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An extensive literature has considered the optimal conduct of monetary policy

under the assumption of rational (or model-consistent) expectations. This literature

has found that it is quite important to take account of the effects of the systematic

(and hence predictable) component of monetary policy on expectations. For example,

it is found quite generally that an optimal policy commitment differs from the policy

that would be chosen through a sequential optimization procedure with no advance

commitment of future policy. It is also found quite generally that optimal policy is

history-dependent — a function of past conditions that no longer affect the degree

to which it would be possible to achieve stabilization aims from the present time

onward.1

Both of these conclusions, however, depend critically on the idea that an ad-

vance commitment of future policy should change people’s expectations at earlier

dates. This may lead to the fear that analyses that assume rational expectations

(RE) exaggerate the degree to which a policy authority can rely upon private-sector

expectations to be shaped by its policy commitments in precisely the way that it

expects them to be. What if the relation between what a central bank plans to do

and what the public will expect to happen is not quite so predictable? Might both

the case for advance commitment of policy and the case for history-dependent policy

be considerably weakened under a more skeptical view of the precision with which

the public’s expectations can be predicted?

One way of relaxing the assumption of rational expectations is to model agents as

forecasting using an econometric model, the coefficients of which they must estimate

using data observed prior to some date; sampling error will then result in forecasts

that depart somewhat from precise consistency with the analyst’s model.2 However,

selecting a monetary policy rule on the basis of its performance under a specific model

of “learning” runs the risk of exaggerating the degree to which the policy analyst

can predict and hence exploit the forecasting errors that result from a particular

way of extrapolating from past observations. One might even conclude that the

optimal policy under learning achieves an outcome better than any possible rational-

expectations equilibrium, by inducing systematic forecasting errors of a kind that

happen to serve the central bank’s stabilization objectives. But if such a policy were

shown to be possible under some model of learning considered to be plausible (or

1Both points are discussed extensively in Woodford (2003, chap. 7).
2Examples of monetary policy analysis under assumptions of this kind about private-sector ex-

pectations include Orphanides and Williams (2005a, 2005b) and Gaspar et al. (2005).
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even consistent with historical data), would it really make sense to conduct policy

accordingly, relying on the public to continue making precisely the mistakes that the

policy is designed to exploit?

It was exactly this kind of assumption of superior knowledge on the part of the

policy analyst that the rational expectations hypothesis was intended to prevent.

Yet as just argued, the assumption of RE also implies an extraordinary ability on

the part of the policy analyst to predict exactly what the public will be expecting

when policy is conducted in a particular way. In this paper, I propose instead an

approach to policy analysis that does not assume that the central bank can be certain

exactly what the public will expect if it chooses to conduct policy in a certain way.

Yet neither does it neglect the fact that people are likely to catch on, at least to

some extent, to systematic patterns created by policy, in analyzing the effects of

alternative policies. In this approach, the policy analyst assumes that private-sector

expectations should not be too different from what her model would predict under

the contemplated policy — people are assumed to have near-rational expectations

(NRE). But it is recognized that a range of different beliefs would all qualify as NRE.

The policymaker is then advised to choose a policy that would not result in too bad

an outcome under any NRE, i.e., a robustly optimal policy given the uncertainty

about private-sector expectations.3

1 Near-Rational Expectations

I can expound the general conception of robust policy that I wish to propose using an

abstract two-period policy game. A vector of endogenous variables xt is determined

in two successive periods (t = 0, 1); there are many possible states of the world s

in period 1, and x1 may depend on s. The policymaker chooses a vector of controls

ut in each period; the value of u1 may be contingent on the state s. As a result

of optimizing behavior by the private sector, in any equilibrium, the endogenous

variables (x0, x1(·)) must satisfy a system of functional equations

F (y0, y1(·); µ) = 0, (1.1)

3The conception of policy robustness here is similar to the one explored in detail in Hansen
and Sargent (2005c), though they do not consider the particular source of uncertainty about policy
outcomes treated here.
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where yt is the vector obtained by stacking xt and ut, and µ is the element of M (the

set of measures over possible values of (s, y1)) that indicates private-sector expecta-

tions in the initial period.

The policymaker wishes to choose a policy (u0, u1(·)) so as to minimize an expected

loss function

E[L(y0, y1, s)], (1.2)

where the expectation E[·] is with respect to the measure µ̄ ∈ M indicating the

policymaker’s expectations in the initial period.4 In the case of any measure π over

the possible states of the world s and any measurable function g(·), let νπ,g denote the

element of M with marginal distribution π and such that zero probability is assigned

to any outcomes in which y1 6= g(s). Then the policymaker evaluates the objective

(1.2) in the case of an equilibrium (y0, y1(·)) using the measure

µ̄ = ν π̄,y1 , (1.3)

where π̄ indicates the policymaker’s beliefs about the probability of different possible

states of nature s. (In the beliefs of the policymaker, π̄ is given independently of the

policy chosen, while y1(·) and hence µ̄ will depend on policy.)

In rational-expectations (RE) policy analysis, the analyst assumes that in any

equilibrium, the expectations of the private sector will also correspond to the mea-

sure µ̄ = ν π̄,y1 . Hence the analyst associates to any policy (u0, u1(·)) an equilibrium

(y0, y1(·)) that satisfies

F (y0, y1(·); ν π̄,y1) = 0,

and then evaluates (1.2) using the implied measure (1.3).

I shall suppose instead that the analyst recognizes that private agents may not

have rational expectations, i.e., that beliefs µ 6= µ̄ are possible. But I shall suppose

that he nonetheless assumes that µ is not too different from µ̄. One reasonable kind

of conformity to demand is to assume that private beliefs be absolutely continuous

with respect to the analyst’s beliefs, which means that private agents will agree with

4The policymaker is here assumed not to entertain doubts about the correctness of her own
expectations; thus I am here not concerned with the main kind of uncertainty emphasized by Hansen
and Sargent (2005c).
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the analyst about which outcomes have zero probability.5 This requires that private-

sector beliefs should be of the form

µ = νπ,y1 (1.4)

for some measure π, even if π is not necessarily the same as π̄. (In effect, agents are

assumed to correctly understand the equilibrium mapping from states of the world

to outcomes, even if they do not also correctly assign probabilities to states of the

world, as would be required for an RE equilibrium.)

The assumption of absolute continuity also requires that π be absolutely contin-

uous with respect to π̄. A consequence of this is that there must exist a measurable

function m(·), with the property that E[m] = 1, such that for any measurable func-

tion g(·) (specifying a random variable at date 1), the expectation Ê[g] of this random

variable under the distorted probability beliefs of the private sector is equal to6

Ê[g] = E[mg].

This representation of the distorted beliefs of the private sector is useful in defining

a measure of the distance of the private-sector beliefs π from those of the policy

analyst, π̄. As discussed in Hansen and Sargent (2005a, b, c), the relative entropy

R(π, π̄) ≡ E[m log m]

is a distance measure with a number of appealing properties.7 In particular, distorted

beliefs π that are not too different from π̄ in the sense that R(π, π̄) is small are ones

5In the dynamic problem treated in the application to monetary stabilization policy below, I
actually assume only that private beliefs be absolutely continuous over finite time intervals, as in
Hansen et al. (2005). This means that I allow for misspecifications that should be detected in the
case of a data sample of infinite length, as long as they are not easy to detect using a finite data set.
As Hansen et al. discuss, this is necessary if one wants the policy analyst to be concerned about
possible misspecifications that continue to matter far in the future. Absolute continuity over finite
time intervals suffices for the representation of distorted beliefs proposed in this section to continue
to apply in the dynamic setting.

6The existence of the function m(·) is guaranteed by the Radon-Nikodym theorem. In the case
of a discrete set of states s, m(s) is simply the ratio π(s)/π̄(s). This way of describing distorted
beliefs is used, for example, by Hansen and Sargent (2005a, b) and Hansen et al. (2005).

7For example, R(π, π̄) is a positive-valued, convex function of π, uniquely minimized (with the
value zero) when mt+1 = 1 almost surely (the case of RE).
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that (according to the beliefs of the analyst) private agents would not be expected to

be able to disconfirm by observing the outcome of repeated plays of the game, except

in the case of a very large number of repetitions (the number expected to be required

being larger the smaller the relative entropy). One might thus view the distorted

beliefs π as more plausible the smaller is R(π, π̄).

One way to incorporate a concern on the part of the policy analyst for robustness

with regard to this type of uncertainty is to suppose that the analyst wishes to choose

a policy (x0, x1(·)) that is not too bad (does not imply too high a value of (1.2) under

any equilibrium (solution to (1.1) associated with private-sector beliefs of the form

(1.4) for which the relative entropy is not too large. Thus we might assume that the

policy is chosen to minimize

L̄(x0, x(·)) = max E[L(y0, y1, s)], (1.5)

where the maximization in (1.5) is over triples (y0, y1(·), π) such that (1.1) is satisfied

when µ is given by (1.4), and such that

R(π, π̄) ≤ R̄, (1.6)

for some finite bound R̄ > 0. In this case, the concern for robustness would be

modeled in a way analogous to the formalization of ambiguity aversion by Gilboa

and Schmeidler (1989).

Alternatively, we can model a concern for robustness in a way analogous to the

one that is primarily used by Hansen and Sargent (2005c), who follow the lead of

the engineering literature on robust control. Instead of supposing that the “worst-

case” near-rational expectations (NRE) contemplated by the analyst are those that

maximize (1.2) over a set of possible beliefs defined by the constraint (1.6), we may

suppose that the worst-case beliefs (and associated equilibrium outcomes) associated

with a given policy are the triple (ŷ0, ŷ1(·), π̂) that maximize

E[L(y0, y1, s)]− θR(π, π̄), (1.7)

for some penalty coefficient θ > 0, over all possible triples (y0, y1(·), π) such that (1.1)

is satisfied when µ is given by (1.4). Here no constraint such as (1.6) is imposed on

the distorted beliefs that may be considered, but beliefs that are less plausible (from

the point of view of the analyst) are more heavily penalized in the objective (1.7).
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Thus the analyst will only worry about possible distorted private-sector beliefs that

ought to be easy to disconfirm in the case that this particular kind of difference in

beliefs would be especially problematic for the particular policy under consideration.8

This is the definition of worst-case NRE that I shall use here. The policy analyst

is assumed to choose a policy (x0, x1(·) that minimizes L̂(x0, x(·)), the maximized

value of(1.7) under beliefs (1.3), obtained when (y0, y1(·)) are the worst-case NRE

beliefs consistent with the policy (x0, x1(·)).9 One can think of this as the Stackelberg

equilibrium of a game between the policymaker and a “malevolent agent” who chooses

the private-sector beliefs π that will most embarrass the policymaker.10 Robust policy

in this sense approaches the optimal policy commitment under RE in the limit as θ

is made unboundedly large, so that the beliefs of the private sector are assumed to

be given by π = π̄ regardless of the policy chosen.

The robust policy problem considered here is related to, though not quite the same

as, the type of problem considered by Hansen and Sargent (2005c, chap. 16). Hansen

and Sargent discuss a class of “Stackelberg problems” in which a “leader” chooses

8Maccheroni et al. (2004, 2005) show that choosing so as to minimize an objective of the form
(1.7) is consistent with a set of axioms for choice under ambiguity aversion only slightly weaker than
those of Gilboa and Schmeidler. Both the objective (1.7) and this one are only two members of a
broader family that they characterize; the Hansen-Sargent “multiplier preferences” are convenient
for my purposes.

9Alternatively, one might suppose that the policy analyst is assumed to choose a policy (x0, x1(·)
that minimizes L†(x0, x(·)), the value of (1.2) under the same worst-case NRE beliefs. The case
assumed in the text corresponds to “variational preferences” of the kind discussed by Maccheroni
et al. (2004, 2005), and also to the kind of “multiplier robust control problem” treated extensively
by Hansen and Sargent (2005c). Apart from the appeal of the axiomatic foundations offered by
Maccheroni et al. for their representation of preferences, this formulation has the advantage of
making the objectives of the policy analyst and the “malevolent agent” perfectly opposed, so that
the “policy game” between them is a zero-sum game. This can have advantages when characterizing
the solution, though I have not relied on this aspect of the game in the analysis below. The monetary
stabilization policy problem is analyzed under the alternative assumption in Woodford (2005), and
the same qualitative results are obtained.

10Under the assumption made here about the policymaker’s objective, the game is zero-sum,
and so under certain regularity conditions (that apply in the application below, for example), the
Stackelberg equilibrium is also the Nash equilibrium; one could then analyze a “multiplier game”
analogous to the one treated in Hansen and Sargent (2005c, chap. 6). Such a change in the timing
of moves by the two “players” is not innocuous, instead, under the alternative objective for the
policymaker mentioned in the previous footnote.
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a policy taking into account not only the optimizing response of the “follower” to

the policy, but also the fact that the follower optimizes under distorted beliefs (i.e.,

distorted from the point of view of the leader), as a result of the follower’s concern

for possible model misspecification.11 The problem considered here is similar, except

that here the policy analyst is worried about the NRE beliefs that would be worst

for her own objectives, while in the Hansen-Sargent game, the leader anticipates that

the follower will act on the basis of the distorted beliefs that would imply the worst

outcome for the follower himself.12

One might think that this difference should not matter in practice, if the policy-

maker’s objective coincides with that of the “follower” — as one might think should

be the case in an analysis of optimal policy from the standpoint of public welfare. But

in the application to stabilization policy below, the private sector is not really a single

agent, even though I assume that all price-setters share the same distorted beliefs. It

is not clear that allowing for a concern for robustness on the part of individual price-

setters would lead to their each optimizing in response to common distorted beliefs,

that coincide with those beliefs under which average expected utility is lowest.

But more crucially, even in a case where the private sector is made up of identical

agents who each solve precisely the same problem, the distorted beliefs that matter

in the Hansen-Sargent analysis are those that result in an equilibrium (y0, y1(·)) with

the highest possible value of Ê[L(y0, y1, s)], i.e., the greatest subjective losses from the

point of view of the private sector. In the problem considered here, instead, the NRE

beliefs that matter are those that result in an equilibrium with the highest possible

value of E[L(y0, y1, s)]; even if the loss function is identical for the policymaker and

the private sector, I assume that it is the policymaker’s evaluation of expected losses

that matters for robust policy analysis.

In the case that the objective of public policy is assumed to be private welfare, this

choice might not be considered obvious; there is always some ambiguity about what

11Hansen and Sargent also allow for a concern with potential misspecification on the part of the
leader, but in the limiting case of their setup in which Θ = ∞ while θ < ∞, only the follower
contemplates that the common “approximating model” may be incorrect; the leader regards it as
correct, but takes account of the effect on the follower’s behavior of the follower’s concern that the
model may be incorrect.

12I also consider a different class of possible distorted probability beliefs (Hansen and Sargent allow
only for shifts in the mean of the conditional distribution of possible values for the disturbances)
and use a different measure of the degree of distortion of PS beliefs (relative entropy).
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it should mean for policy to be welfare-maximizing in the case that private agents

are regarded by the policy analyst as being mistaken about their situation. Here I

take the view that the policy analyst (that in this paper, at least, has no doubts

about the correct beliefs) should evaluate private welfare from the point of view of

what she believes to be the true likelihood of alternative outcomes. One might also

consider the alternative assumption, and define robustly optimal policy as the policy

that minimizes Ê[L(y0, y1, s)]. In the application considered next, this alternative

assumption would lead to a much more trivial problem: the robustly optimal policy

commitment would be exactly like an optimal policy commitment under RE, if the

worst-case NRE beliefs were treated as true.13 Here I consider instead the harder

problem of how to choose a robustly optimal policy from the point of view of the

policy analyst’s own probability beliefs.

2 An Application to Monetary Stabilization

Policy

The example considered here weakens the assumption regarding private-sector ex-

pectations in the well-known analysis by Clarida et al. (1999) of optimal monetary

policy in response to “cost-push shocks.” It is assumed that the central bank can

bring about any desired state-contingent evolution of inflation πt and of the output

gap xt consistent with the aggregate-supply relation

πt = κxt + βÊtπt+1 + ut, (2.1)

where κ > 0, 0 < β < 1, Êt[·] denotes the common (distorted) expectations of the

private sector (more specifically, of price-setters — I shall call these PS expectations)

conditional on the state of the world in period t, and ut is an exogenous cost-push

13This would mean, for example, that the optimal policy commitment could be implemented
through commitment to perfectly stabilize a certain linear combination of the log price level and
the output gap, as discussed in Woodford (2003, chap. 7). The quantitative form of the optimal
target criterion would be completely unaffected by the central bank’s degree of concern for possible
forecast error on the part of the private sector. The possibility of NRE beliefs would only have
to be taken into account when implementing policy; for example, when evaluating the short-run
tradeoff between inflation and the output gap, in order to produce an outcome that satisfies the
target criterion.
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shock. The analysis is here simplified by assuming that all PS agents have com-

mon expectations (though these may not be model-consistent); given this, the usual

derivation14 of (2.1) as a log-linear approximation to an equilibrium relation implied

by optimizing price-setting behavior follows just as under the assumption of RE.

The central bank’s (CB) policy objective is minimization of a discounted loss

function

E0

∑
t=0

βt 1

2
[π2

t + λ(xt − x∗)2] (2.2)

where λ > 0, x∗ ≥ 0, and the discount factor β is the same as in (2.1). Here Et[·]
denotes the conditional expectation of a variable under the CB beliefs, which I shall

treat as the “true” probabilities, since the analysis is conducted from the point of

view of the CB, which wishes to consider the effects of alternative possible policies.

I do not allow for any uncertainty on the part of the CB about the probability with

which various “objective” states of the world (histories of exogenous disturbances)

occur, in order to focus on the issue of uncertainty about PS expectations. The CB

believes that the exogenous states st evolve according to a law of motion

st+1 = Ast + Bwt+1 (2.3)

for some matrices A,B, where the random vector wt+1 is i.i.d. with distribution

N(0, I); the cost-push shock each period is then given by ut = v′st. Thus the vector

st describes all information available at time t about current or future “fundamentals”.

Note that the law of motion (2.3) is not assumed to be correctly understood by the

PS.

I shall suppose that the central bank chooses (once and for all, at some initial

date) a state-contingent policy πt = π(ht), where ht ≡ (wt, wt−1, . . .) is the history

of realizations of the exogenous disturbances. I assume that commitment of this

kind is possible, to the extent that it proves to be desirable; and we shall see that

it is desirable to commit in advance to a policy different from the one that would

be chosen ex post, once any effects of one’s decision on prior inflation expectations

could be neglected. I also assume that there is no problem for the central bank

in implementing the state-contingent inflation rate that it has chosen, once a given

situation ht is reached.15 This is likely to require that someone in the central bank

14See, e.g., Woodford (2003, chap. 3).
15Even so, the assumption that the central bank commits itself to a state-contingent path for
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can observe exactly what PS inflation expectations are at the time of implementation

of the policy (in order to determine the nominal interest rate required to bring about

a certain rate of inflation); I assume uncertainty about PS expectations only at the

time of selection of the state-contingent policy commitment. Note that any such

strategy π(·) implies a uniquely defined state-contingent evolution of both inflation

and the output gap (given PS beliefs), using equation (2.1), and thus a well-defined

value for CB expected losses (2.2).

As in section 1, I shall assume that NRE require that PS beliefs about the econ-

omy’s evolution over any finite horizon (and in particular, PS beliefs about the prob-

ability of various states in the following period) be absolutely continuous with respect

to those of the CB. Hence there exists a process {mt+1} with

mt+1 ≥ 0 a.s., Et[mt+1] = 1,

such that

Êt[Xt+1] = Et[mt+1Xt+1]

for any random variable Xt+1. The degree of distortion of PS beliefs can furthermore

be measured by the (discounted) relative entropy

E0

∞∑
t=0

βtmt+1 log mt+1,

as in Hansen and Sargent (2005a). The presence of the discount factor βt in this

expression means that the CB’s concern with potential PS misunderstanding doesn’t

vanish asymptotically; this makes possible a time-invariant characterization of ro-

bustly optimal policy in which the concern for robustness has nontrivial consequences.16

Consequently, in the case of any policy commitment {πt} contemplated by the

CB, the “worst-case” NRE beliefs considered by the CB are given by the process

{mt+1} that maximizes

E0

∑
t=0

βt 1

2
[π2

t + λ(xt − x∗)2]− θE0

∞∑
t=0

βtmt+1 log mt+1 (2.4)

inflation, rather than to a Taylor rule or to the satisfaction of some other form of target criterion,
is not innocuous. Using this representation of the policy commitment would be innocuous in a
RE analysis like that of Clarida et al. (1999), since one is effectively choosing from among all
possible REE. But here different representations of policy do not lead to the same set of equilibrium
allocations being consistent with near-rational expectations.

16See Hansen et al. (2005) for discussion of this issue, in the context of a continuous-time analysis.
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subject to the constraint that Etmt+1 = 1 at all times, where at each date xt is

implied by the equation

πt = κxt + βEt[mt+1πt+1] + ut. (2.5)

Here θ > 0 is a multiplier that indexes the degree of concern for robustness of policy

with respect to non-RE beliefs.

This problem for the “malevolent agent” is in turn equivalent to a sequence of

problems in which for each possible history ht, a function specifying mt+1 as a function

of the realization of wt+1 is chosen so as to maximize

1

2
[π2

t + λ(xt − x∗)2]− θEt[mt+1 log mt+1] (2.6)

subject to the constraint that Etmt+1 = 1, where again xt is implied by (2.5). Worst-

case NRE then determine the expected output effect of any given state-dependent

inflation commitment, according to a time-invariant relation of the form

xt = xpess(ut, πt, πt+1(·)), (2.7)

where πt+1(·) specifies πt+1 as a measurable function of wt+1. The degree of distortion

of PS beliefs under the worst-case NRE is similarly indicated by a time-invariant

function

Et[mt+1 log mt+1] = Rpess(ut, πt, πt+1(·)) (2.8)

indicating the relative entropy of the worst-case PS beliefs. A robustly optimal policy

commitment by the CB is then one that minimizes the maximized value of (2.4), which

is to say, that minimizes the objective function obtained by substituting (2.7) for the

output gap and (2.8) for the relative-entropy term in (2.4).

This problem can be given a recursive structure if we add an additional constraint,

assuming that the initial inflation commitment π0(w0) is exogenously given.17 Let

J(π0; s0) be the min-max value of (2.4), conditional on a particular initial state. Then

under robustly optimal policy, each period the function πt+1(·) is chosen, given the

prior inflation commitment πt and the state st, so as to minimize

1

2
π2

t +
λ

2
(xpess(ut, πt, πt+1(·))− x∗)2 − θRpess(ut, πt, πt+1(·))

+ βE[J(πt+1(w); Ast + Bw)], (2.9)

17The same kind of initial commitment defines an optimal policy “from a timeless perspective” in
the RE analysis presented in Woodford (2003, chap. 7).
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where the expectation is over possible realizations of w. The minimized value of (2.9)

is then precisely the value function J(πt; st). This constrained version of the robust

policy problem is of interest because (as a result of its recursive form) it results in a

time-invariant rule for robustly optimal policy.

This recursive structure implies that there is no need for the CB to commit itself

more than a period in advance. However, it is important that the state-contingent

inflation commitments be chosen at least a period in advance, rather than waiting

until the state st+1 is known and then choosing πt+1 to minimize J(πt+1; st+1). The

latter (purely discretionary) approach to policy will not achieve as low a value of

(2.9), and hence not as low a value of (2.4) under the worst-case NRE beliefs, as will

the approach of choosing a state-contingent inflation commitment each period for the

following period. The reason for this advantage of policy commitment is exactly the

same, of course, as in the RE analysis of optimal policy in this model (treated in

Clarida et al., 1999, and Woodford, 2003, chap. 7).

3 Robustly Optimal Linear Policy

Rather than seeking to characterize fully optimal policy in the sense defined above, I

shall here characterize the optimal policy within a more restrictive class of linear poli-

cies. By a linear policy I mean one in which each period’s state-contingent inflation

commitment is of the form

πt+1(wt+1) = p0
t + p1′

t wt+1, (3.1)

where p0
t is some function of ht and p1

t depends only on t.18 The optimal policy

commitment under RE is linear in this sense; hence a consideration of this special

family of policies suffices to indicate a direction in which it is desirable to change the

CB’s policy commitment as a result of concern for robustness.

We begin by characterizing the worst-case NRE in the case of an arbitrary linear

policy. One notes that an interior solution to the problem of maximizing (2.6) exists

18It will turn out that in the case of the optimal linear policy, p0
t is also a linear function of ht,

but one does not need to impose that.
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only if19

|p1
t |2 <

θ

β2

κ2

λ
. (3.2)

Otherwise, the objective (2.6) is convex, and the worst-case expectations involve

extreme distortion, resulting in unbounded losses for the CB. Obviously, it is optimal

for the CB to choose a linear policy such that p1
t satisfies the bound (3.2) at all

times. This provides an immediate contrast with optimal policy under RE, where the

optimal vector p1 (which is constant over time) is proportional to σu, the standard

deviation of the cost-push shocks.20 At least for large values of σu, it is evident that

concern for robustness leads to less sensitivity of inflation to cost-push disturbances

(smaller |p1
t |). One also observes that it leads to a failure of certainty equivalence, as

this would require |p1
t | to grow in proportion to σu.

In the case of a linear policy satisfying (3.2), under the worst-case NRE, the

CB fears that the PS will expect wt+1 to be conditionally distributed as N(µt, I). If

p1
t = 0, µt = 0, while if p1

t 6= 0,

µt = (π̄t − p0
t )

p1
t

|p1
t |2

, (3.3)

where the worst-case inflation expectation (value of Êtπt+1) is given by

π̄t = ∆−1
t

[
p0

t − (πt − ut − κx∗)
βλ

θκ2
|p1

t |2
]

, (3.4)

∆t ≡ 1− β2

θ

λ

κ2
|p1

t |2 > 0. (3.5)

The worst-case NRE beliefs distort PS inflation expectations with respect to p0
t (the

CB’s expectation) in the direction opposite to that needed to bring xt closer to x∗;

and this distortion is greater the larger is the sensitivity of (next period’s) inflation

to unexpected shocks, becoming unboundedly large as the bound (3.2) is approached.

As a consequence of this possibility, the CB fears an output gap equal to

xpess
t − x∗ =

(πt − ut − κx∗)− βp0
t

κ∆t

. (3.6)

19See the Appendix, section A.1, for derivation of this condition, as well as the results stated in
the following two paragraphs. Strictly speaking, it is possible for the inequality (3.2) to be only
weakly satisfied, if p0

t satisfies a certain linear relation stated in the Appendix; the Appendix treats
this case as well, omitted here for simplicity. It is shown in section A.2 that in the robustly optimal
linear policy, the inequality is strict.

20See, e.g., equation (3.12) below.
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Note that xt−x∗ is larger than it would be under RE by a factor ∆−1
t , which exceeds

1 except in the limit in which θ is unboundedly large (the RE limit), or if p1
t = 0, so

that inflation is perfectly predictable.

The probabilities assigned by the PS to different possible realizations of wt+1 are

distorted by a factor mt+1 such that

log mt+1 = ct − β

θ

λ

κ
(xt − x∗)πt+1,

where the constant ct takes the value necessary in order for Etmt+1 to equal 1. This

implies that the degree of distortion of the worst-case NRE beliefs (as measured by

relative entropy) is equal to

Rpess
t ≡ Êt[log mt+1] =

1

2

[
β

θ

λ

κ
(xt − x∗)

]2

|p1
t |2 ≥ 0. (3.7)

Note that the degree of distortion against which the policy analyst must guard is

greater the larger the degree of inefficiency of the output gap (i.e., the larger is

|xt − x∗|), as this increases the marginal cost to the CB’s objectives of (maliciously

chosen) forecast errors of a given size; and greater the larger the degree to which

inflation is sensitive to disturbances (i.e., the larger is |p1
t |), as this increases the

scope for misunderstanding of the probability distribution of possible future rates of

inflation, for a given degree of discrepancy between CB and PS beliefs (as measured by

relative entropy). Of course, it is also greater the smaller is θ, the penalty parameter

that we use to index the CB’s degree of concern for robustness to PS expectational

error.

Substituting (3.6) for the output gap and (3.7) for the relative entropy term in

(2.4), we obtain a loss function for the CB of the form

E0

∞∑
t=0

βtL(πt; pt; st), (3.8)

where pt ≡ (p0
t , p

1
t ) and

πt = p0
t−1 + p1′

t−1wt. (3.9)

Expression (3.8) indicates the CB’s expected losses from a given linear policy {pt},
under the worst-case NRE beliefs. We wish to minimize this subject to an initial

constraint π0. Moreover, because we do not wish to allow p1
t to vary in response to
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random shocks, we actually minimize the unconditional expectation of (3.8), integrat-

ing over alternative possible initial conditions (p0
−1, s−1) and over alternative possible

realizations of w0.

A robustly optimal linear policy (from a timeless perspective) is then a pair of

sequences {p0
t , p

1
t} that minimize the expected value of (3.8) subject to the law of

motion (3.9), given an initial commitment p1
−1 = p̄1 and integrating over initial con-

ditions (p0
−1, s−1) using a measure ρ. The value of p0

t is allowed to depend on the

history ht, as well as the particular initial conditions that are drawn from the sup-

port of ρ, but a value for p1
t must be chosen that is independent of shock realizations

and the same for all initial conditions (which is why the measure ρ matters). The

initial constraints (p̄1, ρ) are chosen to be self-consistent,21 which means that under

the optimal policy, p1
t = p̄1 for all t ≥ 0, and ρ is an invariant measure for (p0

t , st).

One can show that values of (p̄1, ρ) exist with this property.

Given p1
t = p̄1, the loss function L(πt; pt; st) is a quadratic function of (πt, p

0
t , st),

and the laws of motion (2.3) and (3.9) are linear in these variables. Hence one has a

linear-quadratic optimal control problem, and the optimal solution is a linear policy

of the form

p0
t = µp0

t−1 + a′st + µp̄1′wt, (3.10)

just like the unconstrained optimal policy under RE. A concern for robustness affects

the numerical magnitudes of µ, a, and p̄1. But one thing that is not affected is the

fact that (3.10) implies stationary fluctuations in the inflation rate around a long-run

inflation target of zero. Thus the optimal long-run target is unaffected by the degree

of concern for robustness; in particular, allowance for NRE does not result in an

inflation bias of the kind associated with discretionary policy.22

Here I illustrate the quantitative effects of a concern for robustness in an example

in which the cost-push shock is purely transitory, so that wt is a scalar and ut = σuwt.

Under RE,

0 < µ < 1, a′st = −µσuwt, (3.11)

and

p̄1 = µσu. (3.12)

21See Woodford (2003, chap. 7) for the concept of self-consistency invoked here.
22On the inflation bias associated with discretionary policy, see Clarida et al. (1999) or Woodford

(2003, chap. 7).
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Figure 1: Variation of p̄1 with σu, under alternative degrees of concern for robustness.

With a concern for robustness (finite θ), conditions (3.11) both still hold, but µ is

now the smaller root of the quadratic equation

P (µ) ≡ βµ2 −
(

1 + β +
κ2∆̄

λ

)
µ + 1 = 0, (3.13)

where 0 < ∆̄ ≤ 1 is the constant value of (3.5) associated with p̄1. It is evident from

(3.13) that µ is larger the smaller is ∆̄; and since a concern for robustness lowers ∆̄,

it raises µ relative to the RE case. Moreover, contrary to (3.12), one can show that

p̄1 < µσu (3.14)

when θ is finite.

