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Abstract

This paper studies the problem of endogenous coalition formation in contests: how play-

ers organize themselves in groups when faced with the common objective of securing a prize

by exerting costly e�ort. The model presented adopts an axiomatic approach by assuming

certain properties for the winning probability that imply e�ciency gains from cooperation in

contest settings. E�ciency gains are said to be generated if any coalition experiences increasing

marginal returns with aggregate e�ort until a threshold. These properties identify a wide class

of generalised Tullock contest success functions.

We analyse a sequential coalition formation game for an arbitrary number of symmetric

players and exogenous e�ort. If coalitions generate su�cient e�ciency gains, then any equilib-

rium always consists of two or more coalitions where at least two coalitions are of unequal size.

This result extends to endogenous e�orts if the cost functions are su�ciently convex.
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1 Introduction

Most economic, social and political activities involve the formation of competing groups (e.g.,

political parties, institutions, mergers or partial cartels) in self-interest. This paper studies the

equilibrium outcomes in such settings where individual players endogenously organize groups with

the mutual target of securing a prize. The literature on endogenous coalition formation in contests

concludes that if players experience the incentive to form coalitions, then the equilibrium comprises

a maximum of two coalitions: a majority and a minority group. In a three-player model, Skaperdas

(1998) and Tan and Wang (1997) �nd that if cooperation satis�es the increasing returns to scale

property, then a two-player alliance competes against the remaining individual player. Tan and

Wang (2010) extend this idea to show that the two-group outcome applies to n-players if the

cooperation displays the increasing returns property. In absence of this property, full cooperation

among players - the grand coalition - emerges as the outcome1.

However, this literature fails to explain the formation of three or more competing coalitions.

The lack of a theory to explain this phenomenon is attributed to the restrictive nature of contest

models employed in the literature. Either these models apply variants of the Tullock contest success

function, that are highly stylized, or they limit their analysis to a few players - three, four, or �ve -

that restrict possible combinations of the coalition structures. Although these restrictions simplify

the analysis, it leads to an incomplete conclusion: if the incentive to cooperate exists, then either

a bipartite coalition structure or the grand coalition emerges.

This paper adopts an axiomatic approach by assuming certain properties satis�ed by the win-

ning probability function. These properties identify a wide class of generalized Tullock contest

success functions where cooperation generates e�ciency gains: the impact of the e�ort exerted by

members of a coalition on its winning probability is greater than its aggregate (Proposition 1). We

analyze a sequential coalition formation game proposed by Bloch (1996) for n symmetric players

and exogenous e�ort under the restrictions imposed by these properties.

We show that any equilibrium always consists of two or more coalitions where the size of at

least one coalition di�ers from the rest in the equilibrium coalition structure (Theorem 1). An

important implication of this result is that the possibility of forming three of more coalitions exists

(Corollary 1.1). This result carries over to endogenous e�orts whenever the cost of exerting e�orts

is su�ciently convex (Proposition 3). Thus, there are three key contributions of this paper: we

show that the possibility of forming three or more coalitions exists; we identify and formalise the

1Bloch, Sanchez-Pages and Soubeyran (2006), Sanchez-Pages (2007), and Bloch (2012) show that full cooperation

(or grand coalition) by players is often the outcome when the incentive to form groups exists.
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economic principles that lead to this result; we show that these economic principles are satis�ed by

a wide class of generalized Tullock contest success functions.

The model presented in this paper follows a two-stage process. First, players endogenously form

coalitions in stage one. For that purpose, we specify a coalition formation mechanism: a set of

rules or a procedure through which players carry out negotiations to form coalitions. We adopt

the mechanism proposed by Bloch (1996) and Ray and Vohra (1997) where players sequentially

form coalitions through a proposer-responder protocol. In this exclusive membership game, a

randomly chosen player proposes a coalition. If any player among the proposed members rejects

the o�er, then a new proposer is chosen randomly. However, once players unanimously agree on

the coalition, deviations are not permitted at any stage of the game. That is, the coalition contract

is binding. After this negotiation process ends and a coalition forms, this procedure is repeated

with the remaining players. This game ends when all negotiations are completed. The resulting

outcome is a coalition structure and its stability is given by the stationary perfect equilibrium: a

re�nement of the sub-game perfect equilibrium that requires the strategy at each stage of the game

to be independent of the history of actions. In stage two, the coalitions engage in a contest where

a coalition's winning probability depends on the aggregate e�ort of its members, and that of rival

coalitions.

Within this framework, we restrict the partition function - interpreted as the winning probability

- through three assumptions. Assumption 1 states the axioms of probability, monotonicity, and

anonymity based on Skaperdas (1996); that was later generalized by Münster (2009) to group

contests. Assumption 2 relates to the notion of eventually diminishing marginal bene�t. That is,

the marginal bene�t from e�ort increases up to a threshold, and eventually diminishes beyond that

threshold. Although this assumption is a common feature of several contest settings, it has neither

been formalised in the contest not coalition formation literature.2 This is another contribution of

this paper. Assumption 3 states that the e�orts behave as strategic substitutes until a threshold,

and then as strategic complements. Assumptions 1 and 3 are ubiquitous: any Generalised Tullock

contest success function satis�es both assumptions. However, Assumption 2 is satis�ed by the class

of Generalised Tullock contest success functions where cooperation generates e�ciency gains. That

is, situations where the impact of a coalition's e�ort on its winning probability is larger than its

aggregate.3

2In R&D contests where Loury (1979) and Lee and Wilde (1980) assume that the winning probability displays

diminishing marginal bene�t; Wars of attrition where Riley(1979) and Nalebu� and Riley (1985) use a similar

assumption. Dixit (1987) assumes strict concavity in a general contest setting.
3 This implies that the impact factor - a standard terminology in the contest literature - is greater than 1. Refer
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We analyse this model for exogenous e�orts. Our main result establishes that if a standard

contest success function (Assumption 1) displays some degree of the increasing returns property

(Assumption 2), in addition to eventual strategic complementarity (Assumption 3), then the equi-

librium is an intermediate coalition structure that is non-symmetric: at least one coalition's size

di�ers from the rest. Thus, neither the extreme of the grand coalition forms nor the other extreme

of no coalitions occurs.

The intuition for this result is as follows. Under the assumption of exogenous e�ort, any coalition

can increase its winning probability only by admitting members. We show that the marginal bene�t

of adding members to a coalition - through pair-wise transfers- �rst increases until a threshold, and

then begins to diminish beyond that. Hence, this property introduces the incentive to cooperate

due to the inceptive e�ciency gains from adding members. If the grand coalition forms, there is no

value addition from e�ciency gains as all players divide the prize equally. Therefore, it is pro�table

to form a majority coalition - to bene�t from e�ciency gains - and engage in a contest compared

to forming the grand coalition.

Although there always exists a bipartite structure that dominates the grand coalition, it is not

necessarily the equilibrium. The equilibrium may consist of three or more coalitions depending on

the size of the threshold coalition (mentioned above) and the nature of the increasing/decreasing

returns. The number of coalitions formed at equilibrium is likely to be high if: (1) the threshold

coalition size is low; (2) the returns from adding members diminishes rapidly beyond that threshold.

Lastly, this result extends to the situations of endogenous e�ort choice and su�ciently convex

cost functions. This continuity of results is observed because the exogenous e�ort model is a special

case of convex cost functions. In the exogenous e�ort model, the cost of increased e�ort from zero

to one is negligible, and beyond one is in�nite. Hence, su�ciently convex cost functions produce

an e�ect similar to exogenous e�ort models.

■ Literature Review: This paper belongs to the literature on coalition formation with binding

agreements in contests. That is, once a coalition wins the contest, the members credibly implement

a sharing rule for the prize that prevents any further con�ict among the players. We adopt a sequen-

tial mechanism of coalition formation based on Bloch (1996) where the coalitional worth depends on

the coalition structure and is distributed among the members according to a credible predetermined

rule. Ray and Vohra (1999) follow a similar coalition formation mechanism, but where coalitional

worth is distributed among the members through an endogenous negotiation process. Both papers

to Proposition 1 (Section 4) for more details.
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explicitly model the coalition formation process as a non-cooperative sequential bargaining process

and characterize stationary sub-game perfect equilibria in the spirit of Rubinstein's (1982) bargain-

ing game. The solution concept implemented in our paper applies the mechanism developed by

these two papers.

A related paper by Bloch et al. (2006) implements the above coalition formation mechanism in

a symmetric rent-seeking model where the players exert costly e�ort to win a prize. The unique

sub-game perfect equilibrium is the grand coalition in their paper. However, this �nding depends

on the fact that adding players to a coalition fails to generate e�ciency gains. Hence, if a sub-group

deviates from the grand coalition their expected share of the prize remains unchanged, but the

deviating group incurs a cost due to competition. Therefore, the grand coalition is stable. However,

if coalitions generate su�cient e�ciency gains - due to the increasing returns property stated by

Assumption 2 - then a deviation from the grand coalition may yield a higher expected share of the

prize that o�sets the cost incurred. In Section 4, we show that such deviations occur in a model

endogenous e�ort; that extends our exogenous e�ort model.

Another related paper by Tan and Wang (2010) studies endogenous coalition formation with

heterogeneous players and assumes a speci�c functional form for contest success function. They show

that if agreements are binding, then the equilibrium coalition structure for n players is bipartite:

only two coalitions are competing against each other in the initial contest. On similar lines, Noh

(2002), Gar�nkel (2004), Changxia, Konrad, and Morath (2011), and Sanchez-Pages (2007a,b) study

coalition formation in a symmetric model of contests in which coalitional payo�s are exogenously

speci�ed. Common features of these models include a speci�c contest success function to describe

the nature of the con�ict. They conclude that either a bipartite coalition structure or the grand

coalition emerges an equilibrium outcome. All papers on this topic use a speci�c variant of the

Tullock success function for modeling the winning probability, while our paper generalizes the setting

by adopting the axiomatic approach that imposes certain assumptions on the winning probability.

This generalization yields an insight that is not present in literature: the formation of three or more

coalitions exists.

Separate literature applies the �continuing con�ict" approach to study coalition formation in the

context of con�ict where if a coalition wins, the allies within the coalition are unable to commit

to certain sharing rules and hence in turn compete among themselves to decide who should have

the prize, leading to further con�icts until one individual winner is left. Skaperdas (1998) was

the �rst to consider this problem with three heterogeneous players. His model assumes exogenous

e�ort terms as strategic endowment : a number representing the level of e�ort a player can exert
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in any contest she was to enter. Two players may form a coalition and pool in their e�ort to

compete against the third player. If the coalition wins, then the two players engage in a second

contest among themselves. The main result in his paper is that a stable alliance forms between two

players against the third player if and only if the CSF exhibits superadditive or increasing-returns

property concerning the strategic endowments of at least two players. When the CSF is always

subadditive, all three players stand alone in a three-way contest. Tan and Wang (2010) also study

this problem of endogenous coalition formation with heterogeneous players and exogenous e�ort

through continuing con�ict. They show that the equilibrium coalition structure for n players is

bipartite: only two coalitions are competing against each other in the initial contest. However,

unlike the binding contracts approach, they are unable to characterize the entire equilibrium of

sub-coalitions in subsequent contests which is a de�ning aspect of continuing con�ict. Esteban and

Sakovics (2003) consider a three-player model, but with endogenous e�orts. They show that absent

synergy (e�ciency gains), no coalition formation occurs because individual participation exceeds

that from continuing con�ict in case of forming a coalition. Thus, although this is di�erent from

our paper, this literature also concludes that if the incentive to form coalitions exists, then either a

bipartite structure forms or no coalitions form.

The paper is structured as follows: we describe the model in Section 2 that involves stating

the underlying assumptions and the coalition formation game. In Section 3 we analyze the case

of exogenous e�ort. Section 4 presents an extension for endogenous e�orts. The conclusions are

stated in Section 5.

2 The Model

A set of identical and risk neutral players N = {1, 2..., n}, where n ≥ 3, compete to win a prize of

value normalised to unity. Players may endogenously form mutually exclusive coalitions that result

in a coalition structure - partition of N - denoted by Π = {C1, C2..., CK}. Let P represent the set

of all coalition structures, and 2N the power set of N .

Once the coalition structure forms, each player i ∈ N exerts an e�ort yi ≥ 0 at cost c(yi). Let

Y denote the vector of e�orts exerted by all players. Suppose i ∈ Ck ∈ Π, then the vector of

individual e�orts by remaining members of that coalition is yCk
−i . The aggregate e�ort expended by

any coalition is YCk
=
∑
j∈Ck

yj, and the vector of aggregate e�orts of all remaining coalitions is Y−Ck
.

The probability that coalition Ck wins - termed its winning probability - is given by the partition

function p : 2N × P× Rn
+ → [0, 1] where p(Ck,Π,Y) ≥ 0 only if Ck ∈ Π. The partition function is
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continuous and di�erentiable with respect to the e�ort of any player i ∈ N .

If Ck wins the contest, then it implements an e�ort dependent sharing rule s : R|Ck|
+ → [0, 1] where

s(yi,y
Ck
−i ) is player i's share of the prize. We assume the sharing rule s(.) is common knowledge,

exogenous and binding. For any two players i, j ∈ Ck, if yi ≤ yj, then player j (who exerts more

e�ort) receives at least as much as player i. That is, s(yi,y
Ck
−i ) ≤ s(yj,y

Ck
−j). The sum of shares of

all members of the winning coalition adds up to the total prize:
∑
i∈Ck

s(yi,y
Ck
−i ) = 1; implying no

distributional e�ciency loss.

Thus, for a given coalition Ck ∈ Π, the payo� to any player i ∈ Ck is the di�erence between the

expected value of his share of the prize and the cost of exerting e�ort.

ui(Ck,Π,Y) = s(yi,y
Ck
−i )p(Ck,Π,Y)− c(yi) (1)

The remaining section proceeds as follows: First, we state the assumptions imposed on the

partition function p(.) in subsection 2.1. We then state the coalition formation game in subsection

2.2.

2.1 Central Assumptions

The �rst assumption imposes primary axioms fundamental to group contests based on Münster

(2009); which were derived from axioms for an individual contest by Skaperdas (1996).

Assumption 1. For any coalition structure Π ∈ P and e�ort vector Y ∈ Rn
+

(A)
∑

Ck∈Π
p(Ck,Π,Y) = 1 where p(Ck,Π,Y) > 0 if and only if yi > 0 for at least some i ∈ Ck.

(B) p(Ck,Π,Y) strictly increases (resp. decreases) with an increase (resp. decrease) in the e�ort

of any member i ∈ Ck (resp. j /∈ Ck) where i, j ∈ N .

(C) For any i ∈ Ck and j ∈ Cℓ, if yi = yj then p(Ck,Π,Y) = p (C ′
k,Π

′,Y) where C ′
k = (Ck \ {i})∪

{j}, C ′
ℓ = (Cℓ \ {j}) ∪ {i}, and Π′ = (Π \ {Ck, Cℓ}) ∪ {C ′

k, C
′
ℓ}.

Assumption (1A) states that the partition function generates a probability distribution for any

e�ort vector over any coalition structure. Assumption (1B) states that if any player increases

e�ort, the winning probability of his coalition increases, but decreases the winning probability of

all remaining coalitions. Assumption (1C ) refers to between-group anonymity, i.e. the identities of

the groups do not matter. As players are identical, within-group anonymity is implied. Hence, a

coalition's winning probability is solely determined by the level of e�ort exerted by its constituent

players; their identities are irrelevant.
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The next two assumptions impose restrictions beyond the standard axiomatization of contest

success functions in literature. They are motivated by the standard generalised Tullock contest

success functions. Speci�cally, the Assumption 2 applies to settings where cooperation generates

e�ciency gains, while Assumption 3 applies to any generalised Tullock contest success functions.4

Assumption 2. (Convex-Concavity)

For any Ck ∈ Π, there exists a threshold z1 (p(.),Π,Y−Ck
) > 0 such that p(Ck,Π,Y) is strictly

concave (resp. convex) with respect to coalition Ck's e�ort for all YCk
> (resp. <) z1 (p(.),Π,Y−Ck

).

The threshold z1 (p(.),Π,Y−Ck
) increases with an increase in the aggregate e�orts YCj

of any rival

coalition Cj ̸= Ck.

This implies that there exists a point of in�ection at which the curvature of the winning prob-

ability function changes its sign. Hence, coalitions experience increasing marginal bene�t by in-

creasing e�orts if their aggregate e�ort is below z1(.). Otherwise, the coalition experiences di-

minishing marginal bene�t by increasing e�orts. This threshold, z1 (p(.),Π,Y−Ck
), is speci�c to

coalition Ck and depends on the partition function p(.), the coalition structure Π, and the vector

of aggregate e�ort by the remaining coalitions Y−Ck
. The e�ort region with increasing return,

[0, z1 (p(.),Π,Y−Ck
)], expands with higher e�ort of rivals.

The next assumption states the condition when the winning probability displays complementary

and substitutability with aggregate e�orts.

Assumption 3. (Eventual Supermodularity)

For any Ck ∈ Π, there exists a threshold z2 (p(.),Π,Y−Ck
) ≥ z1 (p(.),Π,Y−Ck

) > 0 such that

p(Ck,Π,Y) is supermodular (resp. submodular) with respect to Ck's e�ort and the e�ort of any

rival coalition for all YCk
> (resp. <) z2 (p(.),Π,Y−Ck

). The threshold z2 (p(.),Π,Y−Ck
) increases

with an increase in the aggregate e�orts YCj
of any rival coalition Cj ̸= Ck.

This implies that there exists a threshold point at which the winning probability function

changes its nature from being submodular to supermodular. As with the previous threshold,

z2 (p(.),Π,Y−Ck
) is also speci�c to coalition Ck and depends on the partition function, the coalition

structure, and the aggregate e�ort by the remaining coalitions.

The supermodularity of the winning probability implies that an increase in one coalition's e�orts

increases the marginal payo� of action for all its rival coalitions. That is, if coalition Ck chooses a

higher e�ort level, all other coalitions have an incentive to raise their e�ort levels too. Similarly,

4Generation of e�ciency gains means that the impact of the e�ort exerted by members of a coalition is greater

than its aggregate e�ort. Refer to Proposition 1 for details.
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submodularity of the winning probability implies that an increase in one coalition's e�orts decreases

the marginal payo� of action for all its rival coalitions.

2.2 Coalition formation game

Until now, we have discussed the structure assumptions 1 - 3 impose on the contest success function,

and hence on the payo� function. In this section, we consider a coalition formation mechanism based

on Bloch(1996). Our objective is to study the nature of the equilibrium coalition structure that

arises from the structure imposed on the payo� functions in this contest game.

We now begin describing the mechanism that is based on Bloch (1996). Players sequentially

form coalitions through a proposer-responder protocol: given that some coalitions have already

formed, players make proposals to coalitions and respond to proposals made to coalitions to which

they belong to. The proposer must include herself in the coalition. Once a coalition is proposed,

its members respond, according to a given order, by either accepting or rejecting the proposal. The

responders either accept the proposal or reject it. The coalition forms if the responders unani-

mously accept the proposal. Each remaining set of active players is assigned a random probability

distribution over proposers. The game then continues between the remaining active players.

If a responder rejects, it creates bargaining friction: the payo� is discounted by δ for all players.

The rejector may choose to leave, e�ectively forming a one-person coalition. If not, then the rejector

is chosen as a proposer in the next round with probability ρ and some other member with 1− ρ.

We formalize this mechanism based on Ray and Vohra (1997). Let π ⊂ Π be a coalition sub-

structure. De�ne K(π) =
⋃
C∈π

C and K(∅) = ∅ where ∅ denotes the null sub-structure. Let F denote

the family of all sub-structures. Given that some coalitions have formed the sub-structure π, the

set of players yet to form coalitions, N \K(π), are termed as active.

De�ne a function f : F → 2N such that f(π) assigns a coalition, that is not yet in π, to a given

sub-structure π. De�ne

cf (π) = π ∪ {f(π), f
(
π ∪ f(π)

)
, ...}

The vector cf (π) is interpreted as the coalition structure that forms, given π is already formed.

For any π, the equilibrium action of a proposer is σP
i (π,N) = f(π) to be the largest coalition

C ⊆ N \K(π) that maximises the average winning probability
p

(
f(π),c

(
π∪f(π)

))
f(π)

.5 This tie-breaking

rule implies that at every step, players form the largest coalition which maximises their average

5This tie-breaking rule incentivizes players towards forming the grand coalition. However, this assumption is not

important for our main results.
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winning probability, calculating the actions of the players that remain after they form a coalition.

If the player is a responder and the coalition f(π) is proposed, the responder's action is

σR
i (π,N, f(π)) = {Y es} or {No}. This is a stationary strategy as the information set for the

proposer does not depend on the history of proposals o�ered and rejections made. It depends only

on the current state {π,N \K(π)}; π is the coalition sub-structure formed and N \K(π) is the set

of active players.

A stationary perfect equilibrium is a pro�le of stationary strategies {σ}i∈N such that there is

no round at which a player bene�ts by deviating from her prescribed strategy. The equilibrium

coalition structure is given by Π∗ = c(∅).

3 Exogenous e�ort model

So far, we have described a two-stage process: in stage one players form coalitions, and in stage two

each player chooses their e�ort levels. At this level of generality - where the model involves imposing

intuitive assumptions - analysing these two stages is non-tractable. Therefore, we introduce an

interim step by assuming that every player exerts a constant and symmetric e�ort level in this

section. Speci�cally, every player exerts a constant e�ort level normalised to unity such that the

e�ort vector is a unit vector denoted by

Ȳ = {1, 1..., 1︸ ︷︷ ︸
n−times

}.

This e�ectively eliminates the e�ort choice game in stage two and allows us to focuses on the

coalition formation game played in stage one. The implication of this exogenous e�ort assumption

is the absence of the free-rider e�ect in our analysis. That is, the size of a coalition does not a�ect

the player's incentive to exert e�ort. However, by continuity this result extends to situations where

the free-rider e�ect is su�ciently low. In section 4 we identify conditions on the cost function for

which the free-rider e�ect is su�ciently low by using stylised contest success functions.6

Given the primitive assumptions on the sharing rule, if coalition Ck wins, then it divides the

prize equally among all members in the exogenous e�ort model.7 Thus, for any player i ∈ Ck the

6 It is worthwhile to mention that this exogenous e�ort model is interesting in its own right. If the properties

derived in Lemmas 1 and 2 are treated as primary assumptions, then they can be used to describe constant sum

games where the winning probability is determined by the player type. Tan and Wang (2010) and Skaperdas (1998)

treat such exogenous e�ort models for contest settings. Other applications of this constant sum game with player

type is a topic for future research.
7The proof for this statement is trivial and we leave it to the interested readers to verify it themselves.
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share of the prize is

s(yi,y
Ck
−i ) =

1

|Ck|
.

Hence, player i's payo� is given by

ui(Ck,Π, Ȳ) =
p(Ck,Π, Ȳ)

|Ck|
by applying the normalisation c(1) = 0. (2)

Observe that as the e�ort level is �xed, members of any coalition can alter their payo� only by

admitting new members from rival coalitions. The trade-o� of such an action is the following:

admitting a new member increases the coalition's winning probability, but decreases each member's

share of the prize in case of victory. Thus, coalition Ck adds a new member only if the marginal

increase in winning probability o�sets the decrease in the individual share of the prize.

The e�ect of such a transfer on the winning probability is unclear. Admitting a new member from

coalition Cj to Ck simultaneously increases Ck's, but decreases Cj's winning probability. Further,

such transfers also a�ect the winning probabilities of the remaining coalitions in Π. Therefore, we

need to understand how assumptions 1-3 a�ect the winning probabilities of all coalitions in Π if any

individual, or a sub-group of members, are transferred from one coalition to another.

Lemma 1. In the exogenous e�ort model, Assumption 1 implies the following properties

(P1)
∑

Ci∈Π
p(Ci,Π, Ȳ) = 1 for all Π ∈ P

(P2) If |Cj| ≥ |Ck|, then p(Cj,Π, Ȳ) ≥ p(Ck,Π, Ȳ) for all Cj, Ck ∈ Π and Π ∈ P

(P3) p(Cj,Π, Ȳ) = p(Ck,Π, Ȳ) if and only if |Cj| = |Ck| for all Cj, Ck ∈ Π and Π ∈ P

Proof. See Appendix.

This lemma states the implication of imposing the exogenous e�ort assumption. (P1) means that

the sum of winning probabilities adds to a constant number (unity); (P2) means that a coalition's

winning probability is increasing with its size; (P3) means that only the coalition's size (a number)

matters, and not the identity of the players. In this exogenous e�ort model, properties (P1)-(P3)

are a straightforward implication of assumption 1.

In our next result we study the e�ect assumptions 2 produce in this exogenous e�ort model.

For that purpose, we introduce some more notation. Consider a pair of coalitions Ck, Cℓ ∈ Π and

assume that some non-empty T ⊆ Cℓ leaves Cℓ and joins Ck, whereas all other coalitions remain

the same. The resulting coalition structure is denoted by ΠT

Cℓ → Ck

.
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Lemma 2. In this exogenous e�ort model, assumptions 1-3 imply that for any Ck, Cℓ ∈ Π and

Π ∈ P there exist thresholds z1
(
p(.),Π, Ȳ−Ck

)
and z2

(
p(.),Π, Ȳ−Ck

)
, where Ȳ−Ck

= {1, 1..., 1}︸ ︷︷ ︸
n−|Ck| times

,

such that

(i) If |Ck| ≥ z2
(
p(.),Π, Ȳ−Ck

)
, then the marginal increase in Ck's winning probability by admitting

players from Cℓ is decreasing:

p

(
Ck ∪ {j, k}, Π

Cℓ → Ck

{j,k}, Ȳ

)
− p

(
Ck ∪ {j}, Π

Cℓ → Ck

{j}, Ȳ

)
< p

(
Ck ∪ {j}, Π

Cℓ → Ck

{j}, Ȳ

)
− p

(
Ck,Π, Ȳ

)
(3)

(ii) If |Ck| ≤ z1
(
p(.),Π, Ȳ−Ck

)
, then the marginal decrease in Ck's winning probability by transfer-

ring players to Cℓ is increasing:

p

(
Ck \ {i, j}, Π

Ck → Cℓ

{i,j}, Ȳ

)
−p

(
Ck \ {i}, Π

Ck → Cℓ

{i}, Ȳ

)
> p

(
Ck \ {i}, Π

Ck → Cℓ

{i}, Ȳ

)
−p(Ck,Π, Ȳ) (4)

Proof. See Appendix.

Lemma 2 means that the marginal increase in the winning probability by adding members -

through pair-wise transfers - is increasing as long as Ck's size is less than the threshold z1
(
p(.),Π, Ȳ−Ck

)
.

Conversely, the marginal increase in the winning probability by adding members is decreasing if

Ck's size is greater than the threshold z2
(
p(.),Π, Ȳ−Ck

)
.8 This property resonates with Assumption

2 where the winning probability displays increasing returns below a threshold, and then diminishing

returns with e�ort. For this exogenous e�ort model, an increase in a coalition's e�ort (by adding

members) is met with a simultaneous decrease in e�ort by another coalition (by transferring mem-

bers). However, we show that the winning probability's convex-concave property extends to such

discrete pair-wise transfers.

Based on the properties derived in Lemmas 1 and 2, we begin the equilibrium analysis for the

coalition formation game described in section 2.2 for this exogenous e�ort model. Any proposer faces

the following trade-o� while maximising payo� (2): From part (B) in Lemma 1, larger coalitions

have a greater worth. However, that worth is shared among more members. Hence, pair-wise

transfers that increase the size of a coalition have an ambiguous e�ect on its member's payo�: the

coalition worth increases, but individual share decreases with coalition size. Thus, the proposer

chooses a coalition size to optimize the trade-o� between coalition worth and size while accounting

for the actions of rivals.

8Recall that by assumption we have z2
(
p(.),Π, Ȳ−Ck

)
> z1

(
p(.),Π, Ȳ−Ck

)
. By continuity, there will exist a

z̄ ∈ [z1
(
p(.),Π, Ȳ−Ck

)
, z2
(
p(.),Π, Ȳ−Ck

)
] for which the marginal increase of the winning probability is increasing

(resp. decreasing) for all sizes less (resp. greater) than z̄.
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Theorem 1. In the exogenous e�ort model, if assumptions 1-3 are satis�ed, then any stationary

perfect equilibrium (SPE) is non-symmetric: Π∗ = {C∗
1 , C

∗
2 , ...C

∗
K} where ̸= |C∗

j | for at least one

pair C∗
i , C

∗
j ∈ Π∗ and K ∈ {2, 3...n− 1}.

Proof. Refer to the appendix.

This result implies that if a standard CSF satis�es Assumption 1 - 3, then the equilibrium is

an intermediate coalition structure. That is, neither the extreme of the grand coalition forms nor

the other extreme of no coalitions occurs (as both are symmetric equilibria). In other words, the

incentive to cooperate exists, but not full cooperation.

The intuition for this result is that Assumptions 2 and 3 lead to an increasing returns property:

the marginal bene�t from admitting members increases until a threshold. Assumption 2 introduces

the incentive to cooperate, while assumption 3 relates this property to contest settings. At the same

time, by forming the grand coalition there is no value addition from e�ciency gains as all players

divide the prize equally. Therefore, it is pro�table to form a majority coalition to encash e�ciency

gains and engage in a contest.

Let us compare this result with those existing in literature. Using a certain speci�cation of

the Tullock contest success function, Skaperdas (1998) shows that in a three-player model and a

generalized Tullock CSF, two players form a coalition if and only if the CSF displays a increasing

returns property. Tan and Wang (2010) produce similar results where players form two competing

coalitions at equilibrium with n players under the same increasing returns property in a stylised

model. Theorem 1 generalizes this theory and identi�es the economic principles under which the

formation of multiple groups is possible. In the following result (Corollary 1.1), we show that the

equilibrium is not limited to two coalitions, but three or more coalition may form depending on the

nature of the winning probability function.

Corollary 1.1. In the exogenous e�ort model, given assumptions 1-3, the formation of three or

more coalitions is possible. The number of coalitions formed at equilibrium is likely to be high if

(i) the threshold coalition size, z2
(
p(.),Π, Ȳ−Ck

)
, is low for any Ck ∈ Π and Π ∈ P.

(ii) the marginal increase in winning probability diminishes rapidly beyond that threshold z2 (.).

The su�cient conditions for the formation of exactly three coalitions at equilibrium are stated in

the Appendix.

In the proof of this result, we �rst show that if the set of active players (those that have not yet

agreed on forming coalitions) is non-empty, then splitting into two coalitions dominates forming a

13



single coalition under certain conditions (Lemma 6). The discussion that follows this lemma in the

Appendix relates these conditions with conditions (i) and (ii) in Corollary 1.1.

We state su�cient conditions for the formation of three coalitions in the Appendix. The intuition

for this result is as follows. If C1 ⊂ N is the �rst coalition to form, then the remaining players, N\C1,

may either split into further coalitions or form a single coalition. From Lemma 5, if the threshold

z1
(
p(.),Π, Ȳ−C1

)
is high, then a single coalition N \C1 forms. However, if z1

(
p(.),Π, Ȳ−C1

)
is low

and the increase in winning probability diminishes rapidly with size beyond z2
(
p(.),Π, Ȳ−C1

)
, then

e�ciency gains from forming, say D ⊂ N \ C1, is higher than forming a single coalition N \ C1.
9

Thus, three coalitions would tend to form. Note, that this reasoning is similar to that in Theorem

1 where we prove that atleast two coalitions form. Further, by induction, this logic extends to the

formation of more than three coalitions. Lastly, we illustrate the formation of three coalitions in

Example 1 with a 5 players.

Example 1. Consider n = 5 player setting where the winning probability function is given by the

generalised Tullock contest success function given by

p̄(Ck,Π, Ȳ) =
|Ck|R|Ck|

|Ck|R|Ck| +
∑
j ̸=k

|Cj|R|Cj |
. (5)

If R2 > 1 and R3 = R4 = 2, then the unique coalition structure formed at the stationary perfect

equilibrium is

Π∗ =


{C∗

1 , C
∗
2 , C

∗
3} where |C∗

1 | = 2, |C∗
2 | = 2, |C∗

3 | = 1 if R2 > 3

{D∗
1, D

∗
2} where |D∗

1| = 4, |D∗
2| = 1 if 1.9069 ≤ R2 ≤ 3

{S∗
1 , S

∗
2} where |S∗

1 | = 3, |S∗
2 | = 2 if 1 < R2 < 1.9069

In the exogenous e�ort model, the aggregate e�ort of the coalition is given by its size. The

parameter R|Ck| is the impact factor for any coalition of size |Ck|. In proposition 1 (section 4) we

show that p̄(.) satis�es assumptions 1-3 as long as R|Ck| > 1 for any Ck ∈ Π and Π ∈ P. Therefore,

we have assumed Ri > 1 for all i ∈ {2, 3, 4}. Thus, the formation of three coalitions at equilibrium

is demonstrated.

Summarizing this section, we introduced the exogenous e�ort assumption and studied the coali-

tion formation game discussed in Section 2.2. We �nd that if a contest success function that

satis�es standard axioms (A1) also displays convex/concavity (A2) and sub/supermodularity (A3),

then players form coalitions, but not the grand coalition. Further, the possibility of forming three

or more coalitions exists.
9As z2 (.) ≥ z1 (.), low z2(.) implies low z1(.).
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4 Endogenous e�ort model

In the previous section 3, we analyzed the model assuming e�orts are constant. In this section, we

relax that assumption and revisit the model with endogenous e�orts discussed in section 2. The

endogenous e�ort model involves a two-stage game: at stage one, coalitions form; at stage two,

players choose e�orts. The results from section 3 apply to endogenous e�orts provided the cost

function is su�ciently convex. We observe this continuity in results because the exogenous e�ort

is a sub-case of a convex cost function. After all, the cost of increased e�ort from zero to one is

negligible, and then increasing e�ort beyond one has an in�nite cost. Hence, by continuity, our

results extend to su�ciently convex cost functions.

To demonstrate this argument, we �rst discuss the equilibrium of e�ort at stage 2. For simplicity,

we �rst assume an e�ort-independent equal division rule. Thus, we include the free-rider e�ect, but

at the same time, exclude the complications that arise from the e�ort-dependent rules. 10 Second,

we conduct this analysis with the generalized Tullock CSF and exponential cost to keep the analysis

tractable. Thus, the individual payo� for the e�ort-independent equal division rule is given by

u(Ck,Π,Y) =
p̄(Ck,Π,Y)

|Ck|
− yαi where α > 1.

The winning probability in the payo� above is given by

p̄(Ck,Π,Y) =
Y

RCk
Ck

Y
RCk
Ck

+
∑

Cj ̸=Ck

Y
RCj

Cj

. (6)

The parameter RCk
quanti�es the impact of coalition Ck's aggregate e�ort on its winning probability.

We �rst identify the class of generalised Tullock CSFs characterised by the assumptions stated in

Section 2.

Proposition 1. The generalized Tullock contest success function (6) satis�es assumptions 1-3 if

and only if RCk
> 1 for all Ck ∈ Π.

The impact factor RCk
> 1 implies that coalitions generate e�ciency gains from cooperation.

This speci�cation accommodates settings where the e�ciency gains generated decreases (or in-

creases) with coalition size. Thus, our assumptions identify a wide class of contest success functions,

speci�cally all those settings where cooperation generates e�ciency gains.

10As players are symmetric, members of any coalition will exert equal e�orts at equilibrium. We prove this for

the e�ort independent sharing rule in the proof of proposition 2. The same argument extends to e�ort-dependent

sharing rules. Hence, this assumption does not change the economic insights developed in this section.
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Next, we analyse the e�ort equilibrium. The cost function is strictly convex for α > 1. Hence,

from assumption 2 we conclude that for any given coalition structure and aggregate rivals' e�orts,

the payo� function is convex-concave in yi. Therefore, the existence of a unique equilibrium of e�orts

is guaranteed. However, players may exert zero e�ort at equilibrium (a corner solution). If all the

members of a coalition exert zero e�ort at equilibrium, then that coalition fails to participate in the

contest. In other words, for any coalition structure, the contest is played among those coalitions

where at least one member chooses to exert positive e�ort. To ensure participation of all players,

we provide a su�cient condition for exerting positive e�ort.

Proposition 2. If α > R|Ck| + 1 for all Ck ∈ Π, then there always exists an interior equilibrium of

e�orts: Y ∗
Ck

> 0 for any Ck ∈ Π and Π ∈ P.

This means that irrespective of the coalition structure formed, every coalition participates in the

contest if the cost function is su�ciently convex. The reason we focus on this situation is because -

as explained in the �rst paragraph of this section - the main results from Section 3 are applicable to

su�ciently convex functions. Therefore, we restrict our attention to this situation for the remaining

section to avoid the complications that may arise from potential corner solutions.

Our next result states the condition for which our main result (theorem 1) extends to the case

of endogenous e�ort.

Proposition 3. If the payo� function is given by (6) such that RCk
= R for all Ck ∈ Π and Π ∈ P,

then the equilibrium partition is non-symmetric if α > max{ᾱ, R + 1} where ᾱ ∈ (2,∞) satis�es

(
|C|

n−|C|

)R(1− 2
ᾱ)

|C|
(
1 +

(
|C|

n−|C|

)R(1− 2
ᾱ)
)
1− R

ᾱ|C|
(
1 +

(
|C|

n−|C|

)R(1− 2
ᾱ)
)
 =

1

n
.

This proposition states that the equilibrium coalition structure will always be non-symmetric as

long as α is su�ciently large. Note that the larger α is, the closer is the endogenous e�ort model to

the exogenous e�ort model discussed in section 3. Hence, we prove our initial conjecture that the

results from section 3 extend to endogenous budgets when the cost function is su�ciently convex.

The proof of this proposition follows two steps. First, we prove that the grand coalition delivers

a higher individual payo� compared to any equal-sized coalition structure. This is because any

individual player's expected share of the prize in an equal-sized coalition structure is equal to

that obtained by forming the grand coalition. However, in the presence of competition, members

need to bear the cost of exerting e�ort that lowers their payo�. Second, we show that for any

non-symmetric bipartite coalition structure, the members of the larger coalition earn a payo� that
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exceeds the grand coalition if α is su�ciently high. Lastly, we show that if the size of the larger

coalition is su�ciently high, then the optimal response of the remaining players is to band together

and form a coalition. Hence, for a su�ciently large α, there exists a bipartite structure that strictly

dominates forming the grand coalition. Note that we have assumed additional symmetry of the

impact factors, RCk
= R, to prove this result. However, by continuity, this would apply even to

asymmetric impact factors.

5 Conclusion

In this paper, we analyze a group contest where identical players endogenously form coalitions. The

coalition formation mechanism operates under the condition that the agreements are binding; i.e.,

players cannot deviate once a coalition is formed. This mechanism, based on Bloch(1996) and Ray

and Vohra (1997), is essentially a game among the players whose outcome is a coalition structure,

and the solution concept is de�ned for a coalition structure, based on the players' strategies in that

mechanism.

The main novelty of our model is that we formulate the partition function as a contest success

function through certain assumptions. These assumptions �t group contest settings where coopera-

tion leads to e�ciency gains. We show that if the contest success function is speci�ed through those

assumptions, then any equilibrium coalition structure consists of two or more coalitions where no

two coalitions are of equal size. This indicates that there is an imbalance of power across coalitions

at equilibrium. Further, we show that the formation of three or more coalitions is possible at equi-

librium. As literature only provides the conditions for the formation of two competing coalitions,

this result provides new insight into the literature.

6 Appendix

Proof of Lemma 1

Proof. The unit e�ort vector is Ȳ where the e�ort exerted by any player yi = 1 for any i ∈ N .

Now, (P1) and (P3) are a direct implication of assumption (1A) and (1C). To show (P2), consider

two players i ∈ Ck and j ∈ Cℓ where Cℓ is some rival coalition in Π. Let Yi=a
j=b denote the e�ort

vector where yi = a, yj = b and yk = 1 for all k ̸= i, j.
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By assumption (1B) we get

p
(
Ck,Π,Y

i=2
j=0

)
> p

(
Ck,Π,Y

i=2
j=1

)
> p

(
Ck,Π,Y

i=1
j=1

)
(7)

p
(
Cℓ,Π,Y

i=1
j=1

)
> p

(
Cℓ,Π,Y

i=1
j=0

)
> p

(
Cℓ,Π,Y

i=2
j=0

)
. (8)

Observe that Yi=1
j=1 = Ȳ, therefore

p
(
Ck,Π,Y

i=2
j=0

)
= p

(
Ck ∪ {j},Π{j}

Cℓ → Ck

, Ȳ

)
and p

(
Cℓ,Π,Y

i=2
j=0

)
= p

(
Cℓ \ {j},Π{j}

Cℓ → Ck

, Ȳ

)
In words, an increase in unit e�ort by player i ∈ Ck, and a simultaneous decrease in e�ort by player

j ∈ Cℓ is equivalent to transferring player j from coalition Cℓ to Ck. From inequalities (7) and (8)

we obtain

p

(
Ck ∪ {j}, Π

Cℓ → Ck

{j}, Ȳ

)
> p

(
Ck,Π, Ȳ

)
and p

(
Cℓ \ {j}, Π

Cℓ → Ck

{j}, Ȳ

)
< p

(
Cℓ,Π, Ȳ

)
. (9)

Next, consider a transfer of some T ⊆ Ck to Cℓ where |T | = |Ck|−|Cℓ|
2

and |Ck| > |Cℓ|. As |Ck|−|T | =

|Cℓ| + |T |, symmetry entails p

(
Ck \ T, ΠT

Ck → Cℓ

, Ȳ

)
= p

(
Cℓ ∪ T, ΠT

Ck → Cℓ

, Ȳ

)
. Thus, by inequality (9)

we get

p(Ck,Π, Ȳ) ≥ p

(
Ck \ T, ΠT

Ck → Cℓ

, Ȳ

)
= p

(
Cℓ ∪ T, ΠT

Ck → Cℓ

, Ȳ

)
≥ p(Cℓ,Π, Ȳ).

Hence, (P2) is proved.

To prove the proposition 2, we introduce the following lemma. Note that this lemma is proved

for the case where e�ort is variable.

Lemma 3.
∂2p(Ck,Π,Y)

∂y2i
⋚ 0 for all YCk

⋚ z1(p(.),Π, Y−Ck
)

where i ∈ Cj, Cj ̸= Ck and z1(p(.),Π, Y−Ck
) is the threshold from Assumption 2.

Proof. For any Π = {C1, C2..., CK}, the winning probability of all coalitions sums to one (Assump-

tion 1A).
K∑
i=1

p(Ci,Π,Y) = 1. (10)

Note that the e�ort vector is variable: Y = {y1, y2..., yn}. As the partition function is continuous

and di�erentiable with respect to the e�ort of any player, we take the double derivative of equality

(10)
d2p(Ck,Π,Y)

dy2i
+
∑
j ̸=k

d2p(Cj,Π,Y)

dy2i
= 0 where i ∈ Ck. (11)
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By symmetry, the sign, either positive or negative, of the partition function's second order derivative

for any two coalitions apart from Ck must be identical.

sign

∣∣∣∣d2p(Cj,Π,Y)

dy2i

∣∣∣∣ = sign

∣∣∣∣d2p(Cℓ,Π,Y)

dy2i

∣∣∣∣ for any Cj, Cℓ ∈ Π and j ̸= ℓ ̸= k.

Now, in order for the equality (11) to hold it must be the case that

sign

∣∣∣∣d2p(Ck,Π,Y)

dy2i

∣∣∣∣ = −sign

∣∣∣∣d2p(Cj,Π,Y)

dy2i

∣∣∣∣ for any Cj ∈ Π and j ̸= k.

Therefore if d2p(Ck,Π,Y)

dy2i
⋛ 0, then

d2p(Cj ,Π,Y)

dy2i
⋚ 0 for any j ̸= k. By assumption 2 we know that the

partition function is convex (resp. concave) or d2p(Ck,Π,Y)

dy2i
> (resp. <) 0 whenever YCk

< (resp. >

) z1(p(.),Π, Y−Ck
). Hence, proved.

.

Proof of Lemma 2

Proof. Consider the exogenous e�ort model where each player exerts constant e�ort yi = 1 for any

i ∈ N and the unit e�ort vector is Ȳ. Therefore, YCk
= |Ck| for any Ck ∈ Π. Consider a di�erent

coalition Cℓ ∈ Π such that |Cℓ| ≥ 2.

Part I: To show that admitting members to coalition Ck leads to a diminishing increase in its win-

ning probability stated in inequality (3).

Let |Ck| ≥ z2(p(.),Π, Ȳ−Ck
) ≥ z1(p(.),Π, Ȳ−Ck

) as necessitated by Assumption 2. Also, consider

players i ∈ Ck and j, k ∈ Cℓ such that Yi=a
j=b,k=c denotes the e�ort vector where yi = a, yj = b,

yk = c and yℓ = 1 for all ℓ ̸= i, j, k. Note that Ȳ = Yi=1
j=1,k=1.

Step 1: To show that

p
(
Ck,Π,Y

i=2
j=1,k=1

)
− p

(
Ck,Π,Y

i=1
j=1,k=1

)
> p

(
Ck,Π,Y

i=3
j=0,k=1

)
− p

(
Ck,Π,Y

i=2
j=0,k=1

)
. (12)

From assumption 2, we know that the winning probability of coalition Ck displays marginal de-

creasing returns with its e�ort. That is, if the e�ort of player i ∈ Ck increases, while that of players

j, k ∈ Cℓ remains unchanged, then we get

p
(
Ck,Π,Y

i=2
j=1,k=1

)
− p

(
Ck,Π,Y

i=1
j=1,k=1

)
> p

(
Ck,Π,Y

i=3
j=1,k=1

)
− p

(
Ck,Π,Y

i=2
j=1,k=1

)
(13)

By assumption 3, the winning probability of coalition Ck displays supermodularity with respect

to the e�ort of a rival coalition Cj. That is, if the e�ort of player j ∈ Cℓ increases, then the marginal

bene�t accrued through player i's increase in e�ort increases.

p
(
Ck,Π,Y

i=3
j=1,k=1

)
− p

(
Ck,Π,Y

i=2
j=1,k=1

)
> p

(
Ck,Π,Y

i=3
j=0,k=1

)
− p

(
Ck,Π,Y

i=2
j=0,k=1

)
(14)
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From equations (13) and (14) we obtain inequality (12)

Step 2: To show that

p
(
Ck,Π,Y

i=2
j=0,k=1

)
− p

(
Ck,Π,Y

i=2
j=1,k=1

)
> p

(
Ck,Π,Y

i=3
j=0,k=0

)
− p

(
Ck,Π,Y

i=3
j=0,k=1

)
. (15)

As |Ck| ≥ z1(p(.),Π, Ȳ−Ck
), from lemma 3, coalition Ck's winning probability displays increasing

marginal returns with any rival Cj's e�ort. Therefore, we have

p
(
Ck,Π,Y

i=2
j=0,k=1

)
− p

(
Ck,Π,Y

i=2
j=1,k=1

)
> p

(
Ck,Π,Y

i=2
j=0,k=0

)
− p

(
Ck,Π,Y

i=2
j=0,k=1

)
. (16)

Again, by assumption 3, if the e�ort of player k ∈ Cℓ increases, then the marginal bene�t accrued

through player i's increase in e�ort increases.

p
(
Ck,Π,Y

i=3
j=0,k=1

)
− p

(
Ck,Π,Y

i=2
j=0,k=1

)
> p

(
Ck,Π,Y

i=3
j=0,k=0

)
− p

(
Ck,Π,Y

i=2
j=0,k=0

)
.

Rewriting the above inequality gives

p
(
Ck,Π,Y

i=2
j=0,k=0

)
− p

(
Ck,Π,Y

i=2
j=0,k=1

)
> p

(
Ck,Π,Y

i=3
j=0,k=0

)
− p

(
Ck,Π,Y

i=3
j=0,k=1

)
. (17)

From equations (16) and (17) we obtain inequality (15).

Step 3: Add inequalities (12) and (15) mentioned in steps 1 and 3 respectively to obtain

p
(
Ck,Π,Y

i=2
j=0,k=1

)
− p

(
Ck,Π,Y

i=1
j=1,k=1

)
> p

(
Ck,Π,Y

i=3
j=0,k=0

)
− p

(
Ck,Π,Y

i=2
j=0,k=1

)
. (18)

Observe p
(
Ck,Π,Y

i=2
j=0,k=1

)
is equivalent to the winning probability obtained by transferring player

j ∈ Cℓ to Ck in the exogenous e�ort model.

p
(
Ck,Π,Y

i=2
j=0,k=1

)
≡ p

(
Ck ∪ {j}, Π

Cℓ → Ck

{j}, Ȳ

)
(19)

Similarly, p
(
Ck,Π,Y

i=3
j=0,k=0

)
is equivalent to the winning probability obtained by transferring play-

ers j, k ∈ Cℓ to Ck.

p
(
Ck,Π,Y

i=3
j=0,k=0

)
≡ p

(
Ck ∪ {j, k}, Π

Cℓ → Ck

{j,k}, Ȳ

)
(20)

Hence, inequality (18) is equivalent to (3).

Part II: To show that admitting members to coalition Ck displays an increase returns property

as stated in inequality (4).

Let |Ck| ≤ z1(p(.),Π, Ȳ−Ck
) ≤ z2(p(.),Π, Ȳ−Ck

). Also, consider players i, j ∈ Ck and k ∈ Cℓ such

that Yi=a,j=b
k=c denotes the e�ort vector where yi = a, yj = b, yk = c and yℓ = 1 for all ℓ ̸= i, j, k.
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Note that Ȳ = Yi=1,j=1
k=1 .

Step 1: To show

p
(
Ck,Π,Y

i=1,j=1
k=1

)
− p

(
Ck,Π,Y

i=0,j=1
k=1

)
> p

(
Ck,Π,Y

i=0,j=1
k=2

)
− p

(
Ck,Π,Y

i=0,j=0
k=2

)
. (21)

From assumption 2 , the winning probability of coalition Ck displays increasing marginal returns

with its own e�ort. That is, if the e�ort of players i, j ∈ Ck increases, while that of player k ∈ Cℓ

remains unchanged, then we get

p
(
Ck,Π,Y

i=1,j=1
k=1

)
− p

(
Ck,Π,Y

i=0,j=1
k=1

)
> p

(
Ck,Π,Y

i=0,j=1
k=1

)
− p

(
Ck,Π,Y

i=0,j=0
k=1

)
. (22)

Note that the RHS of the above inequality is the increase in winning probability obtained by a unit

increase in e�ort by player j ∈ Ck. Consequently, the aggregate e�ort of coalition Ck increases from

|Ck| − 2 to |Ck| − 1. The LHS is the increase in winning probability obtained by a unit increase in

e�ort by player i ∈ Ck given player j's increase. Hence, the aggregate e�ort of coalition Ck increases

from |Ck| − 1 to |Ck|.

By assumption 3, the winning probability of coalition Ck displays submodularity concerning the

e�ort of a rival coalition Cj. That is, if the e�ort of player k ∈ Cℓ increases, then the marginal

bene�t accrued through player j's increase in e�ort decreases.

p
(
Ck,Π,Y

i=0,j=1
k=1

)
− p

(
Ck,Π,Y

i=0,j=0
k=1

)
> p

(
Ck,Π,Y

i=0,j=1
k=2

)
− p

(
Ck,Π,Y

i=0,j=0
k=2

)
. (23)

From equations (22) and (23) we obtain inequality (21).

Step 2: To show

p
(
Ck,Π,Y

i=0,j=1
k=1

)
− p

(
Ck,Π,Y

i=0,j=1
k=2

)
> p

(
Ck,Π,Y

i=0,j=0
k=2

)
− p

(
Ck,Π,Y

i=0,j=0
k=3

)
. (24)

As |Ck| ≤ z1(p(.),Π, Ȳ−Ck
), from lemma 3, the winning probability of coalition Ck displays dimin-

ishing marginal returns with player k's e�ort who belongs to the rival coalition Cℓ.

p
(
Ck,Π,Y

i=0,j=1
k=2

)
− p

(
Ck,Π,Y

i=0,j=1
k=1

)
> p

(
Ck,Π,Y

i=0,j=1
k=2

)
− p

(
Ck,Π,Y

i=0,j=1
k=3

)
. (25)

Again from assumption 3 we can write

p
(
Ck,Π,Y

i=0,j=1
k=2

)
− p

(
Ck,Π,Y

i=0,j=0
k=2

)
> p

(
Ck,Π,Y

i=0,j=1
k=3

)
− p

(
Ck,Π,Y

i=0,j=0
k=3

)
.

Rewriting the above inequality gives

p
(
Ck,Π,Y

i=0,j=1
k=2

)
− p

(
Ck,Π,Y

i=0,j=1
k=3

)
> p

(
Ck,Π,Y

i=0,j=0
k=2

)
− p

(
Ck,Π,Y

i=0,j=0
k=3

)
. (26)
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From equations (25) and (26) we obtain (24).

Step 3: Add inequalities (21) and (24) from steps 1 and 2 respectively to obtain (4)

p
(
Ck,Π,Y

i=1,j=1
k=1

)
− p

(
Ck,Π,Y

i=0,j=1
k=2

)
> p

(
Ck,Π,Y

i=0,j=1
k=2

)
− p

(
Ck,Π,Y

i=0,j=0
k=3

)
. (27)

Observe that p
(
Ck,Π,Y

i=0,j=1
k=2

)
is equivalent to the winning probability obtained by transferring

player i from Ck to Cℓ.

p
(
Ck,Π,Y

i=0,j=1
k=2

)
≡ p

(
Ck \ {i}, Π

Ck → Cℓ

{i}, Ȳ

)
(28)

Similarly, p
(
Ck,Π,Y

i=0,j=0
k=3

)
is equivalent to the winning probability obtained by transferring play-

ers i, j from Ck to Cℓ.

p
(
Ck,Π,Y

i=0,j=0
k=3

)
≡ p

(
Ck \ {i, j}, Π

Ck → Cℓ

{i,j}, Ȳ

)
(29)

Hence, inequality (18) is equivalent to (4).

.

We prove the main result in theorem 1, through a sequence of smaller results stated in lemmas 4

and 5. This structure should facilitate the reader to connect the statements of these lemmas to

understand the main intuition for the result.

Lemma 4. If |Ck| ≤ z1(p(.),Π, Ȳ−Ck
), then admitting members increases its members' payo�.

Formally,

p
(
Ck,Π, Ȳ

)
|Ck|

>

p

(
Ck \ {i}, Π{i}

Ck → Cj

, Ȳ

)
|Ck| − 1

Proof. The individual payo� for members in Ck can be algebrically manipulated and written as

follows.

p
(
Ck,Π, Ȳ

)
|Ck|

=

[
p
(
Ck,Π, Ȳ

)
− p

(
Ck \ {i}, Π{i}

Ck → Cj

, Ȳ

)]
+ p

(
Ck \ {i}, Π{i}

Ck → Cj

, Ȳ

)
|Ck|

(30)

Next, suppose i ∈ Ck is transferred to Cj. Subtract the payo� of members in the coalition Ck \ {i},

that is generated as a consequence of the transfer, from (30).

p(Ck,Π,Ȳ)
|Ck|

−
p

(
Ck\{i}, Π{i}

Ck → Cj

,Ȳ

)
|Ck|−1

=
(|Ck|−1)

[
p(Ck,Π,Ȳ)−p

(
Ck\{i}, Π{i}

Ck → Cj

,Ȳ

)]
−p

(
Ck\{i}, Π{i}

Ck → Cj

,Ȳ

)
|Ck|(|Ck|−1)

(31)
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In the remaining proof, we show that the numerator of the expression on the RHS of equality (31)

is positive due to the convexity assumption 2 that results in inequality (4) stated in Lemma 2 for

the exogenous e�ort model.

Step 1: To show that inequality (4) holds for coalitions smaller than Ck.

As we have assumed z1(p(.),Π, Ȳ−Ck
) to decrease with e�ort in our model, for any possibly

empty set T ⊆ Ck, we have

z1(p(.),Π, Ȳ−Ck
) ≤ z1

(
p(.), ΠT

Ck → Cj

, Ȳ−{Ck\T}

)
as Ȳ−{Ck\T} ≤ Ȳ−Ck

.

Therefore |Ck \ T | ≤ z1

(
p(.), ΠT

Ck → Cj

, Ȳ−{Ck\T}

)
for all T ⊆ Ck

Given |Ck| ≤ z1(p(.),Π, Ȳ−Ck
), from inequality (4) in lemma 2 we have

p

(
Ck \ T, ΠT

Ck → Cj

, Ȳ

)
− p

(
Ck \ {T ∪ {i}},ΠT∪{i}

Ck → Cj

, Ȳ

)
> p

(
Ck \ {T ∪ {i}},ΠT∪{i}

Ck → Cj

, Ȳ

)
− p

(
Ck \ {T ∪ {i, j}},ΠT∪{i,j}

Ck → Cj

, Ȳ

)
(32)

As the above inequality holds for any T ⊆ Ck, we conclude that if |Ck| ≤ z1(p(.),Π, Ȳ−Ck
), then

inequality (4) also holds for any coalition size smaller than Ck.

Step 2: Suppose we begin with a singleton coalition, and continue to admit members in unit

increments till the coalition Ck forms. We show that the terminal increase in winning probability

given by the LHS of (33) is greater than the average of all increases in transfers to coalition Ck.

As inequality (32) holds for any T ⊆ Ck, we get

p
(
Ck,Π, Ȳ

)
− p

(
Ck \ {i}, Π{i}

Ck → Cj

, Ȳ

)
> p

(
Ck \ {T ∪ {i}},ΠT∪{i}

Ck → Cj

, Ȳ

)
− p

(
Ck \ {T ∪ {i, j}},ΠT∪{i,j}

Ck → Cj

, Ȳ

)
∀T ⊂ Ck.

(33)

Next, we generate a system of inequalities by increasing the set of players being transferred T as

follows

p
(
Ck,Π, Ȳ

)
− p

(
Ck \ {i}, Π{i}

Ck → Cj

, Ȳ

)
> p

(
Ck \ {i}, Π{i}

Ck → Cj

, Ȳ

)
− p

(
Ck \ {i, j},Π{i,j}

Ck → Cj

, Ȳ

)
where T = {∅}

p
(
Ck,Π, Ȳ

)
− p

(
Ck \ {i}, Π{i}

Ck → Cj

, Ȳ

)
> p

(
Ck \ {i, k},Π{i,k}

Ck → Cj

, Ȳ

)
− p

(
Ck \ {i, j, k},Π{i,j,k}

Ck → Cj

, Ȳ

)
where T = {k}

... >
...

p
(
Ck,Π, Ȳ

)
− p

(
Ck \ {i}, Π{i}

Ck → Cj

, Ȳ

)
> p

(
{ℓ},ΠCk\{ℓ}

Ck → Cj

, Ȳ

)
− p

(
{∅},Π{Ck}

Ck → Cj

, Ȳ

)
where T = Ck \ {ℓ}

Adding the above inequalities, we get

p
(
Ck,Π, Ȳ

)
− p

(
Ck \ {i}, Π{i}

Ck → Cj

, Ȳ

)
>

p

(
Ck \ {i}, Π{i}

Ck → Cj

, Ȳ

)
− p

(
{∅},Π{Ck}

Ck → Cj

, Ȳ

)
|Ck| − 1

. (34)

23



As p

(
{∅},Π{Ck}

Ck → Cj

, Ȳ

)
= 0, from equality (31) and inequality (34), we conclude that

p
(
Ck,Π, Ȳ

)
|Ck|

−
p

(
Ck \ {i}, Π{i}

Ck → Cj

, Ȳ

)
|Ck| − 1

> 0

The next lemma shows that if the number of active players is less than its respective threshold,

then all the remaining players form a coalition. For this purpose, we restate the notation de�ned in

section 2.2. Consider a sub-coalition structure at round t ≥ 0 denoted by πt = {C1, C2, ...Ct} such

that K(πt) = N \ At where At ̸= ∅ is the set of active players.11 The �nal coalition structure will

be Π = πt ∪ {Ct+1, Ct+2...CK} where At =
K−t⋃
i=1

Ct+i.

Lemma 5. If z1
(
p(.),Π, Ȳ−At

)
≥ |At|, then the optimal strategy of the proposer is σP

i (πt, N) = At

and the responder is σR
i (πt, N, f(πt)) = Y .

Proof. The central theme of this proof is that members of coalitions Ci and Cj where i, j ≥ t + 1

always bene�t from merging. Therefore, given the sub-coalition structure at round t ≥ 0 is

πt = {C1, C2, ...Ct}, the optimal proposal at round t+ 1 is σP
i (πt, N) = At.

To show this, we divide our proof in two steps. Suppose the coalition structure Π = πt ∪

{Ct+1, Ct+2...CK} forms.

Step 1: To show that ui(Ci,Π, Ȳ) > ui(Cj,Π, Ȳ) if |Ci| > |Cj| for any i, j ≥ t+ 1.

Without loss of generality, let |Ci| > |Cj| where i, j ≥ t+ 1. Transfer a subset of players S ⊂ Ci to

Cj. As |At| > |Ci|, from Lemma 4 and symmetry we can conclude that for |S| = |Ci|−|Cj |
2

,

p
(
Ci,Π, Ȳ

)
|Ci|

>

p

(
Ci \ S, ΠS

Ci → Cj

, Ȳ

)
|Ci| − |S|

=

p

(
Cj ∪ S, ΠS

Ci → Cj

, Ȳ

)
|Cj|+ |S|

>
p
(
Cj,Π, Ȳ

)
|Cj|

(35)

Step 2: To show that ui(Ci ∪ Cj, Π
Cj

Cj → Ci

, Ȳ) > max{ui(Ci,Π, Ȳ), ui(Cj,Π, Ȳ)} for any i, j ≥ t+ 1.

Consider a sequential transfer of players form Cj to Ci. As |At| ≥ |Ci| + |Cj|, from Lemma 4 and

inequality (35), we can write

p

(
Ci∪Cj , Π

Cj
Cj → Ci

,Ȳ

)
|Ci|+|Cj | > ... >

p

(
Ci∪{i,j},Π{i,j}

Cj → Ci

,Ȳ

)
|Ci|+2

>
p

(
Ci∪{i}, Π{i}

Cj → Ci

,Ȳ

)
|Ci|+1

>
p(Ci,Π,Ȳ)

|Ci| >
p(Cj ,Π,Ȳ)

|Cj |

11Note that π0 = ∅.
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Hence, by merging coalitions Ci and Cj yields the maximum individual payo� to the members.

p

(
Ci ∪ Cj, Π

Cj

Cj → Ci

, Ȳ

)
|Ci|+ |Cj|

> max

{
p
(
Ci,Π, Ȳ

)
|Ci|

,
p
(
Cj,Π, Ȳ

)
|Cj|

}
for any i, j ≥ t+ 1.

Therefore, the proposer at t+ 1 will never propose σP
i (πt, N) = Ci where Ci ⊂ At because merging

with any other coalition Cj ⊂ At always yields a higher individual payo�. Also, the responders will

never accept Ci because they can reject it and do better by proposing At. Hence, proved.

.

Proof of Theorem 1 :

Proof. This proof is divided into two parts.

Part I: Existence of Equilibrium

The symmetric game of sequential coalition formation described in section 2.2 is a �nite game of

perfect information with perfect recall. Hence, it admits a subgame perfect equilibrium in pure

strategies, and therefore, the existence of equilibrium is guaranteed.

Part II: The Equilibrium is Non-Symmetric

Let Π̄ = {S1, S2} denote a bipartite coalition structure where |S2| = n − |S1|. The central idea

behind this proof is to show that there always exists a bipartite coalition structure that dominates

the formation of any symmetric equilibrium.

Step 1: We show that the upper bound for the threshold is z1(p(.), Π̄, Ȳ−Si
) < n in the exogenous

e�ort model where i ∈ {1, 2}.

To show this, consider the contrapositive. That is, suppose z1(p(.), Π̄, Ȳ−Si
) ≥ n. Without loss of

generality, let |S1| ≥ |S2|. Next, transfer any subset of players T ⊆ S1 to S2 such that |T | = |S2|.

As |S2|+ |T | ≤ n and z1(p(.), Π̄, Ȳ−S2∪T ) ≥ n, we get |S2|+ |T | ≤ z1(p(.), Π̄, Ȳ−S2∪T ). Hence, from

lemma 2, we obtain the following inequality.

p(S2 ∪ T, Π̄T

S1 → S2

, Ȳ)− p(S2, Π̄,Y) > p(S2, Π̄, Ȳ)− p(∅, Π̄S2

S2 → S1

, Ȳ) where |T | = |S2| (36)

If |S2| = n
2
, then |S1| = n − |S2| = n

2
. Therefore, symmetry yields p(S2, Π̄, Ȳ) = 1

2
. Substituting

p(S2, Π̄, Ȳ) = 1
2
and p(∅, Π̄S2

S2 → S1

, Ȳ) = 0 in (36), we get

p(N, Π̄T

S1 → S2

, Ȳ) > 1 where N = S2 ∪ T is the grand coalition.

However, this violates assumption 1A. Therefore, z1(p(.), Π̄, Ȳ−N) < n. As the threshold decreases

with rival's e�ort, we have z1(p(.), Π̄, Ȳ−S2) ≤ z1(p(.), Π̄, Ȳ−N) < n for any |S2| ∈ {1, 2..., n}.

25



Step 2: To show that there exists a �xed point such that |S∗
2 | = z1(p(.),Π, Ȳ−S∗

2
) where

|S∗
2 | ∈ {1, 2.., n− 1}.

As the coalition structure Π̄ is bipartite, we know that |S1| = n− |S2|. Therefore, as the size of

S1 increases, the size of S2 decreases.

From the primary assumptions, we know that z1(p(.), Π̄, Ȳ−S2) decreases with an increases in

rival coalitions e�orts Ȳ−S2 . In this exogenous e�ort model, as the coalition structure is bipartite,

Ȳ−S2 is an |S1|-dimensional unit vector. Therefore, Ȳ−S2 decreases with the size of S2 as |S2| =

n− |S1|. That is, if T ⊆ S1 players are transferred to S2, then Ȳ−S2∪T < Ȳ−S2 . Hence,

z1(p(.), Π̄
T

S1 → S2

, Ȳ−S2∪T ) > z1(p(.), Π̄, Ȳ−S2) for any T ⊆ S1

Now suppose that |T | = |S1|, then z1(p(.), Π̄
T

S1 → S2

, Ȳ−S2∪S1) < |S2 ∪ S1| = n. On the other hand,

if X ⊆ S2 players are transferred to S1 and |X| = |S2|, then z1(p(.), Π̄
T

S1 → S2

, Ȳ−∅) = 0. Hence, there

must exist a �xed point such that |S∗
2 | = z1(p(.), Π̄, Ȳ−S∗

2
) where |S∗

2 | ∈ (1, n− 1).

Step 3: If the proposer in �rst round chooses σP
i (π0, N) = S1, where |S1| ∈ {n−|S∗

2 |, ...n−1}, and

the responders agree σR
j (π0, N) = Y for all j ∈ S1, j ̸= i, then the equilibrium coalition structure is

Π∗ = {S1, S2} where |S2| = n− |S1|.

Let |S∗
2 | represent a �xed point as discussed in step 2. Assume the initial proposer chooses

σP
i (π0, N) = S1 where |S1| ≥ n− |S∗

2 | and the responders agree σR
j (π0, N) = Y for all j ∈ S1, j ̸= i.

As |S2| = n− |S1| and z1(p(.), Π̄, Ȳ−S2) is decreasing with |S2|, we get

|S2| ≤ |S∗
2 | < z1(p(.), Π̄, Ȳ−S∗

2
) ≤ z1(p(.), Π̄, Ȳ−S2) (37)

Therefore, by lemma 5, the optimal response of the active players in the second round is σP
k (π1, N) =

S2 and σR
ℓ (π0, N) = Y for all ℓ ∈ N \S, ℓ ̸= k where |S2| = n−|S1|. Hence the equilibrium coalition

structure is Π∗ = {S1, S2}.

Step 4: To show that if the initial proposer chooses σP
i (π0, N) = S1 where |S∗

1 | ≥ max{n
2
, n−|S∗

2 |},

then equilibrium coalition structure is Π∗ = {S1, S2} and the players' payo� is

p(S1, Π̄,Y)

|S1|
>

1

n
>

p(S2, Π̄,Y)

|S2|

Case A: n− |S∗
2 | ≤ n

2
.
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From (37), we get that

|S2| < z1(p(.), Π̄, Ȳ−S2) for any |S2| ≤ |S∗
2 |.

As |S∗
2 | ≥ n

2
, we conclude

|S2| < z1(p(.), Π̄, Ȳ−S2) for any |S2| ≤
n

2
.

Next, transfer T ⊆ S1 to S2 such that |T | = |S1|−|S2|
2

. As |S2 ∪ T | = |S2|+ |T | = |S1|+|S2|
2

= n
2
≤

|S∗
2 |, by Lemma 4 and symmetry we get

p
(
S2, Π̄, Ȳ

)
|S2|

<

p

(
S2 ∪ T, Π̄T

S1 → S2

, Ȳ

)
|S2 ∪ T |

=
1
2
n
2

=
1

n
.

From assumption 1A, we get(
p
(
S1, Π̄, Ȳ

)
|S1|

)
|S1|

|S1|+ |S2|
+

(
p
(
S2, Π̄, Ȳ

)
|S2|

)
|S2|

|S1|+ |S2|
=

1

|S1|+ |S2|
=

1

n
. (38)

Therefore, if
p
(
S2, Π̄, Ȳ

)
|S2|

<
1

n
, then

p
(
S1, Π̄, Ȳ

)
|S1|

>
1

n

Case B: n− |S∗
2 | > n

2
.

In this case, we show that for any |S2| < |S∗
2 |, the following inequality must always hold:

p
(
S2, Π̄, Ȳ

)
|S2|

<
1

n
. (39)

We adopt the contra-positive approach for this purpose. Assume that

p
(
S2, Π̄, Ȳ

)
|S2|

≥ 1

n
. (40)

Transfer T ⊆ S1 to S2 such that |T | = |S1|−|S2|
2

. As |S2 ∪ T | = |S2| + |T | = |S1|+|S2|
2

= n
2
≤ |S∗

2 |, by

symmetry we get

p

(
S2 ∪ {T}, Π̄T

S1 → S2

, Ȳ

)
|S2 ∪ T |

=
1
2
n
2

=
1

n
.

This implies that for some transfer 0 < |T | < |S1|−|S2|
2

, the payo� to members of S2 ∪ T has begun

diminishing to the extent that at |T | = |S1|−|S2|
2

it is 1
n
as shown above.

As the winning probability function p(.) is well-behaved, this implies that the payo� to members

of S2 ∪ T will continue to diminish for all |T | > |S1|−|S2|
2

. That is,

p

(
S2 ∪ T, Π̄T

S1 → S2

, Ȳ

)
|S2 ∪ T |

<
1

n
for all |T | > |S1| − |S2|

2
.
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However, this implication violates assumption 1A because

p

(
S2 ∪ {T}, Π̄T

S1 → S2

, Ȳ

)
|S2 \ {T}|

=
1

n
if |T | = |S1|.

In other words, if the grand coalition forms, then the payo� is 1
n
. Therefore, inequality (40) cannot

hold.

Thus, as inequality (39) holds, by assumption 1A, we get

p
(
S1, Π̄, Ȳ

)
|S1|

>
1

n

Step 5: Conclusion

By de�nition, a symmetric coalition structure Πs
K = {C1, C2..., CK} where |C1| = |C2|... = |CK |

and K ≥ 1. The individual member payo� for any symmetric coalition structure is

p
(
Ci,Π

s
K , Ȳ

)
|Ci|

=
1

n

From step 4, we can conclude that if the initial proposer chooses σP
i (π0, N) = S1 where |S1| ≥

max{n
2
, n− |S∗

2 |}, then equilibrium coalition structure is Π̄ = {S1, S2} and the players' payo� is

p(S1, Π̄,Y)

|S1|
>

1

n

Therefore, this strategy strictly dominates forming any symmetric coalition structure Πs
K .

In the next result, we argue that if the number of active players is greater than its respective

threshold, then the remaining players may split into further coalitions. The notation used below

is described in at the beginning of Lemma 5. In this proof we show that if the number of active

players is greater than its respective threshold, then the remaining players may split into further

coalitions.

Lemma 6. If z1
(
p(.),Π, Ȳ−At

)
< At, then the strategy pro�le that leads to the formation of the

coalition structure Π = πt ∪ {Ct+1, Ct+2} where Ci ̸= ∅ for all i ∈ {t + 1, t + 2} strictly dominates

the formation of Π = πt ∪ {At} where At = Ct+1 ∪ Ct+2 if there exists Ct+1 ⊂ At such that

(A)
p(Ct+1,Π,Ȳ)

|Ct+1| >
p(At,Π′,Ȳ)

|At| where Π = πt ∪ {Ct+1, Ct+2} and Π′ = πt ∪ {At}.

(B) z1
(
p(.),Π, Ȳ−At+1

)
≥ At+1.
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Proof. As At > z1
(
p(.),Π, Ȳ−At

)
is the opposite of the condition states in Lemma 5, the remaining

active set of players, At, could disintegrate to multiple coalitions. Condition (A) implies that there

exists a sub-coalition Ct+1 ⊂ At that yields a higher payo� at round t given that the remaining

players At \ Ct+1 form a coalition. Condition (B) ensures that.

.

Proof of Corollary 1.1

Proof. From Lemma 6, the pre-condition for this result is z1
(
p(.),Π, Ȳ−At

)
< At where At is

the set of the remaining active players. As z1
(
p(.),Π, Ȳ−At

)
≤ z2

(
p(.),Π, Ȳ−At

)
by de�nition, a

low z2
(
p(.),Π, Ȳ−At

)
would imply a low z1

(
p(.),Π, Ȳ−At

)
. This constitutes our statement (i) in

Corollary 1.1.

If the marginal increase in winning probability p(.) diminishes rapidly after the threshold z2(.),

then the individual payo� from adding members to a coalition will tend to decrease. This would

lead to condition (A) in Lemma 6. Hence, statement (ii) in Corollary 1.1.

Formation of three coalitions: At the beginning of the game, there are no coalitions formed.

Hence, the coalition sub-structure at time t = 0 is π0 = ∅. From Theorem 1, the initial proposer will

propose a size σP
i (π0, N) = C1 where |C1| < n. Hence, f(π0) = C1 and the coalition sub-structure

at time t = 1 is π1 = {C1}. The set of active players at t = 1 is A1 = N \ C1.

Consider the bipartite coalition structure Π̄ = {C1, A1}. From step 2 of theorem 1, there exists

a �xed point X ⊂ N such that A1 > (resp. ≤)z1
(
p(.),Π, Ȳ−A1

)
for all |A1| > (resp. ≤) |X|. In

what follows, we consider two cases: |C1| ≥ n−|X| (or A1 ≤ |X|) and |C1| < n−|X| (or A1 > |X|).

Case a: The initial proposer proposes a size σP
i (π0, N) = C1 where |C1| ≥ n− |X|.

From theorem 1, the remaining active players will form the second coalition; i.e. f(π1) = N \ C1.

Hence, the initial proposer's payo� is

p
(
C1,Π, Ȳ

)
|C1|

where |C1| ≥ n− x and Π = {C1, N \ C1}.

Let C∗ ≥ n− |X| be the size that maximises the payo� above.

Case b: The initial proposer proposes a size σP
i (π0, N) = C1 where |C1| < n− |X|.

In this case, the remaining active players A1 may break down into further coalitions depending on

the nature of the contest success function p(.). We discuss these conditions through the following

sub-cases.
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Sub-case b1: There exists C2 ⊂ A1 such that

(1) A2 ≤ z1
(
p(.),Π′, Ȳ−A2}

)
where A2 = A1 \ C2

(2)
p
(
C2,Π, Ȳ

)
|C2|

>
p
(
A1,Π

′, Ȳ
)

|A1|
where Π′ = {C1, C2, C3} and C3 = N \ (C1 ∪ C2).

As |C1| < n − |X|, it implies A1 < |X|, and therefore A1 > z1
(
p(.),Π, Ȳ−A1

)
. From Lemma 6

if the initial proposer proposes a size σP
i (π0, N) = C1 where |C1| < n − |X| and σR

i (π0, N) = Y ,

then the formation of Π′ strictly dominates Π. Note that exactly three coalitions form under these

conditions. If Π′ forms, then the initial proposer's payo� is

p
(
C1,Π

′, Ȳ
)

|C1|
.

Let C̄∗ < n − x be the size that maximises the payo� above for any three player coalitions that

form.

Sub-case b2: There exists C2 ⊂ A1 such that

(1) A2 ⋛ z1
(
p(.),Π′, Ȳ−A2}

)
where A2 = A1 \ C2

(2)
p
(
C2,Π, Ȳ

)
|C2|

≤
p
(
A1,Π

′, Ȳ
)

|A1|
where Π′ = {C1, C2, C3} and C3 = N \ (C1 ∪ C2).

In this case, the formation of Π strictly dominates Π′. Thus, a bipartite coalition structure Π =

{C1, C2} emerges where C1 < n− x. The initial proposer's payo� is

p
(
C1,Π, Ȳ

)
|C1|

where |C1| < n− x and Π = {C1, N \ C1}.

Let C̃∗ < n− |X| be the size that maximises the payo� above.

Sub-case b3: There exists C2 ⊂ A1 such that

(1) A2 > z1
(
p(.),Π′, Ȳ−A2}

)
where A2 = A1 \ C2

(2)
p
(
C2,Π, Ȳ

)
|C2|

>
p
(
A1,Π

′, Ȳ
)

|A1|
where Π′ = {C1, C2, C3} and C3 = N \ (C1 ∪ C2).

By reasoning similar to that we discussed till sub-case b1, this may lead to the formation of more

than three coalitions in this case. The only di�erence is we need to develop cases a and b1 assuming

the substructure π2 = C1, C2 has formed instead of π1 = {C1}.

Formation of three coalitions:

To �x ideas, we state the conditions for the formation of exactly three coalitions. The equilibrium

coalition structure Π∗ consists of exactly three coalitions if there exists no C2 ⊂ A1 such that

(1) A2 > z1
(
p(.),Π′, Ȳ−A2}

)
where A2 = A1 \ C2

(2)
p
(
C2,Π, Ȳ

)
|C2|

>
p
(
A1,Π

′, Ȳ
)

|A1|
where Π′ = {C1, C2, C3} and C3 = N \ (C1 ∪ C2).
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and

p
(
C̄,Π, Ȳ

)
|C̄|

> max

p
(
C,Π, Ȳ

)
|C|

,
p
(
C̃,Π, Ȳ

)
|C̃|


The equilibrium coalition structure is Π∗ = {C∗

1 , C
∗
2 , C

∗
3} where |C∗

1 | = C̄, C∗
2 = f({C1}) and

C∗
3 = N \ (C∗

1 ∪ C∗
2). As these conditions correspond to those of case b2, f({C1}) ⊂ N \ C∗

1 is the

optimal coalition that forms at period t = 2.

.

Proof of Proposition 1

Proof. Münster (2009) shows that if Assumption 1 is satis�ed, then the winning probability function

is represented by (6). The in�ection point z1(.) for Ck's winning probability is obtained by computing

the second order partial derivative of (6) with respect to YCk
.

z1 (p(.),Π,Y−Ck
) =


(

RCk
−1

RCk
+1

∑
Cj ̸=Ck

Y
RCj

Cj

) 1
RCk

if RCk
> 1

0 if RCk
≤ 1

Thus, (6) satis�es Assumption 2 if and only if RCk
> 1. Similarly, the threshold z2(.) for Ck's

winning probability is obtained by computing the cross partial derivative of (6).

z2 (p(.),Π,Y−Ck
) =

 ∑
Cj ̸=Ck

Y
RCj

Cj

 1
RCj

.

Hence, (6) satis�es Assumption 3 as long as RCi
≥ 0 for all Ci ∈ Π. Thus, this Assumption 3

characterises all classes of the generalised Tullock contest success functions.

Observe that these thresholds z1(.) and z2(.) stated above depend on the nature of the partition

function determined by the impact factors, the coalition structure formed, and the vector of aggre-

gate e�orts by all rival coalitions. Further, the threshold is increasing with an increase in e�orts by

any rival coalition. All these observations are in agreement with the Assumptions 2 and 3.

.

Proof of Proposition 2

Proof. We �rst explain the maximisation problem faced by any player i ∈ N . Next, we prove the

result in two steps.

Maximisation Problem
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Each player i ∈ Ck maximizes (6) with respect to his e�ort yi. The respective �rst order condition

is given by

R|Ck|

|Ck|

( ∑
Cj ̸=Ck

Y
R|Cj |

Cj

)(
yi +

∑
ℓ̸=i

yℓ

)R|Ck|−1

(yi +∑
ℓ ̸=i

yℓ

)R|Ck|

+
∑

Cj ̸=Ck

Y
R|Cj |

Cj

2 − αyα−1
i = 0 for all i ∈ Ck. (41)

As players are identical, FOC (41) would be symmetric for all members i ∈ Ck. Hence, the

equilibrium e�ort would be y∗i = y∗Ck
for all i ∈ Ck and Ck ∈ Π.

1

y∗i


|Ck|R|Ck|−2

(
y∗Ck

)R|Ck| R|Ck|

( ∑
Cj ̸=Ck

(
|Cj|y∗Cj

)R|Cj |

)
(
(|Ck|y∗i )

R|Ck| +X∗
−Ck

)2 − α(y∗i )
α

 = 0 for all i ∈ Ck.

This implies that the aggregate e�ort by a coalition at equilibrium is Y ∗
Ck

= |Ck|y∗Ck
. Substituting

in FOC (41), we obtain

f
(
Y ∗
Ck

)
=

(
|Ck|
Y ∗
Ck

)α−1 (
g
(
Y ∗
Ck

)
− α

)
= 0 where g

(
Y ∗
Ck

)
=

(
Y ∗
Ck

)R|Ck|−α
R|Ck|X

∗
−Ck

|Ck|α
((

Y ∗
Ck

)R|Ck| +X∗
−Ck

)2
Step 1: To show that there are exactly two roots of the function f (.) if α > R|Ck| + 1.

For R|Ck| > 1 and α > 1, we get f(Y ∗
Ck

= 0) = 0. Hence, Y ∗
Ck

= 0 is a root of f
(
Y ∗
Ck

)
. Next, if

α > R|Ck| then

g′
(
Y ∗
Ck

)
=

(
Y ∗
Ck

)R|Ck|−α−1
R|Ck|X

∗
−Ck

(
X∗

−Ck
(R|Ck|−α)−

(
Y ∗
Ck

)R|Ck|(R|Ck|+α)
)

|Ck|α
((

Y ∗
Ck

)R|Ck|
+X∗

−Ck

)3 < 0 (42)

Hence, the function g(.) strictly decreases with Y ∗
Ck

if α > R|Ck|.

Further, if α > R|Ck| + 1 then

lim
Y ∗
Ck

→0
g
(
Y ∗
Ck

)
= ∞ and lim

Y ∗
Ck

→∞
g
(
Y ∗
Ck

)
= 0. (43)

As α > 1, by the intermediate value theorem, g
(
Y ∗
Ck

)
will intersect the horizontal line y = α exactly

once at, say, Y ∗
Ck

= K∗ > 0. Hence, if α > R|Ck| + 1 then there will be exactly two roots: Y ∗
Ck

= 0

and Y ∗
Ck

= K∗.

Step 2: To show that Y ∗
Ck

= K∗ maximises the payo�.

For α > R|Ck| + 1 we get that

lim
ϵ→0

g (ϵ) > 0 (44)
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Hence, g (ϵ) > g(0) and Y ∗
Ck

= 0 does not maximise the payo�. As the payo� function (6) is

quasiconcave, the unique maximum will be Y ∗
Ck

= K∗ > 0.

Therefore, the best-response of Y ∗
Ck

( ∑
Cj ̸=Ck

YCj

)
> 0 for any non-zero aggregate rival's e�ort. Hence,

we have an interior Nash equilibrium where Y ∗
Ci

> 0 for all Ci ∈ Π.

.

Proof of Proposition 3:

Proof. In this proof, we show that the formation of an asymmetric bipartite coalition structure

strictly dominates the formation of any symmetric coalition structure if the convexity of the cost

function, measured by α, is su�ciently high.12

For any player i ∈ Ck, the FOC is given by

R

|Ck|

( ∑
Cj ̸=Ck

Y R
Cj

)(
yi +

∑
ℓ ̸=i

yℓ

)R−1

(yi +∑
ℓ̸=i

yℓ

)R

+
∑

Cj ̸=Ck

Y R
Cj

2 − αyα−1
i = 0 for all i ∈ Ck. (45)

As players are identical, FOC (45) is symmetric for all members i ∈ Ck. Hence, the equilibrium

e�ort is symmetric for all members of a coalition; i.e., y∗i = y∗Ck
for all i ∈ Ck and Ck ∈ Π. From

proposition 2, this e�ort will be strictly positive for all n players if α > R + 1.

Lemma 7. The grand coalition delivers the greatest individual payo� among all equal-sized coalition

structures.

Proof. Let ΠK = {C1, C2..., CK} denote any equal-sized coalition structure where |Ck| = cK = n
K

for all k = {1, 2...K}. This equality reduces FOC (6) to

R
(
cKy

∗
Ck

)R−1
(K − 1)

(
cKy

∗
Ck

)R(
K
(
cKy∗Ck

)R)2 = α(y∗Ck
)α−1. (46)

where y∗Ck
is the equilibrium e�ort exerted by any individual player i ∈ Ck given by

y∗Ck
) =

(
R(K − 1)

αKn

) 1
α

. (47)

Observe that y∗Ck
> 0 for any K ≥ 2. As K = 1 implies the grand coalition, we get y∗Ck

= 0. To

check the condition for positive e�ort, we compute the individual payo� at equilibrium

u∗(Ck,Π
K) =

1

n

(
1− R(K − 1)

αK

)
(48)

12To jog the reader's memory, a symmetric coalition structure is one where the individual payo� to all n players

is identical.

33



Hence, y∗Ck
> 0 if and only if

α >
R(K − 1)

K
(49)

Observe that this condition matches that given in proposition 2. As the RHS of inequality (49)

increases with K, players exert positive e�ort in any equal-sized coalition structure if

α >
R(n− 1)

n

Conclusion: Among all equal-sized coalition structures, the grand coalition maximises individual

payo� (48) that is obtained by setting K = 1:

u(N,Π1) =
1

n
.

Lemma 8. For any asymmetric bipartite coalition structure, the members of the larger coalition

receive a payo� that greater than the grand coalition if and only if α is su�ciently high.

Proof. This proof progresses in two steps.

Step 1: Equilibrium Analysis for Bipartite structures.

Symmetric bipartite structures: Let the bipartite coalition structure be denoted by Π|C| =

{C,D} where |D| = n− |C|. If Π|C| is symmetric, i.e. |C| = n
2
, then the equilibrium payo� is given

by (48) where K = 2. Assuming condition (49) holds, this payo� will always be less than that

obtained by forming the grand coalition.

Asymmetric bipartite structures Without loss of generality, let |C| > n
2
. The individual payo�

is given by (6). The FOC (45) reduces to

u′
i(C,Π|C|,Y) =

R|C|R−2|D|RyR−1
C yRD

(|C|RyRC + |D|RyRD)
2 − αyα−1

C = 0 (50)

u′
j(D,Π|C|,Y) =

R|C|R|D|R−2yRCy
R−1
D

(|C|RyRC + |D|RyRD)
2 − αyα−1

D = 0 (51)

where yi = yC for all i ∈ C and yj = yD for all j ∈ D. We obtain the following relation by solving

the two FOCs above.

yD =

(
|C|
|D|

) 2
α

yC (52)

Substituting in (52) in FOC (50) we obtain the equilibrium individual e�orts by the members of

the two coalitions given by

yC =

 R
(

|C|
n−|C|

)R(1− 2
α)

α|C|2
(
1 +

(
|C|

n−|C|

)R(1− 2
α)
)2


1
α

and yD =

 R
(

|C|
n−|C|

)R(1− 2
α)

α (n− |C|)2
(
1 +

(
|C|

n−|C|

)R(1− 2
α)
)2


1
α

.
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Similarly, the equilibrium payo� is given by

ui(C,Π
b,Y) =

(
|C|

n−|C|

)R(1− 2
α)

|C|
(
1 +

(
|C|

n−|C|

)R(1− 2
α)
)
1− R

α|C|
(
1 +

(
|C|

n−|C|

)R(1− 2
α)
)


Hence, members of coalition C and D exert positive e�orts if and only if(
|C|

n− |C|

)R(1− 2
α)

> max

{
R

α|C|
− 1,

R

α(n− |C|)
− 1

}
=

R

α(n− |C|)
− 1

The term on the LHS of inequality above is increasing with the size |C|. Therefore, it would achieve

a minimum at |C| = n
2
. Hence, both coalitions would exert positive e�ort if

α >
R

2(n− |C|)
(53)

Again, this corroborates with the condition in proposition 2.

Step 2: To show that ui(C,Π
b,Y) > 1

n
for all α > ᾱ where ᾱ ∈ (2,∞) is a constant.

We assume that (53) is satis�ed, and therefore the equilibrium of e�orts for Πb is positive. Next,

we show that ui(C,Π
b,Y) is increasing in α.

∂ui(C,Π
b,Y)

∂α
=

R( |C|
n−|C|)

R(1− 2
α)

α+2α|C|
(
1+( |C|

n−|C|)
R(1− 2

α)
)1− R

α|C|

1+( |C|
n−|C|)

R(1− 2
α)



 log( |C|
n−|C|)


α3|C|2

(
1+( |C|

n−|C|)
R(1− 2

α)
)3 > 0

(54)

As (53) is satis�ed and |C| > n
2
, the above expression is positive. Thus, ui(C,Π

b,Y) is increasing

in α.

As we have established that ui(C,Π
b,Y) is increasing with coalition size |C|, we apply the inter-

mediate value theorem to prove our result. For that purpose, we calculate the value of ui(C,Π
b,Y)

at two limits

lim
α→2

ui(C,Π
b,Y) =

1

2|C|

(
1− R

4|C|

)
<

1

n
and lim

α→∞
ui(C,Π

b,Y) =
|C|R−1

(n− |C|)R + |C|R
>

1

n
.

By the intermediate value theorem, there must exist a constant ᾱ ∈ (2,∞) such that ui(C,Π
b,Y) >

1
n
for all α > ᾱ.

If the size of the �rst coalition |C| = (n − 1), then its payo� is ui(C,Π
b,Y) > 1

n
as shown in

Step 2. Hence, the strategy where the �rst proposer chooses a coalition size |C| = (n− 1) and the

second chooses |D| = 1 dominates forming the grand coalition.
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Conclusion: If the �rst coalition is su�ciently large and if α is high, then forming a bipartite

coalition structure strictly dominates forming the grand coalition.

Proof. In the table below, we write the winning probabilities and individual payo�s for every par-

tition of N , where n = 5. For a representative coalition structure Π = {C1, C2..., CK}, the �rst

column indicates its coalition sizes their respective coalitions: {3, 2, 1}; and the second column

indicates their respective winning probabilities.

Numeric coalition structure Winning probabilities Individual Payo�

{5} (1) (1
5
)

{4, 1} (16
17
)( 1

17
) ( 4

17
)( 1

17
)

{3, 2} ( 9
2R2+9

)( 2R2

2R2+9
) ( 3

2R2+9
)( 2

R2−1

2R2+9
)

{3, 1, 1} ( 9
11
)( 1

11
)( 1

11
) ( 3

11
)( 1

11
)( 1

11
)

{2, 2, 1} ( 2R2

2R2+1+1
)( 2R2

2R2+1+1
)( 1

2R2+1+1
) ( 2R2−1

2R2+1+1
)( 2R2−1

2R2+1+1
)( 1

2R2+1+1
)

{2, 1, 1, 1} ( 2R2

2R2+3
)( 1

2R2+3
)( 1

2R2+3
)( 1

2R2+3
) ( 2

R2−1

2R2+3
)( 1

2R2+3
)( 1

2R2+3
)( 1

2R2+3
)

{1, 1, 1, 1, 1} (1
5
)(1

5
)(1

5
)(1

5
)(1

5
) (1

5
)(1

5
)(1

5
)(1

5
)(1

5
)

It is easy to check that {3, 1, 1}, {2, 1, 1, 1} and {1, 1, 1, 1, 1} would not be the equilibrium as merging

singleton coalitions generates e�ciency gains. If π1 = {1}, then the coalition structure is either

{1, 2, 2} or {1, 4}. If π1 = {2}, then the coalition structure is either {2, 2, 1} or {2, 3}. If π1 = {3},

then the coalition structure is either {3, 2}. If π1 = {4}, then the coalition structure is either {4, 1}.

The equilibrium can be easily calculated using the payo�s in the above table depending on the value

of R2.
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