)≥UH(h)− 6c
2p(1 −p)�

which is equivalent to

p(1 −p)(UH(h)−UH(l)
)

c
≤ 3 = (k̄H + 1)(k̄H + 2)

2
� (4)

A generalization of (3) and (4) under an arbitrary threshold k̄H ∈ Z+ yields the following.

Lemma 3 (Thresholds under LIFO). In all stationary∗ equilibria under LIFO in whichH-
squares and h-rounds use threshold strategies, in all periods, −k̄lifo ≤ kHh ≤ k̄lifo, where32

k̄lifo ≡
⌊√

2p(1 −p)(UH(h)−UH(l)
)

c
+ 1

4
− 1

2

⌋
�

We now turn to the decisions of l-rounds (or, analogously, those of L-squares). An
l-round matches with an H-square only when that H-square arrives with an l-round.
LIFO then prescribes theH-square to be matched with the last l-round to enter the mar-
ket. It follows that, if an l-round remains unmatched in the period of his arrival, he will

31Take any event time τ, and suppose that the state at time τ is 2: i.e., there is anotherH-square waiting,
who arrived after player i. The event time τ progresses to τ + 1 by an arrival of an incongruent pair. If
the incongruent pair is (L�h), the rank of player i moves up to 1. This transition occurs with probability
Q21 = 1/2. Otherwise, the new incongruent pair is (H� l). According to ψH , the H-square who has been
waiting with player i demands an l-round and leaves the market, leaving player i’s rank at 2. This transition
occurs with probability Q22 = 1/2. If the state in period τ is 1, and (L�h) arrives, then player i matches to
the h-round. This last transition occurs with probability R11 = 1/2.

32In the Appendix, we show that in all stationary∗ equilibria, the full support of the H-h queue is

{−k̄lifo� ��� k̄lifo}. Therefore, the bounds described in Lemma 3 are achieved in equilibrium.
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never be matched with anH-square later. Therefore, l-rounds are incentivized to depart
as soon as possible:

Lemma 4 (Equilibrium under LIFO). There exists a stationary∗ equilibrium in which H-
squares and h-rounds use a threshold k̄lifo and in which there can never be bothL-squares
and l-rounds waiting in the market. This equilibrium is welfare-maximizing among all
stationary∗ equilibria.

Similar to Section 4, we can characterize the equilibrium steady state.

Proposition 5 (Discretionary steady state under LIFO). The welfare-maximizing
stationary∗ equilibrium under LIFO is associated with a unique steady-state distribution
over queue lengths, such that the length of the H-h queue kHh = kH − kh is uniformly
distributed over {−k̄lifo� � � � � k̄lifo} and, in any period, the queues contain only H-squares
and l-rounds or only h-rounds and L-squares.

We can now compare this threshold, as well as consequent welfare levels, to those
emerging from the other protocols discussed throughout the paper.

Corollary 5 (Thresholds and welfare comparisons under LIFO).

(i) For sufficiently small waiting costs c, the maximal waiting queues under LIFO are
longer than under the optimal mechanism, but shorter than under FIFO: k̄opt <

k̄lifo < k̄fifo.

(ii) The LIFO protocol is asymptotically efficient, i.e., the maximum equilibrium wel-
fare under LIFO is given byW lifo(c)= S∞ − (c), where limc→0 (c)= 0.

Corollary 5 suggests that the LIFO protocol could represent a substantial improve-
ment with respect to the FIFO protocol in discretionary settings, at least for small costs.
Figure 3 depicts the welfare losses generated by both the FIFO and the LIFO proto-
cols with respect to the optimal mechanism for the parameter values used in Figure 2:
UH(h) = Uh(H) = 3, UH(l) = Uh(L) = UL(h) = Ul(H) = 1, UL(l) = Ul(L) = 0, and
p = 0�3. The figure illustrates that the welfare gap decreases significantly under LIFO,
even for costs far away from zero.

7. Asymmetric markets

Throughout, we assumed a symmetric environment in terms of waiting costs and type
distributions. In this section, we consider a market with asymmetric type distributions,
utilities, and waiting costs. Specifically, we assume the probability that a square is an
H-square is pH , while the probability that a round is an h-round is ph such that, with-
out loss of generality, pH ≥ ph. Furthermore, we allow for waiting costs to differ across
market sides: we denote by cS and cR the per-period cost experienced by squares and
rounds, respectively. We place no restrictions on match utilities other than that they
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Figure 3. Welfare gaps between optimal and discretionary matching (FIFO and LIFO) as a func-
tion of costs.

are assortative and supermodular. In this environment, we summarize the characteri-
zation of the optimal mechanism and analyze a simpler one-threshold mechanism that
approximates it with small waiting costs. Finally, we illustrate that the comparison be-
tween centralized and discretionary processes studied above carries through qualita-
tively in this more general environment.

7.1 Optimal dynamic mechanism

As seen in Section 3, when pH = ph, asymmetries in utilities play no role in the char-
acterization of the optimal mechanism, whose welfare depends on joint match sur-
pluses Uxy = Ux(y) + Uy(x), for x = H�L, and y = h� l. Similarly, the optimal mech-
anism accounts for waiting costs incurred by pairs, cS + cR. An optimal mechanism
can then be derived from an optimal mechanism when waiting costs for squares and
rounds coincide and are equal to c ≡ cS+cR

2 . Our focus here is, therefore, on the im-
pact of asymmetries in type distributions on our results, the case in which pH > ph. As
in the symmetric market, (H�h) and (L� l) pairs are matched immediately when avail-
able, and we focus on dynamic mechanisms that are identified by a pair of thresholds
(k̄H� k̄h). These thresholds do not necessarily coincide when type distributions differ
for squares and rounds. Intuitively, since H-squares are more prevalent than h-rounds,
it is more valuable for the mechanism designer to hold on to (L�h) pairs in the hopes
of H-squares appearing in the market than it is to hold on to (H� l) pairs. As in Sec-
tion 3, given a pair of thresholds (k̄H� k̄h), we find the resulting net expected time-
average welfare at the steady state. We look for the pair (k̄opt

H � k̄
opt
h ) that maximizes this

objective.
Recall that stHh denotes the value of the (signed) length of the H-h queue at the be-

ginning of time t. xt ∈ {0�1}k̄H+kh+1 is the timed vector such that xti takes the value of 1
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if the state is stHh and 0 otherwise. Then

xt+1 = Tk̄H�k̄hxt �

where

Tk̄H�k̄h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − (1 −pH)ph pH(1 −ph) � � � 0 0
(1 −pH)ph pHph+(1 −pH)(1 −ph) � � � 0 0

0 (1 −pH)ph � � � 0 0
���

���
� � �

���
���

0 0 � � � pH(1 −ph) 0
0 0 � � � pHph+(1 −pH)(1 −ph) pH(1 −ph)
0 0 � � � (1 −pH)ph 1 −pH(1 −ph)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

Since the above Markov chain is ergodic, the corresponding matching process
reaches a unique steady state with a distribution πππ ≡ (πk̄H �πk̄H−1� � � � �π−k̄h) that we
now identify. Denote

η≡ pH(1 −ph)+ (1 −pH)ph and φ≡ (1 −pH)ph
pH(1 −ph) (< 1)�

Rewriting Tk̄H�k̄h in terms of η and φ, we obtain

πk̄H =
(

1 −η+ η

φ+ 1

)
πk̄H + η

φ+ 1
πk̄H−1 =⇒ πk̄H−1 =φπk̄H �

πk̄H−1 = ηφ

φ+ 1
πk̄H + (1 −η)πk̄H−1 + η

φ+ 1
πk̄H−2 =⇒ πk̄H−2 =φπk̄H−1 =φ2πk̄H �

���

π−k̄Hh = ηφ

φ+ 1
π−k̄h+1 +

(
1 −η+ ηφ

φ+ 1

)
πk̄H + η

φ+ 1
πk̄H−1 =⇒ π−k̄h =φk̄H+k̄hπk̄H �

Since
∑k̄H+k̄h
k=0 φkπk̄H = 1, it follows that πk̄H = 1−φ

1−φk̄H+k̄h+1
. Therefore,

πk̄H−k = (1 −φ)φk
1 −φk̄H+k̄h+1

for every k= 0�1� � � � � k̄H + k̄h�

The expected time-average match surplus at the steady state is then

S(k̄H� k̄h)= pHphUHh + (1 −pH)(1 −ph)ULl

+ 1{kH > 0}
(
k̄H∑
k=1

φk̄H−kπk̄H (1 −pH)ph(UHh +ULl)
)

+ 1{kh > 0}
( k̄h∑
k=1

φk̄H+kπk̄HpH(1 −ph)(UHh +ULl)
)

+πk̄HpH(1 −ph)UHl +φk̄H+k̄hπk̄H (1 −pH)phULh�
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The expected time-average waiting costs at the steady state are

C(k̄H� k̄h)= 2cπk̄H

(
k̄H∑
k=0

kφk̄H−k +
k̄h∑
k=0

kφk̄H+k
)
�

The optimal dynamic mechanism is identified by the pair of thresholds (k̄opt
H � k̄

opt
h ) that

maximizes the expected time-average welfare, S(k̄H� k̄h)−C(k̄H� k̄h).

7.2 One-threshold mechanisms

When H-squares are strictly more likely to arrive than h-rounds (pH > ph), there is a

relatively small chance that many h-rounds arrive at the market and are not matched

with H-squares. In other words, the (signed) length of the H-h queue is unlikely to

reach very negative values. Therefore, we can consider a simpler mechanism, which

only limits the length of the queue of H-squares. It turns out that the most efficient

one-threshold mechanism, despite being less efficient than the optimal mechanism, is

asymptotically efficient as waiting costs, cS and cR, vanish. We find the expected total

welfare for one period of time of the two-threshold dynamic mechanism (k̄H� k̄h) as k̄h
becomes infinitely large.33 In the limit, πk̄H−k = (1 − φ)φk for every k = 0�1�2� � � � By

applying this limit steady-state distribution, we obtain the corresponding limit match

surplus, S(k̄H�∞), and waiting costs, C(k̄H�∞):

S(k̄H�∞)= pHphUHh + (1 −pH)(1 −ph)ULl

+ 1{kH > 0}
(
k̄H−1∑
k=0

(1 −φ)φk(1 −pH)ph(UHh +ULl)
)

+
( ∞∑
k=1

(1 −φ)φk̄H+kpH(1 −ph)(UHh +ULl)
)

+ (1 −φ)pH(1 −ph)UHl

and

C(k̄H�∞)= 2c(1 −φ)
(
k̄H∑
k=0

kφk̄H−k +
∞∑
k=0

kφk̄H+k
)
�

33Technically, a one-threshold mechanism defines a Markov chain with a countable state space

{� � � �−1�0�1� � � � � k̄H}. However, when transitions toward state k̄H occur with probability strictly higher
than that of transitions away from state k̄H (i.e., pH(1 − ph) > ph(1 − pH)), the steady-state probabilities
for the truncated Markov chain defined by a two-threshold mechanism (k̄H� k̄h) approach the steady-state
probabilities for the untruncated Markov chain as k̄h increases.
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We can simplify the above expressions to achieve, for every k̄H = 0�1�2� � � � ,

S(k̄H�∞)= phUHh + (1 −pH)ULl + (pH −ph)UHl = S∞� and

C(k̄H�∞)= 2c(1 −φ)φk̄H
(

φ

(1 −φ)2 +
k̄H∑
k=0

kφ−k
)
�

The expected time-average welfare is W (k̄H) ≡ S(k̄H�∞) − C(k̄H�∞). We inspect
the marginal time-average welfare with respect to the length of the queue of H-squares

+W (k̄H)≡W (k̄H + 1)−W (k̄H) and find the most efficient one-threshold k̄∗∗

H from


+W
(
k̄∗∗
H

)≤ 0 ≤ 
+W
(
k̄∗∗
H − 1

)
� (5)

Now, to derive a closed-form solution for k̄∗∗
H , notice that the expected total surplus

S(k̄H�∞) is a constant function of k̄H . Therefore,


+W (k̄H)= C(k̄H�∞)−C(k̄H + 1�∞)

= 2c(1 −φ)(φk̄H −φk̄H+1)( φ

(1 −φ)2 +
k̄H∑
k=0

kφ−k
)

+ 2c(1 −φ)φk̄H+1

(
k̄H∑
k=0

kφ−k −
k̄H+1∑
k=0

kφ−k
)

= 2c
(
2φk̄H+1 − 1

)
�

The most efficient one-threshold mechanism is identified from (5) as

k̄∗∗
H =

⌊
− log 2

logφ

⌋
=
⌊
− log 2

log(1 −pH)+ logph − logpH − log(1 −ph)
⌋
�

This efficient threshold k̄∗∗
H does not depend on c. Importantly, every fixed one-

threshold mechanism is asymptotically efficient with vanishingly small waiting costs.
Intuitively, in the one-threshold mechanism, an incongruent pair leaves the market only
when the state is kHh = k̄H , which always occurs with probability 1 − φ at the steady
state. Therefore, all one-threshold mechanisms result in the same expected fraction of
incongruent pairs matched in the steady state. In fact, the expected total time-average
match surplus is S∞ regardless of the threshold k̄H . For any fixed threshold k̄H , as wait-
ing costs vanish, the expected total time-average waiting costs approach zero and effi-
ciency is achieved.

7.3 Discretionary matching

We focus on regular environments in which ph(UH(h)−UH(l)) �= kcS and pH(Uh(H)−
Uh(L)) �= kcR for every k ∈ Z+. The decisions of anH-square (analogously, an h-round)
remain as described in Section 4. Namely, when an H-square arrives at the market and
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an h-round is available, an (H�h) pair is formed immediately. If an h-round is not avail-
able, the arriving H-square decides to wait in the queue based on the number of H-
squares already in the queue. Since an h-round is not available, this implies that the
H-square arrived with an l-round. As all l-rounds are willing to match with H-squares,
the newly arrived H-square will wait if and only if the gain UH(h)−UH(l) exceeds the
expected waiting costs until matching with an h-round. In analogy with Lemma 1, the
(signed) length of the H-h queue at the beginning of a period, kHh ≡ kH − kh, will then
be bounded as −k̄fifo

h ≤ kHh ≤ k̄fifo
H , where

k̄fifo
H ≡ max

{
k ∈ Z+

∣∣∣ kcS
ph

<UH(h)−UH(l)
}
� and

k̄fifo
h ≡ max

{
k ∈ Z+

∣∣∣ kcR
pH

<Uh(H)−Uh(L)
}
�

An l-round (similarly, an L-square) may decide to wait to match with an H-square
if the queue of H-squares is long and expected to hit the threshold k̄fifo

H within a suffi-
ciently short time. In contrast with the symmetric case, L-squares and l-rounds may
now wait simultaneously in equilibrium. Intuitively, consider an environment in which
both types of rounds are nearly indifferent between matching with H-squares or L-
squares and, therefore, match with whomever is available immediately. In such an
environment, an L-square, who is first in line, may decide to wait, even when arriv-
ing with an l-round, in the hopes of an (L�h) pair arriving in the next period. In
other words, in general asymmetric markets, Lemma 2 does not hold. A full charac-
terization of the equilibrium requires the analysis of a rather complex random pro-
cess of the 3-dimensional vector (kHh�kL�kl). In order to achieve bounds on equi-
librium welfare, we study a one-dimensional Markov process of kHh only, with a tran-
sition matrix as described in Section 7.1. In equilibrium, as well as under the one-
dimensional protocol discussed above, the expected time-average surplus is bounded
above by S∞ = phUHh + (1 − pH)ULl + (pH − ph)UHl. In the one-dimensional process
with thresholds k̄fifo

h and k̄fifo
H , at each state kHh, either kHh H-squares (and at least as

many l-rounds) or |kHh| h-rounds (and at least as many L-squares) incur waiting costs.
Since in equilibrium there might be additional waiting costs incurred through the simul-
taneous waiting of L-squares or l-rounds, the resulting per-period welfare W fifo(cS� cR)

can be bounded as follows:

W fifo(cS� cR)≤ S∞ − (cS + cR)πk̄fifo
H

(k̄fifo
H∑
k=0

kφk̄
fifo
H −k +

k̄fifo
h∑
k=0

kφk̄
fifo
H +k

)
�

After some algebraic manipulation, we can show that

lim
(cS�cR)→(0�0)

W fifo(cS� cR)≤ S∞ −ph
(
UH(h)−UH(l)

)
�

This echoes Corollary 4. The bound on the welfare wedge between the discretionary
protocol and the optimal mechanism exhibits similar comparative statics to those de-
scribed for symmetric environments, increasing in ph and in UH(h)−UH(l).
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Appendix

A.1 Proofs regarding the optimal mechanism

We start with a preliminary lemma.34

Lemma A1. (i) For any mechanism μ, there exists a mechanism μ′, with v(μ′) ≥ v(μ),
which never holds H-squares and h-rounds that are both available, or L-squares and l-
rounds that are both available; (ii) For any mechanism μ, there exists a mechanism μ′,
with v(μ′)≥ v(μ), which never holds more than U

2c squares (and rounds) in the market.

Due to Lemma A1, the planner essentially solves the following Markov decision
problem with agents arriving in incongruent pairs, a finite set of states, and a finite set
of actions: (

MDP� s0
)≡ {T�S� s0� (r(s�k)�p(·|k))

s∈S�k∈Hs
}
�

where s0 denotes a particular initial state. Each component is defined as follows:

1. T ≡ {0�1�2� � � � } is the set of event times. As described in the body of the paper,
event times correspond to times at which incongruent pairs (H� l) or (L�h) arrive.
Since the probability of an incongruent pair arriving at any period is 2p(1 −p), the
expected time between event times is 1

2p(1−p) .

2. S ≡ {z ∈ Z : −(U/2c)−1 ≤ z ≤ (U/2c)+1} is the set of possible states (or stocks). Each
state sHh ≡ sH − sh ∈ S represents the (signed) number of incongruent pairs of type
(H� l) or (L�h) in the market. Since we restrict our attention to mechanisms that do
not hold more than U/2c squares (and rounds), a state, which takes a new arriving
pair into account, has to belong to the set {−�U/2c� − 1� � � � � �U/2c� + 1}.

3. s0 = 0 is the the initial state. Initially, there is no agent waiting in the market.

4. K ≡ {z ∈ Z : −U/2c ≤ z ≤U/2c} is the set of available actions. Each k ∈K represents
the (signed) number of incongruent pairs held in the market from one period to
the next.

5. r(s�k) is the reward function: for every s ∈ S, k ∈K,

r(s�k)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(s− k)UHl − kc

2p(1 −p) if s ≥ k≥ 0

(|s| − |k|)ULh − |k|c
2p(1 −p) if s ≤ k≤ 0

−∞ otherwise�

The expected waiting cost incurred by any agent who waits for one event time is
c

2p(1−p) . The reward function returns −∞ if an action is infeasible. For all feasi-

ble actions, the values of the reward function are in the interval [− U
4p(1−p) � (

U
2c +

1)UHh].
34A formal proof of Lemma A1 follows standard arguments and is available from the authors upon re-

quest.



1252 Baccara, Lee, and Yariv Theoretical Economics 15 (2020)

6. p(s�k) is the transition probability, the probability the system is in state s ∈ S at any
time τ+ 1, after the action k has been chosen at time τ.

p(s�k)=
{

1/2 for s = k− 1�k+ 1�

0 otherwise�

(MDP� s0) is stationary in the sense that the reward function r(s�k) and the transi-
tion probability function p(s�k) do not depend on time, or event times, explicitly. A pol-
icy of (MDP� s0) is any rule, deterministic or randomized, governing the choice of ac-
tions. Such a rule may, in principle, be history-dependent. The value of a policy μ is
then

v(μ)≡ lim inf
T→∞

1
T
Eμ

[
T∑
τ=1

r
(
sτ�kτ

)]
�

A stationary and deterministic policy, which we call an SD-policy, of (MDP� s0) ap-
plies the same deterministic decision rule μSD : S → K regardless of the history. The
value of μSD is then

v
(
μSD)= lim

T→∞
1
T
E

[
T∑
τ=1

r
(
sτ�μSD(sτ))

]
�

The limit exists, as guaranteed, for example, by Proposition 8.1.1(b) in Puterman (2005).
The finite state space implies the existence of an optimal SD-policy (see Theorem 7.1.9
of Puterman (2005) or Theorem Puterman 3 below). As such, we can focus on SD-
mechanisms satisfying Assumptions 1 and 2 in Section 3 without loss of generality.

Proof of Proposition 1. The proof follows several steps.
Step 1 (Existence of Thresholds (k̄H� k̄h))
Any stationary and deterministic policy d of (MDP) is associated with two thresh-

olds, representing the largest number of (H� l) and (L�h) pairs held in the market at any
time, respectively.35 Define

k̄H ≡ min
{
s | s > 0� d(s) < s

}− 1� and

k̄h ≡ min
{|s| | s < 0� d(s) > s

}+ 1�

The thresholds (k̄H� k̄h) are well-defined. Indeed, policies maintain only a bounded
number of unmatched pairs in the market. We claim that the value of a policy is uniquely
determined by the thresholds and decisions at the thresholds. Given policy d, define

d′(s)≡

⎧⎪⎪⎨
⎪⎪⎩
d(s) if −k̄h ≤ s ≤ k̄H
d(k̄H) if s > k̄H

d(−k̄h) if s <−k̄h�
35Indeed, suppose a policy dictates matches to be formed when the number of, say, (H� l) pairs exceeds

k1
H or k2

H > k
1
H . The number of (H� l) pairs would then never surpass k2

H , so the relevant threshold for
outcomes would be the minimal threshold k1

H .
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The Markov processes induced by d and d′, namely {(sτ� r(sτ�d(sτ))}∞τ=0 and
{(sτ� r(sτ�d′(sτ)))}∞τ=0, are identical. Thus, v(d) = v(d′). We can therefore characterize
any policy d by its corresponding thresholds (k̄H� k̄h) and decisions at the thresholds
(d(k̄H)�d(k̄h)).36

Step 2 (Stationary distribution of kHh)
We characterize the unique stationary distribution of kHh corresponding to the er-

godic Markov process induced by a policy d.

Claim 1. Take k̄H� k̄h ∈ [1� U2c ] ∩Z+, and zH�zh ∈ Z+ with zH ≤ k̄H and zh ≤ k̄h. A policy
d of (MDP) defined by

d(s)≡

⎧⎪⎪⎨
⎪⎪⎩
s if −k̄h ≤ s ≤ k̄H
k̄H − zH if s > k̄H

−k̄h + zh if s <−k̄h�
induces a Markov chain corresponding to kHh. The unique steady-state distribution π =
(π−k̄h� � � � �πk̄H ) is such that:

(i) (Middle range) for −k̄h + zh ≤ k≤ k̄H − zH , πk = π0 = 1
k̄H+k̄h−zH/2−zh/2+1

,

(ii) (Upper range) for z = 1� � � � � zH , πk̄H−zH+z = π0(1 − z
zH+1),

(iii) (Lower range) for z = 1� � � � � zh, π−k̄h+zh−z = π0(1 − z
zh+1).

That is, the stationary distribution is uniform in the middle range. The stationary
probability mass decreases as kHh approaches k̄H or k̄h.

Proof of Claim 1. Denote by

xτ ≡ (xτ−k̄h� xτ−k̄h+1
� � � � � xτ

k̄H−1
�xτ
k̄H

)tr ∈ {0�1}k̄H+k̄h+1

the timed vector such that xτi = 1(kHh = i). Then, xτ+1 = Tdxτ , where

Td =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1/2 � � � 0 0
1/2 0 � � � 0 0
0 1/2 � � � 0 0
���

���
� � �

���
���

0 0 � � � 1/2 0
0 0 � � � 0 1/2
0 0 � � � 1/2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 � � � 0 0
���

��� � � �
���

���

1/2 0 � � � 0 0
���

���
� � �

���
���

0 0 � � � 0 1/2
���

��� � � �
���

���

0 0 � � � 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

36There is multiplicity regarding prescriptions for states that are never reached. With thresholds k̄H and

k̄h the market never has more than k̄H + 1 H-squares or more than k̄h + 1 h-rounds. The specification of
what happens outside of these regions therefore has no impact on outcomes.
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The second matrix on the right-hand side has two non-zero elements valued at 1/2.
Each represents two scenarios, a transition from k̄H upon the arrival of an (H� l) pair
to k̄H − zH , and a transition from −k̄h upon the arrival of a (L�h) pair to −k̄h + zh. The
first matrix includes all other transitions. The Markov chain is ergodic, and the unique
stationary distribution of kHh exists. Then π in Claim 1 is the unique stationary distri-
bution using straightforward calculations. �

Step 3 (Welfare)
We compute the average welfare (i.e., total welfare per period) for any stationary and

deterministic mechanism μ. Let d be the associated policy of (MDP) with thresholds
(k̄H� k̄h) and the decisions at the thresholds identified by (zH�zh).37

First, we compute the average total surplus generated in one time period. A newly
arrived pair is of type (H�h) with probability p2, in which case the optimal mechanism
generates a surplus equal to UHh. Similarly, a newly arrived pair is of type (L� l) with
probability (1 −p)2, in which case the optimal mechanism generates a surplus equal to
ULl.

Suppose an (H� l) pair arrives at time t when the stock is kt−1
Hh . If kt−1

Hh < 0, the mech-
anism creates one (H�h) and one (L� l) pair, generating a surplus equal to UHh +ULl.
If 0 ≤ kt−1

Hh < k̄H , the mechanism creates no matches (and no additional surplus), and if

kt−1
Hh = k̄H , the mechanism creates (zH + 1) matches of (H� l) pairs. Analogous conclu-

sions pertain to the case in which a (L�h) pair arrives. The expected match surplus per
period is therefore

p2UHh + (1 −p)2ULl + (1 −π0)p(1 −p)(UHh +ULl)
+πk̄Hp(1 −p)(zH + 1)UHl +πk̄hp(1 −p)(zh + 1)ULh

= pUHh + (1 −p)ULl −π0p(1 −p)U�
Next, we compute the average total waiting costs incurred by agents waiting in line

for one period. During the transition from time t culminating at stock kHh to time t +
1, 2|kHh| agents wait in line so the total costs of waiting incurred during this one time
period are 2|kHh|c. Thus, a mechanism with thresholds (k̄H� k̄h) results in expected total
costs of waiting equal to

k̄H∑
k=1

2cπk|k| +
−k̄h∑
k=−1

2cπk|k|

The first term equals to

(2cπ0)

k̄H−zH∑
k=1

k+ (2cπ0)

zH∑
z=1

(
1 − 1

zH + 1

)
(k̄H − zH + z)

= (cπ0)

(
(k̄H − zH)(k̄H + 1)+ zH(zH + 2)

3

)
�

37That is, for s > k̄H , d(s)= k̄H − zH and for s <−k̄h, d(s)= −k̄h + zh.
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The second term is computed similarly. The average welfare of the mechanism μ is
then

W (k̄H� k̄h� zH�zh)

= pUHh + (1 −p)ULl −π0p(1 −p)U

− (cπ0)

(
(k̄H − zH)(k̄H + 1)+ (k̄h − zh)(k̄h + 1)+ zH(zH + 2)+ zh(zh + 2)

3

)
�

where π0 = 2
2k̄H+2k̄h−zH−zh+2

.

Step 4 (Matching at most one pair at a time)
We now show that we can focus on mechanisms satisfying zH = zh = 0. In fact,

generically this restriction is necessary for a mechanism to be optimal. The proof fol-
lows from the following claim, which completes the proof of Proposition 1.

Claim 2. Fix any k̄h and zh(≤ k̄h). For any k̄H ≥ 1 and 0 ≤ zH ≤ k̄H − 1,

W (k̄H� k̄h� zH + 1� zh)≥W (k̄H� k̄h� zH�zh)

implies

W (k̄H − 1� k̄h� zH�zh)≥W (k̄H� k̄h� zH + 1� zh)�

That is, whenever a mechanism with a larger zH leads to a higher average welfare, we
can find a mechanism with an even higher average welfare by decreasing the threshold
k̄H , while adhering to a smaller zH .

Proof of Claim 2. Let

φ= 2k̄H + 2k̄h − zH − zh + 1 and

ψ= (k̄H − zH)(k̄H + 1)+ (k̄h − zh)(k̄h + 1)+ zH(zH + 2)+ zh(zh + 2)
3

�

The first inequality in Claim 2 holds if and only if

p(1 −p)U
φ

+ c

φ

(
ψ− k̄H + 2zH

3

)
≤ p(1 −p)U

φ+ 1
+ c

φ+ 1
ψ�

or equivalently

p(1 −p)U + cψ− (φ+ 1)c
(
k̄H − 2zH

3

)
≤ 0� (6)

The second inequality in Claim 2 holds if and only if

p(1 −p)U
φ− 1

+ c

φ− 1
(ψ− 2k̄H + zH)≤ p(1 −p)U

φ
+ c

φ

(
ψ− k̄H + 2zH

3

)
�
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or equivalently

p(1 −p)U + cψ− c
(
k̄H − 2zH

3

)
−φc

(
k̄H − zH

3

)
≤ 0� (7)

Clearly, (6) implies (7). �

Claim 2 completes the proof of Proposition 1. Furthermore, this claim illustrates that
there is always an optimal mechanism identified by zH = zh = 0. From the proof, notice
that if zH > 0, inequality (6) implies that inequality (7) holds with a strict inequality.
Therefore, in any optimal mechanism, zH�zh < 2. In fact, multiplicity can emerge only
when there is multiplicity in the thresholds k̄H� k̄h fixing zH = zh = 0. Indeed, suppose
there is an optimal mechanism with k̄H and zH = 1 and some k̄h, zh. From the proof of
Claim 2, it follows that

W (k̄H� k̄h�1� zh)−W (k̄H� k̄h�0� zh)=W (k̄H − 1� k̄h�0� zh)−W (k̄H� k̄h�1� zh)�

The optimality of k̄H and zH = 1 implies that, in the above equality, both sides equal to 0
(otherwise, the mechanism identified by k̄H − 1 and zH = 0, with k̄h, zh, would generate
greater welfare). In particular, there are optimal mechanisms identified by both k̄H − 1
and zH = 0 as well as k̄H and zH = 0.

Proof of Proposition 2. We find an optimal threshold pair (k̄H� k̄h), assuming that
zH = zh = 0. To prove Proposition 2, we write the average welfare as

pUHh + (1 −p)ULl − p(1 −p)U
k̄H + k̄h + 1

−
(
k̄H(k̄H + 1)+ k̄h(k̄h + 1)

)
c

k̄H + k̄h + 1
�

We use the following change of variables:

φ≡ k̄H + k̄h� and ψ≡ k̄H − k̄h�
and rewrite the above expression for welfare as

pUHh + (1 −p)ULl − p(1 −p)U
φ+ 1

−
(
φ2 + 2φ+ψ2)c

2(φ+ 1)
�

The welfare is maximized when ψ = 0 (i.e., k̄H = k̄h = φ
2 ) if φ is even, or |ψ| = 1 if φ is

odd. We take into account this necessary condition of an optimal threshold pair and
rewrite the welfare as

W (φ)=

⎧⎪⎨
⎪⎩
pUHh + (1 −p)ULl − p(1 −p)U

φ+ 1
− (φ+ 1)c

2
ifφ is odd

pUHh + (1 −p)ULl − p(1 −p)U
φ+ 1

− (φ+ 1)c
2

+ c

2(φ+ 1)
ifφ is even�

Define the marginal increase of welfare when increasing the threshold by one as

+W (φ)≡W (φ+ 1)−W (φ). If φ ∈ Z+ is odd,


+W (φ)= p(1 −p)U
(φ+ 1)(φ+ 2)

− c

2

(
φ+ 1
φ+ 2

)
�
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If φ ∈ Z+ is even,


+W (φ)= p(1 −p)U
(φ+ 1)(φ+ 2)

− c

2

(
φ+ 2
φ+ 1

)
�

For nontrivial (i.e., nonzero) optimal thresholds, it is necessary that 
+W (0) > 0, or
equivalently c < p(1−p)U

2 . Suppose c is small enough that this is the case. A necessary
condition for an optimal sum of thresholds φ∗(≥ 1) is 
+W (φ∗) ≤ 0 ≤ 
+W (φ∗ − 1).
Thus, a necessary condition for an odd φ∗ is

p(1 −p)U(
φ∗ + 1

)(
φ∗ + 2

) − c

2

(
φ∗ + 1
φ∗ + 2

)
≤ 0 ≤ p(1 −p)U

φ∗(φ∗ + 1
) − c

2

(
φ∗ + 1
φ∗

)
�

which is equivalent to

φ∗ =
√

2p(1 −p)U
c

− 1�

Similarly, a necessary condition for an even φ∗ is

p(1 −p)U(
φ∗ + 1

)(
φ∗ + 2

) − c

2

(
φ∗ + 2
φ∗ + 1

)
≤ 0 ≤ p(1 −p)U

φ∗(φ∗ + 1
) − c

2

(
φ∗

φ∗ + 1

)
�

which is equivalent to √
2p(1 −p)U

c
− 2 ≤φ∗ ≤

√
2p(1 −p)U

c
�

Therefore, an optimal thresholds sum φ∗ must be even unless
√

2p(1−p)U
c is an even

integer. The generically unique optimal threshold is identified by

k̄
opt
H = k̄opt

h = φ∗

2
=
⌊√

p(1 −p)U
2c

⌋
�

It is easy to verify that, when
√
p(1−p)U

2c is an integer, any combination of thresholds

(k̄
opt
H � k̄

opt
h ) such that k̄opt

H � k̄
opt
h ∈ {

√
p(1−p)U

2c �
√
p(1−p)U

2c − 1} identifies an optimal mech-

anism. Furthermore, multiplicity emerges only when
√
p(1−p)U

2c is an integer.

Proof of Corollary 1. Using the optimal thresholds from Proposition 2, we get that
for c ≤ p(1−p)U

2 ,

f (c)≡ p(1 −p)U
2k̄opt + 1

= p(1 −p)U
2
⌊√

p(1 −p)U
2c

⌋
+ 1

� and

g(c)≡ 2k̄opt(k̄opt + 1
)

2k̄opt + 1
c =

⎡
⎢⎢⎢⎣
(⌊√

p(1 −p)U
2c

⌋
+ 1

2

)
− 1

4
⌊√

p(1 −p)U
2c

⌋
+ 2

⎤
⎥⎥⎥⎦ c�
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We can then define �(c) ≡ f (c) + g(c) to get the representation of W opt(c) in the
corollary. Take any c < p(1−p)U

2 for which k̄opt /∈ Z+. There exists ε > 0 such that for every
c′ with |c′ − c| < ε, k̄opt(c′) = k̄opt(c).38 Thus, �(c) is differentiable at c. Moreover, for
any c < p(1−p)U

2 such that k̄opt ∈ Z+, � is semidifferentiable. Hence, �(c) is continuous.
At any differentiable point c (around which k̄opt(c) is constant),

d�(c)

dc
= ∂�

(
k̄opt(c)� c

)
∂c

= 2k̄opt(k̄opt + 1
)

2k̄opt + 1
> 0�

Furthermore, the concavity of �(c) follows from the fact that at any semidifferentiable
but not differentiable point c,

d−�(c)
dc

>
d+�(c)
dc

�

A.2 Proofs regarding discretionary matching

A.2.1 Players’ Markov decision problem In this section, we study stationary∗ equilibria
under several priority protocols. A key first step is to formalize each player’s dynamic
decision problem, defined by other players’ equilibrium strategies, as a Markov decision
problem (MDP). We consider here an H-square’s problem and omit the analogous de-
scriptions for other player types. Fix any priority rule, and take an H-square, say player
i, who arrived in period t0 ≥ 1. Assume that all other players follow a stationary∗ strategy
profile 	−i.39 Player i solves an infinite-horizon dynamic decision problem, defined by
	−i. For each period t ≥ t0, let θti = (st � qti) denote the player’s augmented state, where
st = (stH� stL� sth� stl ) denotes the state of the market, and qti denotes player i’s rank among
the H-squares present. We write qti = 0 if player i is matched before period t. We de-
note by �i the set of player i’s possible augmented states. In each period t ≥ t0, player i
chooses a demand di ∈ {h� l}, where h represents a demand for an h-round, and l repre-
sents a demand for any round. The stage-game payoff ui(di� θi�	−i) is either a match
surplus (UH(h) or UH(l)), waiting cost −c, or 0 (if qi = 0). The initial augmented state
is θt0i = (st0� qt0i ) such that qt0i = s

t0
H under FIFO and qt0i = 1 under LIFO. The transition

between augmented states is straightforward from our description of the model, hence
we omit it here.

A strategy σi is any rule prescribing demands submitted over time. It may entail
randomization and it may be history dependent. The payoff for player i from strategy σi
is

Ui(σi;θi�	−i)≡Eσi
[ ∞∑
t=t0

ui
(
di�θ

t
i�	−i

) : θt0i = θi
]
�40

38We slightly abuse our notation and make the dependence of k̄opt on the cost c explicit here.
39That is, restricting attention to all players but i, the strategy profile is stationary∗ and in particular

symmetric.
40The expected value exists in R ∪ {−∞}. Let ui�+(di� θi�	−i) = max{ui(di� θi�	−i)�0} and

ui�−(di� θi�	−i) = max{−ui(di� θi�	−i)�0}. Define Ui�+(σi;θt0i �	−i) = Eσi [
∑∞
t=t0 ui�+(di� θ

t
i �	−i) : θt0i ] and
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We focus on player i’s Markov random strategies in the sense that a choice in each
period is independent of past history. This restriction is without loss of generality since

sup
σi∈�i

Ui(σi;θi�	−i)= sup
σi∈�MR

i

Ui(σi;θi�	−i)�

where �i and �MR
i denote the set of all strategies and all Markov random strategies,

respectively (Proposition 7.1.1 of Puterman 2005). The restriction to Markov random
strategies allows us to normalize player i’s arrival time as t0 = 0 and write

Ui(σi;θi�	−i)=Eσi
[ ∞∑
t=0

ui
(
di�θ

t
i�	−i

) : θ0
i = θi

]
for each σi ∈ �MR

i .

We extend player i’s decision problem to a Markov decision problem (MDP) with
an arbitrary initial state. That is, an initial state θ0

i can be any element in �i ⊆ {(s� qi) ∈
Z

5+ : sH + sL = sh + sl�1 ≤ qi ≤ sH}.41 A policy μi of the (MDP) is any Markovian random
rule for choosing demands. A stationary and deterministic policy (SD-policy, for short)
applies the same decision rule in every period. We denote an SD-policy by ψi : �i →
{h� l}. The value of a policy μi, for each initial state θi, is defined by vi(μi;θi�	−i) ≡
Ui(μi;θi�	−i). Last, the value of the (MDP), for each initial state θi, is v∗

i (θi;	−i) ≡
supμi vi(μi;θi�	−i).

We characterize the value of the (MDP), v∗
i (·;	−i) : �i → R ∪ {−∞} and find an

optimal SD-policy, whose value is equal to v∗
i (θi;	−i) for every initial state θi. An

optimal SD-policy of the (MDP) defines a best-response that is a stationary and de-
terministic strategy for player i given any initial state. A stationary∗ strategy profile
	 = (ψH�ψL�ψh�ψl) is a stationary∗ equilibrium if, for every H-square (similarly for
other types),ψH is an optimal SD-policy of the (MDP) defined by all other players’ equi-
librium strategies 	−i. We use the following definition and theorems from Puterman
(2005) that are associated with player i’s problem, but hold for general Markov decision
problems.

Definition 3 (Optimality equation; equation (6.2.2) with λ = 1, or equation (7.1.8) of
Puterman 2005). We refer to the following system of equations as the optimality equa-
tion:

v(θi)= max
d∈{h�l}

[
ui(di� θi�	−i)+

∑
θ′
i∈�i

p
(
θ′
i|θi�di�	−i

)
v
(
θ′
i

)]
� for all θi ∈�i�

Theorem Puterman 1 (Theorem 7.1.3 of Puterman 2005). The value of the (MDP),
v∗
i (·;	−i), is a solution of the optimality equation.

Ui�−(σi;θt0i �	−i)= Eσi [
∑∞
t=t0 ui�−(di� θ

t
i �	−i) : θt0i ]. Both limits exist in R ∪ {∞} due to non-negative sum-

mands, and Ui�+(σi;θt0i �	−i) is finite as it is bounded above by UH(h). It follows that Ui(σi;θt0i �	−i) =
Ui�+(σi;θt0i �	−i)−Ui�−(σi;θt0i �	−i) exists in R∪ {−∞}.

41As mentioned, the initial condition θ0
i = (s0� q0

i ) should satisfy q0
i = s0H under FIFO and q0

i = 1 under
LIFO. We remove such restrictions in the (MDP).
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Theorem Puterman 2 (Theorem 7.2.5 (a) of Puterman 2005). A policy μ∗
i is optimal

if and only if the value of the policy v∗
i (·;μ∗

i �	−i) : �i → R ∪ {−∞} is a solution of the
optimality equation.

Note that the value of the (MDP) is not a unique solution of the optimality equa-
tion. For example, we can add a constant to the value and find another solution. This
nonuniqueness is a consequence of there not being discounting in our model. Finally,
the state space �i for player i can be finite under some stationary∗ strategy-profile 	−i
chosen by other players. We have

Theorem Puterman 3 (Theorem 7.1.9 of Puterman 2005). If �i is finite, then there ex-
ists an optimal SD-policy.

A.2.2 Proofs regarding stationary∗ equilibria under FIFO The following Lemmas A2
and A3 are employed in the proofs of Lemmas 1 and 2.

Lemma A2. Under FIFO, if	∗ = (ψ∗
H�ψ

∗
L�ψ

∗
h�ψ

∗
l ) is a stationary∗ equilibrium, then

ψ∗
H(s� q)=

⎧⎪⎪⎨
⎪⎪⎩
h or l if q≤ sh�
h if 1 ≤ q− sh ≤ k̄fifo�

l otherwise�

(8)

where

k̄fifo ≡
⌊
p
(
UH(h)−UH(l)

)
c

⌋
=
⌊
p
(
Uh(H)−Uh(L)

)
c

⌋
�

An analogous claim holds for h-rounds.

Proof of Lemma A2. We show that if 	∗ is a stationary∗ equilibrium, for any aug-
mented state θi = (s� qi) for player i, who is anH-square, we have

ψ∗
H(θi)=

{
h if 1 ≤ qi − sh ≤ k̄fifo

l if qi − sh > k̄fifo�
(9)

The proof is by induction. Take any stationary∗ strategy-profile 	 = (ψH�ψL�ψh�ψl).
First, we characterize the equilibrium behavior of player i, anH-square, when she finds
no available h-round in a period, and is positioned in the queue so that she is to become
first in line if she stays for an additional period. Formally, i’s augmented state in period
t0 satisfies qt0i = s

t0
h + 1. Indeed, in period t0, player i finds no available h-round (i.e.,

q
t0
i > s

t0
h ) and, if she is not matched, she becomes the first H-square in the queue (i.e.,

q
t0
i − s

t0
h = 1). In finding a dynamic best-response from period t0 onward, it is without

loss of generality to restrict attention to player i’s Markov random strategies. Once we
restrict attention to Markov random strategies, we can normalize t0 = 0. Player i solves
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the following problem:

v∗
i (θi;	−i)≡ sup

σi∈�MR
i

Eσi

[ ∞∑
t=0

ui
(
di�θ

t
i�	−i

) : θ0
i = θi

]
�

Since s0l ≥ q0
i + s0L − s0h > 0, we know that at least one l-round is available in period

t0 = 0. Also, the first h-round to arrive at the market will be available to match with player

i, but it takes, in expectation, 1/p periods until such h-round arrives. Therefore, we have

v∗
i (θi;	−i)= max{UH(l)�UH(h)− c

p }. Hence, if ψ∗
H is part of a stationary∗ equilibrium,

it must be that

ψ∗
H(θi)=

{
h if qi − sh = 1 ≤ k̄fifo

l if qi − sh = 1> k̄fifo�

That is, (9) holds for every θi = (s� qi) with qi − sh = 1.

Next, we complete the induction. Take any k ∈ Z++ and a stationary∗ strategy-profile

	 such thatψH satisfies (9) for every augmented state θ= (s� q)with q−sh ≤ k. Consider

any H-square, say player i, whose augmented state in period 0 (normalized, as above)

satisfies q0
i = s0h + (k + 1). Assume that every other H-square, say player j with q0

j ≤
s0h + k < q0

i , plays ψH . Given that each player’s rank in the queue only improves over

time, the first min{k� k̄fifo} arriving h-rounds in the future are not available for player i,

but the next arriving h-round will be. In expectation, it takes min{k�k̄fifo}+1
p periods until

an h-round becomes available for player i. As such,

v∗
i (θi;	−i)= max

{
UH(l)�UH(h)−

(
min

{
k� k̄fifo}+ 1

)
c

p

}

= max
{
UH(l)�UH(h)− (k+ 1)c

p

}
�

where the last equality follows from the definition of k̄fifo. Therefore, if ψH is part of a

stationary∗ equilibrium,ψH(θi)must satisfy (9) for any augmented state θi = (s� qi)with

qi − sh = k+ 1.

Lemma A3. There exists a stationary∗ equilibrium 	∗ = (ψ∗
H�ψ

∗
L�ψ

∗
h�ψ

∗
l ) such that

(a) ψ∗
H (and ψ∗

h) satisfies (8) (with an analogous condition for h-rounds), and

(b) ψ∗
l (s� sl)=L and ψ∗

L(s� sL)= l, whenever sL > 0 and sl > 0.

Proof of Lemma A3. We start with the analysis of the H-squares’ decisions. Take any

stationary∗ strategy-profile 	 = (ψH�ψL�ψh�ψl) that satisfies conditions (a) and (b) in

the claim. We prove that ψH is a best-response for an H-square, say player i, regardless

of her initial augmented state. Let �H be the set of all possible augmented states for
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player i, conditional on	−i. That is,42

�H ≡ {(s� q) ∈ Z
5+ : −k̄fifo − 1 ≤ sHh ≤ k̄fifo + 2� qi ≤ sH

}
�

We extend player i’s decision problem as a (MDP)with an arbitrary initial state (ignoring
the fact that her initial state in the discretionary matching is qi = sH ). That is, player i’s
(MDP) is

v∗
i (θi;	−i)≡ sup

μi∈�MR
i

vi(μi;θi�	−i)� for all θi ∈�H�

where

vi(θi;μi�	−i)≡Ui(μi;θi�	−i)≡Eμi
[ ∞∑
t=0

ui
(
di�θ

t
i�	−i

) : θ0
i = θi

]
�

If player i follows the SD-policy ψH that satisfies (8), then for θi = (s� qi),

vi(θi;ψH�	−i)=E
[ ∞∑
t=0

ui
(
ψH
(
θti
)
� θti�	−i

) : θ0
i = θi

]

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
UH(h) if qi ≤ sh
UH(h)− (qi − sh)c

p
if 1 ≤ qi − sh ≤ k̄fifo

UH(l) otherwise�

From the construction of ψH in the proof of Lemma A2, it is easy to verify that
vi(·;ψH�	−i) :�H → R ∪ {−∞} solves the optimality equation. Thus, by Theorem Put-
erman 2, ψH is an optimal SD-policy of player i’s (MDP). In particular, each H-square
is best-responding by playing ψH , regardless of her initial augmented state. Next, we
consider l-rounds’ decisions. Let�l denote the set of all possible augmented states that
an l-round may experience:

�l ≡
{
(s� q) ∈ Z

5+ : sH + sL = sh + sl� q≤ sl
}
�

where q = 0 represents the augmented state after the player is matched. We take ψH
and ψh satisfying condition (a) in Lemma A3. We want to construct an SD-strategy ψl :
�l → {H�L} (and ψL : �L → {h� l}, whose analogous construction we omit) such that
	 = (ψH�ψL�ψh�ψl) constitutes a stationary∗ equilibrium. The following assumption
on ψl (and ψL) will be useful for our construction.

Assumption A1. For any (s� sl) ∈ �l, (s� sL) ∈ �L with sl > 0 and sL > 0, (1) ψl(s� sl) =
ψl(s� sl − 1) = · · · = ψl(s�1 + s+Hh) = L; (2) ψL(s� sL) = ψL(s� sL − 1) = · · · = ψL(s�1 +
s−Hh)= l, where s+Hh = max{sHh�0} and s−Hh = −min{sHh�0}.

42Recall that qti = 0 for any period t after player imatches. If qti = 0, player i’s stage-game payoff is uti = 0.

Moreover, sHh = k̄fifo + 2 can occur, if player i deviates from ψH . For example, player i may arrive at the
market with a rank qi = sHh = k̄fifo + 1. If she deviates from ψH by demanding h, then sHh can be k̄fifo + 2
in the following period due to an additional arrival of anH-square.
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Note that Assumption A1 is consistent with condition (b) in Lemma A3. The con-
struction of ψl that follows will guarantee that ψl is a best response for an l-round in
any period and with any initial augmented state, if all other players satisfy Assump-
tion A1. We will then justify Assumption A1 as describing best-response strategies.
Take any l-round, say player i, and any stationary∗ strategy-profile 	−i such that ψH
and ψh satisfy (8) and Assumption A1 holds. As argued before, there is no period in
which both H-squares and h-rounds wait at the market. Therefore, for any t, the stock
kt ≡ (ktH�ktL�kth�ktl) satisfies ktHk

t
h = 0 and −k̄fifo ≤ ktHh ≤ k̄fifo. In addition, by Assump-

tion A1, there is no period in which at least two L-squares and two l-rounds wait by de-
manding h-rounds and H-squares, respectively. We characterize the set of augmented
states for player i, which we denote by �′

l ⊆ �l. Let K ⊆ Z
4+ denote the set of possible

states at the end of each period. That is,

k ≡ (kH�kL�kh�kl) ∈K ⇐⇒

(i) kH + kL = kh + kl�
(ii) kHkh = 0�

(iii) −k̄fifo ≤ kHh ≤ k̄fifo�

(iv) kHh ≥ 0 =⇒ kL ≤ 1� and kHh ≤ 0 =⇒ kl ≤ 1�

Then�′
l is a subset of �l such that

(s� q) ∈�′
l ⇐⇒ (∃k ∈K) s.t. s − k ∈ {(1�0�1�0)� (0�1�0�1)� (1�0�0�1)� (0�1�1�0)

}
and q≤ sl�

It is clear that �′
l is finite, and for any (s� q) ∈ �′

l, we have 0 ≤ q ≤ k̄fifo + 2. It is suffi-
cient to define ψl over augmented states in �′

l only, as an augmented state (s� q) /∈ �′
l

never occurs. Under the FIFO protocol, the ranking of an l-round, such as our player
i, improves as she waits in the market. Thus, player i’s continuation payoff from the
(MDP) after her rank becomes 1 is independent of her actions in a state with a rank
lower than 1. For each possible ranking of an l-round, q ∈ {1�2� � � � � k̄fifo + 2}, let �′

l�q

be the set of augmented states with rank q (i.e., �′
l�q ≡ {s | (s� q) ∈ �′

l}). We construct

ψl�q : �′
l�q → {H�L} sequentially from q = 1 to q = k̄fifo + 2, and define ψl : �′

l → {H�L}
as ψl(s� q)≡ ψl�q(s� q). In the construction, we will guarantee that ψl constitutes a best
response for an l-round, taking as given ψH , ψh, and Assumption A1 applied to all other
players. The proof is inductive with the following induction hypothesis.

Induction hypothesis. There exists ψl�q :�′
l�q → {H�L} for q≤ k̄fifo + 2 such that:

(i) ψl�≤q = (ψl�q�ψl�q−1� � � � �ψl�1) is a optimal SD-policy for player i, and

(ii) the maximal total expected payoff for player i, given any θi = (s�qi) ∈�′
l�q, is

v∗
i (θi)≤ max

{
Ul(L)�Ul(H)−

(
k̄fifo − sHh + qi

)
c

p

}
�
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Step 1: Construction of ψl�1
Consider an l-round, say our player i, who is the first in the queue at some period.

Player i solves a dynamic decision problem, defined byψH ,ψh, and Assumption A1 (ap-
plied to other players’ strategies). We extend player i’s decision problem as a (MDP)with
an arbitrary initial state θi ∈�′

l�1. Let v∗(θi) denote the maximal expected total payoff for
player i with an initial augmented state θi. Theorem Puterman 3 guarantees that there
exists an optimal SD-policy. Moreover, any policy whose values solve the optimality
equation is optimal by Theorem Puterman 2, which allows us to choose a particular op-
timal SD-policy ψl�1 consistent with Assumption A1. To proceed with the construction,
we show the following claims.

Claim 1. For any θi ∈ (s�1) ∈�l�1, we have v∗(θi)≤ max{Ul(L)�Ul(H)− (k̄fifo−sHh+1)c
p }.

Proof of Claim 1. Take an l-round, say player i, who is the first in the queue for l-
rounds in some period, which we normalize to be t0 = 0, and augmented state (s0�1) ∈
�′
l�1. Given ψH , to match with anH-square, player i must wait for at least k̄fifo − s0Hh + 1

additional arrivals ofH-squares. Consider now the following optimal stopping problem:

[P] A boy (l) stands under an apple tree and holds a banana. In each period, one apple falls
from the tree with probability p. The first k̄∗(≡ k̄fifo − s0Hh) apples should be handed over
to the owner of the tree. The boy can consume exactly one piece of fruit, either an apple or
a banana. He prefers an apple, with payoff Ul(H), to the banana, with payoff Ul(L). Thus,
while he can consume the banana and walk away withUl(L) in any period, he may want to
wait for falling apples. He incurs a cost c for each period of waiting without consuming any
fruit.

Let �(P) ≡ {0�1� � � � � k̄∗ + 1} ∪ {
} denote the state space of [P], where 
 denotes the
(absorbing) state after the boy consumes a piece of fruit. In each period t and state
θt(P) ∈ �(P)\{
}, the boy chooses a demand d ∈ {H�L}. The stage payoff from demand

H is either Ul(H) in state θt(P) = k̄∗ + 1, or −c in any other state in �(P)\{
}. The stage
payoff from demand L is Ul(L) in any state in �(P)\{
}. In state 
 (i.e., after consuming
a piece of fruit), the boy gets zero stage payoff forever. The value of [P] with an arbitrary
initial state θ ∈�(P) is43

v∗
(P)(θ)≡ sup

μ
Eμ

[ ∞∑
t=0

u
(
d�θt

) : θ0 = θ
]
�

It is clear from the description of [P] that v∗
(P)(0) constitutes an upper bound for the

maximal expected total payoff of player i (i.e., v∗(θi)). In fact, unlike player i, the boy in
[P] can always consume a banana and walk away. Also, while player i must wait for at
least k̄∗ +1 arrivals ofH-squares to match with anH-square, the boy in [P] is guaranteed
to get the (k̄∗ + 1)-th falling apple. As such, to prove the claim, it is sufficient to show
that

v∗
(P)(0)≤ max

{
Ul(L)�Ul(H)−

(
k̄fifo − s0Hh + 1

)
c

p

}
�

43The limit exists, because P is a positive bounded problem (see p. 279 of Puterman 2005).
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Let

k̄∗∗ ≡
⌊
p
(
Ul(H)−Ul(L)

)
c

⌋
≤ k̄fifo�

(i) Suppose that k̄∗ < k̄∗∗. Then, compared to consuming a banana immediately, it is
weakly more profitable to wait until k̄∗ + 1 = k̄fifo − s0Hh + 1(≤ k̄∗∗) apples fall. Once the
boy decides to wait, he will continue to wait until he obtains an apple. Thus,

v∗
(P)(0)=Ul(H)−

(
k̄∗ + 1

)
c

p
=Ul(H)−

(
k̄fifo − s0Hh + 1

)
c

p
�

(ii) Suppose that k̄∗ = k̄∗∗. As v∗
(P)(·) solves the optimality equation, we have

v∗
(P)(0)= max

{
Ul(L)�−c+p(v∗

(P)(1)
)+ (1 −p)(v∗

(P)(0)
)}
�

Suppose, toward a contradiction, that

v∗
(P)(0)= −c+p(v∗

(P)(1)
)+ (1 −p)v∗

(P)(0) > Ul(L)�

Then

v∗
(P)(0)= v∗

(P)(1)− c

p
=
(
Ul(H)− k̄∗c

p

)
− c

p
=Ul(H)−

(
k̄∗∗ + 1

)
c

p
>Ul(L)�

where the second equality follows from case (i) above (after the first apple falls, the boy
needs to hand over only k̄∗ − 1(< k̄∗∗) additional apples to the owner). Notice that the
last inequality contradicts the definition of k̄∗∗. Therefore, v∗

(P)(0)≤Ul(L).
(iii) Suppose that k̄∗ > k̄∗∗. More apples should be handed over to the owner than in

the previous case, so v∗
(P)(0)≤Ul(L).

This concludes the proof of Claim 1. �

Claim 2. There exists an optimal SD-policy ψl�1 :�′
l�1 → {H�L} of the (MDP) for player i

such that ψl�1(θi)=L, for all θi = (s�1) ∈�′
l�1 with sHh < 1.

Proof of Claim 2. Let ψl�1 :�′
l�1 → {H�L} such that

ψl�1(θi)=
{
H if v∗(θi) > Ul(L)�
L if v∗(θi)≤Ul(L)�

Then vi(·;ψl�1) : �′
l�1 → R ∪ {−∞} is a solution of the optimality equation of player

i’s (MDP). It follows from Theorem Puterman 2 that the SD-policy ψl�1 is optimal. By
Claim 1, for any θi = (s�1) ∈�′

l�1 with sHh < 1,

v∗
i (θi)≤ max

{
Ul(L)�Ul(H)−

(
k̄fifo + 1

)
c

p

}
=Ul(L)�

so that ψl�1(θi)=L. This concludes the proof of Claim 2. �
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Step 2: Construction of ψl�q+1 given (ψl�1�ψl�2� � � � �ψl�q)
Fix q ∈ {1�2� � � � � k̄fifo + 1}. For an l-round, say player i, who enters as qth in line,

we extend the player’s dynamic decision problem as a (MDP) with an arbitrary initial
augmented-state set �′

l�≤q ≡ ⋃q′≤q �′
l�q′ . Note that the (MDP) for player i is defined

by ψH , ψh, ψl�<q ≡ (ψl�q−1�ψl�q−2� � � � �ψl�1), ψL�<q ≡ (ψL�q−1�ψL�q−2� � � � �ψL�1), and by
Assumption A1 applied to other players’ strategies.

Now, consider an l-round, say player j, who is (q + 1)-th in line at some period
t0 = 0 (normalized). Player j solves a dynamic decision problem. As before, we ex-
tend player j’s problem as a (MDP) with an arbitrary initial augmented state in the set
�′
l�≤q+1 ≡⋃q′≤q+1�

′
l�q′ . Note that player j’s (MDP) is defined by ψH , ψh, ψL�≤q, ψl�≤q,

and by Assumption A1 applied to other players’ strategies. As the set of augmented states
for player j is still finite, there exists an optimal SD-policy (see Theorem Puterman 3).
Moreover, any policy whose values solve the optimality equation is optimal (see Theo-
rem Puterman 2). In particular, it is optimal for player j to follow any optimal SD-policy
of his (MDP) until his rank becomes q, after which he switches to any optimal policy of
a (MDP) for an l-round who enters as qth in line. Thus, to find an optimal policy for
player j, it is sufficient to find a function ψl�q+1 :�′

l�q+1 → {H�L} that is consistent with
Assumption A1.

Claim 3. For any θj = (s�q+ 1) ∈�′
l�q+1,

v∗
j (θj)≤ max

{
Ul(L)�Ul(H)−

(
k̄fifo − sHh + q+ 1

)
c

p

}
�

Proof of Claim 3. Take an l-round, say player j, who is (q + 1)-th in the queue of l-
rounds in period t0 = 0 (normalized), and any augmented state (s0� q+ 1) ∈�′

l�q+1. Two
observations will be useful:

1. In any augmented state θj = (s� q + 1) ∈ �′
l�q+1, if there exists any q′ < q + 1 such

that ψ(s�q′) = L, the maximum expected continuation payoff for player j is at most
Ul(L).

2. In any augmented state θj = (s� q + 1) with sHh = k̄fifo + 1, the first l-round in the
queue matches with anH-square. Thus, the maximum expected continuation pay-
off for player j (i.e., v∗

j (θj)) equals v∗
j (s

′� q), where s′ denotes the augmented state

after matching the first l-round with anH-square.44 As s′Hh = k̄fifo, by the induction
hypothesis holding up to q,

v∗
j (θj)= v∗

j

(
s′� q

)≤ max
{
Ul(L)�Ul(H)− qc

p

}
�

Player j either matches with an L-square and receives Ul(L) while his rank is q+ 1
or has a corresponding augmented state at some period before matching. Moreover,
starting from an arbitrary initial augmented state θ0

j = (s0� q+1), the second case occurs

44That is, (s′H� s
′
L� s

′
h� s

′
l)= (sH� sL� sh� sl)− (1�0�0�1).
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only after at least k̄fifo − s0Hh + 1 arrivals of H-squares. Consider the following optimal
stopping problem:

[P’] A boy (l) stands under an apple tree and holds a banana. In each period, one apple falls
from the tree with probability p. The first k̄∗(≡ k̄fifo − s0Hh) falling apples should be handed
over to the owner of the apple tree. The boy can consume exactly one piece of fruit, either an
apple or the banana. He (weakly) prefers an apple, with payoffU ′

l (H)≡ max{Ul(L)�Ul(H)−
qc
p }, to the banana, with payoff Ul(L). Thus, while he can consume the banana and walk

away in any period, he may want to wait for falling apples. He incurs a cost c for each period
of waiting without consuming any fruit.

Similar to the proof of Claim 1, let �(P ′) ≡ {0�1� � � � � k̄∗ + 1} ∪ {
} denote the state
space of [P’], where 
 denotes the (absorbing) state after the boy consumes a fruit. The
value of [P’] with an arbitrary initial state θ ∈�(P ′) exists (by similar arguments to those
used for the existence of the value of [P]). The value of [P’] with the initial condition
0, denoted by v∗

(P ′)(0), is an upper bound of the maximal expected payoff for player j.
Unlike player j, the boy in [P’] can always consume a banana and walk away. While
player jmust wait for at least k̄∗+1 arrivals ofH-squares to get an expected continuation
payoff of U ′

l (H), the boy in [P’] is guaranteed to get U ′
l (H) after k̄∗ + 1 falling apples. As

such, it is sufficient to prove that

v∗
(P ′)(0)≤ max

{
Ul(L)�Ul(H)− k̄fifo − s0Hh + q+ 1

p

}
�

Let k̄∗∗ ≡ �p(U ′
l (H)−Ul(L))

c � ≤ k̄fifo. As in the proof of Claim 1, we consider three cases:
(i) Suppose that k̄∗ < k̄∗∗. Compared to consuming a banana immediately, it is

weakly more profitable to wait until k̄∗ + 1 = k̄fifo − s0Hh + 1(≤ k̄∗∗) apples fall. Once
the boy waits, he will continue to wait until he obtains an apple. Thus,

v∗
(P ′)(0)=U ′

l (H)−
(
k̄∗ + 1

)
c

p
=U ′

l (H)−
(
k̄fifo − s0Hh + 1

)
c

p

≤ max
{
Ul(L)�Ul(H)−

(
k̄fifo − s0Hh + q+ 1

)
c

p

}
�

(ii) Suppose that k̄∗ = k̄∗∗. As v∗
(P ′)(·) solves the optimality equation (see Theorem

Puterman 1),

v∗
(P ′)(0)= max

{
Ul(L)�−c+p(v∗

(P ′)(1)
)+ (1 −p)(v∗

(P ′)(0)
)}
�

Assume, toward a contradiction, that

v∗
(P ′)(0)= −c+p(v∗

(P ′)(1)
)+ (1 −p)(v∗

(P ′)(0)
)
>Ul(L)�

Then

v∗
(P ′)(0)= v∗

(P ′)(1)− c

p
=U ′

l (H)−
(
k̄∗ + 1

)
c

p
=U ′

l (H)−
(
k̄∗∗ + 1

)
c

p
>Ul(L)�
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where the second equality is from case (i). After the first falling apple, the boy needs to
hand over only k̄∗ − 1(< k̄∗∗) additional apples to the owner. The last inequality contra-
dicts the definition of k̄∗∗. Therefore, v∗

(P ′)(0)≤Ul(L).
(iii) Suppose that k̄∗ > k̄∗∗. More apples should be handed over to the owner than in

the previous case, so v∗
(P ′)(0)≤Ul(L).

This concludes the proof of Claim 3. �

Claim 4. There exists ψl�q+1 :�′
l�q+1 → {H�L} with

ψl�q+1(θj)=L� for all θj = (s� q+ 1) ∈�′
l�q+1 with sHh < q+ 1�

such that ψl�≤q+1 = (ψl�q+1�ψl�q� � � � �ψl�1) is an optimal SD-policy of the (MDP) for
player j.

Proof of Claim 4. Let ψl�≤q+1 :�′
l�q+1 → {H�L} such that

ψl�q+1(θj)=
{
H if v∗

j (θj) > Ul(L)

L if v∗
j (θj)≤Ul(L)�

Then v(·;ψl�≤q+1) :�′
l�≤q+1 →R∪ {−∞} solves the optimality equation of the (MDP) for

player j. It follows from Theorem Puterman 2 that ψl�≤q+1 is optimal.
By Claim (1), for any θj = (s� q+ 1) ∈�′

l�q+1 with sHh < q+ 1,

v∗
j (θj)≤ max

{
Ul(L)�Ul(H)−

(
k̄fifo + 1

)
c

p

}
=Ul(L)�

so ψl�q+1(θj)=L. This concludes the proof of Claim 4. �

To conclude the proof of Lemma A3, let us turn to Assumption A1. Thus far, we have
constructedψl, which ascribes a best-response for an l-round for any initial augmented
state, given ψH , ψh, and Assumption A1 applied to strategies of others. To conclude
the proof, we need to guarantee that the ψl we constructed satisfies Assumption A1.
Take any stationary∗ strategy-profile 	 = (ψH�ψL�ψh�ψl) such that ψH and ψh satisfy
(8), and ψl and ψL are constructed as described above. Suppose that both L-squares
and l-rounds exist in the market in a period t after a new pair arrives. We consider the
case of stHh ≥ 0 (and omit an analogous proof for the case of stHh < 0). For any l-round,
say player i, with rank qi > stHh, Claims 2 and 4 imply that player i would demand L.
The counterpart of Claims 2 and 4 for L-squares implies that every L-square, say player
j, demands an l-round as qj ≥ 1 = 1 + s−Hh. Therefore, Assumption A1 describes best-
response behavior. This concludes the proof of Lemma A3.

Proof of Lemma 1. The proof follows directly from Lemmas A2 and A3 above.

Proof of Lemma 2. We show that the part (b) of Lemma A3 guarantees Lemma 2. Take
a stationary∗ equilibrium 	∗ satisfying conditions (a) and (b) in Lemma A3. Initially,
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there is no agent waiting in the market. Suppose that both an L-square and an l-round
are present in some period t, for the first time ever. Given (8) (and a similar condition
for ψ∗

h), it must be that either (i) stH ≥ 0, sth = 0, stL = 1, and stl = stH + stL, or (ii) stH = 0,
sth ≥ 0, stL = sth + stl , and stl = 1. In both instances, there exists an L-square who finds
no available h-round and demands an l-round, and an l-round who finds no available
H-square and demands an L-square. As such, one (L� l) pair will be matched, and only
incongruent pairs of agents (i.e., either H-squares and l-rounds, or L-squares and h-
rounds) wait until period t+ 1. A similar argument shows that in any period in which an
L-square and an l-round coexist, for the second time, third time, etc., one (L� l) pair will
be formed.

Proof of Proposition 3. First, the (signed) length of theH-h queue, denoted by kHh,
constitutes an ergodic Markov chain. Following arguments in the body of the paper, the
unique steady-state distribution of kHh is the uniform distribution over {−k̄dec�−k̄dec +
1� � � � � k̄dec}. At any time t, suppose that ktHh > 0. Clearly, the queue has no h-rounds. As
equal numbers of squares and rounds enter and exit the market, it must be that kHh +
kL = kl. Lemma 2 guarantees that kL = 0, therefore, kl = kHh. An analogous argument
follows for kHh ≤ 0.

Proof of Corollary 3. Whenever c > p(1−p)U
2 , the optimal mechanism matches ar-

riving agents immediately, k̄opt = 0, and k̄opt ≤ k̄dec. Suppose then that c < p(1−p)U
2 . We

then have √
p(1 −p)U

2c
<
p(1 −p)U

2c
≤ pU

2c
≤ p

(
UH(h)−UH(l)

)
c

�

and the result follows from the definitions of k̄opt and k̄dec.

A.3 Proof regarding welfare comparisons

Proof of Proposition 4. Part 1: As in the proof of Corollary 1, W opt(c) −W fifo(c) is
differentiable at any c < p(1−p)U

2 such that k̄opt� k̄fifo /∈ Z+. In a small neighborhood
around any such c, the thresholds corresponding to both the optimal and discretionary
thresholds are constant in c. Therefore,

d
(
W opt(c)−W fifo(c)

)
dc

= −2k̄opt(k̄opt + 1
)

2k̄opt + 1
+ 2k̄fifo(k̄fifo + 1

)
2k̄fifo + 1

≥ 0�

where the inequality follows from k̄fifo ≥ k̄opt (Corollary 3). Furthermore, the proof of
Corollary 1 implies thatW opt(c) is continuous in c and soW opt(c)−W fifo(c) is increasing
in any point c for which k̄fifo /∈ Z+. Let {dk}∞k=1 denote the decreasing sequence of costs

such that k= p(UH(h)−UH(l))
dk

. That is, cost dk corresponds to the maximal cost such that
the equilibrium threshold is k in the discretionary process under FIFO. For an arbitrary
k, we will show that

W opt(dk+1)−W opt(dk) >W
fifo(dk+1)−W fifo(dk)� (10)
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First, we focus on W opt(dk+1)−W opt(dk). Note thatW opt(c) is piecewise linear and
continuous in c. It follows that

W opt(dk+1)−W opt(dk)=
∫ dk

dk+1

2k̄opt(c)
(
k̄opt(c)+ 1

)
2k̄opt(c)+ 1

dc�

Let k0 ≡ �
√
p(1−p)U

2dk
�. For any c ∈ [dk+1� dk], k̄opt(c)≥ k0 and

2k̄opt(c)
(
k̄opt(c)+ 1

)
2k̄opt(c)+ 1

= 1
2

((
2k̄opt(c)+ 1

)− 1

2k̄opt(c)+ 1

)
≥ 2k0(k0 + 1

)
2k0 + 1

�

Thus,

W opt(dk+1)−W opt(dk)

≥
∫ dk

dk+1

2k0(k0 + 1
)

2k0 + 1
dc = 2k0(k0 + 1

)
2k0 + 1

(dk − dk+1)

= 2k0(k0 + 1
)

2k0 + 1
p
(
UH(h)−UH(l)

)( 1
k

− 1
k+ 1

)
= 2k0(k0 + 1

)
2k0 + 1

p
(
UH(h)−UH(l)

)
k(k+ 1)

�

Next, we considerW fifo(dk+1)−W fifo(dk). Denote by

W (m�c)≡ S∞ − p(1 −p)U
2m+ 1

− 2m(m+ 1)c
2m+ 1

�

Note that

W fifo(dk+1)−W fifo(dk)=W (k+ 1� dk+1)−W (k�dk)
=W (k+ 1� dk+1)−W (k+ 1� dk)+W (k+ 1� dk)−W (k�dk)�

We use the following two observations:

W (k+ 1� dk+1)−W (k+ 1� dk)= 2(k+ 2)p
(
UH(h)−UH(l)

)
k(2k+ 3)

�

and

W (k+ 1� dk)−W (k�dk)

= 1
(2k+ 1)(2k+ 3)

(
2p(1 −p)U − 4(k+ 1)2p

(
UH(h)−UH(l)

)
k

)
�

Thus,

W fifo(dk+1)−W fifo(dk)= 2(k+ 2)p
(
UH(h)−UH(l)

)
k(2k+ 3)

+ 2p(1 −p)U
(2k+ 1)(2k+ 3)

− 4(k+ 1)2p
(
UH(h)−UH(l)

)
k(2k+ 1)(2k+ 3)

�
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To prove (10), it suffices to show that

2k0(k0 + 1
)

2k0 + 1

2k+ 3
k+ 1

>
2k

2k+ 1
+ 2k

2k+ 1
(1 −p)U

UH(h)−UH(l) � (11)

To prove the above inequality, we consider the following two cases:

1. (k0 ≥ 2) Note that

U

UH(h)−UH(l) <
(
UH(h)−UH(l)

)+ (Uh(H)−Uh(L)
)

UH(h)−UH(l) = 2� (12)

Since the left-hand side of (11) is increasing in k0, for (11) to hold, it suffices that

12
5

2k+ 3
k+ 1

>
2k

2k+ 1
+ 4k

2k+ 1
= 6k

2k+ 1
�

which holds for all k.

2. (k0 = 1) One sufficient condition for (11) using (12) is 4(2k+3)
3(k+1) >

6k
2k+1 , which holds

for k= 1�2, or 3. Since k0 = 1,

p(1 −p)U
2dk

= (1 −p)Uk
2
(
UH(h)−UH(l)

) < 4�

Thus, another sufficient condition for (11) in this case is 4(2k+3)
3(k+1) >

2k+16
2k+1 , which

holds for k≥ 4.

To construct the partition in the proposition, let k= max{k | dk ≥ c} and k= min{k |
dk < c}. Now define c1 = c, cM = c. If k = k, set M = 2 and the partition has only one
atom. Otherwise, if k< k, setM = k− k+ 2 and ci = dk−i+1 for i= 2� � � � �M − 1.

Part 2: Notice that

lim
c→0

(
W opt(c)−W fifo(c)

)= lim
c→0

	(c)− lim
c→0

�(c)= p(UH(h)−UH(l)
)
�

In particular, for sufficiently small c, W opt(c)−W fifo(c) is increasing in both p and
UH(h)−UH(l), as needed.

A.4 Proofs regarding the LIFO protocol

Proof of Lemma 3. For anH-square, say player i, let θi = (s� qi) denote her augmented
state, where qi now denotes her rank under the LIFO protocol. A threshold strategy is a
SD-strategy ψH such that, with some k̄H ∈ Z+,

ψH(θi)=
{
h if qi ≤ k̄H
l if qi > k̄H + 1�

Similarly, we define a threshold strategy for h-rounds with the threshold denoted by k̄h.
Suppose that all H-squares play a threshold strategy ψH with threshold k̄H ∈ Z+. We
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use an absorbing Markov chain to compute the expected total payoff for an H-square,
say player i, whose augmented state is θti = (st � qti) in some period t. The event time τ
starts from 0 and increases for each arrival of an incongruent pair.45 In expectation, an
increment of τ takes 1

2p(1−p) periods. The state space of the absorbing Markov chain is

{1�2�3� � � � � k̄H�h� l} where integer transient states denote player i’s ranking qτi (1 if there
are no H-squares who arrived after i that are waiting), and each of the two absorbing
states h and l denote the type of player i’s match partner. The matrix of transition prob-
abilities pij from state i to j is

P =
[
Q R

0 I

]
� whereQ=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1/2 · · · 0
1/2 0 · · · 0
���

���
� � �

���

0 · · · 0 1/2
0 · · · 1/2 0

⎤
⎥⎥⎥⎥⎥⎥⎦
�R=

⎡
⎢⎢⎢⎢⎣

1/2 0
0 0
���

���

0 1/2�

⎤
⎥⎥⎥⎥⎦ � and I =

[
1 0
0 1

]
�

Q represents the transitions between transient states. For any 1 < k < k̄H , the state
changes upon an arrival of either an (H� l) or a (L�h) pair, each of which occurs with
conditional probability 1/2. R11 represents the probability of a transition from qi = 1
to an absorbing state h caused by an arrival of a (L�h) pair. Rk̄H2 represents the tran-

sition from qi = k̄H to an absorbing state l caused by an arrival of an (H� l) pair. Let
N ≡ (Ik̄H −Q)−1, T ≡N · 1, and L≡NR. The absorbing Markov chain with initial state

k ∈ {1�2� � � � � k̄H} is absorbed in Tk expected number of steps. It is absorbed by state h
(or l) with probability Lkh (or Lkl, resp.). It is easy to verify thatN is a symmetric matrix
with Nij = 2j(k−i+1)

k+1 for all i≥ j, Tk = Tk̄H+1−k =∑k
i=1(k̄H − 2(i − 1)) for all k ≤ k̄H/2,

and Lk2 = 1 −Lk1 = k/(k̄H + 1) for k= 1� � � � � k̄H . The expected total payoff for player i
in period t with initial condition qti = k is

Lk1UH(h)+Lk2UH(l)− Tk c

2p(1 −p)� (13)

This payoff is strictly decreasing in k, implying that an l-round with rank k̄H has the
highest incentive to deviate from ψH by demanding l, among all H-squares who are
supposed to demand h according to ψH . The total expected payoff for player i with
qti = k̄H is

1

k̄H + 1
UH(h)+ k̄H

k̄H + 1
UH(l)− k̄Hc

2p(1 −p)�

This payoff is strictly decreasing in k̄H . Thus, there exists a maximum threshold k̄lifo

such that player i’s payoff exceeds UH(l).46 After some algebraic steps, one can verify

45An arrival of (H�h) or (L� l) does not change player i’s position in line. In particular, if an (H�h) pair
arrives, the new players match with each other immediately under LIFO.

46The last payoff is never equal to UH(l) because of the regularity assumption.
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that

k̄lifo ≡
⌊√

2p(1 −p)(UH(h)−UH(l)
)

c
+ 1

4
− 1

2

⌋
�

Next, we show that if 	= (ψH�ψL�ψh�ψl) is a stationary∗ equilibrium in which ψH
(and ψh) is a threshold strategy with a threshold k̄H (resp., k̄h), then k̄H = k̄h = k̄lifo.

(i) Suppose, toward a contradiction, that k̄H > k̄lifo. Take anyH-square iwhose aug-
mented state in some period t satisfies qti = k̄H . Her expected total payoff from period t
by playingψH is strictly lower thanUH(l). Therefore, player i has an incentive to deviate
and demand an l-round.

(ii) Suppose, toward a contradiction, that k̄H < k̄lifo. Take any H-square i whose
augmented state in some period t satisfies qti = k̄. We will show that player i has an
incentive to deviate and use the threshold k̄H + 1 instead of k̄H perpetually until match-
ing. Consider an absorbing Markov chain with the state space {1�2� � � � � k̄H� k̄H + 1�h}
such that each integer transient state denotes player i’s ranking. The absorbing state h
represents the only possible match partner for i, a match with an h-round. The queue
for H-squares never exceeds the threshold k̄H + 1, because all other H-squares use the
threshold k̄H . Therefore, player iwill never match with an l-round. The transition prob-
ability matrix is

P =
[
Q R

0 1

]
� whereQ=

⎡
⎢⎢⎢⎢⎣

0 1/2 0 · · · 0 0
1/2 0 1/2 · · · 0 0
���

���
���

� � �
���

���

0 0 0 · · · 1/2 1/2

⎤
⎥⎥⎥⎥⎦ and R=

⎡
⎢⎢⎢⎢⎣

1/2
0
���

0

⎤
⎥⎥⎥⎥⎦ �

To understand Q(k̄H+1)(k̄H+1) = 1/2, suppose that player i’s augmented state in some

period τ satisfies qτi = k̄H+1. If an (H� l) pair arrives in the following period, one of other
H-squares who play ψH with threshold k̄H demands an l-round and leaves the market.
Player i’s rank (i.e., the state in the absorbing Markov chain) will remain at k̄H + 1. Let
N ≡ (Ik̄H+1 − Q)−1 and T ≡ N · 1. The absorbing Markov chain with initial state k ∈
{1�2� � � � � k̄H + 1} is absorbed by state h in Tk expected number of steps. It is easy to
verify thatN is a symmetric matrix withNij = 2j for all i≥ j, and Tk = 2

∑k
i=1(k̄H +2− i).

Therefore, when player i’s augmented state in period τ is qτi = k̄H + 1, she would deviate
from ψH by increasing the threshold to k̄H + 1 permanently because

UH(h)− (k̄H + 1)(k̄H + 2)c
2p(1 −p) ≥UH(h)−

(
k̄lifo)(k̄lifo + 1

)
c

2p(1 −p) >UH(l)�

Thus, a stationary∗ strategy ψH with threshold k̄H < k̄lifo cannot be a stationary∗ equi-
librium strategy.

Proof of Lemma 4. First, consider the decisions of H-squares. Suppose that H-
squares play a stationary∗ strategy ψH with threshold k̄lifo. We prove that, for each
H-square, say player i, ψi = ψH is an optimal policy of the (MDP) (without restrictions
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on her initial state), defined by other H-squares’ strategy ψH . It follows that ψH is each
H-square’s best-response. Given any initial augmented state θi = (s� qi) and other H-
squares’ strategy ψH , define the value of policy ψi(=ψH) as

vi(θi;ψi�ψH)≡Eψi
[ ∞∑
t=0

ui
(
ψi
(
θti
)
� θti
) : θ0

i = θi
]
�

From equation (13), we obtain that

vi(θi;ψi�ψH)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

UH(h) if qi ≤ sh(
1 − k

k̄lifo + 1

)
UH(h)+ k

k̄lifo + 1
UH(l)− Tk c

2p(1 −p)
if k≡ qi − sh ∈ {1� � � � � k̄lifo}

UH(l) if qi − sh > k̄lifo�

It is easy to verify that vi(θi;ψi�ψH) solves the optimality equation

v(θi)= max
di∈{h�l}

[
ui(di� θi)+

∑
θ′
i∈�i

p
(
θ′
i : θi�di

)
V
(
θ′
i

)]
for all θi ∈�i�

Then, by Theorem Puterman 2 appearing in the Appendix, ψi is an optimal SD-policy of
the Markov decision problem, defined by other H-squares’ stationary∗ strategy ψH . Let
us now turn to the l-rounds’ decisions. Suppose thatH-squares (and h-rounds) play the
stationary∗ strategy with threshold k̄lifo. Then, only if an (H� l) pair arrives, there may
exist anH-square (in fact, exactly oneH-square) who may demand an l-round, and she
matches with the last arriving l-round. Thus, if an l-round remains unmatched after the
first period at the market, he will not match with an H-square ever again. Thus, every
l-round has an incentive to leave immediately. Therefore, we have that

ψl(s� qi)=
{
h if sHh ≥ k̄lifo + 1 and qi = 1

l otherwise�

is a best-response for all l-rounds with any initial augmented state.

Proof of Corollary 5. 1. Ignoring integer constraints, we have

lim
c→0

k̄opt

k̄lifo
= lim
c→0

√
p(1 −p)U

2c√
2p(1 −p)(UH(h)−UH(l)

)
c

+ 1
4

− 1
2

=
√
p(1 −p)U√

4p(1 −p)(UH(h)−UH(l)
)

= 1
2

√
U

UH(h)−UH(l) < 1�



Theoretical Economics 15 (2020) Optimal dynamic matching 1275

where the last inequality is due to U < 4(UH(h)−UH(l)) under our symmetry assump-
tion. Furthermore, we have k̄lifo < k̄fifo if and only if

√
2p(1 −p)(UH(h)−UH(l)

)
c

+ 1
4

− 1
2
<
p
(
UH(h)−UH(l)

)
c

� (14)

Let x≡ 2p(1−p)(UH(h)−UH(l))
c and z ≡ p(UH(h)−UH(l))

c , so that inequality (14) is equiva-

lent to
√
x+ 1

4 < z+ 1
2 , or x < z2 + z. Thus, (14) is satisfied if and only if

2p(1 −p)(UH(h)−UH(l)
)

c
<
p2(UH(h)−UH(l)

)2
c2 + p

(
UH(h)−UH(l)

)
c

�

or equivalently

1 − 2p<
p
(
UH(h)−UH(l)

)
c

�

Therefore, if p ≥ 1
2 , then 1 − 2p ≤ 0, and k̄lifo < k̄fifo for any c > 0. If p < 1

2 , then

1 − 2p> 0, and k̄lifo < k̄fifo for any c < p(UH(h)−UH(l))
1−2p .

2. As k̄lifo =
√

2p(1−p)(UH(h)−UH(l))
c + 1

4 − 1
2 and

W lifo(c)= S∞ − p(1 −p)U
2k̄lifo + 1

− 2k̄lifo(k̄lifo + 1
)

2k̄lifo + 1
c�

it is easy to verify that limc→0W
lifo(c)= S∞.
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