Figure 1 shows how p̄1 varies with σu for alternative values of θ.23 In the RE case,

p̄1 increases linearly with σu, as indicated by (3.12) and as required for certainty-

23In this figure, I assume parameter values β = 0.99, κ = 0.05, λ = 0.08, and x∗ = 0.2. A low value
of λ is justified by the welfare-theoretic foundations of the loss function (2.2) discussed in Woodford
(2003, chap. 6).
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Figure 2: Optimal responses to a positive cost-push shock, with and without concern

for robustness.

equivalence. For any given amplitude of cost-push shocks, lower θ (greater concern

for robustness) results in a lower optimal p̄1, indicating less sensitivity of inflation to

the current cost-push shock. The extent to which this is true increases in the case of

larger shocks; in the case of any finite value of θ, p̄1 increases less than proportionally

with σu, indicating a failure of certainty equivalence. In fact, p̄1 remains bounded

above, as required by (3.2).

Thus a concern for robustness results in less willingness to let inflation increase in

response to a positive cost-push shock. This is because larger surprise variations in

inflation increase the extent to which PS agents may over-forecast inflation, worsening

the output/inflation tradeoff facing the CB. This conclusion recalls the one reached

by Orphanides and Williams (2005a) on the basis of a model of learning.

At the same time, a concern for robustness increases the degree to which optimal

policy is history-dependent. As in the RE case, an optimal commitment involves
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a lower inflation rate (on average) in periods subsequent to a positive cost-push

shock. Moreover, because µ is closer to 1 when θ is smaller, this effect on average

inflation should last longer, so that the history-dependence of the optimal inflation

commitment is even greater than under RE. And not only should the CB commit to

eventually undo any price increases resulting from positive cost-push shocks (as in the

RE case); when θ is finite, it should commit to eventually reduce the price level below

the level it would have had in the absence of the shock. This is illustrated in Figure 2

in the case of the numerical example just discussed.24 The lower right panel shows the

impulse response of the log price level; while under rational expectations, the optimal

commitment returns the price level eventually to precisely the level that it would have

had in the absence of the shock, when θ = 0.001, the optimal commitment eventually

reduces the price level, by an amount about twice as large as the initial price-level

increase in response to the shock. The result that the sign of the initial price-level

effect is eventually reversed is quite general. Equations (3.9) – (3.11) imply that

the cumulative log price increase due to a one-standard-deviation cost-push shock is

equal to

(p̄1 − µσu)/(1− µ), (3.15)

which is zero when (3.12) holds, but negative when θ is finite.

Allowance for NRE means that the CB cannot count on its intention to lower in-

flation (on average) following a positive cost-push shock to lower PS expectations of

inflation by as much as the CB’s own forecast of future inflation is reduced. (For ex-

ample, Figure 3 compares the impulse response of PS expected inflation Êtπt+1 to the

response of CB expected inflation Etπt+1, in the same numerical example as in Figure

2.) But the consequence of this for robustly optimal policy is not that the CB should

not bother to try to influence inflation expectations through a history-dependent

policy; instead, it is optimal to commit to adjust the subsequent inflation target to

an even greater extent and in a more persistent, in order to ensure that inflation

expectations are affected even if expectations are not perfectly model-consistent.

24In the figure, optimal impulse responses to a one-standard-deviation positive cost-push shock
are shown, both in the case of infinite θ (the standard RE analysis) and for a value θ = 0.001. Other
parameter values are as in Figure 1; in addition, it is assumed here that σu = 0.02.
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Figure 3: Distortion of PS beliefs, in the worst-case NRE contemplated by the CB

when θ = 0.001.

4 Near-Rational Expectations and the Importance

of Policy Commitment

I have observed above that robustly optimal policy involves advance commitment,

in a similar way as optimal policy under the assumption of rational expectations.

But does the degree to which PS expectations may depart from model-consistency

affect the degree to which commitment matters? In order to address this question,

it is necessary to characterize equilibrium policy under discretionary optimization on

the part of a CB that understands that private-sector expectations need not be fully

model-consistent, and compare this to the robustly optimal policy under commitment.

Suppose that the objective of the central bank is to minimize (2.4),25 as above,

but that each period the central bank chooses a short-run inflation target πt after

25In appendix A.3, I discuss the way in which my results are modified if one assumes instead that
the CB seeks to minimize (2.2), while the malevolent agent seeks to maximize (2.4).
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learning the current state st, without making any commitment as to the inflation

rate that it may choose at any later dates. Because the payoffs and constraints of

both the CB and the malevolent agent in the continuation game at date t depend on

the past only through the state vector st, in a Markov perfect equilibrium (MPE),

πt will depend only on st. I shall assume an equilibrium of this kind;26 hence there

is assumed to exist a time-invariant policy function π̄(·) such that in equilibrium

πt = π̄(st) each period. Under discretionary optimization, the CB takes for granted

the fact that it will choose to follow the rule π̄(·) in all subsequent periods, though

it is not committed to follow it in the current period. The CB also takes for granted

the set of possible NRE beliefs of the PS regarding the economy’s future evolution,

given that (at least in the view of the CB) the truth is that the exogenous states will

evolve according to (2.3), monetary policy will follow the rule π̄(·), and output will be

determined by (2.1). It then chooses an inflation rate πt to implement in the current

period, given its own model of the economy’s subsequent evolution and guarding

against the worst-case NRE beliefs given that model. In a MPE, the solution to this

problem is precisely the inflation rate πt = π̄(st).

I shall formally define a robust MPE as follows. Given a policy rule π̄(·), let

V (π0; s0) be the value of the objective (2.4) if the initial state is s0, the CB chooses

an inflation rate π0 in that initial state and then follows the rule π̄(·) in all periods

t ≥ 1, and PS beliefs correspond to the worst-case NRE beliefs given this policy. Then

given the inflation rate chosen in any period, the worst-case NRE beliefs mt+1(·) solve

the problem

max
mt+1(·)

1

2
[π2

t + λ(xt − x∗)2]− θEtβ
tmt+1 log mt+1 + βEtV (π̄(st+1; st+1), (4.1)

where xt satisfies

πt = κxt + βEt[mt+1π̄(st+1)] + ut.

A robust MPE is then a pair of functions π̄(·) and V (·; ·) such that for any pair

(πt; st), V (πt; st) is the maximized value of (4.1), and for any state st, π̄(st) is the

inflation rate that solves the problem

min
πt

V (πt; st). (4.2)

26The restriction to Markov perfect equilibria is commonplace in the literature on discretionary
monetary policy under rational expectations; the equilibrium concept proposed here generalizes the
one used by Clarida et al. (1999) in their RE analysis of this model.
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A robust linear MPE is a robust MPE in which π̄(·) is a linear function of the state,

π̄(st) = π∗ + d′st, (4.3)

for some long-run average inflation rate π∗ and some vector of coefficients d.

A linear policy (4.3) is an example of the kind of linear policy considered in the

previous section, where in terms of the previous notation (3.1) we now have

p0
t = π∗ + d′Ast, p1′ = d′B. (4.4)

Moreover, because the final term in (4.1) is independent of the choice of mt+1(·), the

function mt+1(·) that solves the problem (4.1) is also the one that maximizes (2.6),

so that the characterization of worst-case NRE beliefs in appendix A.1 again applies.

Once again, |p1| must satisfy the bound (3.2) in order for there to be well-defined

worst-case beliefs;27 and when this bound is satisfied, the worst-case beliefs are again

described by (3.3) – (3.4).

Given this characterization of worst-case beliefs, the problem (4.2) of the discre-

tionary central bank reduces to

min
πt

L(πt; p̄(st); st), (4.5)

where L(πt; pt; st) is the loss function defined in appendix A.2, and p̄(st) is the function

defined in (4.4). Since for any st, L is a strictly convex, quadratic function of πt, the

discretionary policy π̄(st) is just the solution to the first-order condition

Lπ(πt; p̄(st); st) = 0.

This linear equation in πt is easily solved, yielding

π̄(st) =
λ

κ2∆̄ + λ
[κx∗ + ut + βp̄0(st)]. (4.6)

This in turn implies that π̄(·) is indeed a linear function of the form (4.3), where

π∗ =
λκx∗

κ2∆̄ + (1− β)λ
> 0, (4.7)

27In the case of discretionary policy, I can no longer argue that the CB will surely choose a policy
that satisfies (3.2), in order to avoid unbounded losses. For now the CB is assumed to choose πt+1

without taking into account the effect of the way in which the dependence of πt+1 on wt+1 affects
the worst-case choice of mt+1(·), given that the distorted PS beliefs are a historical fact by the time
that πt+1 is chosen. Nonetheless, there can be no well-defined equilibrium in which (3.2) is violated.
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d′ = λ[κ2∆̄I + λ(I − βA)]−1v′. (4.8)

In both of these expressions, 0 < ∆̄ ≤ 1 is the constant value of (3.5) implied by the

constant vector p1 defined in (4.4).

A robust linear MPE exists if we can solve these equations. While equations (4.7)

– (4.8) give unique solutions for π∗ and d (and hence for the linear function π̄(·)) on

the assumption that we already know the value of p1 (and hence the value of ∆̄),

the value of p1 depends on the solution for d, as indicated in (4.4). There is in fact

a fixed-point problem to solve, and depending on parameter values, there may be a

unique fixed point, multiple fixed points, or none at all; in the latter case, no robust

linear MPE exists.

These possibilities can be illustrated by again considering the case of i.i.d. cost-

push shocks, as in section 3. In this case, the fixed-point problem reduces to finding

values p̄1, ∆̄ that satisfy the two equations

p̄1 =
λ

κ2∆̄ + λ
σu, (4.9)

∆̄ = 1− β2

θ

λ

κ2
|p̄1|2, (4.10)

along with the bound (3.2), so that 0 < ∆̄ ≤ 1. One can show that if λ/κ2 ≥ 2, there

is a unique robust linear MPE if σu < p̂1, while no MPE exist if σu ≥ p̂1, where p̂1 is

the upper bound on |p̄1| defined in (3.2).28 If instead λ/κ2 < 2, then there is a unique

MPE if σu ≤ p̂1, but two distinct MPE if p̂1 < σu < σ∗u, where

σ∗u ≡
2

3
√

3

[
θ

β2

(
κ2 + λ

λ

)3
]1/2

. (4.11)

There is again a unique MPE in the special case that σu = σ∗u, but there exist no

MPE if σu > σ∗u.
29

The possibility of multiple solutions is illustrated numerically in Figure 4. Here

the parameter values assumed are as in Figure 1, except that now κ = 0.15,30 and I

28See appendix A.4 for the proof of this result and the ones stated next, and equation (A.20) in
the appendix for the definition of p̂1.

29Regardless of the value of σu > 0, this bound will be violated in the case of small enough θ,

which is to say, in the case of a large enough concern for robustness on the part of the CB.
30A larger value of κ is used in this example in order to illustrate the possibility of multiple

solutions, which do not exist under the baseline calibration.
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Figure 4: Varying numbers of linear MPE, depending on the size of the cost-push

disturbances.

graph the locus of solutions only for the case θ = 0.001. A unique solution exists for

values of σu smaller than 0.068,31 two solutions exist for values between 0.068 and

0.159, and no solutions exist for larger values of σu. In the intermediate range, the

second solution (in which inflation is more sensitive to cost-push shocks) is shown by

the dotted branch of the locus of fixed points. While these solutions also satisfy the

above definition of a robust linear MPE, they are less appealing than the ones on the

branch shown as a solid line in the figure, on grounds of what Evans and Honkapohja

(2001) refer to as “expectational stability.”

31As the graph suggests, there are actually two solutions to the system of equations in this region
as well – the dotted branch of the locus of solutions can be extended further to the left. But for
values of σu this small, the solutions on the dotted branch involve ∆̄ < 0, and so do not correspond
to MPE.
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One can reduce the system (4.9) – (4.10) to the single equation

p̄1 = Φ(p̄1), (4.12)

where Φ(p̃) is the value of p̄1 that satisfies (4.9), when ∆̄ in this equation is the value

obtained by substituting p̄1 = p̃ in equation (4.10). Then Φ(p1
t ) indicates the degree

of sensitivity of inflation to cost-push shocks that would optimally be chosen by a

CB choosing under discretion in period t, if it expects the sensitivity of inflation to

cost-push shocks in the following period to be given by p1
t .

32 One can show that

the lower branch of solutions corresponds to fixed points at which 0 < Φ′(p̄1) < 1,

while the upper branch corresponds to fixed points at which Φ′(p̄1) > 1. Hence in the

former case, an expectation that policy will be near the fixed point far in the future

will justify choosing a policy very close to the fixed point now, while in the latter case,

even an expectation that policy will be near that fixed point in the distant future

will not lead the CB to choose policy near that fixed point now — only if future

policy is expected to coincide precisely with the fixed point will similar behavior be

justified now. Hence this fixed point is “unstable” under perturbations of expectations

regarding future policy in a way that makes it less plausible that successive central

bankers should coordinate on those particular expectations.33

What happens in the case of an economy in the region where σu is too large for any

MPE to exist? (Note that this requires that σu > p̂1.) One observes that Φ(0) > 0,

and also that Φ(p̂1) = σu > Φ(p̂1). Then, if there are no fixed points in the interval

(0, p̂1), Φ(p) > p over the entire interval.34 This means that whatever value of p1 may

be expected to describe monetary policy in the following period, a CB that optimizes

under discretion will choose a larger value in the current period. There is then no

Markov perfect equilibrium; but the situation is clearly one in which (an attempt

32Thus Φ(·) is a mapping from the discretionary CB’s “perceived law of motion” to the “actual
law of motion” resulting from its optimizing decisions, in the terminology of Evans and Honkaphja
(2001).

33One can also show that the expectationally stable MPE is an asymptotically stable rest point
under adaptive learning dynamics, in which a sequence of central bankers seek to forecast the policies
of their successors by extrapolating observed policy in the past, while the expectationally unstable
MPE will also be unstable under the learning dynamics. On the connection between expectational
stability and stability under adaptive learning dynamics, see generally Evans and Honkapohja (2001).

34If instead there are two fixed points, the sign of Φ(p) − p changes between them; this is what
makes the lower solution expectationally stable while the upper is unstable.
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at) discretionary optimization would be expected to lead to very large responses of

inflation to cost-push shocks — there would be no reason for the inflation response

to remain within any finite bounds!

In the case of rational expectations (the limiting case in which θ−1 = 0), there is

always a unique solution, given by

p̄1 =
λ

κ2 + λ
σu > 0. (4.13)

This is the characterization of policy under discretion given by Clarida et al. (1999);

the linearity in σu again indicates that a principle of certainty equivalence applies.

Comparison with (3.12) indicates that under discretionary policy, inflation responds

more strongly to a cost-push shock than under the optimal commitment, according

to the RE analysis. Moreover, because π∗ > 0 in the case of discretion, while the

long-run average inflation rate is zero under the optimal commitment, discretionary

policy is characterized by an “inflationary bias”. These discrepancies between what

policy would be like in the best possible RE equilibrium and what it is like in the

MPE with discretionary policy indicate the importance of advance commitment to

an optimal decision procedure for monetary policy.

How are these familiar results affected by allowing for near-rational expectations?

We see from (4.7) that whenever a robust linear MPE exists, it involves a positive

average inflation rate π∗; so again discretionary policy results in an inflationary bias.

Moreover, this equation indicates that π∗ is a decreasing function of ∆̄; hence the

inflationary bias is increased by a concern for robustness on the part of the CB (which

makes ∆̄ less than 1). The problem of excessive sensitivity of the inflation rate to

cost-push shocks is also increased by a concern for robustness. We observe from (4.9)

that

p̄1 >
λ

κ2 + λ
σu (4.14)

when ∆̄ < 1, so that p̄1 is larger than in the RE case, described by (4.13). One

can also show35 that if we select the lower-sensitivity MPE as “the” prediction of

the model when multiple solutions exist, then the solution for p̄1 is monotonically

decreasing in θ over the range of values for which a robust linear MPE exists, which

means that p̄1 is higher the greater the concern for robustness.

35Again see appendix A.4 for the proof.
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Figure 5: Variation of p̄1 with σu, under discretionary policy and under an optimal

commitment, with and without allowance for near-rational expectations.

While a concern for robustness increases the sensitivity of inflation to cost-push

shocks under discretionary policy, we found in section 3 that it reduces the sensitivity

to cost-push shocks under an optimal commitment. This is illustrated numerically

in Figure 5, which extends Figure 1 to show how the equilibrium value of p̄1 varies

with σu under discretionary policy as well as under the optimal commitment from a

timeless perspective, both with and without an allowance for near-rational expecta-

tions.36 (The two lower curves correspond to cases also shown in Figure 1.) When

RE are assumed, p̄1 is larger under discretionary policy, as just shown; but with a

concern for robustness (finite θ), the gap between the values of p̄1 under discretionary

policy and under a robustly optimal linear policy is even larger.

Thus the distortions of policy resulting from optimization under discretion are

increased when the CB allows for the possibility of near-rational expectations, and

36The parameter values used in the figure are again those used in Figure 1. The RE curves assume
that θ−1 = 0, while the ones allowing for NRE beliefs assume that θ−1 = 1000.
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the lessons of the RE analysis become only more important. When the CB’s concern

for robustness is sufficiently small (i.e., θ is large), a robust linear MPE exists, but the

degree to which it involves both an excessive average rate of inflation and excessive

responsiveness of inflation to cost-push shocks, relative to what would occur under

the robustly optimal linear policy, is even greater than is true in the RE analysis. In

the case of a sufficiently great concern for robustness, a robust linear MPE fails even

to exist; in this case, the dangers of discretionary policy are even more severe, and to

an extent much greater than would be suggested by the RE analysis.

5 Conclusion

I have shown how it is possible to analyze optimal policy for a central bank that

recognizes that private expectations may not be model-consistent, without commit-

ting oneself to a particular model of expectational error. The approach leads to a

one-parameter family robustly-optimal linear policies, indexed by a parameter θ that

measures the degree of concern for possible misunderstanding of equilibrium dynam-

ics.

Even when the central bank’s uncertainty about private expectations is consid-

erable (the case of low θ), calculation of the effects of anticipations of the system-

atic component of policy is still quite an important factor in policy analysis. Op-

timal policy is still history-dependent even when rational expectations are not as-

sumed. Indeed, a concern for robustness only increases the optimal degree of history-

dependence.

Moreover, just as in the RE analysis, commitment is important for optimal policy.

The distortions predicted to result from discretionary policymaking become even more

severe when the central bank allows for the possibility of near-rational expectations,

so that the importance of commitment is increased. And, as in the RE analysis, a

crucial feature of an optimal commitment is a guarantee that inflation will be low

and fairly stable. The fact that private beliefs may be distorted does not provide any

reason to aim for a higher average rate of inflation, while it does provide a reason

for the central bank to resist even more firmly the inflationary consequences of “cost-

push” shocks.
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A Appendix: Details of Derivations

A.1 Worst-Case NRE Beliefs

The problem of the “malevolent agent” in any state of the world at date t (corre-

sponding to a history ht up to that point) is to choose a function specifying mt+1 as

a function of the realization of wt+1 so as to maximize

1

2
[π2

t + λ(xt − x∗)2]− θEt[mt+1 log mt+1] (A.1)

subject to the constraint that Etmt+1 = 1, where at each date xt is implied by the

equation

πt = κxt + βEt[mt+1πt+1] + ut. (A.2)

Here I characterize the solution to this problem in the case that the CB follows a

linear policy, so that in each possible state at date t + 1 (given the history ht), the

inflation rate is given by πt+1 = p0
t + p1′

t wt+1, where p0
t depends only on ht and p1

t

depends only on the date t.

It is obvious that the choice of the random variable mt+1 matters only through

its consequences for the relative entropy (which affects the objective (A.1)) on the

one hand, and its consequences for PS expected inflation (which affects the constraint

(A.2) on the other. Hence in the case of any θ > 0, the worst-case beliefs will minimize

the relative entropy Et[mt+1 log mt+1] subject to the constraints that

Etmt+1 = 1, Et[mt+1πt+1] = π̄t, (A.3)

whatever degree of distortion the PS inflation expectation π̄t may represent. I first

consider this problem. Since r(m) ≡ m log m is a strictly convex function of m, such

that r′(m) → −∞ as m → 0 and r′(m) → +∞ as m → +∞, it is evident that there

is a unique, interior optimum, such that the first-order condition

v′(mt+1) = φ1t + φ2tπt+1

holds in each state at date t + 1, where φ1t, φ2t are Lagrange multipliers associated

with the two constraints (A.3). This implies that

log mt+1 = ct + φ2tπt+1 (A.4)
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in each state, for some constant ct. The two constants ct and φ2t in (A.4) are then

the values that satisfy the two constraints (A.3).

Under the assumption of a linear policy, πt+1 is conditionally normally distributed,

so that (A.4) implies that mt+1 is conditionally log-normal.37 It follows that

log Etmt+1 = Et[log mt+1] +
1

2
vart[log mt+1]

= ct + φ2tp
0
t +

1

2
φ2

2t|p1
t |2.

Hence the first constraint (A.3) is satisfied if and only if

ct = −φ2tp
0
t −

1

2
φ2

2t|p1
t |2. (A.5)

Under the worst-case beliefs, the PS perceives the conditional probability density

for wt+1 to be f̃(wt+1) = mt+1(wt+1)f(wt+1), where f(·) is the density for a vector

that is distributed as N(0, I). It follows from (A.4) and (A.5) that f̃(·) is the density

for a vector that is distributed as N(µt, I), where the bias in the perceived conditional

expectation of wt+1 is µt = φ2tp
1
t . Hence

Êtπt+1 = p0
t + p1′

t µt = p0
t + φ2t|p1

t |2,

and the second constraint (A.3) is satisfied if and only if38

φ2t =
π̄t − p0

t

|p1
t |2

. (A.6)

Condition (A.5) then uniquely determines ct as well, and mt+1 is completely described

by (A.4), once we have determined the value of π̄t that should be chosen by the

“malevolent agent.” Note that the bias µt is given by expression (3.3), as asserted in

the text.

The relative entropy of the worst-case beliefs will then be equal to

Rpess
t = Êt[log mt+1] = ct + φ2tÊtπt+1

=
1

2

(π̄t − p0
t )

2

|p1
t |2

, (A.7)

37This is one of the main reasons for the convenience of restricting our attention to linear policies.
38Here I assume that p1

t 6= 0. If p1
t = 0, the constraint is satisfied regardless of the distortion

chosen by the “malevolent agent,” as long as π̄t = p0
t , which is necessarily the case. In this case, ct

and φ2t are not separately identified, but (A.5) suffices to show that mt+1 = 1 with certainty.
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using (A.5) and (A.6). This is proportional to the squared distance between the PS

inflation forecast and that of the central bank; but for any given size of gap between

the two, the size of the distortion of probabilities that is required is smaller the larger

is |p1
t |.39

It remains to determine the worst-case choice of π̄t.
40 It follows from (A.2) that

(xpess
t − x∗)2 =

1

κ2
(πt − ut − κx∗ − βπ̄t)

2. (A.8)

Substituting this for the squared output gap and (A.7) for the relative entropy in

(A.1), we obtain an objective for the “malevolent agent” that is a quadratic function

Q(π̄t; ut, πt, pt) of the distorted inflation forecast π̄t, and otherwise independent of

the distorted beliefs; thus π̄t is chosen to maximize this function. The function is

strictly concave (because the coefficient multiplying π̄2
t is negative) if and only if

p1
t satisfies inequality (3.2). If the inequality is reversed, the function Q is instead

convex, and is minimized rather than maximized at the value of π̄t that satisfies the

first-order condition Qπ̄ = 0. But in this case, the “malevolent agent” can achieve an

unboundedly large positive value of the objective (A.1), as stated in the text; and a

robustly optimal policy can never involve a value of p1
t this large.

In the case that (3.2) holds with equality, Q is linear in π̄t, and it is again possible

for the “malevolent agent” to achieve an unboundedly large positive value of the

objective through an extreme choice of π̄t, except in the special case that

p0
t = β−1(πt − ut − κx∗), (A.9)

so that the linear function has a slope of exactly zero. Thus unless p0
t satisfies (A.9), p1

t

must satisfy the bound (3.2) in order for the objective (A.1) to have a finite maximum.

Even in the special case that (A.9) holds exactly, p1
t must satisfy a variant of (3.2) in

which the strict inequality is replaced by a weak inequality.

When (3.2) holds, the maximum value of Q occurs for the value of π̄t such that

Qπ̄ = 0. This implies that the worst-case value of π̄t is the one given by (3.4) – (3.5)

in the text. Substituting this solution into (A.7) and (A.8), one obtains the implied

output gap (3.6) and and relative entropy (3.7) under the worst-case NRE beliefs,

39Equation (A.7) again assumes that p1
t 6= 0. In the event that p1

t = 0, it follows from the previous
footnote that the relative entropy of the worst-case beliefs will equal zero.

40The analysis here assumes that p1
t 6= 0. If p1

t = 0, there is no choice about the value of π̄t; it
must equal p0

t .
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as stated in the text. Substituting these expressions into the objective (A.1), one

obtains an objective for the CB of the form (3.8), in which the period loss is given by

L(πt; pt; st) =
1

2
π2

t +
λ

2κ2∆t

[πt − ut − κx∗ − βp0
t ]

2, (A.10)

where ∆t is the function of p1
t defined by (3.5).

When, instead, (3.2) holds with equality, and (A.9) holds as well, the worst-case

value of π̄t is indeterminate, but the maximized value of (A.1) is nonetheless well-

defined, and equal to zero. In this case, the period loss function is equal to

L(πt; pt; st) =
1

2
π2

t .

When neither this case nor the one discussed in the previous paragraph applies, we

can define L(πt; pt; st) as being equal to +∞. The function is then defined (but

possibly equal to +∞) for all possible values of its arguments.

Note also that L(πt; pt; st) is necessarily non-negative, since for any values of the

arguments, it is possible for the “malevolent agent” to obtain a non-negative value

of (A.1) by choosing mt+1 = 1 in all states; the maximized value of (A.1) is then

necessarily at least this high. It follows that both the conditional expectations and

the infinite sum in (3.8) are sums (or integrals) of non-negative quantities; hence

both are well-defined (though possibly equal to +∞) for all possible values of the

arguments. Thus the CB objective (3.8) is well-defined for arbitrary state-contingent

sequences {pt} and an arbitrary initial condition (π0, s0).

A.2 Robustly Optimal Linear Policy

Given the worst-case PS beliefs characterized in the previous section, the problem of

the CB is to choose a sequence {pt} for all t ≥ 0 so as to minimize

EρE0

∞∑
t=0

βtL(πt; pt; st), (A.11)

where

πt+1 = p0
t + p1′

t wt+1 (A.12)

and

st+1 = Ast + Bwt+1 (A.13)
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for each t ≥ 0, and (π0, s0) are given as initial conditions. Here Eρ indicates an

integral over alternative possible initial conditions (p0
−1, s−1, w0) using a measure ρ,

the choice of which is explained in the next section; and it is assumed that p1
−1 = p̄1,

where the choice of p̄1 (a single value) is also explained in the next section. I use

the notation Et[·] to indicate an expectation conditional upon the history ht, by

which I mean the particular initial conditions (p0
−1, s−1, w0) that have been drawn,

together with the subsequent realizations of the exogenous disturbances (w1, . . . , wt).

I furthermore suppose that the CB’s choice of p1
t must depend only on the date t,

while the choice of p0
t may depend on the history ht.

One can show that the objective (A.11) is a convex function of the sequence {pt}. I

begin by noting that (A.1) is a convex function of πt and xt, for any choice of mt+1(·).
Then since (A.2) is a linear relation among πt, xt, and πt+1(·), it follows that, taking

as given the choice of mt+1(cdot), the value of (A.1) implied by any choice of πt+1(·)
by the CB is a convex function of πt and πt+1(cdot). Similarly, since (A.12) is linear,

the value of (A.1) implied by any choice of pt is a convex function of πt and pt, for any

choice of mt+1(·). Then since the maximum of a set of convex functions is a convex

function, it follows that the maximized value of (A.1) is also a convex function of

πt and pt. Thus L(πt; pt; st) is a convex function of (πt, pt). Finally, a sum of convex

functions is convex; this, together with the linearity of (A.12), implies that (A.11) is

a convex function of the sequence {pt}.
Convexity implies that the CB’s optimal policy can be characterized by a system

of first-order conditions, according to which

L0(πt; pt; st) + βEtLπ(πt+1; pt+1; st+1) = 0 (A.14)

for each possible history ht at any date t ≥ 0, and

EρE0[L1(πt; pt; st) + βLπ(πt+1; pt+1; st+1)wt+1] = 0 (A.15)

for each date t ≥ 0. Here Lπ denotes ∂L/∂π, L0 denotes ∂L/∂p0, and L1 denotes

∂L/∂p1. Condition (A.14) is the first-order condition for the optimal choice of p0
t ,

and (A.15) is the corresponding condition for the optimal choice of p1
t . The latter

condition is required to hold only in its ex ante (or unconditional) expected value,

because I have defined a linear policy as one under which p1
t does not depend on the

history of realization of the shocks.
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Note that it follows from the characterization in the previous section that for any

plan satisfying (3.2), the partial derivatives just referred to are well-defined, and equal

to

Lπ(πt; pt; st) = πt +
λ

κ2

πt − ut − κx∗ − βp0
t

∆t

,

L0(πt; pt; st) = −β
λ

κ2

πt − ut − κx∗ − βp0
t

∆t

,

L1(πt; pt; st) =
β2

θ

(
λ

κ2

)2 (
πt − ut − κx∗ − βp0

t

∆t

)2

p1
t .

Substituting (A.12) for πt and (3.5) for ∆t in these expressions, one obtains the

first-order conditions (A.14) – (A.15) as restrictions upon the sequence {pt}.
As explained in the text, I wish to find a sequence of functions {ϕt(·)} and a value

p̄1 such that the linear policy under which

p0
t = ϕt(ht), p1

t = p̄1

for all t ≥ 0 satisfies the first-order conditions (A.14) – (A.15), when the initial

measure ρ is the ergodic measure for the variables (p0
t , st, wt+1) under the policy just

specified, and in addition p1
−1 = p̄1. I first show that there exists a state-contingent

evolution for {p0
t} that satisfies (A.14) in the case of an arbitrary constant value

p̄1 that satisfies the bound (3.2), and for which there exists a well-defined ergodic

measure. Using the ergodic measure ρ corresponding to a given value of p̄1, I then

determine the nonlinear equation that p̄1 must satisfy in order for (A.15) to hold each

period under the conjectured solution. Demonstration that a robustly optimal linear

policy exists then requires only that one show that there exists a solution p̄1 to this

equation that also satisfies the bound (3.2).

Under the assumption that p1
t = p̄1 for all t ≥ −1, (A.14) is a stochastic linear

difference equation for the process {p0
t} of the form

Et[A(L)p0
t+1] = vt, (A.16)

where

A(L) ≡ β −
(

1 + β +
κ2∆̄

λ

)
L + L2,

vt ≡ ut − Etut+1 − p̄1′wt.
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(Here ∆̄ is the constant value of ∆t implied by the constant value p̄1.) By factoring

the lag polynomial in (A.16), one can easily show that (A.16) has a unique stationary

solution, given by

p0
t = µp0

t−1 − µEt[(1− βµL−1)−1vt], (A.17)

where 0 < µ < 1 is the smaller root of the characteristic equation (3.13) given in the

text. Note that a stationary solution exists regardless of the value assumed for p̄1.

It is then straightforward to solve for the ergodic measure ρ associated with a given

value of p̄1.

Equation (A.17) is a solution for the dynamics of {p0
t} of the kind indicated by

equation (3.10) in the text. In the special case in which wt is a scalar and ut = σuwt,

vt = (σu − p̄1)wt, and (A.17) reduces to

p0
t = µp0

t−1 − µ(σu − p̄1)wt. (A.18)

Thus we have established conditions (3.11) given in the text. As noted in the text,

it is evident from (3.13) that µ is monotonically decreasing in ∆̄. Since a concern

for robustness results in ∆̄ < 1, while ∆̄ = 1 in the case of rational expectations, we

see that a concern for robustness results in a value of µ that is larger (closer to 1),

implying more persistence in the fluctuations in {p0
t}.

It remains to determine when condition (A.15) is also satisfied. I first observe

that

EρE0[L1(πt; pt; st)] =
β2

θ

(
λ

κ2

)2
p̄1

∆̄2
E[(πt − ut − κx∗ − βp0

t )
2]

=
β2

θ

(
λ

κ2

)2
p̄1

∆̄2
[a + 2bp̄1 + (p̄1)2],

where

a ≡ E[(p0
t−1 − ut − κx∗ − βp0

t )
2],

b ≡ E[wt(p
0
t − ut − κx∗ − βp0

t )].

Here E[·] denotes the expectation under the ergodic measure associated with the

dynamics for {p0
t} indicated by (A.17) — which measure is uniquely defined in the

case of a given value of p̄1.

Similarly, one can show that

EρE0[Lπ(πt+1; pt+1; st+1)wt+1] = E[πt+1wt+1] +
λ

κ2∆̄
E[(πt+1 − ut+1 − κx∗ − βp0

t+1)wt+1]

= p̄1 +
λ

κ2∆̄
[p̄1 + b].
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Hence condition (A.15) is equivalent to

f(p̄1) ≡ β2

θ

(
λ

κ2

)2
c

∆̄2
p̄1 + p̄1 +

λ

κ2∆̄
[p̄1 + b] = 0, (A.19)

where

c ≡ a + 2bp̄1 + (p̄1)2.

A robustly optimal linear policy then exists if and only if (A.19) has a solution p̄1

that satisfies the bound (3.2). Of course, in defining the function f(·), one must take

account of the dependence of c and ∆̄ on the value of p̄1.

When {p0
t} evolves in accordance with the stationary dynamics (A.18), the above

definitions imply that

a = (κx∗)2 + E{[(1− βµ)p0
t−1 − (σu − βµ(σu − p̄1))wt]

2}
= (κx∗)2 +

(1− βµ)2µ2

1− µ2
(σu − p̄1)2 + [(1− βµ)σu + βµp̄1]2,

b = −σu − βE[p0
t wt]

= −(1− βµ)σu − βµp̄1.

I furthermore observe that a = a0 + b2, where

a0 ≡ (κx∗)2 +
(1− βµ)2µ2

1− µ2
(σu − p̄1)2 > 0.

Hence

c = a0 + (b + p̄1)2 > 0

can be signed for all admissible values of p̄1. Substituting this function of p̄1 for c and

(3.5) for ∆̄ in (A.19) yields a nonlinear equation in p̄1, that is solved numerically in

order to produce Figure 1.

One can easily show that a solution to this equation in the admissible range must

exist. Note first that (3.2) can alternatively be written in the form

|p̄1| < p̂1 ≡ κ

λ1/2

θ1/2

β
. (A.20)

I next observe that

f(0) =
λ

κ2∆̄
b = − λ

κ2
(1− βµ)σu < 0.
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On the other hand, in the case of any finite θ, as p1 → p̂1, the first term in the

expression (A.19) becomes larger than the other two terms, so that f(p1) > 0 for

any value of p1 close enough to (while still below) the bound, Since the function

f(·) is well-defined and continuous on the entire interval [0, p̂1), there must be an

intermediate value 0 < p̄1 < p̂1 at which f(p̄1) = 0. Such a value satisfies both (3.2)

and (A.19), and so describes a robustly optimal linear policy.

It remains to establish (3.12) and (3.14). When evaluated at the value p1 = µσu,

the second two terms in (A.19) are equal to

− λ

κ2∆̄
P (µ)σu = 0,

where P (µ) is the polynomial defined in (3.13). Moreover, in the limiting case in

which θ → ∞ (the RE case), the first term in condition (A.19) is identically zero,

so that f(µσu) = 0, and p̄1 = µσu is a solution.41 Instead, when θ is finite, the first

term is necessarily positive, so that f(µσu) > 0. If µσu < p̂1, this implies that there

exists a solution to (A.15) such that 0 < p̄1 < µσu, as asserted in (3.14). If instead

p̂1 ≤ µσu, then (3.14) follows from the result in the previous paragraph. Hence in

either case, the robustly optimal policy satisfies (3.14) for any finite θ.

A.3 An Alternative Objective for the Robust Policymaker

In the analysis presented above, it is assumed that the robust policymaker seeks to

minimize precisely the same objective (2.4) that the “malevolent agent” seek to max-

imize through its choice of distorted beliefs for the private sector. This corresponds

to the kind of robust decision problem that Hansen and Sargent (2005, chap. 6)

call a “multiplier robust control problem,” and to the kind of generalized ambiguity

aversion characterized by Maccheroni et al. (2004, 2005). Here, instead, I show how

the results would differ in the case of the alternative objective assumed in Woodford

(2005).

One might alternatively suppose that the policymaker ranks alternative equilibria

according to the value of the original loss function (2.2), even though the malevolent

agent is expected to prefer the highest possible value of (2.4). The reasoning would be

41It is easily seen to be the unique solution, since f(p) is linear in this case. One can also show
that this is the optimal policy without restricting attention to linear policies, as is done here; see
Clarida et al. (1999) or Woodford (2003, chap. 7).
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the following. The policymaker is worried about possible outcomes (due to distorted

beliefs) that are especially bad in terms of his objective (2.2), but less worried if the

distortion of beliefs required is one that should be relatively easily disconfirmed by

observation. The worst-case outcome that is feared, in the case of a given policy, is

therefore the one that maximizes (2.4). However, when the policymaker considers

which policy is least unfortunate under these worst-case beliefs, he ranks the worst-

case equilibria associated with alternative policies according to the value of (2.2) in

each. The policymaker is concerned by the possibility of an equilibrium with large

departures of inflation and/or the output gap from their optimal values, and does

not regard it as a mitigating factor that such an equilibrium might involve large

expectational errors on the part of the private sector. Ranking outcomes by the value

of (2.4) suggests instead that the policymaker is not bothered by failure to stabilize

inflation and the output gap, as long as the failure depends on a sufficiently large

distortion of PS beliefs.

This modification of the assumed objective of robust policy has the consequence

that the “game” between the policymaker and the malevolent agent is no longer zero-

sum, which prevents us from using a number of devices that are frequently employed

in Hansen and Sargent (2005); for example, we cannot characterize optimal policy

by the first-order conditions for an optimal policy commitment in the case of the

particular distorted beliefs {mt+1} that are chosen by the malevolent agent.42 But

the method used above to characterize robustly optimal policy assumes a “game” in

which the CB is a Stackelberg “leader” and takes into account the optimal response

of the malevolent agent, and as a result it is not hard to explain how the calculations

would be modified in the case of the alternative objective.

The characterization of worst-case NRE beliefs in section A.1 remains applicable,

since the malevolent agent again seeks to maximize (2.4). However, rather than

substituting the above solutions for mt+1(wt+1) and xt into (A.1), one substitutes

them instead into a period loss function that omits the final (relative-entropy) term.

Again one obtains an objective for the CB of the form (3.8), but now the period loss

42Thus a characterization of robustly optimal policy by a coupled system of Euler equations for the
decisionmaker and the malevolent agent respectively, as in “game 1” of Hansen and Sargent (2005,
chap. 6), is not possible in this case, though it would be possible for the robust policy problem
stated in the text.
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is given by

L(πt; pt; st) =
1

2
π2

t +
λ

2κ2∆2
t

[πt − ut − κx∗ − βp0
t ]

2, (A.21)

rather than (A.10). (Here ∆t is again the function of p1
t defined by (3.5).) Note

that the qualitative conclusion about how the CB’s objective is affected by a concern

for robustness remains the same as before: the relative weight on the second term

in (A.21) is increased the smaller is θ, because (for any given linear policy in which

p1
t 6= 0) ∆t becomes a smaller positive quantity as θ is reduced. The fact that ∆t is

replaced by ∆2
t in (A.21) only means that the effect is even stronger in the case of

this version of the robust policy problem. (Under the present objective, the worse

outcome for the output gap is no longer partially mitigated by the fact that PS beliefs

are also more distorted in the case of lower θ.)43 As before, the period loss (A.21)

becomes unboundedly large as |p1
t | approaches the upper bound (3.2), so that we

conclude once again that robustly optimal policy must satisfy this bound.

The robustly optimal linear policy is again a choice of {pt} (subject to the con-

straints discussed above) to minimize the objective (3.8), except that the period loss

is now given by (A.21). The solution to this problem can again be characterized as

in section A.2. The first-order conditions for optimal CB policy are again of the form

(A.14) – (A.15), but now the partial derivatives of L are equal to

Lπ(πt; pt; st) = πt +
λ

κ2

πt − ut − κx∗ − βp0
t

∆2
t

,

L0(πt; pt; st) = −β
λ

κ2

πt − ut − κx∗ − βp0
t

∆2
t

,

L1(πt; pt; st) = 2
β2

θ

(
λ

κ2

)2
(πt − ut − κx∗ − βp0

t )
2

∆3
t

p1
t .

43The discussion here assumes that policy satisfies the bound (3.2). As above, if the inequality
(3.2) is reversed, or it holds with equality and policy does not also satisfy (A.9), the malevolent
agent chooses an extreme distortion of beliefs and the CB’s period loss is unboundedly large. In the
case that (3.2) holds with equality and (A.9) is precisely satisfied, the malevolent agent is indifferent
among a set of distortions which are not all equally bad for the CB. In this case, the set of possible
outcomes that might equally be chosen by the malevolent agent include ones in which the period loss
of the CB is unboundedly large. Because we assume that the policy analyst should be concerned with
the worst-case possible outcomes for her principal, it is reasonable to assign the CB loss function a
value of +∞ in this case as well. The CB loss function is then defined for all possible linear policies,
and it is evident that a robustly optimal policy will necessarily satisfy (3.2).
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Condition (A.14) again implies that the process {p0
t} must satisfy a stochastic

linear difference equation of the form (A.16), except that we now define

A(L) ≡ β −
(

1 + β +
κ2∆̄2

λ

)
L + L2.

(The definition of vt remains as before.) The unique stationary solution to (A.16) is

again of the form (A.17), and again 0 < µ < 1, but now µ is the smaller root of the

characteristic equation

P (µ) ≡ βµ2 −
(

1 + β +
κ2∆̄2

λ

)
µ + 1 = 0 (A.22)

rather than of equation (3.13) in the text. Again one finds that a stationary solution

exists regardless of the value of p̄1, allowing one to define the ergodic measure ρ

associated with any given value of p̄1; and once again the stationary fluctuations occur

around a long-run mean inflation rate of zero. Since (A.22) is the same as (3.13),

except that ∆̄ is replaced by ∆̄2, one again observes that the root µ is monotonically

decreasing in ∆̄, so that a concern for robustness increases the persistence of the

fluctuations in {p0
t}. In the special case of i.i.d. cost-push shocks, (A.17) again

reduces to (A.18), establishing conditions (3.11) given in the text.

Condition (A.15) again implies a condition of the form f(p̄1) = 0, but now we

define

f(p̄1) ≡ 2
β2

θ

(
λ

κ2

)2
c

∆̄3
p̄1 + p̄1 +

λ

κ2∆̄2
[p̄1 + b] = 0. (A.23)

Here the definition of c is as before, and one can again show that c > 0 for all

admissible values of p̄1. One can again show that in the case of any finite θ, f(0) < 0,

while f(p1) > 0 for any p1 close enough to (while still less than) the bound p̂1. Hence

a solution 0 < p̄1 < p̂1 exists, corresponding to a robustly optimal linear policy of the

kind described in the text. Figure 4 shows how p̄1 varies with parameters in the case

of the same numerical values as in Figure 1. Note that the qualitative conclusions

from this exercise are the same as before; quantitatively, we see that a given degree

of concern for robustness (i.e., a given value of θ) reduces the optimal sensitivity

of inflation to the cost-push disturbances to an even greater extent when the CB is

assumed to evaluate worst-case outcomes using (2.2).

One can also establish once again that the robustly optimal linear policy must

satisfy (3.14). When evaluated at p1 = µσu, the second two terms in the function
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Figure A.1: Variation of p̄1 with σu, under alternative degrees of concern for robust-

ness, for the alternative CB objective.

defined in (A.23) are again equal to

− λ

κ2∆̄
P (µ)σu = 0,

where P (µ) is now defined in (A.22), so that once again f(µσu) > 0. Thus it again

follows that there exists a solution to (A.23) with 0 < p̄1 < µσu. Since the cumulative

log price increase due to a one-standard-deviation cost-push shock is again given by

(3.15), this result again implies that with a concern for robustness, the initial price

increase due to a positive cost-push shock is not merely eventually undone, but is

eventually reversed in sign, under the optimal linear policy.

In the case of discretionary policy, use of the alternative CB objective similarly

leaves the qualitative conclusions announced in the text unchanged. The same argu-

ment as in the text can be used to show that π̄(st) is the solution to equation (4.2),

except that now the function L is the one defined in (A.21), rather than the one
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defined in (A.10). The solution is then given by

π̄(st) =
λ

κ2∆̄ + λ
[κx∗ + ut + βp̄0(st)].

rather than by (4.6). Again we have a linear solution of the form (4.3), and the

expressions given in (4.7) – (4.8) continue to apply, if the factor ∆̄ is replaced by ∆̄2

in each equation.

Because ∆̄2 is a decreasing, strictly concave function of p̄1 just as ∆̄ is, and

similarly varies from 1 to 0 as p̄1 increases from 0 to p̂1, the qualitative conclusions

obtained in Appendix A.4 continue to apply in the case of the alternative objective;

thus, for example, a large enough value of κ will once again result in the three regions

shown in Figure 4. Details of the corresponding calculations for the alternative case

are omitted.

A.4 Existence and Stability of Robust Linear MPE

A robust linear MPE corresponds to a pair (p̄1, ∆̄) that satisfy equations (fixpt1)

– (fixpt2), with ∆̄ > 0 so that (3.2) is satisfied. Equivalently, we are looking for

solutions to the two equations in the interval 0 < p̄1 < p̂1, where p̂1 is defined by

(A.20).

If we write these equations as ∆̄ = ∆1(p̄
1) and ∆̄ = ∆2(p̄

1) respectively, we observe

that ∆1(p) is a decreasing, strictly concave function for all p > 0, while ∆2(p) is a

decreasing, strictly convex function over the same domain. Moreover, ∆1(p) < ∆2(p)

for all small enough p > 0 (as ∆2(p) → +∞ as p → 0), and also for all large enough

p (as ∆1(p) → −∞ as p → +∞). Hence there are either no intersections of the two

curves with p̄1 > 0, or two intersections, or a single intersection at a point of tangency

between the two curves.

The slopes of the two curves are furthermore given by

∆′
1(p) = −2

β2

θ

λ

κ2
p,

∆′
2(p) = − λ

κ2

σu

p2
.

From these expressions one observes that ∆′
2(p) is less than, equal to, or greater than

∆′
1(p) according to whether p is less than, equal to, or greater than p̃1, where

p̃1 ≡
(

θ

β2

σu

2

)1/3

> 0.
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From this it follows that there are two intersections if and only if ∆2(p̃
1) < ∆1(p̃

1),

which holds if and only if σu < σ∗u, where σ∗u is defined as in (4.11).44 Similarly, the

two curves are tangent to each other if and only if σu = σ∗u; in this case, the unique

intersection is at p̄1 = p̃1. And finally, the two curves fail to intersect if and only if

σu > σ∗u.

It remains to consider how many of these intersections occur in the interval 0 <

p̄1 < p̂1. One notes that there is exactly one solution in that interval (and hence

a unique robust linear MPE) if and only if ∆2(p̂
1) < 0, which holds if and only if

σu < p̂1. When σu = p̂1 exactly, ∆2(p̂
1) = ∆1(p̂

1) = 0, and the curves intersect at

p̄1 = p̂1. This is the larger of two solutions for p̄1 if and only if

∆′
1(p̂

1) < ∆′
2(p̂

1), (A.24)

which holds if and only if λκ2 < 2. In this case, as σu is increased further, the larger

of the two solutions for p̄1 decreases with σu, so that there are two solutions in the

interval (0, p̂1), until σu = σ∗, and the two solutions collapse into one, as the curves

are tangent. (Note that σ∗u > p̂1.) For still larger values of σu, there is no intersection,

as explained in the previous paragraph.

If instead, λ/κ2 = 2 exactly, then the curves are tangent when σu = p̂1 (which

in this case is also equal to σ∗u). At this point the only intersection occurs at p̄1 =

p̂1 (which fails to satisfy condition (3.2)), and for larger values of σu there are no

intersections. Finally, if λ/κ2 > 2, then the inequality in (A.24) is reversed, and

when σu = p̂1, the intersection at p̄1 = p̂1 is the smaller of the two solutions. (The

smaller solution approaches p̂1 from below as σu increases to p̂1.) In this case, there

are no solutions p̄1 < p̂1 when σu = p̂1. As σu increases further, the smaller solution

continues to increase with σu, so that even for values of σu that continue to be less

than or equal to σ∗u (so that the curves continue to intersect), there are no solutions

with p̄1 < p̂1. And for still larger values of σu, there are again no solutions at all.

Hence in each case, the number of solutions is as described in the text.

The “expectational stability” analysis proposed in the text involves the properties

of the map

Φ(p) ≡ ∆−1
2 (∆1(p)).

Formally, a fixed point p̄1 of Φ (which corresponds to an intersection of the two curves

studied above) is expectationally stable if and only if there exists a neighborhood P

44It is useful to note that this definition implies that σ∗u ≥ p̂1, with equality only if κ2/λ = 1/2.
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of p̄1 such that

lim
n→∞

Φn(p) = p̄1

for any p ∈ P. Our observations above about the functions ∆1(·), ∆2(·) imply that

Φ(·) is a monotonically increasing function. Hence a fixed point p̄1 is stable if and

only if Φ′(p̄1) < 1.

The above definition implies that

Φ′(p) =
∆′

1(p)

∆′
2(∆

−1
2 (∆1(p)))

> 0.

Evaluated at a fixed point of Φ, this reduces to

Φ′(p̄1) =
∆′

1(p̄
1)

∆′
2(p̄

1)
.

Hence the stability condition is satisfied if and only if

∆′
2(p̄

1) < ∆′
1(p̄

1) < 0. (A.25)

Because of the concavity of ∆1(·) and the convexity of ∆2(·), this condition necessarily

holds at the fixed point with the smaller value of p̄1, and not at the higher value.

Hence in Figure 4, it is the upper (dashed) branch of solutions that is expectationally

unstable, while the lower (solid) branch of solutions is stable. We therefore conclude

that regardless of the other parameter values, there is exactly one expectationally

stable robust linear MPE for all values of σu below some positive critical value, and

no robust linear MPE for values of σu greater than or equal to that value.

Finally, let us consider the way in which p̄1 changes as θ is reduced (indicating

that a broader range of NRE beliefs are considered possible). Letting p̄1 be implicitly

defined by the equation

∆1(p̄
1) = ∆2(p̄

1),

the implicit function theorem implies that

dp̄1

dθ
= − ∂∆1/∂θ

∆′
1 −∆′

2

. (A.26)

It follows from (A.25) that in the case of an expectationally stable MPE, the denom-

inator of the fraction in (A.26) is positive. We also observe that

∂∆1

∂θ
=

β2

θ2

λ

κ2
(p̄1)2 > 0,
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so that the numerator is positive as well, and hence p̄1 decreases as θ increases. This

means that p̄1 increases as the CB’s concern for robustness increases (corresponding to

a lower value of θ, up until the point where there ceases to any longer be a robust linear

MPE at all. In that case, as discussed in the text, we can think of the equilibrium

sensitivity of inflation to cost-push shocks as being unbounded; so the conclusion

that greater concern for robustness leads to greater sensitivity of inflation to cost-

push shocks extends, in a looser sense, to that case as well.
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