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Abstract: Agricultural production systems are a composite of philosophy, adoptability, and careful
analysis of risks and rewards. The two dominant typologies include conventional and organics,
while biotechnology (GM) and Integrated Pest Management (IPM) represent situational modifiers.
We conducted a systematic review to weigh the economic merits—as well as intangibles through
an economic lens—of each standalone system and system plus modifier, where applicable. Overall,
17,485 articles were found between ScienceDirect and Google Scholar, with 213 initially screened
based on putative relevance. Of those, 82 were selected for an in-depth analysis, with 63 ultimately
used. Economically, organic generally outperformed conventional systems. This is largely due to
their lower production costs and higher market price. However, organic farms face lower yields,
especially in the fruit, vegetable, and animal husbandry sectors. With that said, organic farming can
provide significant local environmental benefits. Integrated pest management (IPM) is a potentiator
of either core system. As a risk reduction and decision-making framework, it is labor intensive.
However, this can be offset by input reductions without yield penalty compared to a conventional
baseline. Biotechnology is a rapidly emerging production system, notably in developing countries.
The use of GM crops results in lower production cost and higher yields. As a conventional modifier,
its major advantage is scale-neutrality. Thus, smaller and lower income farmers may achieve higher
gross margin. The main source of environmental benefits is reduced pesticide use, which implies a
decreased need for fuel and labor. Barring external influences such as subsidies and participation
in prescriptive labeling programs, farmers should focus on an a la carte approach (as opposed to
discrete system adoption) to optimize their respective enterprises.

Keywords: agriculture; ecological; economics; conventional; organic; IPM; biotechnology; alternative;
profitability; sustainability

1. Introduction

The continued sustainment of a rapidly growing population—in light of resource
scarcity and environmental externalities—is perhaps the definitive challenge of the Anthro-
pocene. This challenge can be partitioned into two components: food security and food
safety. Food security is generally only a concern in developing countries, while developed
and developing countries alike may face food safety issues.

Agriculture is the instrument to address said challenges. It enjoys unique standing as
both a science and an art—with evident economic underpinnings. As a fusion discipline,
its charge is deceptively simple: produce a larger quantity (security) and quality (safety) of
food, fiber, and fuel to meet burgeoning demand. However, it’s often argued that these
goals are myopic, not only incompatible with environmental quality and human health, but
irreconcilably so. Thus, agriculture is under frequent scrutiny. An introspective assessment
necessitates a system that is profitable, sustainable, and attuned to diverse needs. As such,
multiple competing systems have evolved. Each has a respective suite of strengths and
weaknesses at the whole farm and aggregate level.
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Conventional (often referred to as industrial) agriculture is the most common typology
in developed countries. It is often seen as a natural outgrowth of Norman Borlaug’s “Green
Revolution”. This system is large scale, dependent on inputs (synthetic fertilizers and agro-
protectants) and highly mechanized. It has historically leveraged standard soil preparation
methods (e.g., plowing followed by sowing). Yields per unit area are maximized. Despite
evident merits, the counterargument is that food scarcity is illusory; wholly dependent on
centralized food production/distribution predicated on the agro-industrial model. Indeed,
questions abound about the long-term sustainability of such an approach.

Organics is a competing typology. Synthetic chemicals are generally prohibited,
though naturally derived pesticides and fertilizers may still be utilized. Lower yields
and greater labor needs are compensated for by higher prices. A frequent hallmark is
diversification. This is leveraged as a risk mitigation tool, often entailing integrated
crop/livestock production (as opposed to decoupled production in conventional spheres).

Organic food is often (mistakenly) considered to be “chemical-free”, which is popu-
lar for certain consumer demographics. The focus on reconciling production with local
ecologies also is attractive to consumers. Consumers are willing to pay a premium for
these benefits, both real and perceived. Moreover, organic food (typically from developing
countries) is often associated with fair trade labels that embed an ethic of social justice into
the production system itself. It should be noted that there are multiple, organic inspired
variants like biodynamics, regenerative, diversified, etc., though some of these systems
may lack the heft of formal governmental standards and certification approval.

Integrated pest management (IPM) is a holistic system that arguably straddles the
organic/conventional debate. Smith et al. (1976) provide an exhaustive overview of the
origins. IPM is best described as a dynamic and situational portfolio of best management
practices, supported by an economic decision-making framework. Rather than regular
calendar sprays—irrespective of the presence/absence of a pest/pathogen—it’s dependent
on scouting and monitoring. This entails periodic, systematic assessments of crop status.
Action is dictated by pest/disease thresholds. Moreover, grower tolerance for injury
(quantity/quality impacts to a crop) and subsequent damage (actual economic impact
borne by the farmer in the implementation/absence of action) factor into final management
decisions. These strategically leverage a multifaceted management toolbox. This slate of
options includes cultural, biological, and even chemical controls where warranted. The
trade-off is that the system is knowledge intensive, which can complicate in-field actions
and stifle adoption. Despite the potential for considerable cost savings, many farmers still
prefer a predictable and reductionist calendar spray approach.

Biotechnology (often referred to as genetically engineered, genetically modified, or pre-
cision breeding) is a relatively new innovation. The first “modification” took place in 1944
at the Rockefeller Institute when a bacterium was transformed by extracted DNA (Brown
and Fedoroff 2004). In 1994, a delayed-ripening tomato named the Flavr Savr received
approval as the first GM product on the US market (Zhang et al. 2016). Biotechnology is a
tool that accelerates breeding outcomes to develop crops with desirable agronomic traits.
These traits are able to be “ported” between non-sexually compatible species, significantly
broadening the cache of genetic material available to engineer new crop variants. Since
the first widespread commercialization in 1996, the major aims of crop biotechnology have
been increased pest and herbicide resistance, and higher tolerance (better adaptability).
In the last two and a half decades, GM crop adoption has been rapid, especially in the
Americas and South Asia. In 2019, 190.4 million hectares was planted in 29 countries, with
higher growth in developing countries (Tome and Dionglay 2021).

The structure of this review is as follows. The next section introduces the article search
and selection process. The third section outlines our results grouped into two subsections:
a comparison of conventional and organic production systems and the economics of
alternative agricultural production systems. With these systems identified, we outline
findings from a systematic literature review on comparative economics. Where applicable,
aforementioned variants or system “modifiers” such as biotechnology, IPM, and others
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will be broached for context and inclusivity. The final section concludes and posits themes
for further discussion.

2. Methodology

To appropriately consolidate the evidence and draw reliable conclusions (while keep-
ing the sources manageable), an optimal n of 40 < n > 80 was established. Accessions for
inclusion in our analysis were identified through keyword searches in the bibliographic
database ScienceDirect. Post-search, “recommended articles” associated with each initial
hit were also parsed for relevance, cross-checked against the original list of hits for duplica-
tion, and selected where appropriate. To ensure a breadth and depth of literature outside
of the Elsevier publishing family, a recurrent search was also performed in Google Scholar,
a more platform-agnostic option.

Prior to the execution of the search, primary and peer-reviewed credentials (including
theses, dissertations, and Extension publications) were identified as a narrowing criterion
for selection. An exception was made for peer-reviewed, secondary meta-analyses and
book chapters that aggregated and reported on primary literature.

To holistically resolve the economic performance of comparative agricultural systems,
search parameters included the terms conventional, organic, IPM, biotechnology, compari-
son, and economics. As core production philosophies, the selection of conventional and
organic terms is self-explanatory. IPM and biotechnology were chosen as “bridging” terms.
They represent a descriptive production modifier that can straddle (IPM can be practiced
in both systems) or overlap and enhance a baseline philosophy (biotechnology is limited
to conventional).

The Boolean operator “AND” separated each keyword query in the search field.
Searches were not year or geo-limited, provided the study was in English. With that said,
contemporary articles within the past 15 years were generally favored. Finally, only hits
with the term “economic(s)” in the title were selected for further review. Overall, 17,485 ar-
ticles were found between ScienceDirect and Google Scholar (not including recommended
articles in ScienceDirect), with 213 (including recommended articles in ScienceDirect) ini-
tially screened based on putative relevance. Of those, 82 were selected for an in-depth
analysis and 63 ultimately utilized.

Post-search results in ScienceDirect trended towards articles in academic journals,
while Google Scholar included articles, book chapters, and so-called grey literature. The lat-
ter may encompass conference and working papers, as well as reports. Given that these are
generally not subject to the same peer-review rigor, they were excluded from consideration.

In addition, subsequently culled articles generally focused on socioeconomic impacts
to the consumer rather than the producer (outside the scope of this paper), found to be
duplicative between ScienceDirect and Google Scholar post hoc, or failed to sufficiently
broaden the system, commodity, and/or geographic representation herein.

Predictably, the final cohort skewed toward the agronomic and horticultural domains,
though select livestock, dairy, and aquaculture articles also satisfied our stepwise screening
process. These are outlined in Section 3. Additional references outside the confines of the
original search have been added for context in Section 1.

3. Comparative Economics of Agricultural Production Systems

The analyzed articles were divided into 2 subgroups: comparison of conventional and
organic production systems, and alternative agricultural production systems (including
integrated pest management and biotechnology) along with discrete sections on ecological
economics and socioeconomic measures contributing to the regulation of pesticides.

3.1. Comparison of Conventional and Organic Production Systems
3.1.1. General Comparisons

Organic farming is characterized by lower yields and input use, as well as higher
output prices compared to conventional systems. This requires a greater reliance on natural
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pest control methods. Cacek and Langner (1986) outlined that, despite reduced pesticide
and fertilizer use, organic farms are less vulnerable to the same pest or unfavorable weather
events due to diversification. This also provides a better seasonal distribution of both inputs
and outputs, as well as more balanced income. However, organic farming requires better
organizational skills from a management perspective. There are genuine environmental
benefits of this production method at the farm level, but it’s often hard to monetize and
compare organic to conventional farming. Nguyen et al. (2008) underscored the importance
of crop rotation in organic farming systems. Its advantages can be higher efficiency, lower
CO2 emissions, and long-term sustainability. Shorter food supply chains, such as farmers’
markets, roadside stands, and community supported agriculture, help farmers to achieve
higher income.

According to MacRae et al. (2007), organic yields, on average, are 10% less than con-
ventional. This is higher in those countries where conventional farming is more intensive,
e.g., in Europe, and for animal products (roughly 20%). At the profit level, the difference
between organic and conventional systems can be ± 20%. Positive factors for organic pro-
duction are lower operating costs, higher weather resilience, price premium, and shorter
supply chain. In Europe, this list can be expanded by various financial supports for con-
version and maintenance of organic status. Cavigelli et al. (2009) carried out a field trial
on a study site of 16 hectares to assess the long-term economic performance of organic
and conventional field crops. With an average price premium of 111–138% and lower
production costs and yields, organic systems achieved 2.4 times greater net returns at
lower risk.

Pimentel et al. (2005) compared organic animal-based, organic legume-based, and
conventional systems for corn-soybean crop rotation. Under normal weather conditions,
conventional crop yields were higher. However, organic systems performed much better
(around 30%) under drought conditions. Overall, corn yield was only 3% lower on average
during the analyzed 10-year period. Organic production can be characterized by lower total
production cost, derived from higher seed and machinery cost, as well as lower fertilizer,
pesticide, and labor cost. Although organic production typically requires more labor, peak
periods differ from conventional. This in turn enables the hiring of a cheaper workforce.
Taking into consideration the significant price premium (up to 140%), organic corn was
25% more profitable than conventional corn over a 10-year period.

3.1.2. Product Specific Comparisons

Qiao et al. (2016) compared organic and conventional tea farms in Wuyuan, China and
Kandy, Sri Lanka. In both instances, organic production performed better economically. In
Wuyuan this provided a small profit, while the conventional tea farm was unprofitable. In
Kandy, both were profitable. However, organic households performed slightly better. They
also noted that location plays an important role in organic farming. For example, Chinese
organic tea farms are sited in high altitudes where pests are less common. This results in
simplified and cheaper pest management. Another social advantage of organic farming is
the higher employment relative to conventional systems.

Based on Bolwig et al. (2009), organic pesticides, mulching, animal manure, and com-
posting were the most common practices of organic coffee smallholder contract farms in
tropical Africa. Higher net coffee revenue (75% on average) motivated farmers to partici-
pate in an organic scheme. This impact was higher than the gains from the use of additional
organic practices (low-cost and effective farming techniques). This was 9% per practice due
to higher coffee yield. Contracting seems to reduce farmer uncertainty about net returns
and provides a price premium if quality criteria are met.

Hernandez-Aguilera et al. (2019) analyzed smallholder coffee producers in three
South American countries (Colombia, Mexico, and Peru). The common theme of these
shade-grown systems was the use of birds as biocontrol agents against coffee borer pests.
Results indicated that the potential price premium compensated for any loss attributed to
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lower yields. However, the value of the avian-based, predatory ecosystem service should
also be taken into account (see Section 3.2.3).

The Pacific Northwest (US) is a suitable testbed to examine the viability of organic
blueberry production. DeVetter et al. (2015) noted that blueberry production in Washington
State is expected to expand, due to robust demand, especially under organic management.
Interestingly, these markets are often an outgrowth of existing organic farms seeking to
further diversify. In 2014, nationwide retail fresh organic blueberry prices were 49% higher
than conventional. Additionally, prices for organic freezer blueberries are often twofold
(or more) those of conventional berries. Large retailers will often exclusively carry organic
blueberries during certain windows if they can secure a predictable, high-quality supply.
Organic yields are comparable to conventional yields. Variable costs and total costs in years
0 to 7 were 12% and 10% greater, respectively, under organic management. However, the
complication is a dearth of efficacious and cost-effective pesticides to combat invasive pests.
Approved herbicides are similarly lacking, with similar attributes. Growers are particularly
sensitive to organic regulations that can exert an impact on production practices or costs
(e.g., loss of sulfur burners to adjust irrigation water pH), and climate change is anticipated
to introduce stressors that would prompt production adjustments (e.g., cooling systems
and shade cover).

In a related study, Julian et al. (2012) found that cumulative net returns in blueberries
after 3 years were negative, ranging from −USD 32,967 to −50,352/ha when grown on
raised beds and from −USD 34,320 to −52,848/ha when grown on flat beds. This was
influenced by cultivar, mulch, fertilizer rate, and source. Highest yields were obtained in
plants fertilized with the low rate of fish emulsion or the high rate of feather meal, but
fertilization with fish emulsion by hand cost (in materials and labor) as much as USD
5066/ha more than feather meal. The highest yielding treatment combinations (growing on
raised beds mulched with compost + sawdust and fertilized with fish emulsion) improved
cumulative net returns as much as USD 19,333/ha over 3 years.

Julian et al. (2011) conducted an establishment and production study to provide grow-
ers with a tool for economic management and decision-making. They noted that blueberries
are expensive to produce, with profitability hinging on yield and price per pound. Yield
for an established farm varies with cultivar/variety grown, soil type, and management
practices. The number of years to reach full production is also highly heterogeneous, with
some farms taking up to 7 years.

Weeds are consistently a limiting factor in organic systems. As such, the identifica-
tion of effective weed control approaches is critical. Using tine cultivation combined with
sweeps and hand weeding, Wann et al. (2011) assessed the effects on both weed control,
productivity, and economics in peanuts. Net revenues for cultivated treatments ranged
from USD 3333/ha to 3637/ha, exceeding the control (USD 1795/ha). Cultivation dura-
tion (4–5 weeks) improved peanut yield, grade, and net revenue, while frequency (1× to
2× a week) exhibited no significant effect. Thus, cultivation maximizes productivity and
returns at current market premiums.

While the literature is generally robust with regard to crops and livestock, a dearth of
information exists in the organic aquaculture arena. A meta-analysis by Gambelli et al. (2019)
found a number of prevailing trends. Firstly, the profitability of organic aquaculture is not
guaranteed for all species. Moreover, feed costs and low economies of scale might not be
compensated for by price premiums. Additionally, a lack of homogenous organic standards
is a major limitation, particularly for developing countries seeking export markets. With
that said, organic aquaculture represents an opportunity for resource-strained farmers
because it readily integrates into pre-existing farming practices.

3.1.3. Country Specific Comparisons

Jánský et al. (2003) compared costs and revenues of organic and conventional farming
systems in the Czech Republic. The exhibited comparable costs, though higher revenues
were realized for organic products. Although most pesticides and fertilizers cannot be used
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in organic systems, services and other directs cost are higher. This research was carried out
before the Czech accession to the EU; therefore, their financial data were influenced by the
generous support system of the Common Agricultural Policy.

Brozova and Vanek (2013) analyzed the financial statements of 51 organic and 153
conventional farms in the Southern region of Czechia between 2008 and 2010. According to
their results, the share of profitable farms was higher among the organic farms in all three
years. However, it should be noted that without subsidies, the majority of both organic
and conventional farms would incur a loss. This highlights the importance of EU subsidies.
This impact is even greater (up to 20% of their income) for organic farms. Organic farms
performed significantly better economically, measured in return on assets, return on equity,
and even in total asset turnover.

Náglová and Vlasicova (2016) compared the economic circumstances of 273 conven-
tional, 112 organic, and 4 biodynamic farms between 2007 and 2012. The majority of
conventional farms produced cereals, while half of the organic and biodynamic farms
had mixed production. According to the financial indicators calculated (return on assets,
equities, and costs), organic farms performed the best, followed by biodynamic farms.
Organic farms showed the greatest profitability growth rate in the analyzed period, e.g.,
+79% for return on assets. Although biodynamic farms are structurally related to organic
farms, they performed worse financially even though they received the largest amount
of subsidy per hectare. Conventional farms had the lowest return on assets and equities,
and the highest asset turnover. Contrary to the generally accepted opinion in the literature,
organic farms had much lower labor costs than that of the conventional farms. The authors
attributed this to the high share of family (unpaid) labor, while conventional farms use
mostly paid labor. Similarly, lands are generally owned by organic farms, while larger,
conventional farms typically rent. Biodynamic farms had the lowest total costs, as well as
the lowest operating revenue and profit.

Krause and Machek (2018) compared 291 organic and 4045 conventional farmers in
2009–2013 to study financial differences. As organic farming relies more on mechanical
rather than chemical protection, their input costs are lower, but their labor cost is higher
than those of the conventional system. They found that Czech organic farms could reach
only 41% of conventional cereal yield and 39% of the conventional potato yield. These
values are extremely high compared to the literature, e.g., MacRae et al. (2007). According
to their results, organic farmers, on average, had higher profitability, leverage, and firm size,
but lower asset turnover. The latter contradicts Brozova and Vanek (2013), despite the fact
that year 2009 and 2010 were part of both analyses. This can be explained by their different
sample and geographical coverage. Based on a regression analysis, organic farms proved
to be more profitable with significantly lower profit margin volatility. However, the vast
majority of these results are in agreement with the results of Náglová and Vlasicova (2016);
the only exception being the lower debt ratio of the organic farms.

Acs et al. (2007) calculated optimal resource use in the Netherlands. According to the
authors, organic farms’ labor and organic matter input was higher, while manure purchase
was lower compared to conventional farms. Due to the strict rules of organic production,
artificial fertilizers and pesticides were not purchased. Fixed costs of organic production
were slightly higher than that of conventional systems, while variable cost was much
higher due a very high labor cost. However, the high price premium was not only able to
offset these higher costs, but also rendered organic production more profitable relative to
conventional production. Based on their model calculations, this resulted in 2.5–2.7 times
higher family labor income per hectare. However, there are considerable uncertainties
related to organic production, such as the significant need for hired labor, as well as yield
and market price risks. The conversion period amplifies these further. During this window,
further financial problems may arise.

Binta and Barbier (2015) collected primary data from 20 organic and 20 conventional
vegetable producer farms in Senegal. They did not find significant difference in labor level.
The potential reason is the nature of production, because vegetables are inherently labor
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intensive, even in conventional systems. Yield difference was small for onion (7%) but
extremely high in tomato (64%). Although organic production costs were smaller, there was
no price premium for them. This reduced gross margin for every vegetable crop evaluated.
Further, there is only a limited market; consumer awareness of organic products is low in
Senegal, which makes market entry difficult.

Aslam et al. (2020) analyzed 153 organic and 147 conventional wheat farms in Pakistan.
At input level, irrigation and labor costs were higher at organic farms, while other expenses
(fertilizer, and especially pesticide costs) were lower. Overall, total production cost of
organic farms was 14–40% lower compared to conventional farms, with 14–23% lower
wheat yield.

Pimentel (1993) compared US organic and conventional farming. He noted higher
labor and lower fertilizer and pesticide use for organic farms. Surprisingly, organic maize
yield was higher compared to conventional; mainly due to more effective pest control (crop
rotations vs. the use of insecticides). This resulted in lower production cost (0.05 USD/kg
vs. 0.08 USD/kg). However, this was not the case for vegetables and fruits, where the yield
difference can be extremely high (e.g., 100% for potato). In addition, crop rotation itself is
not wholly effective against insects and diseases.

Using Altman’s model and Index IN95, both organic and conventional typologies in
winemaking were assessed as “thriving” by Vlašicová and Náglová (2015), though the
Ch and G indexes classified them in the grey zone. Organic enterprises were identified
as exhibiting modestly better fundamentals. Profitability and solvency were higher, with
lower indebtedness. It should be noted that their profit and subsidies per hectare were
almost twice that of conventional, so corrections for this would provide more definitive
comparisons. Despite this, both organic and conventional winemaking enterprises were
capable of sound financial management and returns without the aid of any subsidies.

Sgroi et al. (2015) compared organic and conventional citrus systems on the Sicilian
coast. Though the scale of the aforementioned study was minimal (one hectare area
assessed), a higher economic and financial sustainability was noted for organics. The
higher profitability of organic farming was due to the minor labor requirement and higher
price premiums afforded in the market. It was suggested that organics could contribute
to a revival of citrus farms in Sicily, with generational turnover providing the requisite
infusion of entrepreneurial initiative.

Tanrivermiş (2008) compared organic and conventional hazelnut production from
questionnaires and personal interviews in the Black Sea region of Turkey. The results of
a three-year study were mixed and region dependent. Organic yields were 12.4% higher
in region 1, and 1.2% lower in region 2, compared to conventional farms. The price
garnered by organic farmers was 8.1% and 1.5% higher, respectively, than that received
by conventional producers. The gross margin per hectare of plantation area in organic
farming was 12.0%, and the net margin was 117.7% higher than that of conventional farms
in region 1, whereas they were 0.3% and 2.2% higher in region 2.

Deka and Goswami (2021) emphasized that small-scale tea growers often resort to
unsustainable agricultural practices. However, some growers are converting to sustainable
production systems, including organics. Using primary data of small-scale tea growers in
Assam India, a collective case study approach and mixed methods were used to evaluate
the economic sustainability of organic tea cultivation on a small scale. Yearly income
from a hectare of organic tea cultivation was valued at USD 1156.83, surpassing that of
conventional (USD 1047.95) under one assumption; that organic growers could match the
average conventional yield of 15,000 kg. However, given a real-world yield penalty of
10%, this organic value was reassessed at USD 973.10. Despite that, organic cultivation
was found to be an economically viable long-term option for small-scale tea growers over
a period of 10 years; provided the yield stabilized post-organic conversion. Additional
income could be derived through optimal resource use, best farm management practices,
and an organic premium on green leaves.
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Though more limited in scope, comparison between organic and conventional live-
stock/dairy operations also denote trends. The improvement of functional traits through
directed crosses and heterosis is a frequent focus of dairy breeders. The benefits span
both conventional and organic approaches. Clasen et al. (2019) simulated the impacts of
crossbreeding between Swedish Holstein and Swedish Red on herd dynamics and prof-
itability in Sweden. An examination of both conventional and organic herds found that
crossbreeding increased the annual contribution margin per cow by EUR 20 to 59. In-
creased profitability was heavily influenced by improved fertility. Replacement rate in
the conventional systems was 39.3% in the pure-breeding strategy, decreasing to 35.8 and
30.1% in the terminal and rotational crossbreeding strategies, respectively. Similar trends
were observed in the organic production system. Overall, crossbreeding strategies earned
an additional EUR 22 to 42 per annum per cow from selling live calves for slaughter due to
the extended use of beef semen. Milk production was similar between pure-breeding and
terminal crossbreeding, and marginally decreased 1 to 2% in rotational crossbreeding.

One measure of sustainability is land utilization. While ill-suited for cropping, moun-
tainous and semi-mountainous areas are ideal for grazing livestock. Organic sheep farming
represents a promising alternative to conventional approaches in Greece. Tzouramani et al.
(2011) analyzed the financial performance of sheep breeding and the risks assumed by
producers. Using a stochastic efficiency analysis with respect to a function, economic
viability of conventional and organic sheep farming was explored, as well as key factors
determining economic outcomes. While both farming systems were viable, the viability of
organics was mainly embodied in subsidies, while conventional farming generated a lower
net return in the absence of payments.

3.1.4. Transition from Conventional to Organic Farming

A transition from conventional to organic farming is not limited to a single action;
there are cascading effects. As seen previously, this requires a change in attitude, and a
departure from (now) prohibited methods and inputs (synthetic chemicals) to a more labor-
intensive model. Transition can take 1–3 years, depending on the product and government
regulations. During this period, organic production methods must be observed. However,
transitory products cannot be sold as organic. Practically, this means lower yields without
a price premium.

Qiao et al. (2016) highlighted that a switch to organic production may be more ad-
vantageous for small-scale farmers in developing countries. They can attain higher yields
through better seeds, organic fertilizer, and technical assistance. Although organic farming
is labor intensive, lower input cost can offset it. Nevertheless, there are inherent risks in
organic conversions. Although Acs et al. (2009) noted that organic yields do not necessarily
fluctuate more than conventional yields, price risks are higher due to the small-scale and
immature nature of organic markets.

Forster et al. (2013) examined agronomic and economic data from the conversion
phase (2007–2010) of a farming systems comparison trial in central India. A cotton–soybean–
wheat crop rotation under biodynamic, organic, and conventional (with and without Bt
cotton) management was investigated. A significant yield gap between organic and con-
ventional farming systems was evidenced in the 1st crop cycle for cotton (229%) and wheat
(227%). However, that differential narrowed appreciably in the subsequent crop cycle. On
average, conventional farming systems achieved significantly higher gross margins in cycle
1 (+29%), whereas in cycle two gross margins in organic farming systems were significantly
higher (+25%) due to lower variable production costs (but similar yields). The authors
noted that organic farming systems were less capital intensive than conventional ones.
This may be of particular interest to smallholder farmers who typically do not have the
financial means to purchase inputs and would otherwise need to seek loans. Thus, organic
farmers might be less exposed to financial risks associated with fluctuating market prices
of synthetic fertilizers and agroprotectants.
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Jat et al. (2014) witnessed a phased inflection of yield and profitability. Though not a
conversion per se, they examined seven permutations of tillage, crop establishment, and
residue management in a rice–wheat rotation among poorly resourced farmers in South
Asia. Though it initially lagged behind the conventional (CT) treatment, the yield and
economic advantages of the conservation agriculture (CA) treatment was realized after
2–3 years.

Amid market overproduction and shuttering dairy enterprises, the price premiums
associated with organic milk production represent an attractive opportunity for dairy-
ers. Butler (2002) sought to identify the main determinants of production costs between
conventional and organic systems. Specifically, whether differences were attributed to
government-mandated requirements, optional procedures, or personal preferences. The in-
vestigation showed that the total cost of production on a per cow and a per hundredweight
basis is 10–20% higher for organic producers. Accounting for those differences were higher
feed costs, higher (average) labor costs, significantly higher herd replacement costs, and
significant transition costs. Previous studies had indicated the higher net returns observed
on organic enterprises are due mainly to a lower cost of production, which was not borne
out by the results of this study.

Using propensity score matching, Mayen et al. (2010) derived a value of 13% reduced
productivity when comparing organic to conventional dairy systems. However, they found
little difference in technical efficiency between the respective systems when measured
against appropriate technology.

Farm structure also dictates viability in the dairy sector. Mayen et al. (2009) estimated
a multi-stage, multi-output cost function in order to measure vertical economies of scope
in organic and conventional dairy farms. The model focused on the integration of on-farm
grain and forage. While there were minimal vertical economies of scope for conventional
dairies, significant ones were noted for organics. These were consistent with higher
costs of obtaining organic feed through open market transactions (which is chronically
underdeveloped). However, depending on scale, this degree of vertical integration may
violate many of the social precepts of organics. Gillespie and Nehring (2012) compared
the economic performance measures of organic and transitioning cow calf operations
to conventional farms. A method of matching samples was used for the comparison to
better assess comparative differences. In particular, each organic farm was matched with
conventional one occupying a similar industry segment, farm size class, and region. Farmer
demographic, system, and technology variables were further used to identify matches.
The results suggested that the higher cost of organic production is attributed primarily to
higher capital recovery, taxes and insurance, and overhead costs. Moreover, higher returns
in organic enterprises were not noted.

With a focus on policy instruments that could be used to facilitate organic conversion,
Demiryurek and Ceyhan (2008) compared organic and conventional hazelnut producers
from a tripartite perspective: socio-economic characteristics, production systems, and
economic performance. Survey results revealed that organic hazelnut producers were more
educated, had larger hazelnut areas in production, and spent more time on agricultural
activities. Cluster analysis was used to define comparable farmers from both production
systems to compare variables. Organic producers required more labor, and used more lime,
organic fertilizer, and insect traps, while conventional producers relied on synthetic inputs.
Organic producers had lower costs of production and higher income.

3.1.5. Fair Trade Certification

Often heralded as economics with an environmental and social conscience, certified
fair trade labels seek to embed an ethic of justice in support of marginalized producers. In
addition to assurances that environmental and occupational health standards are met, a fair
wage is guaranteed to workers/producers. Whether or not this makes “economic sense”
while satisfying an oft nebulous sustainability benchmark is hotly contested in academic
and policy circles.
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Fair trade certification may provide further benefits during the transitional period
of organic conversion, through cheaper group certification, and the even higher price
premium. However, farm size may limit these benefits (Qiao et al. 2016). Using survey
data from coffee growers in Mexico and Peru, Barham and Weber (2012) examined the
economic sustainability of Fair Trade/organic and Rainforest Alliance schemes, while
comparing them to a conventional standard. Interestingly, the analysis indicated that
yields, rather than price premiums, were the primary driver for increasing net cash returns
to these households. As such, it was suggested that certification norms that provide
latitude for improved yields be stressed to enhance grower welfare and attract/maintain
new participants.

While providing historical context for the growth of fair trade, Dragusanu et al. (2014)
examined empirical evidence, based primarily on conditional correlations. The assessment
suggested that Fair Trade does achieve many of its stated goals. However, this is on a
relatively modest scale relative to macro-scale national economies. In general, Fair Trade
participants command higher prices, improved credit access, deem their economic situation
as more stable, and tend to engage in more eco-friendly farming practices.

Despite this, there are some lingering uncertainties. Farmers in Fair Trade cooperatives
may not be fully cognizant of the workings of the business, leading to targeted mistrust
for those who run the cooperative. There are also trade-offs between limiting certification
to small-scale, disadvantaged producers and by allowing plantation-style producers to
participate. Such scale-ups may erode some of the initial benefits of participation in the
first place. According to the authors, the largest potential benefit of market-based systems
is that they do not distort incentives like foreign aid does. Instead, Fair Trade works within
the boundaries of the marketplace, rewarding productive activities, processes, and ethics
that consumers value—the embodiment of voting with one’s wallet.

3.2. Economics of Alternative Agricultural Production Systems
3.2.1. Integrated Pest Management

A review by Pimentel et al. (1992) suggests that it is technologically feasible to reduce
pesticide use in the United States 35–50% without reducing crop yields. Indeed, the
reduction of pesticide use is often an implicit goal of IPM systems.

Due to the constraints of pest monitoring, insecticide applications are generally con-
ducted on a calendar schedule. Stephenson et al. (2019) assessed threshold-based man-
agement strategies, including the use of conventional-threshold and organic-threshold
pesticide use relative to a calendar-based approach in tomato. Yield, management cost, and
production value were quantified. The greatest total and marketable yields were obtained
via conventional pesticides using action thresholds. This endorsed an IPM strategy in
small-scale vegetable operations. A threshold plus organic threshold approach did not exert
an effect on yields compared to a calendar-based approach. Fruits deemed unmarketable
were greater with the use of organic insecticides; attributed to reduced efficacy and control
residual. Production costs for the organic-threshold approach were also greater due to
increased number of insecticide applications required. Gross margin for both conventional
and organic threshold-based approaches were greater than for the conventional calendar
method. Increased economic returns for conventional threshold was due to increased
yields. An increase in return for organic threshold management was based on premiums
received for organically grown tomatoes.

Integrating perennial crops into organic farming systems can be profitable, improve
soil quality, and supply nitrogen to succeeding grain crops. Wachter et al. (2019) conducted
a 5-year study examining four contrasting farming systems in dryland eastern Washington
State. The systems included a conventional (CONV) winter wheat/spring wheat/spring
pea rotation; a mixed crop-livestock (MIX) winter wheat/spring wheat/grazed winter pea
forage rotation; an organic mixed crop-livestock (ORGcrop) rotation of 3 year perennial
alfalfa and grass/grazed pea forage/winter wheat; and an organic hay (ORGhay) continu-
ous perennial alfalfa and grass system. Over the 5-yr rotation, average net returns were
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ORGhay (USD 616 yr) > ORGcrop (USD 216 yr) > MIX (−1 yr) = CONV (−13 yr). It should
be noted that this was attributed, at least in part, to comparatively high hay prices and
average grain prices compared to long-term averages. A comparable delineation series
was also noted when examining soil sustainability metrics.

The identification and modality of pest management strategies are dependent on pest
pressure. Crop rotation and diversification are the most commonly used tools for pest and
disease control. However, large-scale agriculture takes advantages of specialization, rather
than diversification. Bowman and Zilberman (2013) provided a perspective on diversified
farming systems (DFS) that lie somewhere between organic and industrial agriculture.
In general, multiple crop systems face many disadvantages, e.g., higher cost of tilling
and harvesting, or crop insurance systems that discourage diversification. DFS also lacks
consumer recognition.

When weighing alternative production methods, management and profitability deci-
sions are paramount. Knudsen (2015) found that consumers in Northern Utah were willing
to pay a premium for peaches grown using organic and “eco-friendly” production practices
over conventional systems. Of the three aforementioned systems, organic had the highest
average grower net returns and had the lowest associated risk, while conventional peach
production had the potential for the highest net returns.

Contemporary literature increasingly strives to include return on investment (ROI)
data beyond one-dimensional economic analyses. For example, xenobiotics in the environ-
ment attributed to chemical management of pests and diseases.

Rysin et al. (2015) investigated the economic viability and environmental impact
of three different soil management systems used for strawberries in the southeastern
United States: a conventional production system modeled on current production practices,
a nonfumigated compost system with summer cover crop rotations and beneficial soil
inoculants, and an organic production system adhering to practices approved under the
National Organic Program (NOP). After developing enterprise budgets under a series of
assumptions, all three systems resulted in positive net returns estimated at USD 14,979,
11,100, and 19,394 per acre, respectively. Moreover, using selected indicators, the non-
fumigated compost system and organic system also resulted in considerable reductions
in negative environmental and human health impacts. For example, the total number of
lethal doses (LD50) applied per acre (summation of all agroprotectants) associated with
acute human risk. This value declined from 118,000 doses/acre in the conventional system
to 6649 doses/acre in the compost system and 0 doses/acre in the organic system.

IPM has oriented farmers to more environmentally friendly practices. In particular,
it is a useful tool for producers in transition to organic farming. However, the extent of
its economic impact is often poorly understood, thus hindering adoption. Scouting is a
foundational element of IPM that provides baseline information to formulate an action
plan. The goal is to sample a percentage of plants (relative sampling) that’s representative
of the pest pressures of the whole (field), without having to allocate scarce resources to
conduct unreasonable whole field, plant by plant sampling (absolute sampling).

Ferrer and Hammig (2013) took this efficiency an intuitive step further. They examined
the savings and potential profitability of an alternative scouting method, the binomial
sequential scouting method (SSM), to conventional sampling (CS) in collards. SSM is a
recent innovation for traditionally operated collard farms. It is geared toward a more
economical execution without sacrificing procedural effectiveness. Analysis indicated that
both scouting methods would result in cost savings on traditionally operated farms. In
particular, the cost savings per hectare generated from IPM with SSM [3.62% of total cost
(TC) and 3.91% of total variable cost (TVC)] is higher than the cost savings from IPM with
CS (2.91% of TC and 3.15% of TVC). The difference in cost savings between CS and SSM
was attributed to the expedited time window associated with SSM, thus lowering lower
labor costs. Despite the seemingly minor cost savings, this is an appreciate multiplier at
the farm and aggregate/state level.
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The nexus of conventional systems with IPM and biotechnology modifiers also de-
serve careful consideration. Onstad et al. (2014) conducted a profitability evaluation of
insecticidal Bt corn expressing cry (crystal) protein insecticide (a PIP, plant incorporated
protectant, essentially a biodegradable insecticide), along with a “refuge”.

As insects feed on corn with the insecticidal protein, their susceptibility generationally
shifts (through artificial selection) to resistance over time, negating the long-term utility
of the approach. As such, the refuge is a mitigation measure, a deliberate staging area to
cultivate a susceptible population. These individuals spread throughout the field and mate
with resistant populations, diluting resistance frequencies in the overall population and
prolonging the lifespan of GM technology.

Using a published biological model and economic algorithm, the researchers evaluated
refuge sizes of 5–50% of field area for single-trait Bt corn and 5–20% for pyramided Bt corn
with two traits (each with a subtly different mode of insecticidal action) targeting western
corn rootworm. They also considered the role of block and blended (a GM and non-GM
seed mixture) refuges for insect resistance management (IRM). Results demonstrated that,
for pyramided Bt corn, block refuges planted in the same location within a field year after
year yielded the greatest overall profit. If growers relocated their block refuge annually,
then a 5% blended refuge gave the greatest return. For single-trait Bt corn, 10–20% blended
refuges gave greater economic return compared to block refuges ranging from 5% to
50%. Single-trait Bt corn with 5–20% block refuge (with no insecticide) was superior to
soil insecticide use alone in all cornfields. Thus, while farmers are essentially using a
continuous “calendar spray” with an endogenous plant-based insecticide—in abeyance
with the standard conventions of IPM—to manage a soilborne pest, the strategies to mitigate
resistance were effective. They also avoided the inherent labor costs and knowledge
intensive attributes of scouting. Moreover, externalities associated with traditional soil
applied insecticides were also evaded.

Reitz et al. (1999) developed and implemented a pesticide input management system
for celery. The overall effectiveness was compared with a conventional pesticide appli-
cation program and an untreated control for over 4 years in field station trials, and then
implemented in a commercial trial. The low-input program relied on biological control
agents and rotations of selective, environmentally safe biorational insecticides (Bacillus
thuringiensis, spinosad, and tebufenozide) applied only when pests exceeded threshold
levels. The conventional program included prophylactic applications of broad-spectrum
synthetic pesticides. Yield losses from key insect pests were documented, with economic
analyses comparing monetary returns derived from each program. Overall insect damage
was lower for conventional program in only one of the four years. The IPM program
utilized significantly fewer applications, but there were no significant differences in the
total number of marketable cartons. These lower insecticide costs translated to greater net
profits for the IPM program.

Though IPM is frequently associated with pests (as per its namesake), it also enjoys
broad applicability to diseases caused by plant pathogenic microorganisms. A parallel
commercial trial by Reitz et al. (1999) included a low input program for managing the
fungal pathogen Septoria apiicola. The IPM program used over 25% fewer pesticides than
the grower’s standard program, and pest management costs were over USD 250/ha lower
for the IPM program.

Integrated crop management (ICM) is often considered synonymous with IPM. More
appropriately, it can be contended that it represents an extension of the best manage-
ment practices concept with a more holistic lens, including soil properties and nutrition.
Wani et al. (2017) conducted a study to understand soil properties, crop yield, and eco-
nomics as affected by ICM. Balanced fertilizer application, both in rainfed and irrigated
areas, directly influenced crop yields. Yields of cereals, legumes, and oilseeds were 3590,
1400, and 2230 kg/ha with improved management practices, compared to 2650, 1030, and
1650 kg/ha with conventional farming practices, respectively. Moreover, average net in-
come estimated from conventional farming was Rs. 26,290/ha, while it was Rs. 35,540/ha
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from improved management practices. This indicated that ICM practices resulted in 35%
greater income. Oilseeds achieved higher net income and benefit–cost ratio, while the
cereals and legumes also showed significant improvement in yield. The detailed findings
on soil properties, yields of crops, and economics suggested that there is a vast potential
for crop productivity improvement through ICM practices across different soil types and
rainfall zones.

Assessment metrics extend well beyond the realm of economics. In intensive vegetable
production, low organic matter (OM) inputs and nitrate (NO3-N) leaching degrade soil
quality over time. Jackson et al. (2004) compared four management regimes for their effects
on soils and production: a minimum tillage with OM (+OM) inputs; minimum tillage
with no OM (−OM) inputs; conventional tillage +OM inputs; and conventional tillage
−OM inputs. The addition of cover crops and compost increased microbial biomass C
(MBC) and N (MBN), reduced bulk density, and decreased the NO3-N pools in the root
profile. Thus, leaching potential was lower compared to −OM treatments. Minimum tillage
tended to decrease lettuce and broccoli yields, but was not associated with increased pest
problems. Weed density of shepherd’s purse and burning nettle were occasionally lower
in the +OM treatments. Disease and pest severity on lettuce was slight in all treatments,
but for one date, corky root disease was lower in the +OM treatments. The Pea Leafminer
was unaffected by management treatments. Economic analysis of the three lettuce crops
showed that net financial returns were highest with minimum tillage −OM inputs, despite
lower yields. These tradeoffs suggest that farmers should alternate between conventional
and minimum tillage, while frequently adding OM, to enhance several indices of soil
quality, and reduce disease and yield problems inherent with continuous minimum tillage.

3.2.2. Biotechnology

van den Bergh and Holley (2002) systematically collected arguments in favor of and
against biotechnology. Pros were classified into three groups: environmental (e), human–
economic (h–e), and food security in the developing countries (f). Argumentations included
higher tolerance (e), improved food quality (h–e), and more stable/efficient agriculture
(f). They grouped cons into four categories: ecological and environmental impacts (e–e),
human health impacts (h), population growth (p), and social–economic (s–e). The major
consequences highlighted were unwanted horizontal gene transfers and resistance (e–e),
potential allergic reactions and antibiotic resistance (h), higher need for accessibility, distri-
bution and sustainable production (p), and dependency on large, multinational companies,
as well seed importation (s–e). They claimed that the advantages of genetic modification
overstated and highlighted the increasing difficulties of consumers’ free choice due to the
large-scale cultivation of GMOs.

Flannery et al. (2004) carried out an economic cost–benefit analysis on five hypothetical
GM crops: two traits of winter wheat, spring barley, sugar beet, and potato. Compared to
their conventional production, GM crops would provide lower production cost and higher
gross margin. Sugar beet performed the best with 6.06% lower production cost and 9.69%
higher production margin. The latter would increase to 25.29% when yield increase was
also taken into account. Theoretically, production of all analyzed crops would be beneficial
at farm level. The relative size depends on seed and coexistence costs and the costs of
pesticide use and/or higher yields.

Brookes and Barfoot (2018) provided an overview of economic and environmental
impacts of GM crops from 1996 to 2016. According to their calculations, it resulted in an
18.2 billion USD increase of the global farm income in 2016 owing to higher productivity
(up to 15% higher yields on average) and efficiency. More than half of this amount was
realized in developing countries. Environmental gains were associated with lower pesticide
use that requires less fuel due to fewer spray passes, and also facilitates the use of “no-till”
and “reduced-till” farming practices. At country level, the major beneficiaries were the
USA (79.5 million USD), Argentina (23.7 million USD), India (21.1 million USD), Brazil
(19.8 million USD), and China (19.6 million USD) in the period of 1996–2016. At production
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level, positive yield impact was the highest for maize (404.9 million tonnes), followed by
soybean (213.5 million tonnes), and cotton (27.5 million tonnes) in 1996–2016.

Smale et al. (2008) examined the literature on the economic impacts of GM crops in
developing countries. They noted that farm level impacts are assessed most frequently. Al-
though farmers’ profit was positive on average, some were disadvantaged by planting the
more expensive seed. Even in the case of genetically engineered crops, there is a need for
proper knowledge-based integrated pest management. Besides economics, other impacts
should also be analyzed, such as on labor, health, and environment. Catacora-Vargas et al.
(2018) analyzed the socio-economic impacts (SEI) of genetically engineered crops with a sys-
tematic literature review. They concluded that most of the analyzed research lack social and
non-monetary economic aspects, and often generalize short-term and small-scale results.

Gómez-Barbero and Rodríguez-Cerezo (2006) noted that the use of GM crops may
contribute to crop management simplification. It could also be a primary driver of higher
off-farm income due to increased discretionary time. They also highlighted cost savings
(lower weed (HT) and pest (Bt) control costs), as well as yield increases for certain crops.
These impacts can greatly vary geographically. GM adoption rates are independent of
farm size. Moreover, smaller and lower income farmers may achieve higher gross margin.
Regarding benefit distribution, farmers are generally the main beneficiaries, followed by
seed producers, and finally consumers due to lower market prices. Qaim (2009) argued
that the major advantage of GM crop technology is scale neutrality. With this said, more
attention should be paid to other elements, e.g., socio-economic, environmental, and health
impacts. He further summarized the double impacts (insecticide reduction and increase
in effective yield) for Bt cotton and Bt maize, finding an increase in gross margin up to
470 USD/ha; significantly positive in every analyzed country and product specific case.

Coexistence and labeling are two prominent issues regarding GM crops. The former
deals production related issues, i.e., how to produce crops under different farming systems
while avoiding potential contamination. The latter provides information to the consumers.
This is particularly important in those countries that operate process-based regulation
systems, e.g., the European Union, where the maximum share of GM components with-
out labeling is 0.9% (adventitious presence). Greene et al. (2016) emphasized that the
coexistence of organic, conventional, and GM products is challenging due to accidental
pollination during production and mix-ups later in the supply chain. This increases the
costs of organics due to strict labelling requirements that preclude “GM contamination”
(see adventitious presence). The most commonly used practices against pollination are
buffer strips and delayed planting. Despite these preventative measures, 1% of all U.S.
certified organic farmers experienced this problem between 2011–2014. As a matter of
labeling, McCluskey et al. (2018) argued against mandatory non-GMO labeling as that
would increase their prices and, therefore, would favor GMO products.

Figure 1 gives a graphical representation of the analyzed competing production sys-
tems based on their major characteristics. Overlapping domains represent cross-functionality.
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3.2.3. Ecological Economics

Amid the backdrop of carrying capacity, environmental limits, and sustainability,
the obstinate question of whether farms are “a part” or “apart” from nature persists.
Bliss and Egler (2020) contend that markets are artificial constructs and inappropriate in
most relational contexts to ecological economists, nor do they serve justice, sustainability,
efficiency, or value pluralism.

Despite this, the tendency among agricultural economists is to quantify and mone-
tize. Competing production schemas are often assessed on three factors: environmental
impacts, energetics, and economics. Invariably, the latter two are embodied in an economic
assessment.

In addition to typical economic indicators (production costs including inputs, mar-
keting, and wholesale/retail consumer margins) the intersection of economics and the
environment deserves careful consideration. Specifically, the monetization of ecosystem
services afforded by the various production systems: ecological economics.

Naranjo et al. (2019) provide an exhaustive review of the economic valuation of arthro-
pod biological control in both natural and (agro)ecosystems. Broad estimates suggest that
biological control services are valued at USD 619/ha across multiple biomes in natural
settings, while the estimated value is USD 36/ha in croplands. Natural biological control
of native US crop pests is estimated at USD 5.95 billion, with some evidence suggesting
this is grossly undervalued. Invariably, a link exists between a crop’s market value and
the resultant worth of biological control, allowing farmers to gauge the highest potential
returns on investment in an IPM framework.

Ecosystems services in a broader context are often ill-defined and may outright defy
quantification. For example, system effects on pollinators and other beneficial insects,
and the short/long-term value of conserving those actors in-field. Despite the initial time
and cost outlays, there’s intrinsic cost savings (reduced pesticide costs) and net gains by
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providing refugia. For instance, borders planted in wildflowers to conserve beneficials in
lieu of herbicide use.

Meadows in particular are a popular target for conservation. They are less actively
managed agroecosystems, with a greater degree of permanence and stability than tradi-
tional fields. As such, they enjoy greater biodiversity and are targets for conservation
programs. They also represent a forum to examine the comparative effects of produc-
tion practices on biodiversity. Seeking to delineate these differences, Gerling et al. (2019)
used an ecological-economic modelling procedure to analyze management approaches
on endangered bird and butterfly species in Germany. The impact of conventional and
organic farming alone was minor, because land use timing of both systems aligns. How-
ever, organic farmers faced lower opportunity costs when implementing agri-environment
scheme (AES) measures. Organic farmers were also offered lower payments, which can
disincentivize their participation in AES; in turn suppressing conservation impacts.

While ecosystem services are doubtless important, negative externalities can manifest
if there’s an overreliance on these amenities. For example, while organic production
systems may be considered more eco-friendly, this typically only applies to the micro,
farm level. When viewed in aggregate, the organic yield penalty can represent a perverse
financial incentive. Specifically, one that necessitates the compensatory conversion of wild
habitat to agriculture to farmland.

Indeed, system “reconciliation” can be infinitely confounding. Conventional agri-
culture has embraced the use of no-till systems using herbicide tolerant, biotech varieties
(e.g., Roundup Ready, LibertyLink, etc.). Though the use of spray-intensive systems is
frequently criticized as reducing microbial diversity (which can adversely impact “free”
nutrient cycling), it comes with a suite of benefits, including the reduction of erosion and
sequestration of carbon. The latter could be incentivized by governments as part of a Car-
bon Scheme to pay farmers as a best practice, thus providing an alternative and predictable
revenue stream to combat the vagaries of production.

Similarly, land scarcity is another factor to consider as prime farmland is converted
to human spaces. Land represents convertible value to the farmer if s/he were to site
green energy—wind turbines and/or solar panels, etc., especially in concert with (or as a
successor to) a silvopastoral system.

3.2.4. Socioeconomic Contributors to the Regulation of Pest Management

Waterfield and Zilberman (2012) outline some of the externalities of pest manage-
ment, including environmental effects, public/occupational health, and even productivity
effects on neighboring farms. The magnitude of these effects differs widely across pest
management technologies and the situations to which they are applied. An optimal pest
management calculus is a careful balancing act. Ideally, it strives to balance the quantifi-
able benefits of yield, while considering risk reduction against external costs, particularly
nonpecuniary characteristics that impact farmers’ decisions and welfare. Such analysis
should be the basis of government regulation.

Travisi et al. (2006) presented a critical overview of pesticide risk valuation that pro-
vides disaggregate willingness-to-pay estimates (WTPs) of pesticide risk reduction. They
used recent multidimensional classification methods, including coined decision tree anal-
ysis, as tools in a comparative approach to account for differences in empirical research
findings. The analysis showed that the order of magnitude of WTPs is related to both
the valuation technique and to the data available from biomedical and ecotoxicological
literature. It also shows that WTP estimates of pesticide risks cannot be averaged over
several empirical studies. The order of magnitude of a WTP estimate is related to the
specific type of risk, the nature of the risk scenario considered, as well to lay people’s
subjective perception of said risk.

According to Sexton et al. (2007) economics can be used to inform both private and
public decision-makers about trade-offs inherent in pesticide use and other pest manage-
ment strategies. The betterment of social welfare has generally been the impetus. Deter-
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minations focus on balancing the benefits against (reduced crop injury) with total costs.
These include those borne by the farmer (price and application cost) and those imposed
on society (risks to human health and degraded environmental quality). Such analyses
consider a host of issues, including externalities and uncertainty. Despite this, economists
have developed valuable and robust methodological tools to inform decision-makers.

Solomon (2015) noted that a multitude of factors must be considered by agencies
tasked with pesticide approval and oversight. Several socioeconomic analysis techniques
can be used to quantify the full spectrum of issues and help improve management, in-
cluding the adequate consideration of alternatives. The most popular and commonly
used techniques are cost–benefit analysis and cost-effectiveness analysis. Further, another
family of methods, known as Rapid Rural Appraisal and Participatory Rural Appraisal,
can be more appropriate, faster, and have lower cost to use in developing countries. Finally,
there is qualitative decision making under uncertainty, such as the use of the Precaution-
ary Principle. Ideally, all of the analytical techniques will need complete and reliable
socioeconomic data, though in reality, data are often incomplete and fraught with uncer-
tainty. In these cases, the application of the Precautionary Principle decision rule may have
strong justification.

However, the Precautionary Principle, taken to its logical extreme, can lead to a
regulatory body opting to dismiss the benefits of a pesticide while unduly magnifying
risks. This is further complicated when considered within an IPM context, where fewer
applications and potential exposures are likely.

4. Discussion and Conclusions

Agricultural production systems can significantly differ in motivations and execution.
Occasionally they are spatially separated; more often they exist side-by-side. