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Abstract: 
We introduce a multivariate multiplicative error model which is driven by 
componentspecific observation driven dynamics as well as a common latent 
autoregressive factor. The model is designed to explicitly account for (information driven) 
common factor dynamics as well as idiosyncratic effects in the processes of high-
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minutes data from four liquid stocks traded at the New York Stock Exchange, we find that 
volatilities, volumes and intensities are driven by idiosyncratic dynamics as well as a 
highly persistent common factor capturing most causal relations and cross-dependencies 
between the individual variables. This confirms economic theory and suggests more 
parsimonious specifications of high-dimensional trading processes. It turns out that 
common shocks affect the return volatility and the trading volume rather than the trading 
intensity. 
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1  Introduction 
 
Numerous  empirical  studies have documented  a  strong positive  contemporaneous  relation 

between  daily  aggregated  volume  and  volatility.  This  observation  is  consistent  with  the 

mixture‐of‐distribution  hypothesis  (MDH)  pioneered  by  Clark  (1973).  The MDH  relies  on 

central  limit arguments based on  the assumption  that daily  returns  consist of  the  sum of a



”large” amount of intradaily logarithmic price changes associated with ”pseudo” intraday

equilibria. The assumption that these intraday price changes are also accompanied by an

increased trading volume leads to an extension of Clark’s model and implies a positive

contemporaneous correlation between daily volume and volatility.1

Whereas the employed central limit arguments provide a sensible framework for aggre-

gated (daily) data, they are not applicable on a high-frequency level since the number of

underlying ”pseudo” equilibria cannot be large but converge to zero when we approach the

transaction level. Nevertheless, under the assumption that daily volumes and returns, both

consisting of intraday aggregates, are driven by a subordinated common process, then the

latter should be identifiable also on an intraday level. Actually, the idea of an underlying

(unobservable) information process is also consistent with most asymmetric information

based market microstructure models as e.g. introduced by Glosten and Milgrom (1985)

and Easley and O‘Hara (1992). In these settings, positive contemporaneous correlations

between trading volumes and volatilities arise by the interaction among asymmetrically in-

formed market participants. However, market microstructure theory is typically relatively

vague, if not silent, regarding the underlying time horizon and thus the frequency on which

common information-induced effects should be observable. On the other hand, several em-

pirical studies provide evidence for common movements and strong interdependencies in

high-frequency volatilities and trading intensities2 supporting the notion of an underlying

common component jointly driving trading activity and volatility.

In this study, we aim to analyze whether a common component in volatilities and trading

volumes is identifiable not only based on daily data but also on higher sampling frequencies,

such as e.g. five minutes. We associate this hypothesis with a ”micro-foundation” of the

volume-volatility relationship. In this context, we will answer the following research ques-

tions: (i) To which extend do the interdependencies between volume and volatility reflect

(”true”) causal relationships or rather spurious correlations due to the subordination to

the same latent (information arrival) process? (ii) Are potential common movements with

volatilities rather reflected in trade sizes or trading intensities or both? (iii) Which of the

particular components of the trading process react strongest to a common (information)

shock? (iv) How strong and important are remaining serial interdependencies between the

individual components even when a common dynamic factor is explicitly taken into ac-

count? (v) Does the inclusion of a common latent component leads to more parsimonious

specifications of high-dimensional trading processes?

1 See Epps and Epps (1976), Tauchen and Pitts (1983), Lamoureux and Lastrapes (1990), Andersen
(1996) or Liesenfeld (2001).

2See e.g. Engle (2000), Grammig and Wellner (2002), Renault and Werker (2003), Manganelli (2005),
Meddahi, Renault, and Werker (2006) or Bowsher (2006).
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To address these questions, we propose modelling the return volatility, the averaged

trade size, and the number of trades per time in terms of a new type of multiplicative error

model (MEM) which is driven by two different dynamic processes: a common autoregressive

latent factor with component-specific sensitivity and an observation driven (VARMA type)

dynamic capturing idiosyncratic effects. The resulting model is called stochastic multiplica-

tive error model (SMEM) and extends the multiplicative error structures as suggested by

Engle (2002) and Manganelli (2005) by a latent factor dynamic.

The proposed approach is motivated by two major aspects: Firstly, a well known result

in the literature on tests of the MDH is that a single latent component is typically not suffi-

cient to fully capture the short-run dynamic dependencies in both volume and volatility. As

argued e.g. in Andersen (1996) and Bollerslev and Jubinski (1999), it is likely that different

types of ”news”, such as scheduled macroeconomic announcements, option expiration days

or company specific earnings announcements affect the volatility and volume processes dif-

ferently. For instance, macroeconomic announcements lead to relatively short-lived jumps

in volatility but to longer-lasting increases of the trading volume. In contrast, earnings

announcements are typically accompanied by strong price shifts combined with relatively

little trading activity. Including such idiosyncratic effects requires to account for additional

factors. However, instead of allowing for multiple latent factors (as e.g. in Liesenfeld, 2001),

the SMEM captures these effects in terms of observation driven dynamics. This idea has

been suggested by Bauwens and Hautsch (2006) and leads to a still flexible, but computa-

tionally less burdensome specification since only one factor is assumed to be unobservable

and has to be integrated out.

Secondly, combining a common latent dynamic with (multivariate) observation driven

components can be seen as a reduced form description of the trading dynamics generated

by a subordinated information process and by asymmetrically informed market agents. In

asymmetric information based market microstructure models3, (uninformed) traders try

to infer the existence of information by observing the recent trading history. This leads

to distinct (cross-)autocorrelation structures between price changes, volumes, trading in-

tensities as well as bid-ask spreads which are tested in a wide range of empirical market

microstructure studies.4 In the SMEM, the latent factor can be interpreted as a proxy

for the underlying information process which simultaneously affects volatilities, trade sizes

and trading intensities. Then, the observation driven dynamics capture component-specific

adjustment processes after (possibly information caused) innovation shocks in the partic-

3See, e.g., Glosten and Milgrom (1985), Admati and Pfleiderer (1988), Easley and O‘Hara (1992), Blume,
Easley, and O‘Hara (1994) and Easley, Kiefer, O‘Hara, and Paperman (1996) among others.

4See e.g. Engle (2000) and Manganelli (2005) or the surveys by Bauwens and Giot (2001) or Hautsch
(2004).
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ular trading variables. The latter effects reflect how common information is processed in

the market and how market participants’ conditional expectations on future volatilities and

trading volumes are updated based on the observable trade history.

Though the SMEM cannot be seen as a structural model, it nevertheless allows us to

study trading processes in a more structural way than in completely reduced form descrip-

tions of trading processes (as e.g. Hasbrouck, 1991 Dufour and Engle, 2000, Engle, 2000

or Manganelli, 2005). Disentangling the trading dynamics in the proposed form makes it

possible to explicitly control for a common factor and therefore enables us to analyze to

which extend the individual trading components reflect (unobservable) joint information.

For instance, based on daily data, Jones, Kaul, and Lipson (1994) show that the positive

relation between volatility and average trade size is statistically insignificant when the ef-

fects of the number of transactions on stock return volatility are taken into account. In

contrast, Xu and Wu (1999), Chan and Fong (2000) and Huang and Masulis (2003) find

that the average trade size contains nontrivial information for return volatility. Tran (2006)

decomposes the return volatility into an erratic factor (being particularly sensitive to new

information) as well as a persistent factor and shows that both the trading intensity and

the average trade size are positively correlated with the former. Our study contributes to

this literature and sheds some light on the specific information content of the individual

trading components.

The SMEM is estimated by simulated maximum likelihood (SML). The computation

of the likelihood requires to integrate the latent component out leading to an integral of

the dimension of the sample range. To approximate the likelihood function numerically

we suggest using the efficient importance sampling (EIS) algorithm proposed by Richard

(1998) and Richard and Zhang (2005). In the empirical applications, it turns out that the

SML-EIS estimation of the SMEM works very efficiently and is computationally feasible.

In the empirical analysis, we use five minutes aggregates from four highly liquid stocks

traded at the New York Stock Exchange (NYSE). Strong empirical evidence for the exis-

tence of an autoregressive common component is provided. We find that the unobservable

factor is a major driving force of the interdependencies as well as the contemporaneous

relations between the individual trading components. Hence, most causal effects between

volatility, trade size and trading intensity are indeed driven by a common factor confirming

the notion of an underlying information process. It turns out that the latent component

has a particularly strong effect on the return volatility as well as the average trade size

which confirms the findings based on daily data (see e.g. Tauchen and Pitts, 1983, Chan

and Fong, 2000 or Liesenfeld, 2001) and can be seen as a ”micro-foundation” of the daily

volume-volatility relationship. In contrast, the trading intensity is only weakly affected
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by the underlying component which is contrast to the results by Jones, Kaul, and Lipson

(1994). Moreover, it is shown that the inclusion of the latent component clearly improves

the goodness-of-fit as well as the dynamical and distributional properties of the model. This

illustrates the usefulness of combining observation driven and parameter driven dynamics

and opens up new directions to estimate and predict trading processes.

The remainder of the paper is organized in the following way: Section 2 presents the

SMEM while Section 3 discusses its statistical properties. In Section 4, we illustrate the

statistical inference. Section 5 shows the data and discusses the estimation results. Finally,

Section 6 concludes.

2 The Multivariate Stochastic Multiplicative Error Model

Define {Yi, Vi, ρi}, i = 1, . . . , N, as the three-dimensional time series associated with the

intraday process of returns, transaction volumes and trading intensities, respectively. In

particular, Yi corresponds to the log return measured over equi-distant time intervals (here

five minutes intervals), Vi is the average volume per trade in the i-th interval and ρi is

the number of trades occurring during interval i. Furthermore, λi is defined as a com-

mon unobservable component that simultaneously influences Yi, Vi and ρi and follows an

autoregressive process which is updated in every interval i.

Define Wi = {wj}i
j=1 with wi = (Yi, Vi, ρi)

′ and Λi = {λj}i
j=1 and denote Fi := (Wi, Λi)

as the history of the process up to period i. Following Engle (2000) and Manganelli (2005),

we propose decomposing the joint conditional density given Fi−1, f(Yi, Vi, ρi, λi|Fi−1), into

the product of the corresponding conditional densities. Hence,

f(Yi, Vi, ρi, λi|Fi−1) = f(Yi|Vi, ρi, λi;Fi−1) · f(Vi, ρi, λi;Fi−1) (1)

= f(Yi|Vi, ρi, λi;Fi−1) · f(Vi|ρi, λi;Fi−1) · f(ρi|λi;Fi−1) · f(λi; Λi−1),

where it is assumed that λi depends only on its own history Λi−1. The chosen decomposition

implies that Vi is weakly exogenous for Yi, whereas ρi is weakly exogenous for both Yi and

Vi. Finally, ρi itself is assumed not to be affected by any contemporaneous variable. Of

course, the order of the variables in the decomposition is somewhat arbitrary and depends

on the research objective. Here, we proceed along the lines of Engle (2000) and Manganelli

(2005) who are particularly interested in the volatility process given the contemporaneous

volume and the contemporaneous trading intensity.

The basic idea of the SMEM is to combine observation driven dynamics with parameter

driven dynamics in a multivariate multiplicative error framework as introduced by Engle

(2002) and put forward by Engle and Gallo (2006) and Cipollini, Engle, and Gallo (2007).

Then, a three-dimensional SMEM for volatilities, trade sizes and trading intensities is given
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by

Yi = E[Yi|Fi−1] + ξi, (2)

ξi =
√

hieδ1λish,iηi, ηi ∼ i.i.d. N(0, 1), (3)

Vi = Φie
δ2λisV,iui, ui ∼ i.i.d.GG(p2, m2), (4)

ρi = Ψie
δ3λisρ,iεi, εi ∼ i.i.d.GG(p3, m3), (5)

where hi, Φi and Ψi denote observation driven dynamic components, ηi, ui and εi are

process-specific innovation terms which are assumed to be independent, and sh,i, sV,i, sρ,i >

0 capture deterministic time-of-day effects in volatilities, trade sizes, and trading intensities,

respectively. We assume that the volatility innovations ηi follow a standard normal distribu-

tion whereas the volume and trading intensity innovations ui and εi follow a standard gen-

eralized gamma distribution depending on the parameters p2, m2 and p3, m3, respectively.

The generalized gamma distribution allows for a high distributional flexibility including the

cases of over-dispersion and under-dispersion as well as non-monotonic hazard shapes.5

The component hie
δ1λish,i corresponds to the conditional variance of the returns given

Fi−1, λi, and the time of the day. Accordingly, up to a constant multiplicative factor6,

Φie
δ2λisV,i and Ψie

δ3λisρ,i correspond to the conditionally expected volume and the condi-

tionally expected trading intensity given Fi−1, λi, and the time of the day. Hence, the major

idea of the SMEM is to model these conditional moments on the basis of a multiplicative

interaction of the processes {hish,i, ΦisV,i, Ψisρ,i} and eλi . Then, the parameters δ1, δ2 and

δ3 drive the process-specific impact of λi.

The common latent factor λi is assumed to follow a zero mean AR(1) process, given by

λi = aλi−1 + νi, νi ∼ i.i.d. N(0, 1), (6)

where νi is assumed to be independent of ηi, ui and εi. Then, the process-specific impact of

the latent factor is given by λij := δjλi with λij = aλi−1,j + δjνi, and thus
dλij

dνi
> (<) 0 for

δj > (<) 0 with j = 1, 2, 3. 7 Because of the symmetry of the distribution of νi, the sign of

the individual parameters δj are not identified. Hence, for instance, we cannot distinguish

between the cases δ1 > 0, δ2 < 0 versus δ1 < 0, δ2 > 0. Nevertheless, we can identify

whether the latent component influences the two components in the same direction or in

opposite directions. For that reason, we have to impose an identification assumption which

restricts the sign of one of the parameters δj . Then, the signs of all other coefficients δk

with k 6= j are identified.

5We refer the specifications presented above explicitly to the processes ξi, Vi and ρi. However, generally,
the proposed structure can be used for any kind of positive-valued random variable including e.g. bid-ask
spreads or market depths.

6Note that the means of ui and εi are unequal to one as long as m2, m3, p2, p3 6= 1.
7Hence, in order to identify the δj ’s, the latent variance Var[νi] is normalized to one.
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The process-specific components hi, Φi and Ψi are assumed to follow a multivariate

observation driven dynamic which is parameterized in terms of a VAR(MA) structure

µi = ω + A0z0,i +
P
∑

j=1

Ajzi−j +

Q
∑

j=1

Bjµi−j , (7)

where

µi := (lnhi, lnΦi, lnΨi)
′, (8)

z0,i := (0, lnVi, ln ρi)
′, (9)

zi :=

(

|ξi|
√

hish,i

,
Vi

ΦisV,i
,

ρi

Ψisρ,i

)

′

=
(

|ηi|eδ1λi/2, uie
δ2λi , εie

δ3λi

)

′

(10)

as well as ω = {ωk}, k = 1, 2, 3, denote (3 × 1) vectors, and A0 = {αkl
0 } for k, l = 1, 2, 3

is a (3 × 3) triangular matrix where only the three upper right elements can be nonzero.

Furthermore, Aj = {αkl
j } and Bj = {βkl

j } for k, l = 1, 2, 3 are (3 × 3) matrices of innova-

tion and persistence parameters, respectively. The triangular structure of A0 reflects the

imposed weak exogeneity assumptions underlying the decomposition of the joint density in

(1). The log-linear form ensures the positiveness of the individual processes without im-

posing additional parameter restrictions. This property eases the estimation of the model

particularly when A0 6= 0 or when additional explanatory variables are included.

According to eq. (10) the process-specific dynamics in (7) are updated based on innova-

tions zi corresponding to the lagged (de-meaned) returns, volumes and trading intensities,

standardized by their corresponding observation driven components. We choose this speci-

fication because of four reasons: Firstly, using standardized (de-meaned) absolute returns,

volumes and intensities as innovations is quite common in logarithmic multiplicative error

specifications and ensures that the stationarity conditions of µi (given a) only depend on Bj .

This form is chosen e.g. in logarithmic autoregressive conditional duration (Log-ACD) mod-

els (Bauwens and Giot, 2000, Bauwens, Galli, and Giot, 2003) or in exponential GARCH

models (Nelson, 1991).8 Secondly, standardizing only by observation driven components en-

sures that the latter can be updated without requiring to integrate the latent factor out. As

discussed in Section 4, this clearly eases the estimation of the model since the computation

of µi does not depend on λi. Thirdly, since the latent variable is not integrated out from the

innovations, it is clear that the latter implicitly still depend on λi (see (10)). Hence, a shock

in the latent factor in period i influences {hi, Φi, Ψi} not only in period i, but (through zi)

also in the following periods which causes (cross-)autocorrelations between the individual

processes. Because of this effect, the common component can generate cross-dependencies

8The specification could be easily extended to allow for nonlinear news responses as e.g. discussed in the
context of ACD models by Fernandes and Grammig (2006) or Hautsch (2006) or in the context of GARCH
models by Engle and Ng (1993) or Hentschel (1995).
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between the observation driven processes hi, Φi and Ψi even when A0 = Aj = 0. This will

be illustrated in more detail in Section 3 and is an important model feature allowing to

parsimoniously capture cross-dependencies. Fourth, with this specification, we implicitly

assume that conditional expectations of market participants, given the latent factor, are

updated based on the observable history in volatilities, volumes and intensities. Conse-

quently, the dynamics in µi capture (cross-)autocorrelations between volatilities, volumes

and intensities which are not driven by an underlying (information) component but are

rather attributed to specific trading behavior.

In order to illustrate the structure of the model in more detail, assume for simplicity

A0 = 0, P = Q = 1, sh,i = sV,i = sρ,i = 1, and diagonal parameterizations of A1 and B1.

Then, the model is rewritten as

ξi =

√

h̃iηi, h̃i = hie
δ1λi , (11)

Vi = Φ̃iui, Φ̃i = Φie
δ2λi , (12)

ρi = Ψ̃iεi, Ψ̃i = Ψie
δ3λi , (13)

where

ln h̃i − δ1λi = ω1 + α11
1

|ξi−1|
√

hi−1

+ β11
1 (ln h̃i−1 − δ1λi−1), (14)

ln Φ̃i − δ2λi = ω2 + α22
1

Vi−1

Φi−1
+ β22

1 (ln Φ̃i−1 − δ2λi−1), (15)

ln Ψ̃i − δ3λi = ω3 + α33
1

Xi−1

Ψi−1
+ β33

1 (ln Ψ̃i−1 − δ3λi−1). (16)

Hence, it is evident that the latent component λi can be interpreted as an additional re-

gressor which is statically included and is driven by its own dynamics according to (6).

The SMEM is an extension of the multiplicative error models of Engle (2002) and

Manganelli (2005). Whereas Manganelli (2005) assumes the process-specific innovations to

be contemporaneously uncorrelated, Cipollini, Engle, and Gallo (2007) address the problem

of specifying multivariate MEM’s taking into account contemporaneous correlations between

the individual processes by means of copula-approaches. The multivariate SMEM proposed

in this paper can be seen as an alternative which captures contemporaneous correlations by

the inclusion of a common latent factor. The usefulness of the combination of observation

driven and parameter driven dynamics is also stressed by Blazsek and Escribano (2005)

who propose applying the stochastic conditional intensity model by Bauwens and Hautsch

(2006) to model the intensity of patent activities of firms. Koopman, Lucas, and Monteiro

(2005) introduce an extension of the model and apply it successfully to model credit rating

transitions.

We call the first component of the SMEM a stochastic GARCH

(SGARCH) model, whereas the second and third component is referred to a stochastic
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ACD (SACD) model. These specifications nest several model classes. The SGARCH model

encompasses a simple EGARCH specification as well as the stochastic volatility (SV) model

proposed by Taylor (1986) and permits both competing models to be tested against each

other. In particular, for α11
1 = β11

1 = 0, (14) can be rewritten as an SV model, while for

δ1 = 0 it resembles a simple form of the EGARCH model (however without news impact

asymmetries) as introduced by Nelson (1991). Furthermore, for α11
1 6= 0 and β11

1 = 0 it can

be interpreted as an SV model that is mixed with a further random variable. Accordingly,

the SACD model as specified in (15) and (16) nests the SCD model (Bauwens and Veredas,

2004) for α22
1 = β22

1 = 0 and α33
1 = β33

1 = 0, respectively, the Log-ACD model (Bauwens

and Giot, 2000) for δ2 = 0 and δ3 = 0, respectively, and, correspondingly, a mixed SCD

model for α22
1 6= 0, β22

1 = 0 and α33
1 6= 0, β33

1 = 0, respectively.

In the univariate case, the SMEM corresponds to a two-factor model which might allow

to capture dynamics not only in first conditional moments but also in higher order con-

ditional moments. In this sense, the SMEM could serve as an interesting alternative to

the stochastic volatility duration model by Ghysels, Gouriéroux, and Jasiak (2004). More

detailed comparisons of both approaches are clear issues for further research.

3 Statistical Properties of the Model

The dynamic stability of the SMEM is ensured by the stability of the two underlying

dynamic components. The strict stationarity of λi is guaranteed by |a| < 1. In this case, the

innovations of the observation driven dynamics, zi, consist of products of i.i.d. variates and

strictly stationary variables and thus are themselves strictly stationary. Then, the stability

of the observation driven VAR(MA) dynamic characterized by (7) to (10) is ensured by the

eigenvalues of the characteristic equation implied by Bj , j = 1, . . . , Q, lying inside the unit

circle.

The inclusion of the latent component in the model renders the analytical computation

of unconditional moments and (cross-)autocorrelation functions generally relatively diffi-

cult. In the following, we analyze the statistical properties of the model based on several

simulation studies. For different specifications of the SMEM, we generate 100 sets of 50, 000

observations and analyze the distributional and dynamical properties. Tables 1 and 29 show

the mean, standard deviation, minimum, maximum, kurtosis, selected quantiles as well as

the Ljung and Box (1978) statistic for (univariate) SGARCH and SACD processes under dif-

ferent parameterizations.10 Table 1 illustrates that the inclusion of a latent component has

9All tables and figures are shown in the Appendix.
10Since the distribution of returns under a SGARCH process is symmetric and the mean is set to zero,

only the quantiles of the right tail of the distribution are shown.
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a strong influence on the standard deviation, the kurtosis as well as the serial dependence in

the second moments of the simulated return process. We observe that processes generated

by high parameter values of a and δ1 imply a high unconditional variance, overkurtosis, fat

tails as well as a strong serial dependence in the conditional variance. Because of its mixture

structure, the SGARCH process allows for a high distributional and dynamical flexibility

and captures the well known statistical properties of typical financial return series.

Similar findings are revealed for simulated SACD processes (Table 2). Again, an increase

of the latent parameters a and δ3 leads to a significant rise of the unconditional variance

as well as of the autocorrelations of the resulting process. As for SGARCH processes, it is

apparent that a high serial dependence in both the observation driven component and the

parameter driven component generate distributions with strong fat tail behavior. These

effects are even amplified when the Weibull parameter p3 is larger than one.

Below we study the dynamic properties of multivariate SMEM’s. Because of brevity we

concentrate mainly on the impact of the common latent factor on the dynamic properties

of the multivariate process, whereas the influence of the observation driven VARMA com-

ponent is of less interest. Figures 1 to 6 show the autocorrelation and cross-autocorrelation

functions implied by a two-dimensional SMEM(1,1) for the volatility and the intensity pro-

cess.11 Figures 1 to 3 show SMEM processes where the latent factor is strongly (positively)

autocorrelated (a = 0.9). Moreover, we impose diagonal specifications of A1 and B1 im-

plying no (direct) dependencies between hi and Ψi and assume the autocorrelations of the

processes hi and Ψi to be only quite weak (αii
1 = βii

1 = 0.1 for i = 1, 3). Nevertheless, we

observe that the existence of the latent factor causes distinct autocorrelations in hi and Ψi

as well as in Y 2
i and ρi. As described in Section 2, this is caused by the fact that hi and Ψi

are updated by innovations zi−1 which jointly depend on an autocorrelated common com-

ponent λi−1 (recall eq. (10)). This induces significant serial dependencies in {hi, Ψi, Y
2
i , ρi}

even for values of A1 and B1 close to zero. Similarly, the latent factor causes also distinct

cross-autocorrelations between both hi and Ψi as well as between Y 2
i and ρi even for di-

agonal specifications of A1 and B1. Clearly, the magnitude of the (cross-)autocorrelations

rises with the parameters δ1 and δ3 as well as with the persistence of the latent process as

driven by a. These illustrations show that a persistent latent component can be the major

source of the observed cross-dependencies in the multivariate process. This is one of the

main features of the model.

Figure 3 shows the effect of the parameters δ1 and δ3 having opposite signs. Since

a, A1 and B1 are unchanged the autocorrelations in {hi, Ψi, Y
2
i , ρi} are identical to those

11Since the volume component is parameterized similarly, it reveals the same properties and same inter-
actions with the other processes. For this reason, we refrain from showing the results for the corresponding
three-dimensional processes.

10



shown in Figure 2. However, since the latent factor influences the two processes in opposite

directions, we observe negative CACF’s between hi and Ψi as well as between Y 2
i and

ρi. Hence, it is shown that under certain parameter constellations, the latent factor can

cause positive serial dependencies in Y 2
i and ρi while simultaneously inducing negative

cross-autocorrelations between the two processes.

In contrast, Figures 4 and 5 show SMEM processes where the observation driven dynam-

ics themselves also reveal distinct cross-dependencies. In Figure 4, λi is set to zero, whereas

in Figure 5, λi follows a persistent process with a = 0.9 and δ1 = δ3 = 0.1. Comparing

both figures demonstrates that the inclusion of the latent factor in Figure 5 induces a sig-

nificant rise of the ACF of hi and Ψi, and of the CACF between Y 2
i and ρi.

12 Hence, if the

latent factor is sufficiently strong, it can completely overlay and dominate the multivariate

dynamics. Clearly, the strength of this effect depends on the process-specific impacts d1

and d3.

Finally, Figure 6 illustrates the effects when the latent factor reveals no serial dependence

at all (a = 0), however, a strong impact on the individual components (δ1 = δ3 = 1). Then,

the complete process is effectively overlaid by a white noise variable which clearly reduces

the persistence in hi, Φi, Y 2
i and ρi and drives the cross-autocorrelations toward zero.

Summarizing, we observe that the SMEM is able to capture a wide range of multi-

variate dynamics arising either from a common underlying component and/or idiosyncratic

observation driven dependencies. Most importantly, it is illustrated that the existence of a

persistent common latent factor can be the source of distinct (cross-)autocorrelations and

contemporaneous correlations in the multivariate process even when there are no (or weak)

multivariate observation driven dynamics. This reflects the idea that an underlying com-

ponent can be indeed the major driving force for the observed serial (cross-)dependencies

in multivariate trading processes. This will be empirically tested in Section 5.

4 Statistical Inference

Let W denote the data matrix with Wi := {wj}i
j=1 and let θ denote the vector of parameters

of the SMEM. The conditional likelihood given the realizations of the latent variable Λi is

given by

L(W ; θ|Λn) =
n
∏

i=1

1
√

2h̃iπ
exp

[

− ξ2
i

2h̃i

]

p2V
p2m2−1
i

Γ(m2)Φ̃
p2m2
i

exp

[

−
(

Vi

Φ̃i

)p2
]

× p3ρ
p3m3−1
i

Γ(m3)Ψ̃
p3m3
i

exp

[

−
(

ρi

Ψ̃i

)p3
]

, (17)

12The asymmetric cross-autocorrelations between Y 2
i and ρi are caused by the fact that the return inno-

vation ξi is driven by the square root of hi, whereas ρi is driven by Ψi itself.
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where

h̃i = hie
δ1λish,i,

Φ̃i = Φie
δ2λisV,i,

Ψ̃i = Ψeδ3λsρ,i.

Since the latent process is not observable, the conditional likelihood function must be

integrated with respect to λi using the assumed normal distribution of the latter. Hence,

the integrated log likelihood function is given by

L(W ; θ) =

∫ n
∏

i=1

1
√

2h̃iπ
exp

[

− ξ2
i

2h̃i

]

p2V
p2m2−1
i

Γ(m2)Φ̃
p2m2
i

exp

[

−
(

Vi

Φ̃i

)p2
]

× p3ρ
p3m3−1
i

Γ(m3)Ψ̃
p3m3
i

exp

[

−
(

ρi

Ψ̃i

)p3
]

1√
2π

exp

[

−1

2
(λi − µ0,i)

2

]

dΛ

=

∫ n
∏

i=1

g(wi|λi, Wi−1; θ)p(λi|Λi−1; θ)dΛ =

∫ n
∏

i=1

f(wi, λi|Wi−1, Λi−1; θ)dΛ, (18)

where µ0,i := E[λi|Λi−1], g(·) denotes the conditional density of wi given (λi, Wi−1) and p(·)
denotes the conditional density of λi given Λi−1. The computation of the n-dimensional

integral in (18) is performed numerically using the efficient importance sampling (EIS)

method proposed by Richard and Zhang (2005). This algorithm was shown to work quite

well in the context of the class of latent factor models (see e.g. Liesenfeld and Richard, 2003

or, Bauwens and Hautsch, 2006).

To implement the EIS algorithm, the integral (18) is rewritten as

L(W ; θ) =

∫ n
∏

i=1

f(wi, λi|Wi−1, Λi−1; θ)

m(λi|Λi−1, φi)

n
∏

i=1

m(λi|Λi−1, φi)dΛ, (19)

where {m(λi|Λi−1, φi)}n
i=1 denotes a sequence of auxiliary importance samplers indexed

by auxiliary parameters φi. Then, the importance sampling estimate of the likelihood is

obtained by

L(W ; θ) ≈ L̂R(W ; θ) =
1

R

R
∑

r=1

n
∏

i=1

f(wi, λ
(r)
i (φi)|Wi−1, Λ

(r)
i−1(φi−1); θ)

m(λ
(r)
i (φi)|Λ(r)

i−1(φi−1), φi)
, (20)

where {λ(r)
i (φi)}n

i=1 denotes a trajectory of random draws from the sequence of auxiliary

importance samplers m and R such trajectories are generated.

The idea of the EIS approach is to choose a sequence of samplers for m(λi|Λi−1, φi)

that exploits the sample information on the λi’s revealed by the observable data. As

shown by Richard and Zhang (2005), the EIS principle is to choose the auxiliary pa-

rameters {φi}n
i=1 in a way that provides a good match between Πn

i=1m(λi|Λi−1, φi) and

Πn
i=1f(wi, λi|Wi−1, Λi−1; θ) in order to minimize the Monte Carlo sampling variance of
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L̂R(W ; θ). Richard and Zhang (2005) illustrate that the resulting high-dimensional mini-

mization problem can be split up into solvable low-dimensional subproblems. This makes

the approach tractable even for very high dimensions. The detailed EIS procedure is de-

scribed in the appendix.

An important advantage which facilitates the computation of the function f(·) is the

fact that the time series recursion of the observation driven components hi, Φi and Ψi can

be computed without the need of knowing the latent factor. As discussed in Section 2 this

is due the fact that {hi, Φi, Ψi} are driven based on innovations zi which are observable

given the history of {ξi, Vi, ρi} and {hi, Φi, Ψi}. Then, hi, Φi and Ψi can be computed in

a first step according to the VARMA structure given by (7) to (10) and can be used in a

second step to evaluate the sampler {m(λi|Λi−1, φi}n
i=1.

Filtered estimates of functions of an arbitrary function of λi, ϑ(λi), given the observable

information set up to ti−1 are given by

E [ϑ(λi) |Wi−1 ] =

∫

ϑ(λi)p(λi|Wi−1, Λi−1, θ)f(Wi−1, Λi−1|θ)dΛi
∫

f(Wi−1, Λi−1|θ)dΛi−1
. (21)

The integral in the denominator corresponds to the marginal likelihood function of the

first i − 1 observations, L(Wi−1; θ), and can be evaluated on the basis of the sequence

of auxiliary samplers {m(λj |Λj−1, φ̂
i−1
j )}i−1

j=1 where {φ̂i−1
j } denotes the value of the EIS

auxiliary parameters associated with the computation of L(Wi−1; θ) and θ is set equal to its

corresponding maximum likelihood estimate. Correspondingly, the numerator is computed

by

1

R

R
∑

r=1







ϑ
(

λ
(r)
i (θ)

)

i−1
∏

j=1





f
(

wj , λ
(r)
j (φ̂i−1

j )|Wj−1, Λ
(r)
j−1(φ̂

i−1
j−1), θ

)

m
(

λ
(r)
j (φ̂i−1

j )|Λ(r)
j−1(φ̂

i−1
j−1), φ̂

i−1
j

)











, (22)

where {λ(r)
j (φ̂i−1

j )}i−1
j=1 denotes a trajectory drawn from the sequence of importance sam-

plers associated with L(Wi−1; θ), and λ
(r)
i (θ) is a random draw from the conditional density

p(λi|Wi−1, Λ
(r)
i−1(φ̂

i−1
i−1), θ). The computation of the sequence of filtered estimates

E [ϑ(λi) |Wi−1 ], i = 1, . . . , n, requires to rerun the EIS algorithm for every i (=1 to n).

Then, the filtered residuals are given by

η̂i =
ξ̂i

√

ĥiE [eδ1λi |Wi−1 ] ŝh,i

(23)

ûi =
Vi

Φ̂iE [eδ2λi |Wi−1 ] ŝV,i

(24)

ε̂i =
ρi

Ψ̂iE [eδ3λi |Wi−1 ] ŝρ,i

. (25)
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5 Empirical Results

5.1 Data and Descriptive Statistics

The empirical study uses transaction data from the AOL, Boeing, IBM and JP Morgan

stock traded at the New York Stock Exchange (NYSE). The data is extracted from the

Trade and Quote (TAQ) database released by the NYSE and covers a period over five

months between 02/01/2001 and 31/05/2001.

We choose an aggregation level of five minutes as a trade-off between utilizing a max-

imum amount of intraday information on the one hand, ending up with tractable sample

sizes on the other hand and, in addition, reducing the influence of too much noise induced

by market microstructure effects (like effects due to price-discreteness, split-transactions,

liquidity induced price impacts or the irregular spacing in time). Consequently, the re-

sulting time series consist of 8, 008 observations of five minutes log midquote returns, the

average five minutes trading volume per transaction and the number of trades occurring in

each interval. Table 3 shows the mean, standard deviation, minimum, maximum, different

quantiles, kurtosis as well as univariate and multivariate Ljung-Box statistics associated

with the individual time series. The latter is computed according to Hosking (1980) and is

given by

MLB(s) := n(n + 2)
s
∑

j=1

1

n − j
trace

(

Ĉ ′

jĈ
−1
0 ĈjĈ

−1
0

)

∼ χ2
ks,

where k = 3 denotes the dimension of the process, s the number of lags taken into account,

and Ĉj is the jth residual autocovariance matrix.13 The quite high Ljung-Box statistics in

Table 3 indicate that the five minutes trading data reveal strong serial (cross-)dependencies.

Since we are not particularly interested in the conditional mean function of returns, we

reduce the complexity of the model by estimating ξi in a separate step as the residuals of an

ARMA(1,1) process for the Yi series.14 In a next step, we estimate the intraday seasonality

components sh,i, sV,i, sρ,i. A simultaneous estimation of seasonality effects in the SMEM is

theoretically possible, however, considerably increases the computational burden because

of the high number of parameters. For this reason, we exploit the multiplicative structure

in (3)-(5) and estimate sh,i, sV,i, sρ,i in a separate step on the basis of cubic spline functions

using 30 minutes nodes.15 Finally, we use ξi/
√

ŝh,i, Vi/ŝV,i and ρi/ŝρ,i to estimate the

SMEM.16

13For k = 1, the multivariate Ljung-Box statistic reduces to the well known univariate one.
14However, since for all return series the ARMA component is very close to zero, and thus ξi is very similar

to Yi, we refrain from showing the estimates here.
15The component sh,i is estimated based on squared log returns.
16The resulting estimates of sh,i, sV,i, sρ,i reveal the well-known U-shape pattern which is typically found
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Figures 7 through 10 show the empirical autocorrelation and cross-autocorrelation func-

tions of Y 2
i , Vi, and ρi as well as Y 2

i /ŝh,i, Vi/ŝV,i, and ρi/ŝρ,i. It turns out that all pro-

cesses reveal significantly positive autocorrelations with a relatively high persistence. The

highest serial dependence is observed for volumes and trading intensities, whereas for the

volatility process lower autocorrelations are found. Moreover, significantly positive cross-

autocorrelations between the return volatility and the trading volume are observed whereas

the interdependencies between the volatility and the trading intensity are only very weak.

In contrast, significantly negative cross-autocorrelations between the trading volume and

the trading intensity are found. Hence, obviously, higher volumes enter the market with a

lower speed.

5.2 Estimation Results for Univariate SMEM’s

Tables 4 to 6 show the estimation results of univariate SGARCH as well as SACD models

for five minutes volatilities, trading volumes and trading intensities for the four stocks. To

restrict the computational effort, we restrict the class of considered models to specifications

with a maximal lag order of two. For all processes and all stocks, we find significant

evidence for the existence of a persistent latent component. As revealed by the estimates

of the parameter a, the strongest serial dependence in the latent component is observed

for the volatility and trading intensity processes, whereas it is lower for trading volumes.

It turns out that both the parameter driven dynamic as well as the observation driven

dynamic interact. In particular, a declines when observation driven dynamics are included.

Accordingly, in the observation driven component, the innovation parameter declines and

the persistence parameter is driven toward one when the latent factor is taken into account.

Hence, news enter the model primarily through the latent component, which is in line

with the idea that the underlying factor serves as a proxy for the unobserved information

process. Furthermore, it is shown that the inclusion of the latent component increases the

goodness-of-fit as well as the dynamical properties of the model. Actually, for the volatility

and the volume processes, a pure parameter driven dynamic in form of a SV or SCD

specification, respectively (column (3)), outperforms a pure observation driven dynamic in

form of an EGARCH or Log-ACD specification, respectively (column (2)). Nevertheless, we

observe that neither the parameter driven component nor the observation driven component

can be rejected. Hence, for nearly all time series, the best goodness-of-fit is obtained by

specifications (4) or (5) which include both types of dynamics. This result illustrates that

the dynamics in volatilities, volumes and trading intensities are not sufficiently captured by

a one-factor model but rather by a two-factor model. This observation is in line with the

in intraday trading variables. For reasons of brevity we do not include them in the paper but they are
available upon request from the author.
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findings by Ghysels, Gouriéroux, and Jasiak (2004) on the basis of a stochastic volatility

duration model.

5.3 Estimation Results for Multivariate SMEM’s

Tables 7 to 10 give the estimation results for multivariate SMEM’s including all three

trading components. In order to identify the sign of the parameters δj , we restrict δ1 to

be positive. As in the univariate models, we ensure model parsimony by restricting the

maximal lag order to two. In addition, we restrict A2 and B2 to be diagonal matrices. The

major findings can be summarized as following:

(i) We find significant evidence for the existence of a latent common component with

an autoregressive parameter which is on average around â ≈ 0.94. Hence, common shocks

are relatively persistent over time which is in accordance with corresponding results based

on daily data (see e.g. Bollerslev and Jubinski, 1999). Obviously, the latent factor seems to

capture common long-run dependence which is not easily covered even by highly parame-

terized observation driven dynamics. This result is surprisingly robust over all individual

specifications and is clearly in line with the notion of a joint underlying information process.

Hence, our results provide evidence that such a process is identifiable not only based on

daily data but also based on intraday data.

(ii) The estimated parameters δ1, δ2 and δ3 are significantly positive indicating that

a latent shock affects the volatility, the average trading volume and the trading intensity

in the same direction. Interestingly, it turns out that the underlying joint component

influences primarily the volatility and trade size, whereas its impact on the trading intensity

is comparably weak.17 This finding illustrates that the common factor mainly drives the

well-known volatility-volume relation confirming the corresponding findings for daily data.

It also shows that volatility is primarily correlated with the average trade size rather than

with the trading intensity. Hence, in contrast to the findings by Jones, Kaul, and Lipson

(1994) we find that (unobserved) information is obviously stronger reflected in the average

trade size rather than in the trading intensity. Consequently, the former should be a more

reliable proxy for the existence of information than the latter.

(iii) The inclusion of the latent factor leads to a significant decline of the magnitude of the

parameters α12
0 and α13

0 . This indicates that the conditional contemporaneous correlations

between ξ2
i and Vi as well as between ξ2

i and ρi given λi are lower than the corresponding

unconditional correlations. Hence, a significant fraction of the contemporaneous relations

between the conditional return variance and the average trade size as well as the trading

intensity actually do arise because of the existence of a common component. Nevertheless,

17For the AOL stock it is even insignificant.
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the fact that the joint factor does not fully explain the contemporaneous dependencies

indicates that there exist relations between the individual variables which are not necessarily

linked to a common information process but rather to trading effects. Actually, the latter

might be attributed to the effects that a high liquidity demand associated with high volumes

and fast trading leads to significant revisions in the best ask/bid quotes and thus to an

increase in (midquote) return volatility.

In contrast, the parameter α23
0 is significantly negative and widely unaffected by the

inclusion of the latent component. Consequently, we can conclude that the (negative) con-

temporaneous relation between trade size and trading intensity is not driven by a latent

common component. Rather, we identify two opposite effects: Firstly, a positive contem-

poraneous correlation between trade size and trading intensity due to the existence of a

common subordinated process which affects both processes in the same direction. Secondly,

a negative conditional correlation given the latent factor, which is very robust and might

be explained by the typical finding that high trading volumes absorb a non-trivial part

of the offered liquidity supply. This induces a revision of the best bid/ask quote which

makes trading more expensive and thus reduces traders’ incentive for market order trading

(see e.g. Foucault, 1999). Our results indicate that the latter is obviously not linked to a

potential underlying information component.

(iv) The estimations omitting a common latent component (panels (1)-(3)) clearly reveal

significant evidence for cross-dependencies between the volatilities, volumes and trading

intensities. In particular, as indicated by a mostly positive parameter α̂12
1 , we observe a

positive relation between innovations in the lagged trade size and the current volatility.

Hence, higher than expected volumes imply significant quote revisions and consequently

increase the subsequent volatility. As revealed by α̂32
1 > 0, this effect is also accompanied

by an increase of the trading intensity. In contrast, unexpected increases of the volatility

reduce both the subsequent trade size and the trading intensity (α̂21
1 < 0 and α̂31

1 < 0). This

result is very much in line with theory (see e.g. Foucault, 1999), where a higher transitory

volatility increases the spreads and thus makes trading more expensive which in turn reduces

the trade sizes and trading intensity.

However, as shown in panels (5)-(7), the inclusion of λi clearly reduces the magnitude

of the aforementioned cross-effects. In most cases, the latter become close to zero and/or

insignificant. Similar effects are also observed for the non-diagonal elements in B1. This

finding indicates that the latent common component indeed captures a substantial part

of the cross-dependencies. Hence, most of the observed causalities between the individual

variables are mainly due to the existence of a subordinated common (information) process
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jointly directing the individual components.18 This suggests the usefulness of more par-

simonious parameterizations of the observation driven dynamics which might be mainly

reduced to a diagonal specification of the autoregressive parameter matrices.

Moreover, the inclusion of the latent factor reduces the impact of the own process-specific

innovations (α̂ii
1 and αii

2 for i = 1, 2, 3) and increases the persistence in the observation driven

dynamics. Hence, in accordance with the results for the univariate models, we find evidence

that news enter the model primarily through the latent factor, whereas the impact of the

process-specific innovations declines.

(v) In most cases, the specifications without latent factor (columns (1) to (3)) are not

able to completely capture the dynamics of the system as indicated by highly significant

Ljung-Box statistics for the residuals. Typically, the inclusion of the latent component

improves the dynamic properties of the model. This is particularly true for the volatility

and the volume component, whereas in some cases the dynamics in the trading intensity are

still not completely captured by the model. The latter results are not surprising given that

the latent factor’s impact on the trading intensity is only very weak. Moreover, the inclusion

of the latent factor leads to a reduction of the multivariate Ljung-Box statistic indicating

that the latent component does a good job in capturing the multivariate dynamics and

interdependencies between the individual processes. Furthermore, as revealed by the Bayes

information criterion (BIC), the SMEM yields a clearly better goodness-of-fit compared to

MEM’s without a latent factor.

(vi) The worst performance is observed for specification (4), where any observation

driven dynamics are omitted and only a parameter driven dynamic is included. Hence,

a single common autoregressive component is not sufficient to completely capture the dy-

namics of the multivariate system which is in line with the findings by Andersen (1996) or

Liesenfeld (1998). Therefore, as in the univariate models we can neither reject the parame-

ter driven dynamic nor the observation driven dynamic. Actually, the best performance is

revealed by specifications which include both types of dynamics confirming the basic idea

of the proposed model.

Our results are widely robust over the cross-section of stocks. A notable exception are

the findings for the Boeing stock which deviate in several respects from those for the other

stocks. Here, the latent factor is clearly less persistent and does not capture the dynamics

of the processes very well.

18A notable exception is the negative relation between past innovations in the volatility and the current
average trade size as reflected by α̂21 < 0. This relationship is obviously not information-driven and becomes
even more pronounced when the latent factor is taken into account. This finding is not easily explained in
the given setting and requires further investigations.
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5.4 Impulse Response Dynamics and Graphical Illustrations

In order to analyze the impact of shocks on the SME process, we rely on the concept of the

generalized impulse response function (GIRF) introduced by Koop, Pesaran, and Potter

(1996) which is given by

GIRFXi
(s, δ,Fi−1) = E[Xi+s|̟i = δ,Fi−1] − E[Xi+s|Fi−1], (26)

where Xi ∈ {λi, Y
2
i , Vi, ρi}, ̟i ∈ {νi, ηi, ui, εi}, δ is the magnitude of the shock, and s

denotes the number of periods over which the GIRF is computed. As shown in this rep-

resentation, the GIRF conditions on the shock and on the history of the process whereas

innovations occurring in intermediate time periods are averaged out. Then, the GIRF can

be interpreted as a random variable in terms of the history Fi−1. In nonlinear models,

analytical expressions for the conditional expectations used in (26) are often not avail-

able and thus, Monte-Carlo simulation techniques have to be performed. Figures 11 to

14 show the generalized impulse response functions for a shock in the latent innovation νi

with magnitude of one standard deviation. The GIRF is computed by conditioning on the

unconditional means E[Xi] and E[̟i] and is estimated by

ĜIRFXi
(s, δ,Fi−1) = Ê [Xi+s|εi = 1,Fi−1] − Ê [Xi+s|Fi−1] ,

where the conditional expectations are estimated by sample averages based on 5, 000 sim-

ulated paths of Xi, Xi+1, . . . , Xi+h given the corresponding conditioning information and

using the parameter estimates of specification (8) in Tables 7 to 10. For all processes, we ob-

serve a positive, persistent response of ξ2
i , Vi and ρi due to a shock in the latent component.

In most cases, the impulse response function declines monotonically and approaches zero

after around 30-40 lags corresponding to 150-200 minutes. Hence, common (information)

shocks remain present in the trading process up to about 3 hours. In accordance with the

parameter estimates, these effects are mostly pronounced for the volatility and trade size

component but – not surprisingly – only quite weak for the trading intensity.

Figures 15 and 16 show the time series plots of the (filtered) estimates of exp(λi), Y 2
i ,

Vi and ρi for the AOL and IBM stock, respectively.19 It is illustrated that the latent factor

captures common shocks in the volatility and volume component, whereas the intensity

component is widely unaffected by co-movements. We observe that there are certain periods,

where volatilities, volumes as well as the common factor move in lock-steps, whereas in

other periods, the individual processes seem to be clearly disentangled. These results are

confirmed by the correlations between the individual components as given by Corr[eλi , ξ2
i ] =

19For sake of brevity, the corresponding plots for the two other stocks are not shown, but are available
upon request from the author.
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0.18 (= 0.22), Corr[eλi , vi] = 0.52 (= 0.55) and Corr[eλi , ρi] = −0.05 (= 0.01) for the AOL

(IBM) stock.20 Hence, we observe significant commonalities between the latent factor and

return volatility as well as the trade size but not necessarily with the trading intensity.

6 Conclusions

In this paper, we have proposed a new type of multivariate multiplicative error model for

intraday trading processes. The basic idea of the so-called multivariate stochastic multi-

plicative error model (SMEM) is to combine a multivariate observation driven (multiplica-

tive error) dynamic with an underlying univariate parameter driven factor which jointly

affects all individual components of the system. Whereas the observation driven dynamic

is updated by process-specific innovations which are completely observable given the pro-

cess history, the parameter driven component follows an autoregressive process which is

updated by unobservable innovations independent from the idiosyncratic errors. We pro-

pose the model as a tool to identify a common component in multivariate systems while

still allowing for idiosyncratic dynamics. It is a computationally more tractable alternative

to multiple latent factor models. Moreover, if there is a common component serving as a

major source for cross-dependencies between the individual processes, then its explicit con-

sideration should result in a more parsimonious specification of the multivariate process.

This becomes even more important when the dimension of the process is very high.

The model was designed to allow for the possibility that intraday return volatility, the

trade size as well as the trading intensity are driven not only by their own history but also

by a joint dynamic latent factor capturing the (unobservable) information process. Apply-

ing the model to five minutes data of four blue chip stocks traded at the NYSE leads to

the following conclusions: (i) There is significant evidence for the existence of a common

unobservable component following persistent dynamics and jointly driving the trading pro-

cess. This finding clearly confirms the notion that underlying common dynamics are not

only identifiable based on a daily level but also on an intradaily level and thus provides

evidence for a ”micro-foundation” of the well-known volume-volatility relationship. (ii)

Confirming the results based on daily data (see e.g. Tauchen and Pitts, 1983, or Boller-

slev and Jubinski, 1999) the latent factor mostly affects the volatility and trade size but

has an only very weak impact on the trading intensity. Consequently, we conclude that

the trade size seems to be a more reliable proxy for common information shocks than the

trading intensity which is in contrast to the results by Jones, Kaul, and Lipson (1994). (iii)

Most causal relations between volatility, trade size and trading intensity are significantly

driven by the common component. ”True” causalities not arising from common information

20For the other stocks the correlation structures look quite similar.
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shocks but rather from mechanisms of trading are still identifiable but typically only very

weak. (iv) Even under the presence of a common dynamic factor, it is necessary to allow

for process-specific dynamics. This suggests that a single latent component is not sufficient

to capture the dynamics of the multivariate system and that common (information) shocks

are processed in individual ways. (v) In univariate specifications of the individual trading

components SMEM’s significantly outperform models without a latent factor. This finding

strongly suggests the need for flexible two-factor models and complements the findings by

Ghysels, Gouriéroux, and Jasiak (2004).

The LF-MEM is economically motivated by the idea that trading activity is driven by

(i) an underlying information component and (ii) idiosyncratic, process-specific dynamics.

This structure can be considered to be a reduced form representation of trading processes

arising from asymmetric information based market microstructure theory (see e.g. Easley

and O‘Hara, 1992, or Easley, Kiefer, O‘Hara, and Paperman, 1996, among others). The lat-

ter assumes that the trading process is driven by the interactions between informed market

participants who can observe the underlying information process and uninformed agents

who infer the true value of the traded asset by observing the trading history. Under this

assumption, the common parameter driven component serves as a proxy for the unobserved

information process whereas the process-specific observation driven dynamics result from

the fact that common (observable) shocks are processed in different ways in volatility, trade

size and trading intensity.

Our results provide evidence that a substantial part of the cross-dependencies between

the individual processes can be captured a common dynamic component. This should open

up the possibility to specify high-dimensional trading processes in a more parsimonious

way. Future research is devoted to more extensive applications of the model. On the one

hand, it might be interesting to analyze the performance of the model when even more

dimensions, such as bid-ask spreads or market depths are added. We expect that the

importance of the common component in such a setting becomes even stronger. Important

applications of such a model will be the prediction of liquidity and trading costs over short

intraday time horizons. Here, the expected trading intensity, market depth, bid-ask spread

as well as return volatility will be important determinants of expected trading costs and

associated risks. The latter are important inputs to generate automated trading-costs-

minimizing trading algorithms as more and more heavily used in the financial industry.

Moreover, we also plan to confront the model with observable news announcements as an

additional component. This should shed some light on the question which obviously missing

information is captured by the latent factor and how observable as well as unobservable

information interact and jointly drive the trading process. This should lead to a deeper
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understanding of how information is processed and how this depends on the state of the

market and the institutional environment of the market. Such information might helpful to

optimize trading structures as well as corresponding trading models.
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Appendix

A Efficient Importance Sampling

To define the importance sampler itself let k(Λi, φi) denote a density kernel for m(λi|Λi−1, φi),

given by

k(Λi, φi) = m(λi|Λi−1, φi)χ(Λi−1, φi), (27)
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where

χ(Λi−1, φi) =

∫

k(Λi, φi)dλi (28)

denotes the integrating constant. The implementation of EIS requires to select a class of

density kernels k(·) for the auxiliary sampler m(·) which provide a good approximation to

the product f(·)χ(·). As discussed by Richard and Zhang (2005), a convenient and efficient

possibility is to use a parametric extension of the direct samplers, Gaussian distributions in

this context. Since the function g(·) appearing in (18) is essentially a product of different

exponential functions, we propose to approximate it by a normal density kernel

ζ(λi, φ) = exp
(

φ1,iλi + φ2,iλ
2
i

)

, (29)

which is itself an exponential function in terms of λi based on the auxiliary parameters

φi = (φ1,i, φ2,i). Exploiting the property that the product of normal densities is itself a

normal density, we parameterize k(·) as

k(Λi, φi) = p(λi|Λi−1; θ)ζ(λi, φi)

and can show that

k(Λi, φi) ∝ exp

(

(φ1,i + µ0,i) λi +

(

φ2,i −
1

2

)

λ2
i

)

(30)

= exp

(

− 1

2π2
i

(λi − µi)
2

)

exp

(

µ2
i

2π2
i

)

,

where

π2
i =(1 − 2φ2,i)

−1, (31)

µi =(φ1,i + µ0,i)π2
i . (32)

Hence, the auxiliary sampler m(·) is a normal distribution with conditional mean µi and

conditional variance π2
i . By omitting irrelevant multiplicative factors, we obtain the inte-

grating constant as

χ(Λi−1, φi) = exp

(

µ2
i

2π2
i

−
µ2

0,i

2

)

. (33)

As shown by Richard and Zhang (2005), the Monte Carlo variance of L̂R(W ; θ) can be

minimized by splitting the minimization problem into n minimization problems of the form

min
φi,0, φi

R
∑

r=1

{

ln f
[(

wi, λ
(r)
i (θ)|Wi−1, Λ

(r)
i−1(θ), θ

)

· χ
(

Λ
(r)
i (θ), φi+1(θ)

)]

−φ0,i − ln k
(

Λ
(r)
i (θ), φi(θ)

)}2
, (34)
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where φ0,i is a constant and {λ(r)
i (θ)}n

i=1 with λ
(r)
i (θ) := λ

(r)
i (φi(θ)) denotes a trajectory

of random draws from the sampler m with auxiliary parameters φi(θ) which themselves

depend on the model parameters θ.

Then, in practice, the implementation of the ML-EIS estimator requires the following

steps:

(i) Draw R trajectories of the latent factor {λ(r)
i (φi)}n

i=1 using the direct sampler p(·).

(ii) For i : n → 1 solve the least squares problem characterized by the (auxiliary) linear

regression

D
(r)
1,i + D

(r)
2,i + D

(r)
3,i + D

(r)
4,i = φ0,i + φ1,iλ

(r)
i (θ) + φ2,i

[

λ
(r)
i (θ)

]2
+ ǫ

(r)
i , r = 1, . . . , R,

where

D
(r)
1,i = −1

2

(

lnhi + δ1λ
(r)
i (θ) + ln sh,i

)

− ξ2
i

2hish,i

(

eδ1λ
(r)
i (θ)

) ,

D
(r)
2,i = (p2m2 − 1) lnVi −

(

p2m2 lnΦi + δ2p2m2λ
(r)
i (θ) + ln sV,i

)

−
(

Vi

ΦisV,ie
δ2λ

(r)
i (θ)

)p2

,

D
(r)
3,i = (p3m3 − 1) ln ρi −

(

p3m3 lnΨi + δ3p3m3λ
(r)
i (θ) + ln sρ,i

)

−
(

ρi

Ψisρi
eδ3λ

(r)
i (θ)

)p3

,

D
(r)
4,i = lnχ

(

Λ
(r)
i (θ), φi+1(θ)

)

,

and ǫ
(r)
i denotes the regression error term. These problems are solved sequentially

starting at i = n, under the initial condition χ(Λn, φn+1) = 1 and ending at i = 1.

Liesenfeld and Richard (2003) recommend to iterate the procedure about three to five

times to improve the efficiency of the approximations.

(iii) Compute the EIS sampler {m(λi|Λi−1, φ̂(θ̂)}n
i=1 on the basis of the conditional mean

and variance as given by

π2
i =(1 − 2φ2,i)

−1, (35)

µi = (φ1,i + µ0,i) π2
i . (36)

in order to draw R trajectories {λ(r)
i (φ̂i(θ̂))}n

i=1. These trajectories are used to calcu-

late the likelihood according to (20). Then, as suggested by Richard and Zhang (2005),

the variance-covariance matrix of the estimated parameters is straightforwardly esti-

mated based on the inverted Hessian.
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B.1 Simulation Results

B.1.1 Simulated Distributions of SGARCH and SACD Processes

Table 1: Summary statistics of simulated SGARCH processes with P = Q = 1. The simulations are based
on 100 sets of 50, 000 observations. Evaluated statistics: Standard deviation, maximum, 75%-, 90%-, 95%-,
99%-quantile and kurtosis of the simulated return process as well as the Ljung-Box statistic (associated with 20
lags) for squared returns. The mean return is set to zero.

(1) (2) (3) (4) (5) (6) (7) (8)
Parameterization

ω1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
α1

1 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
β1
1 0.100 0.100 0.100 0.100 0.100 0.100 0.700 0.900

a 0.000 0.100 0.500 0.900 0.900 0.900 0.900 0.500
δ1 0.000 0.100 0.100 0.100 0.200 0.300 0.300 0.500

Summary Statistics
S.D. 1.046 1.049 1.050 1.062 1.109 1.195 1.341 1.673
Max 4.472 4.539 4.539 5.016 6.477 9.556 11.944 11.615
quant75 0.705 0.705 0.704 0.702 0.695 0.684 0.751 0.997
quant90 1.340 1.341 1.342 1.346 1.368 1.406 1.557 2.012
quant95 1.721 1.725 1.726 1.743 1.809 1.918 2.141 2.706
quant99 2.435 2.454 2.454 2.515 2.741 3.116 3.533 4.255
Kurtosis 3.010 3.046 3.055 3.194 3.798 5.209 5.812 4.488
LB(20) 109.027 112.222 122.304 384.497 2277.973 6131.453 9835.528 1706.835

(9) (10) (11) (12) (13) (14) (15) (16)
Parameterization

ω1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
α1

1 0.100 0.100 0.100 0.100 0.100 0.100 0.200 0.500
β1
1 0.900 0.950 0.950 0.950 0.950 0.950 0.700 0.500

a 0.100 0.100 0.500 0.700 0.900 0.900 0.900 0.900
δ1 0.500 0.500 0.500 0.300 0.300 0.500 0.500 0.500

Summary Statistics
S.D. 1.617 2.457 2.554 2.416 2.978 6.860 3.206 48.175
Max 9.999 15.461 18.572 15.064 37.967 330.067 181.854 6993.980
quant75 0.999 1.507 1.509 1.499 1.497 1.536 0.836 0.949
quant90 1.980 2.996 3.053 2.961 3.226 4.026 2.078 2.518
quant95 2.634 3.995 4.126 3.928 4.581 6.544 3.255 4.202
quant99 4.036 6.158 6.558 6.014 8.137 15.854 7.237 11.448
Kurtosis 3.974 4.077 4.658 3.961 10.995 692.717 1422.349 15327.022
LB(20) 648.889 1422.047 2974.460 3837.337 29423.516 37688.351 18684.144 3758.646
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Table 2: Summary statistics of simulated SACD processes with P = Q = 1. The simulations are based on
100 sets of 50, 000 observations. Evaluated statistics: Mean, standard deviation, maximum, minimum, 1%-, 5%-,
10%-, 25%-, 50%-, 75%-, 90%-, 95%-, 99%-quantile as well as the Ljung-Box statistic (associated with 20 lags) of ρi.

(1) (2) (3) (4) (5) (6) (7) (8)
Parameterization

ω3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
α3

1 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
β3
1 0.100 0.100 0.100 0.100 0.100 0.700 0.900 0.900

p3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
m3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
a 0.000 0.100 0.500 0.900 0.900 0.900 0.500 0.100
δ3 0.000 0.100 0.100 0.100 0.200 0.200 0.500 0.500

Summary Statistics
Mean 1.124 1.131 1.133 1.167 1.310 1.795 4.585 3.771
S.D. 1.138 1.158 1.166 1.267 1.846 3.095 14.255 6.032
Max 14.371 15.559 15.732 21.927 90.964 185.843 1689.343 327.620
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
quant01 0.011 0.011 0.011 0.011 0.010 0.012 0.025 0.026
quant05 0.057 0.057 0.057 0.056 0.051 0.063 0.130 0.135
quant10 0.117 0.117 0.117 0.115 0.106 0.130 0.272 0.280
quant25 0.320 0.319 0.319 0.314 0.296 0.368 0.782 0.791
quant50 0.773 0.774 0.772 0.769 0.755 0.953 2.105 2.052
quant75 1.552 1.559 1.558 1.577 1.651 2.144 5.029 4.627
quant90 2.591 2.611 2.617 2.709 3.076 4.161 10.433 8.915
quant95 3.387 3.421 3.436 3.618 4.357 6.103 16.006 12.908
quant99 5.255 5.359 5.399 5.920 8.192 12.530 36.328 25.277
LB(20) 615.291 648.092 751.600 2203.408 10739.092 26168.753 22413.452 10965.638

(9) (10) (11) (12) (13) (14) (15) (16)
Parameterization

ω3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
α3

1 0.100 0.100 0.100 0.200 0.500 0.100 0.100 0.100
β3
1 0.950 0.950 0.950 0.700 0.500 0.700 0.700 0.700

p3 1.000 1.000 1.000 1.000 1.000 0.800 1.500 5.000
m3 1.000 1.000 1.000 1.000 1.000 1.200 0.500 0.500
a 0.700 0.100 0.100 0.100 0.500 0.900 0.900 0.900
δ3 0.300 0.500 0.300 0.300 0.300 0.200 0.200 0.200

Summary Statistics
Mean 11.946 12.470 9.145 2.239 6.210 1.794 1.806 1.788
S.D. 24.246 20.691 11.628 2.939 75.995 3.129 3.614 3.035
Max 1494.324 959.318 292.183 123.230 6500.553 206.091 314.030 175.815
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
quant01 0.071 0.078 0.073 0.018 0.022 0.012 0.012 0.012
quant05 0.365 0.402 0.374 0.094 0.117 0.063 0.063 0.063
quant10 0.760 0.837 0.773 0.194 0.242 0.131 0.131 0.130
quant25 2.170 2.387 2.158 0.539 0.683 0.368 0.369 0.367
quant50 5.753 6.328 5.445 1.350 1.808 0.953 0.955 0.950
quant75 13.495 14.716 11.748 2.879 4.335 2.146 2.153 2.140
quant90 27.540 29.405 21.505 5.208 9.519 4.159 4.182 4.150
quant95 41.859 43.777 30.103 7.253 15.926 6.091 6.128 6.074
quant99 93.118 91.284 54.793 13.248 55.442 12.537 12.607 12.451
LB(20) 49335.797 26192.140 19098.324 8604.206 255.547 25235.396 25247.540 26940.587
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B.1.2 Autocorrelation and Cross-Autocorrelation Functions of Simulated Bi-

variate SMEM Processes

The following figures show autocorrelation functions (ACF) and cross-autocorrelation functions (CACF)

implied by bivariate SMEM(1,1) processes for the return volatility and the trading intensity. The model is

specified as a two-dimensional version of the processes as given by (1) through (10) with sh,i = sV,i = sρ,i = 1.

From left to right: ACF of λi, ACF’s of hi (solid line) and Ψi (broken line), ACF’s of Y 2
i (solid line) and

ρi (broken line), CACF’s of Y 2
i and ρi (solid line) as well as of hi and Ψi (broken line). The CACF graphs

show the plot of Corr(x1,i, x2,i−j) versus j for x1,i ∈ {Y 2
i , hi} and x2,i ∈ {ρi, Ψi}. The conditional mean

return is set to zero. The simulations are based on 100 sets of 50, 000 observations.

Figure 1: ω = (0, 0), α13
0 = 0, A1 = (0.1 0, 0 0.1), B1 = (0.1 0, 0 0.1), a = 0.9, δ1 = δ3 = 0.1.

Figure 2: ω = (0, 0), α13
0 = 0, A1 = (0.1 0, 0 0.1), B1 = (0.1 0, 0 0.1), a = 0.9, δ1 = δ3 = 0.3.

Figure 3: ω = (0, 0), α13
0 = 0, A1 = (0.1 0, 0 0.1), B1 = (0.1 0, 0 0.1), a = 0.9, δ1 = 0.3, δ3 = −0.3.

Figure 4: ω = (0, 0), α13
0 = 0.1, A1 = (0.1 0.1, 0.1 0.1), B1 = (0.7 0.2, 0.2 0.7), a = 0, δ1 = δ3 = 0.
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Figure 5: ω = (0, 0), α13
0 = 0.1, A1 = (0.1 0.1, 0.1 0.1), B1 = (0.7 0.2, 0.2 0.7), a = 0.9, δ1 = δ3 = 0.1.

Figure 6: ω = (−0.2,−0.2), α13
0 = 0.1, A1 = (0.1 0.1, 0.1 0.1), B1 = (0.7 0.2, 0.2 0.7), a = 0, δ1 = δ3 = 1.0.
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B.2 Descriptive Statistics

Table 3: Descriptive statistics of log returns (multiplied by 100), squared log returns, average volumes per
trade as well as the number of transactions based on five minutes intervals for the AOL, Boeing, JP Morgan, and
IBM stocks traded at the NYSE. Extracted from the 2001 TAQ data base. Sample period 02/01/01 to 31/05/01.
The following descriptive statistics are shown: Number of observations, mean, standard deviation, minimum,
maximum, 5%-, 10%-, 50%-, 90%-, as well as 95%-quantile, kurtosis, univariate and multivariate Ljung-Box
statistic (computed for squared log returns, volumes and number of trades) associated with 20 lags.

AOL Boeing
Returns Sq. ret. Avg. vol. Trades Returns Sq. ret. Avg. vol. Trades

Obs 8008 8008 8008 8008 8008 8008 8008 8008
Mean 0.005 0.143 7084.337 26.424 0.000 0.060 1829.393 19.735
S.D. 0.378 0.403 5979.153 9.537 0.245 0.153 1683.701 8.283
Min -2.973 0.000 1.000 1.000 -1.680 0.000 1.000 1.000
Max 3.000 9.000 84250.000 75.000 1.854 3.437 24766.666 63.000
q05 -0.556 0.000 1645.000 12.000 -0.391 0.000 450.000 9.000
q10 -0.404 0.001 2131.818 15.000 -0.272 0.000 561.765 10.000
q50 0.000 0.034 5383.333 26.000 0.000 0.013 1327.273 19.000
q90 0.406 0.335 13876.471 39.000 0.269 0.150 3600.000 31.000
q95 0.593 0.581 17995.000 43.000 0.380 0.257 4900.000 35.000
Kurtosis 8.968 - - - 7.423 - - -
LB(20) 25.129 1132.700 14754.230 9868.857 42.988 1767.233 2878.382 18609.976
MLB(20) 41942.224 35931.744

JP Morgan IBM
Returns Sq. ret. Avg. vol. Trades Returns Sq. ret. Avg. vol. Trades

Obs 8008 8008 8008 8008 8008 8008 8008 8008
Mean 0.002 0.099 2960.285 33.070 0.001 0.073 2375.869 41.962
S.D. 0.315 0.374 2685.456 11.204 0.270 0.186 2076.318 12.175
Min -2.355 0.000 1.000 1.000 -1.668 0.000 1.000 1.000
Max 3.994 15.950 59153.332 78.000 2.000 4.000 45540.000 101.000
q05 -0.476 0.000 747.826 16.000 -0.430 0.000 696.774 24.000
q10 -0.334 0.000 920.000 19.000 -0.310 0.000 841.509 27.000
q50 0.000 0.021 2233.333 32.000 0.000 0.018 1794.595 41.000
q90 0.338 0.229 5729.412 48.000 0.289 0.182 4470.371 58.000
q95 0.479 0.411 7358.824 53.000 0.425 0.308 5906.667 64.000
Kurtosis 15.197 - - - 7.464 - - -
LB(20) 55.335 1401.054 9011.564 12520.965 26.568 2590.101 19751.120 18070.49
MLB(20) 43873.529 70348.102
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Empirical Autocorrelation and Cross-Autocorrelation Functions

The following figures show the autocorrelation functions (ACF) and cross-autocorrelation functions (CACF)
of squared log returns, average volumes per trade as well as the number of trades based on five minutes
intervals for the AOL, Boeing, JP Morgan and IBM stocks traded at the NYSE. The upper plots are based
on the plain series, whereas the lower plots are based on the seasonally adjusted series. The pictures on
the left show the ACF of squared log returns (solid line), average volumes (broken line) and the number of
trades (dotted line). The pictures on the right show the CACF of squared log returns and average volumes
(solid line), of squared log returns and the number of trades (broken line), and of average volumes and the
number of trades (dotted line). Data extracted from the 2001 TAQ data base. Sample period 02/01/01 to
31/05/01.

Figure 7: (Cross-)autocorrelation functions for the AOL stock.

Figure 8: (Cross-)autocorrelation functions for the Boeing stock.
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Figure 9: (Cross-)autocorrelation functions for the JP Morgan stock.

Figure 10: (Cross-)autocorrelation functions for the IBM stock.
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B.3 Estimation Results

B.3.1 Univariate SMEM’s

Table 4: Maximum likelihood efficient importance sampling (ML-EIS) estimates of different parameterizations of
(S)GARCH models up to a lag order of P = Q = 2 for five minutes log returns based on the AOL, Boeing, JP
Morgan and IBM stocks traded at the NYSE. Data extracted from the 2001 TAQ data base. Sample period
02/01/01 to 31/05/01. Overnight returns are excluded. The models are re-initialized at every trading day.
Standard errors are computed based on the inverse of the estimated Hessian. The ML-EIS estimates are computed
using R = 50 Monte Carlo replications based on 5 EIS iterations.
Diagnostics: log likelihood function (LL), Bayes Information Criterion (BIC), mean, standard deviation and
Ljung-Box statistic (LB) of the filtered residuals as well as Ljung-Box statistic (LB2) of the squared filtered
residuals. The Ljung-Box statistics are computed based on 20 lags.

AOL Boeing
(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

ω1 -0.098∗∗∗ -0.001∗∗∗ 0.314∗ -0.028∗∗∗ -0.006 -0.091∗∗∗ -0.154∗∗∗ 0.3092∗∗∗ -0.035∗∗∗ -0.011∗∗

α1
1 0.140∗∗∗ 0.197∗∗∗ 0.034∗∗∗ -0.035 0.136∗∗∗ 0.166∗∗∗ 0.042∗∗∗ -0.064∗∗∗

α1
2 -0.195∗∗∗ 0.043∗ 0.060∗∗∗ 0.077∗∗∗

β1
1 0.987∗∗∗ 1.917∗∗∗ 0.997∗∗∗ 1.718∗∗∗ 0.982∗∗∗ 0.143∗∗∗ 0.996∗∗∗ 1.585∗∗∗

β1
2 -0.918∗∗∗ -0.719∗∗∗ 0.830∗∗∗ -0.586∗∗∗

Latent Component
a 0.961∗∗∗ 0.768∗∗∗ 0.830∗∗∗ 0.941∗∗∗ 0.675∗∗∗ 0.775∗∗∗

δ1 0.229∗∗∗ 0.428∗∗∗ 0.403∗∗∗ 0.291∗∗∗ 0.553∗∗∗ 0.513∗∗∗

Diagnostics
LL -13343 -13278 -13115 -13060 -13057 -13456 -13449 -13145 -13217 -13151
BIC -13357 -13300 -13129 -13082 -13088 -13469 -13471 -13177 -13230 -13173
Mean -0.002 -0.004 -0.003 -0.005 -0.004 0.008 0.009 0.008 0.008 0.008
S.D. 1.000 1.001 1.030 1.021 1.022 1.000 1.000 1.037 1.019 1.020
LB 16.047 16.075 18.404 15.957 16.191 27.207 27.38 24.4236 24.664 24.046
LB2 58.640∗∗∗ 37.563∗∗ 23.961 35.679∗∗ 37.821∗∗∗ 61.011∗∗∗ 56.599∗∗∗ 28.739∗ 29.936∗ 38.530∗∗∗

JP Morgan IBM
(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

ω1 -0.149∗∗∗ -0.139∗∗∗ 0.283∗∗ -0.013∗∗∗ -0.003∗∗∗ -0.121∗∗∗ -0.009∗∗∗ 0.323 -0.030∗∗∗ -0.045∗∗

α1
1 0.224∗∗∗ 0.260∗∗∗ 0.016∗∗∗ -0.031∗∗∗ 0.168∗∗∗ 0.228∗∗∗ 0.037∗∗∗ 0.003

α1
2 -0.052 0.035∗∗∗ -0.215∗∗∗ 0.051∗

β1
1 0.967∗∗∗ 0.972∗∗∗ 0.998∗∗∗ 1.729∗∗∗ 0.986∗∗∗ 1.826∗∗∗ 0.997∗∗∗ 0.593

β1
2 -0.000 -0.730∗∗∗ -0.827∗∗∗ 0.402

Latent Component
a 0.951∗∗∗ 0.860∗∗∗ 0.876∗∗∗ 0.981∗∗∗ 0.860∗∗∗ 0.847∗∗∗

δ1 0.275∗∗∗ 0.379∗∗∗ 0.384∗∗∗ 0.167∗∗∗ 0.302∗∗∗ 0.320∗∗∗

Diagnostics
LL -13351 -13349 -13071 -13028 -13023 -13040 -12998 -12883 -12849 -12848
BIC -13365 -13371 -13085 -13050 -13055 -13054 -13021 -12896 -12871 -12879
Mean -0.004 -0.004 -0.005 -0.006 -0.006 0.001 0.000 0.001 0.000 0.000
S.D. 1.000 1.000 1.029 1.025 1.020 1.000 1.002 1.017 1.013 1.013
LB 24.978 25.265 25.793 26.419 26.311 26.761 24.070 27.162 24.154 24.141
LB2 21.383 21.585 21.984 27.806 26.033 51.424∗∗∗ 17.027 26.663 11.659 14.762

35



Table 5: Maximum likelihood efficient importance sampling (ML-EIS) estimates of different parameterizations of
(S)ACD models up to a lag order of P = Q = 2 for five minutes average trading volumes per trade based on the
AOL, Boeing, JP Morgan and IBM stocks traded at the NYSE. Data extracted from the 2001 TAQ data base.
Sample period 02/01/01 to 31/05/01. Overnight observations are excluded. The models are re-initialized at every
trading day. Standard errors are computed based on the inverse of the estimated Hessian. The ML-EIS estimates
are computed using R = 50 Monte Carlo replications based on 5 EIS iterations.
Diagnostics: log likelihood function (LL), Bayes Information Criterion (BIC), mean, standard deviation and
Ljung-Box statistic (LB) of the filtered residuals. The Ljung-Box statistics are computed based on 20 lags.

AOL Boeing
(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

ω2 -0.384∗∗∗ -0.180∗∗∗ -3.291∗∗∗ -0.080∗∗∗ -0.037∗∗∗ -0.403∗∗∗ -0.416∗∗∗ -5.841∗∗∗ -0.070∗∗∗ -0.057∗∗∗

α2
1 0.007∗∗∗ 0.013∗∗∗ 0.018∗∗∗ -0.013∗∗∗ 0.001∗∗∗ 0.002∗∗∗ 0.011∗∗∗ -0.006∗∗

α2
2 -0.007∗∗∗ 0.021∗∗∗ -0.000 0.014∗∗∗

β2
1 0.943∗∗∗ 1.216∗∗∗ 0.986∗∗∗ 1.340∗∗∗ 0.928∗∗∗ 0.761∗∗∗ 0.981∗∗∗ 1.074∗∗∗

β2
2 -0.240∗∗∗ -0.349∗∗∗ 0.165 -0.091

p2 0.636∗∗∗ 0.682∗∗∗ 0.715∗∗∗ 1.315∗∗∗ 1.342∗∗∗ 0.517∗∗∗ 0.519∗∗∗ 0.450∗∗∗ 1.202∗∗∗ 1.188∗∗∗

m2 7.916∗∗∗ 6.974∗∗∗ 9.380∗∗∗ 4.609∗∗∗ 4.672∗∗∗ 8.032∗∗∗ 7.991∗∗∗ 12.753∗∗∗ 4.276∗∗∗ 4.321∗∗∗

Latent Component
a 0.934∗∗∗ 0.500∗∗∗ 0.654∗∗∗ 0.954∗∗∗ 0.260∗∗∗ 0.391∗∗∗

δ2 0.180∗∗∗ 0.373∗∗∗ 0.363∗∗∗ 0.113∗∗∗ 0.506∗∗∗ 0.494∗∗∗

Diagnostics
LL -4896 -4859 -4665 -4594 -4568 -6211 -6200 -6019 -5954 -5943
BIC -4919 -4890 -4688 -4626 -4608 -6234 -6232 -6041 -5985 -5983
Mean 1.003 1.002 1.009 1.009 1.015 1.011 1.010 1.017 1.024 1.027
S.D. 0.655 0.648 0.661 0.650 0.656 0.871 0.870 0.890 0.901 0.909
LB 78.440∗∗∗ 24.061 69.079∗∗∗ 30.044∗ 19.679 39.166∗∗∗ 23.256 38.896∗∗∗ 19.486 15.183

JP Morgan IBM
(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

ω2 -0.403∗∗∗ -0.307∗∗∗ -3.420∗∗∗ -0.072∗∗∗ -0.139∗∗∗ -0.435∗∗∗ -0.206∗∗∗ -2.440∗∗∗ -0.087∗∗∗ -0.060∗∗∗

α2
1 0.004∗∗∗ 0.007∗∗∗ 0.018∗∗∗ 0.021∗∗∗ 0.008∗∗∗ 0.015∗∗∗ 0.022∗∗∗ -0.002

α2
2 -0.002∗∗∗ 0.020∗∗∗ -0.008∗∗∗ 0.018∗∗∗

β2
1 0.932∗∗∗ 0.915∗∗∗ 0.984∗∗∗ -0.016∗∗∗ 0.929∗∗∗ 1.242∗∗∗ 0.980∗∗∗ 1.194∗∗∗

β2
2 0.034 0.983∗∗∗ -0.273∗∗∗ -0.210

p2 0.591∗∗∗ 0.614∗∗∗ 0.666∗∗∗ 1.388∗∗∗ 1.475∗∗∗ 0.692∗∗∗ 0.737∗∗∗ 0.888∗∗∗ 1.462∗∗∗ 1.531∗∗∗

m2 7.844∗∗∗ 7.314∗∗∗ 8.772∗∗∗ 3.950∗∗∗ 3.458∗∗∗ 8.696∗∗∗ 7.740∗∗∗ 7.894∗∗∗ 4.445∗∗∗ 4.371∗∗∗

Latent Component
a 0.919∗∗∗ 0.398∗∗∗ 0.419∗∗∗ 0.932∗∗∗ 0.512∗∗∗ 0.590∗∗∗

δ2 0.182∗∗∗ 0.429∗∗∗ 0.424∗∗∗ 0.159∗∗∗ 0.314∗∗∗ 0.317∗∗∗

Diagnostics
LL -5454 -5429 -5260 -5164 -5158 -4229 -4201 -4038 -3973 -3956
BIC -5477 -5460 -5282 -5196 -5199 -4251 -4232 -4060 -4004 -3996
Mean 1.005 1.005 1.012 1.014 1.019 1.001 1.001 1.0062 1.009 1.007
S.D. 0.741 0.738 0.752 0.751 0.745 0.570 0.563 0.5704 0.569 0.570
LB 37.492∗∗ 10.981 31.336∗ 28.924∗ 26.131 74.995∗∗∗ 24.832 73.2686∗∗∗ 35.089∗∗ 24.806
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Table 6: Maximum likelihood efficient importance sampling (ML-EIS) estimates of different parameterizations of
(S)ACD models up to a lag order of P = Q = 2 for the number of trades in five minutes intervals based on the
AOL, Boeing, JP Morgan and IBM stocks traded at the NYSE. Data extracted from the 2001 TAQ data base.
Sample period 02/01/01 to 31/05/01. Overnight observations are excluded. The models are re-initialized at every
trading day. Standard errors are computed based on the inverse of the estimated Hessian. The ML-EIS estimates
are computed using R = 50 Monte Carlo replications based on 5 EIS iterations.
Diagnostics: log likelihood function (LL), Bayes Information Criterion (BIC), mean, standard deviation and
Ljung-Box statistic (LB) of the filtered residuals. The Ljung-Box statistics are computed based on 20 lags.

AOL Boeing
(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

ω3 -0.307∗∗∗ -0.060∗∗∗ -0.226∗∗∗ -0.055∗∗∗ -0.047∗∗∗ -0.202∗∗∗ -0.025∗∗∗ -0.426∗∗∗ -0.035∗∗∗ -0.042∗∗∗

α3
1 0.146∗∗∗ 0.177∗∗∗ 0.053∗∗∗ 0.104∗∗∗ 0.077∗∗∗ 0.105∗∗∗ 0.026∗∗∗ 0.046∗∗∗

α3
2 -0.143∗∗∗ -0.061∗∗∗ -0.092∗∗∗ -0.018

β3
1 0.892∗∗∗ 1.554∗∗∗ 0.972∗∗∗ 0.940∗∗∗ 0.953∗∗∗ 1.704∗∗∗ 0.991∗∗∗ 0.562∗∗∗

β3
2 -0.571∗∗∗ 0.035 -0.708∗∗∗ 0.427∗

p3 1.910∗∗∗ 2.016∗∗∗ 2.800∗∗∗ 3.695∗∗∗ 3.241∗∗∗ 1.632∗∗∗ 1.752∗∗∗ 2.170∗∗∗ 2.563∗∗∗ 2.366∗∗∗

m3 2.970∗∗∗ 2.707∗∗∗ 2.002∗∗∗ 1.326∗∗∗ 1.524∗∗∗ 3.674∗∗∗ 3.237∗∗∗ 2.639∗∗∗ 2.100∗∗∗ 2.317∗∗∗

Latent Component
a 0.913∗∗∗ 0.731∗∗∗ 0.793∗∗∗ 0.957∗∗∗ 0.766∗∗∗ 0.821∗∗∗

δ3 0.097∗∗∗ 0.128∗∗∗ 0.103∗∗∗ 0.067∗∗∗ 0.110∗∗∗ 0.092∗∗∗

Diagnostics
LL -1707 -1680 -1697 -1661 -1652 -1982 -1957 -1975 -1925 -1921
BIC -1729 -1711 -1720 -1693 -1693 -2005 -1988 -1998 -1956 -1961
Mean 1.000 0.999 1.006 1.002 1.001 0.999 0.999 1.002 1.001 1.002
S.D. 0.308 0.307 0.311 0.309 0.308 0.323 0.322 0.324 0.322 0.322
LB 69.340∗∗∗ 37.517∗∗ 74.685∗∗∗ 40.070∗∗∗ 28.066 55.018∗∗∗ 33.285∗∗ 54.158∗∗∗ 36.095∗∗ 24.503

JP Morgan IBM
(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

ω3 -0.339∗∗∗ -0.013∗∗∗ -0.018 -0.013∗∗∗ -0.011∗∗ -0.372∗∗∗ -0.167∗∗∗ -0.226∗∗∗ -0.4510∗∗∗ -0.022∗∗

α3
1 0.184∗∗∗ 0.212∗∗∗ 0.014∗∗∗ 0.144∗∗∗ 0.150∗∗∗ 0.183∗∗∗ 0.1223∗∗∗ 0.056∗∗∗

α3
2 -0.203∗∗∗ -0.134∗∗∗ -0.107∗∗∗ -0.081∗∗∗

β3
1 0.847∗∗∗ 1.629∗∗∗ 0.997∗∗∗ 1.252∗∗∗ 0.908∗∗∗ 1.282∗∗∗ 0.3125∗∗∗ 0.811∗∗∗

β3
2 -0.631∗∗∗ -0.254∗∗∗ -0.316∗∗∗ -0.009

p3 2.234∗∗∗ 2.429∗∗∗ 4.174∗∗∗ 4.561∗∗∗ 3.307∗∗∗ 2.121∗∗∗ 2.220∗∗∗ 3.758∗∗∗ 2.8989∗∗∗ 3.436∗∗∗

m3 2.718∗∗∗ 2.386∗∗∗ 1.316∗∗∗ 1.214∗∗∗ 1.702∗∗∗ 4.762∗∗∗ 4.406∗∗∗ 2.492∗∗∗ 3.2868∗∗∗ 2.758∗∗∗

Latent Component
a 0.873∗∗∗ 0.739∗∗∗ 0.783∗∗∗ 0.913∗∗∗ 0.9506∗∗∗ 0.951∗∗∗

δ3 0.105∗∗∗ 0.126∗∗∗ 0.082∗∗∗ 0.083∗∗∗ 0.0464∗∗∗ 0.068∗∗∗

Diagnostics
LL -966 -869 -969 -877 -854 948 987 985 1021 1022
BIC -988 -901 -991 -909 -894 926 955 962 989 981
Mean 1.000 1.000 1.003 1.002 0.998 1.000 0.999 1.002 1.000 1.003
S.D. 0.277 0.273 0.279 0.276 0.274 0.218 0.217 0.219 0.217 0.218
LB 139.049∗∗∗ 46.393∗∗∗ 138.346∗∗∗ 69.345∗∗∗ 30.356∗ 87.077 ∗∗∗ 10.400 92.165∗∗∗ 10.655 20.401
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B.3.2 Multivariate SMEM’s

Table 7: Maximum likelihood efficient importance sampling (ML-EIS) estimates of different parameterizations of
SMEM specifications up to a lag order of P = Q = 2 models for the log return volatility, the average volume per
trade and the number of trades per five minutes interval for the AOL stock traded on the NYSE. Data extracted
from the 2001 TAQ data base. Sample period 02/01/01 to 31/05/01. Overnight observations are excluded. The
models are re-initialized for every trading day. Standard errors are computed based on the inverse of the estimated
Hessian. The ML-EIS estimates are computed using R = 50 Monte Carlo replications based on 5 EIS iterations.
Diagnostics: log likelihood function (LL), Bayes Information Criterion (BIC), mean, standard deviation and
Ljung-Box statistics of the filtered residuals (LB) and squared filtered residuals (LB2, only for the return process)
as well as multivariate Ljung-Box statistic (MLB). The Ljung-Box statistics are computed based on 20 lags.

(1) (2) (3) (4) (5) (6) (7)
ω1 -0.419∗∗∗ -0.041 -0.540∗∗∗ 0.592∗∗∗ -0.062∗∗∗ 0.271∗∗∗ 0.308∗

ω2 -0.933∗∗∗ -2.236∗∗∗ -1.116∗∗∗ -2.091∗∗∗ -1.627∗∗∗ -1.879∗∗∗ -1.877∗∗∗

ω3 -0.265∗∗∗ -0.062∗∗∗ -0.023∗∗∗ -0.286∗∗∗ -0.307∗∗∗ -0.057∗∗∗ -0.076∗∗∗

α12
0 0.082∗∗∗ 0.789∗∗∗ 0.255∗∗∗ 0.365∗∗∗ -0.038∗∗∗ 0.080∗∗∗ 0.064∗∗∗

α13
0 -0.144∗∗∗ 0.714∗∗∗ 0.201∗∗∗ 0.692∗∗∗ -0.032∗∗∗ 0.112∗∗∗ 0.130∗∗

α23
0 -0.739∗∗∗ -0.669∗∗∗ -0.762∗∗∗ -0.589∗∗∗ -0.778∗∗∗ -0.785∗∗∗ -0.784∗∗∗

α11
1 0.136∗∗∗ 0.331∗∗∗ 0.165∗∗∗ 0.064∗∗∗ 0.110∗∗∗ 0.091∗∗∗

α12
1 0.010∗ 0.047∗∗∗ 0.030∗∗∗ 0.002 -0.004

α13
1 0.010∗∗∗ 0.000 -0.004∗∗∗ 0.000 0.002

α21
1 -0.001∗∗∗ 0.007∗∗∗ 0.001 -0.030∗∗∗ -0.026∗∗∗

α22
1 0.018 0.014∗∗∗ 0.011∗∗∗ 0.003∗ 0.005∗∗∗ 0.009∗∗∗

α23
1 0.000∗∗∗ 0.000∗∗ 0.000∗∗∗ 0.000 0.000

α31
1 0.156 0.028 -0.121∗∗∗ -0.065∗ -0.025

α32
1 0.328∗∗∗ -0.109∗∗∗ 0.020 -0.008 -0.015

α33
1 0.177∗∗∗ 0.183∗∗∗ 0.228∗∗∗ 0.146∗∗∗ 0.176∗∗∗ 0.170∗∗∗

α11
2 0.293∗∗∗ 0.134∗∗∗ 0.053∗∗∗ 0.032∗

α22
2 0.010∗∗∗ 0.006∗∗∗ 0.001 -0.001

α33
2 -0.151∗∗∗ -0.212∗∗∗ -0.144∗∗∗ -0.145∗∗∗

β11
1 0.974∗∗∗ -0.137∗∗∗ 0.055∗∗∗ 0.994∗∗∗ 0.508∗∗∗ 0.516∗∗∗

β12
1 0.050∗∗∗ 0.111∗∗∗ -0.239∗∗∗

β13
1 -0.011∗∗∗ 0.000 -0.005∗

β21
1 -0.058∗∗∗ -0.174∗∗∗ 0.051

β22
1 0.840∗∗∗ 0.079∗ 0.298∗∗∗ 0.223∗∗∗ 0.233 0.193∗∗∗

β23
1 0.021∗∗∗ 0.001 -0.012

β31
1 0.113∗∗∗ -0.188∗∗∗ -0.005

β32
1 0.700∗∗∗ 0.838∗∗∗ 0.003

β33
1 0.904∗∗∗ 1.574∗∗∗ 1.699∗∗∗ 0.892∗∗∗ 1.567∗∗∗ 1.551∗∗∗

β11
2 0.290∗∗∗ 0.864∗∗∗ 0.450∗∗∗ 0.473∗∗∗

β22
2 0.371∗∗∗ 0.394∗∗∗ -0.025∗∗∗ -0.004

β33
2 -0.589∗∗∗ -0.706∗∗∗ -0.582∗∗∗ -0.578∗∗∗

p2 0.771∗∗∗ 0.684∗∗∗ 0.732∗∗∗ 0.965∗∗∗ 0.989∗∗∗ 0.916∗∗∗ 0.898∗∗∗

m2 7.081∗∗∗ 8.233∗∗∗ 8.031∗∗∗ 6.248∗∗∗ 6.153∗∗∗ 6.770∗∗∗ 6.775∗∗∗

p3 2.020∗∗∗ 2.000∗∗∗ 2.231∗∗∗ 2.103∗∗∗ 1.910∗∗∗ 2.009∗∗∗ 2.008∗∗∗

m3 2.686∗∗∗ 2.746∗∗∗ 2.227∗∗∗ 2.052∗∗∗ 2.970∗∗∗ 2.728∗∗∗ 2.730∗∗∗

Latent Component
a 0.933∗∗∗ 0.936∗∗∗ 0.950∗∗∗ 0.943∗∗∗

δ1 0.176∗∗∗ 0.231∗∗∗ 0.263∗∗∗ 0.279∗∗∗

δ2 0.156∗∗∗ 0.143∗∗∗ 0.119∗∗∗ 0.111∗∗∗

δ3 -0.032∗∗∗ 0.000 0.002 0.003

Diagnostics
LL -18856 -19100 -18730 -19818 -18359 -18278 -18250
BIC -18981 -19226 -18883 -19881 -18449 -18422 -18421
MLB 182.992∗∗∗ 391.119∗∗∗ 354.426∗∗∗ 14629.940∗∗∗ 135.187∗∗∗ 88.525∗∗∗ 95.614∗∗∗

Diagnostics for the return process
Mean -0.004 -0.016 -0.006 -0.004 -0.003 -0.005 -0.004
S.D. 1.000 1.000 0.999 1.025 1.039 1.046 1.050
LB 15.472 16.682 16.279 18.568 18.195 19.094 19.861
LB2 40.032∗∗∗ 322.974∗∗∗ 40.399∗∗∗ 141.275∗∗∗ 13.632 12.503 12.941

Diagnostics for the volume process
Mean 1.000 1.000 1.000 1.003 1.007 1.007 1.005
S.D. 0.536 0.554 0.531 0.554 0.537 0.534 0.528
LB 116.756∗∗∗ 1306.748∗∗∗ 67.612∗∗∗ 95.032∗∗∗ 49.266∗∗∗ 26.084 26.617

Diagnostics for the trading intensity process
Mean 0.999 0.999 0.999 1.000 0.999 0.999 0.999
S.D. 0.308 0.307 0.308 0.348 0.308 0.307 0.307
LB 67.939∗∗∗ 32.587∗∗∗ 138.980∗∗∗ 7589.183∗∗∗ 69.350∗∗∗ 37.790∗∗∗ 37.616∗∗∗
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Table 8: Maximum likelihood efficient importance sampling (ML-EIS) estimates of different parameterizations of
SMEM specifications up to a lag order of P = Q = 2 models for the log return volatility, the average volume per
trade and the number of trades per five minutes interval for the Boeing stock traded on the NYSE. Data extracted
from the 2001 TAQ data base. Sample period 02/01/01 to 31/05/01. Overnight observations are excluded. The
models are re-initialized for every trading day. Standard errors are computed based on the inverse of the estimated
Hessian. The ML-EIS estimates are computed using R = 50 Monte Carlo replications based on 5 EIS iterations.
Diagnostics: log likelihood function (LL), Bayes Information Criterion (BIC), mean, standard deviation and
Ljung-Box statistics of the filtered residuals (LB) and squared filtered residuals (LB2, only for the return process)
as well as multivariate Ljung-Box statistic (MLB). The Ljung-Box statistics are computed based on 20 lags.

(1) (2) (3) (4) (5) (6) (7)
ω1 1.829∗∗∗ 0.532∗∗∗ 0.733∗∗∗ 0.625∗∗∗ -0.121∗∗∗ 0.460∗∗∗ 0.712
ω2 -1.087∗∗∗ -0.809∗∗∗ -0.610∗∗∗ -6.611∗∗∗ -2.197∗∗∗ -2.531∗∗∗ -2.124∗∗∗

ω3 -0.224∗∗∗ -0.030∗∗∗ -0.033∗∗∗ -0.408∗∗∗ -0.188∗∗∗ -0.155∗∗∗ -0.128∗∗∗

α12
0 0.554∗∗∗ 0.576∗∗∗ 0.565∗∗∗ 0.594∗∗∗ -0.087∗∗∗ 0.020 0.004

α13
0 1.037∗∗∗ 1.040∗∗∗ 1.081∗∗∗ 0.682∗∗∗ 0.034∗∗∗ 0.259∗∗∗ 0.828∗∗∗

α23
0 -0.235∗∗∗ -0.042∗∗∗ -0.214∗∗∗ -0.422∗∗∗ -0.381∗∗∗ -0.442∗∗∗ -0.257∗∗∗

α11
1 0.257∗∗∗ 0.252∗∗∗ 0.224∗∗∗ 0.134∗∗∗ 0.083∗∗∗ 0.083∗∗∗

α12
1 -0.005 0.032∗∗∗ -0.025∗∗∗ -0.032∗∗∗ -0.043∗∗∗

α13
1 0.003 -0.001 -0.001∗∗ -0.006∗∗ -0.002∗∗∗

α21
1 -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.005∗∗∗ -0.004∗∗∗

α22
1 0.000∗∗∗ 0.001∗∗∗ 0.001∗∗∗ -0.001∗∗ -0.000 -0.001∗∗

α23
1 0.000 0.000∗∗ 0.000∗∗∗ -0.000∗∗∗ 0.000∗∗

α31
1 -0.167∗∗∗ -0.173∗∗∗ -0.207∗∗∗ -0.236∗∗∗ -0.269∗∗∗

α32
1 0.048∗∗∗ 0.016 0.078∗∗∗ -0.064∗∗ 0.035

α33
1 0.076∗∗∗ 0.109∗∗∗ 0.099∗∗∗ 0.077∗∗∗ 0.090∗∗∗ 0.085∗∗∗

α11
2 0.193∗∗∗ 0.158∗∗∗ 0.140∗∗∗ 0.116∗∗∗

α22
2 0.001∗∗∗ -0.001∗∗∗ 0.000 -0.001∗

α33
2 -0.095∗∗∗ -0.093∗∗∗ -0.002 -0.084∗∗∗

β11
1 0.386∗∗∗ 0.256∗∗∗ 0.337∗∗∗ 0.948∗∗∗ 0.560∗∗∗ 0.560∗∗∗

β12
1 0.112∗∗∗ 0.066∗∗∗ -0.066∗∗

β13
1 0.002 0.002∗∗∗ -0.005∗∗

β21
1 0.227∗∗∗ 0.058 0.176

β22
1 0.808∗∗∗ 0.221∗∗ 1.090∗∗∗ 0.169∗∗∗ 0.163 0.423∗∗

β23
1 -0.003 -0.004∗∗∗ -0.035∗∗∗

β31
1 -0.029 -0.306∗∗∗ -0.742∗∗∗

β32
1 0.032 0.104∗∗∗ 0.187∗∗

β33
1 0.950∗∗∗ 1.680∗∗∗ 1.767∗∗∗ 0.948∗∗∗ 0.606∗∗∗ 1.778∗∗∗

β11
2 0.117∗∗∗ 0.121∗∗∗ 0.301∗∗∗ 0.343∗∗∗

β22
2 0.652∗∗∗ -0.197∗∗∗ 0.092 -0.051

β33
2 -0.685∗∗∗ -0.773∗∗∗ 0.343∗∗∗ -0.783∗∗∗

p2 0.491∗∗∗ 0.500∗∗∗ 0.505∗∗∗ 0.396∗∗∗ 0.774∗∗∗ 0.625∗∗∗ 0.622∗∗∗

m2 9.167∗∗∗ 8.640∗∗∗ 8.698∗∗∗ 12.650∗∗∗ 6.750∗∗∗ 8.313∗∗∗ 8.520∗∗∗

p3 1.628∗∗∗ 1.786∗∗∗ 1.739∗∗∗ 2.164∗∗∗ 1.726∗∗∗ 1.879∗∗∗ 1.663∗∗∗

m3 3.696∗∗∗ 3.128∗∗∗ 3.293∗∗∗ 2.551∗∗∗ 3.424∗∗∗ 3.084∗∗∗ 3.626∗∗∗

Latent Component
a 0.950∗∗∗ 0.656∗∗∗ 0.804∗∗∗ 0.827∗∗∗

δ1 0.111∗∗∗ 0.625∗∗∗ 0.524∗∗∗ 0.453∗∗∗

δ2 0.058∗∗∗ 0.407∗∗∗ 0.305∗∗∗ 0.283∗∗∗

δ3 0.069∗∗∗ 0.046∗∗∗ 0.070∗∗∗ 0.025∗∗∗

Diagnostics
LL -21087 -21140 -21015 -21744 -21022 -20906 -20819
BIC -21213 -21265 -21168 -21807 -21112 -21050 -20990
MLB 356.292∗∗∗ 159.818∗∗∗ 208.131∗∗∗ 5425.582∗∗∗ 345.815∗∗∗ 120.257∗∗∗ 86.327∗∗

Diagnostics for the return process
Mean -0.000 -0.002 -0.001 0.001 0.007 0.005 0.000
S.D. 0.999 1.000 0.999 1.005 1.033 1.027 1.020
LB 46.321∗∗∗ 41.711∗∗∗ 42.410∗∗∗ 46.833∗∗∗ 29.763∗ 29.401∗ 31.776∗∗

LB2 192.847∗∗∗ 154.040∗∗∗ 116.050∗∗∗ 408.055∗∗∗ 46.259∗∗∗ 60.415∗∗∗ 40.050∗∗∗

Diagnostics for the volume process
Mean 1.010 1.010 1.010 1.012 1.016 1.017 1.019
S.D. 0.851 0.862 0.849 0.875 0.857 0.840 0.855
LB 44.154∗∗∗ 39.175∗∗∗ 24.091 1883.849∗∗∗ 226.193∗∗∗ 93.834∗∗∗ 60.773∗∗∗

Diagnostics for the trading intensity process
Mean 0.999 0.999 0.999 1.000 1.001 0.997 1.019
S.D. 0.323 0.321 0.321 0.329 0.323 0.322 0.328
LB 54.691∗∗∗ 33.924∗∗ 33.712∗∗ 201.586∗∗∗ 44.662∗∗∗ 22.152 34.923∗∗
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Table 9: Maximum likelihood efficient importance sampling (ML-EIS) estimates of different parameterizations
of SMEM specifications up to a lag order of P = Q = 2 models for the log return volatility, the average volume
per trade and the number of trades per five minutes interval for the JP Morgan stock traded on the NYSE.
Data extracted from the 2001 TAQ data base. Sample period 02/01/01 to 31/05/01. Overnight observations are
excluded. The models are re-initialized for every trading day. Standard errors are computed based on the inverse
of the estimated Hessian. The ML-EIS estimates are computed using R = 50 Monte Carlo replications based on
5 EIS iterations.
Diagnostics: log likelihood function (LL), Bayes Information Criterion (BIC), mean, standard deviation and
Ljung-Box statistics of the filtered residuals (LB) and squared filtered residuals (LB2, only for the return process)
as well as multivariate Ljung-Box statistic (MLB). The Ljung-Box statistics are computed based on 20 lags.

(1) (2) (3) (4) (5) (6) (7)
ω1 2.394∗∗∗ 0.217∗∗∗ 1.996∗∗∗ 0.529∗∗∗ -0.097∗∗∗ 0.167∗∗∗ 0.209
ω2 -1.584∗∗∗ -2.635∗∗∗ -1.410∗∗∗ -2.240∗∗∗ -1.471∗∗∗ -2.035∗∗∗ -2.122∗∗∗

ω3 -0.292∗∗∗ -0.018∗∗∗ -0.016∗∗∗ -0.225∗∗∗ -0.337∗∗∗ -0.008∗∗∗ -0.005
α12

0 0.817∗∗∗ 0.979∗∗∗ 0.859∗∗∗ 0.492∗∗∗ -0.078∗∗∗ 0.023∗ 0.050∗∗∗

α13
0 0.841∗∗∗ 1.112∗∗∗ 0.910∗∗∗ 0.365∗∗∗ -0.091∗∗∗ 0.022 -0.033

α23
0 -0.885∗∗∗ -0.785∗∗∗ -0.882∗∗∗ -1.158∗∗∗ -0.953∗∗∗ -0.941∗∗∗ -0.958∗∗∗

α11
1 0.149∗∗∗ 0.225∗∗∗ 0.138∗∗∗ 0.097∗∗∗ 0.085∗∗∗ 0.072∗∗∗

α12
1 0.025∗∗∗ 0.068∗∗∗ 0.009 -0.004 -0.010

α13
1 0.020∗∗∗ 0.000 0.001∗∗∗ 0.000 0.001

α21
1 -0.001 0.005∗∗∗ -0.003 -0.022∗∗∗ -0.029∗∗∗

α22
1 0.003∗∗∗ 0.010∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.010∗∗∗

α23
1 0.000∗∗ 0.000 0.000∗∗ 0.000∗∗∗ 0.000∗∗

α31
1 0.554∗∗∗ 0.008 0.550∗∗∗ -0.037 0.096

α32
1 0.320∗∗∗ -0.110∗∗∗ 0.388∗∗∗ -0.054 -0.101∗∗

α33
1 0.208∗∗∗ 0.216∗∗∗ 0.216∗∗∗ 0.188∗∗∗ 0.212∗∗∗ 0.214∗∗∗

α11
2 0.263∗∗∗ 0.117∗∗∗ 0.053∗∗ 0.049∗∗

α22
2 0.007∗∗∗ -0.002∗∗∗ -0.001 -0.004∗∗

α33
2 -0.205∗∗∗ -0.207∗∗∗ -0.206∗∗∗ -0.210∗∗∗

β11
1 0.007 -0.107∗∗∗ 0.051 0.972∗∗∗ 0.861∗∗∗ 0.789∗∗∗

β12
1 0.191∗∗∗ 0.170∗∗∗ -0.246∗∗∗

β13
1 -0.006 0.000 -0.001

β21
1 0.677∗∗∗ 0.646∗∗∗ 0.066

β22
1 0.646∗∗∗ 0.057 0.708∗∗∗ 0.178∗∗∗ 0.115∗∗ 0.083

β23
1 0.025∗∗∗ 0.000 -0.001

β31
1 1.320∗∗∗ 1.166∗∗∗ 0.180∗∗

β32
1 0.472∗∗∗ 0.527∗∗∗ -0.427∗∗

β33
1 0.873∗∗∗ 1.609∗∗∗ 1.623∗∗∗ 0.836∗∗∗ 1.625∗∗∗ 1.655∗∗∗

β11
2 0.089∗∗∗ -0.068∗∗ 0.086 0.177

β22
2 0.305∗∗∗ -0.017 0.025 -0.077

β33
2 -0.612∗∗∗ -0.625∗∗∗ -0.626∗∗∗ -0.657∗∗∗

p2 0.687∗∗∗ 0.634∗∗∗ 0.720∗∗∗ 0.863∗∗∗ 1.027∗∗∗ 0.854∗∗∗ 0.890∗∗∗

m2 7.633∗∗∗ 8.066∗∗∗ 6.947∗∗∗ 5.800∗∗∗ 4.917∗∗∗ 6.537∗∗∗ 5.869∗∗∗

p3 2.308∗∗∗ 2.393∗∗∗ 2.438∗∗∗ 2.414∗∗∗ 2.287∗∗∗ 2.454∗∗∗ 2.579∗∗∗

m3 2.577∗∗∗ 2.451∗∗∗ 2.373∗∗∗ 1.986∗∗∗ 2.620∗∗∗ 2.364∗∗∗ 2.173∗∗∗

Latent Component
a 0.951∗∗∗ 0.907∗∗∗ 0.941∗∗∗ 0.930∗∗∗

δ1 0.165∗∗∗ 0.339∗∗∗ 0.339∗∗∗ 0.350∗∗∗

δ2 0.122∗∗∗ 0.176∗∗∗ 0.136∗∗∗ 0.132∗∗∗

δ3 0.024∗∗∗ 0.009∗∗∗ 0.011∗∗∗ 0.015∗∗∗

Diagnostics
LL -18403 -18784 -18306 -19398 -18201 -18040 -18009
BIC -18529 -18910 -18458 -19461 -18291 -18184 -18180
MLB 769.914∗∗∗ 1830.305∗∗∗ 665.637∗∗∗ 12670.643∗∗∗ 288.422∗∗∗ 171.290∗∗∗ 197.625∗∗∗

Diagnostics for the return process
Mean -0.018 -0.021 -0.019 -0.011 -0.004 -0.005 -0.006
S.D. 0.999 0.999 0.999 1.026 1.048 1.067 1.056
LB 36.093∗∗ 37.518∗∗ 35.911∗∗ 31.627∗∗ 26.265 25.315 24.722
LB2 376.349∗∗∗ 406.581∗∗∗ 355.220∗∗∗ 35.564∗∗ 40.740∗∗∗ 6.513 11.903

Diagnostics for the volume process
Mean 1.001 1.001 1.001 1.003 1.009 1.009 1.006
S.D. 0.598 0.617 0.600 0.609 0.598 0.597 0.592
LB 27.975 1393.848∗∗∗ 22.132 90.389∗∗∗ 46.434∗∗∗ 11.269 17.671

Diagnostics for the trading intensity process
Mean 1.000 1.000 1.000 0.999 1.000 0.999 1.000
S.D. 0.276 0.274 0.273 0.306 0.276 0.273 0.273
LB 138.865∗∗∗ 38.987∗∗∗ 43.659∗∗∗ 6337.353∗∗∗ 140.305∗∗∗ 50.553∗∗∗ 53.280∗∗∗
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Table 10: Maximum likelihood efficient importance sampling (ML-EIS) estimates of different parameterizations
of SMEM specifications up to a lag order of P = Q = 2 models for the log return volatility, the average volume per
trade and the number of trades per five minutes interval for the IBM stock traded on the NYSE. Data extracted
from the 2001 TAQ data base. Sample period 02/01/01 to 31/05/01. Overnight observations are excluded. The
models are re-initialized for every trading day. Standard errors are computed based on the inverse of the estimated
Hessian. The ML-EIS estimates are computed using R = 50 Monte Carlo replications based on 5 EIS iterations.
Diagnostics: log likelihood function (LL), Bayes Information Criterion (BIC), mean, standard deviation and
Ljung-Box statistics of the filtered residuals (LB) and squared filtered residuals (LB2, only for the return process)
as well as multivariate Ljung-Box statistic (MLB). The Ljung-Box statistics are computed based on 20 lags.

(1) (2) (3) (4) (5) (6) (7)
ω1 0.057∗∗∗ 0.547∗∗∗ 0.372∗∗∗ 0.504∗∗∗ 0.494∗∗∗ 0.316∗∗∗ 1.079∗∗∗

ω2 -0.089∗∗∗ -1.267∗∗∗ -0.784∗∗∗ -1.420∗∗∗ -1.831∗∗∗ -1.307∗∗∗ -1.403∗∗∗

ω3 -0.036∗∗∗ -0.192∗∗∗ -0.200∗∗∗ -0.517∗∗∗ -0.373∗∗∗ -0.160∗∗∗ -0.305∗∗∗

α12
0 0.077∗∗∗ 0.821∗∗∗ 0.792∗∗∗ 0.704∗∗∗ 0.596∗∗∗ 0.128∗∗∗ 0.140∗∗∗

α13
0 0.074∗∗∗ 0.712∗∗∗ 0.746∗∗∗ 0.182∗∗ 0.585∗∗∗ 0.099∗∗∗ 0.429∗∗∗

α23
0 -0.080∗∗∗ -0.394∗∗∗ -0.783∗∗∗ -1.355∗∗∗ -0.768∗∗∗ -0.866∗∗∗ -0.789∗∗∗

α11
1 0.024∗∗∗ 0.203∗∗∗ 0.183∗∗∗ 0.070∗∗∗ 0.068∗∗∗ 0.067∗∗∗

α12
1 0.003∗∗∗ 0.044∗∗∗ 0.025∗∗∗ 0.018∗∗ 0.015∗∗

α13
1 0.000 0.003 0.000 -0.001 0.002

α21
1 -0.005∗∗∗ -0.015∗∗∗ -0.052∗∗∗ -0.061∗∗∗ -0.064∗∗∗

α22
1 0.002∗∗∗ 0.019∗∗∗ 0.021∗∗∗ 0.016∗∗∗ 0.012∗∗∗ 0.013∗∗∗

α23
1 0.000∗∗∗ 0.001∗∗∗ 0.001∗∗∗ -0.001∗∗ 0.001∗∗

α31
1 -0.012∗∗∗ -0.138∗∗∗ -0.136∗∗∗ -0.086∗∗ 0.015

α32
1 0.031∗∗∗ -0.061∗∗∗ 0.344∗∗∗ 0.110∗∗ 0.136∗∗∗

α33
1 0.016∗∗∗ 0.188∗∗∗ 0.191∗∗∗ 0.153∗∗∗ 0.182∗∗∗ 0.151∗∗∗

α11
2 0.230∗∗∗ 0.131∗∗∗ 0.086∗∗∗ 0.048∗∗

α22
2 0.014∗∗∗ -0.004∗∗∗ 0.001 0.001

α33
2 -0.110∗∗∗ -0.101∗∗∗ -0.105∗∗∗ -0.087∗∗∗

β11
1 0.063∗∗∗ 0.340∗∗∗ 0.580∗∗∗ -0.228∗∗∗ 0.471∗∗∗ 0.596∗∗∗

β12
1 0.007∗∗∗ 0.048∗∗∗ -0.050

β13
1 0.000 0.001 -0.007∗∗

β21
1 -0.006∗∗ -0.108∗∗∗ 0.477∗∗∗

β22
1 0.081∗∗∗ 0.071∗∗ 0.866∗∗∗ 0.176∗∗∗ 0.400∗∗∗ 0.436∗∗∗

β23
1 0.001 0.000 -0.059∗∗∗

β31
1 -0.030∗∗∗ -0.347∗∗∗ 0.114

β32
1 0.068∗∗∗ 0.701∗∗∗ 0.105

β33
1 0.091∗∗∗ 1.289∗∗∗ 1.211∗∗∗ 0.900∗∗∗ 1.272∗∗∗ 1.122∗∗∗

β11
2 0.133∗∗∗ 0.044 0.496∗∗∗ 0.414∗∗∗

β22
2 0.642∗∗∗ -0.009 -0.091∗∗ -0.115∗∗

β33
2 -0.329∗∗∗ -0.252∗∗∗ -0.313∗∗∗ -0.229∗∗

p2 0.083∗∗∗ 0.759∗∗∗ 0.847∗∗∗ 1.168∗∗∗ 0.965∗∗∗ 1.190∗∗∗ 1.115∗∗∗

m2 7.271∗∗∗ 7.778∗∗∗ 6.936∗∗∗ 4.466∗∗∗ 6.492∗∗∗ 4.953∗∗∗ 5.470∗∗∗

p3 2.225∗∗∗ 2.222∗∗∗ 2.303∗∗∗ 2.294∗∗∗ 2.156∗∗∗ 2.278∗∗∗ 2.172∗∗∗

m3 4.373∗∗∗ 4.424∗∗∗ 4.131∗∗∗ 3.499∗∗∗ 4.642∗∗∗ 4.255∗∗∗ 4.620∗∗∗

Latent Component
a 0.942∗∗∗ 0.967∗∗∗ 0.940∗∗∗ 0.944∗∗∗

δ1 0.154∗∗∗ 0.141∗∗∗ 0.263∗∗∗ 0.256∗∗∗

δ2 0.146∗∗∗ 0.087∗∗∗ 0.133∗∗∗ 0.123∗∗∗

δ3 0.044∗∗∗ 0.004∗∗∗ 0.012∗∗∗ 0.003∗∗

Diagnostics
LL -15389 -15798 -15338 -16959 -15349 -15106 -15086
BIC -15515 -15924 -15490 -17021 -15439 -15250 -15257
MLB 324.925∗∗∗ 686.107∗∗∗ 240.460∗∗∗ 19077.193∗∗∗ 833.269∗∗∗ 95.978∗∗∗ 76.669∗

Diagnostics for the return process
Mean -0.009 -0.008 -0.009 -0.009 -0.006 0.000 0.000
S.D. 1.000 0.999 1.000 1.014 1.009 1.026 1.028
LB 18.485 17.055∗∗∗ 17.720 17.105 19.767 23.732 24.735
LB2 175.325∗∗∗ 282.111∗∗∗ 154.973∗∗∗ 622.605∗∗∗ 313.360∗∗∗ 18.042 16.570

Diagnostics for the volume process
Mean 1.000 1.000 0.999 1.003 1.001 1.005 1.004
S.D. 0.485 0.512 0.484 0.512 0.487 0.481 0.483
LB 50.970∗∗∗ 444.839∗∗∗ 47.007∗∗∗ 257.354∗∗∗ 54.532∗∗∗ 56.413∗∗∗ 54.164∗∗∗

Diagnostics for the trading intensity process
Mean 0.999 0.999 0.999 0.999 0.999 1.000 1.000
S.D. 0.217 0.216 0.216 0.246 0.217 0.216 0.216
LB 83.299∗∗∗ 9.630 12.195 6935.761 ∗∗∗ 84.642∗∗∗ 11.464 11.405

41



B.4 Estimated Generalized Impulse Response Functions

Figure 11: Generalized impulse response of a one S.D. shock of λi on ξ2
i (left), Vi (middle) and ρi (right) for the

AOL stock. Computed based on 5, 000 Monte Carlo simulations using the estimates of specification (7) (Table
7).

Figure 12: Generalized impulse response of a one S.D. shock of λi on ξ2
i (left), Vi (middle) and ρi (right) for the

Boeing stock. Computed based on 5, 000 Monte Carlo simulations using the estimates of specification (7) (Table 8).

Figure 13: Generalized impulse response of a one S.D. shock of λi on ξ2
i (left), Vi (middle) and ρi (right) for

the JP Morgan stock. Computed based on 5, 000 Monte Carlo simulations using the estimates of specification
(7) (Table 9).

Figure 14: Generalized impulse response of a one S.D. shock of λi on ξ2
i (left), Vi (middle) and ρi (right) for the

IBM stock. Computed based on 5, 000 Monte Carlo simulations using the estimates of specification (7) (Table 10).
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B.5 Graphical Illustrations

Figure 15: Plotted (filtered) estimates of exp(λi), Y 2
i , Vi and ρi (from top to down) for the AOL stock.

Computed based on the estimates of specification (7) (Table 7).

Figure 16: Plotted (filtered) estimates of exp(λi), Y 2
i , Vi and ρi (from top to down) for the IBM stock.

Computed based on the estimates of specification (7) (Table 10).
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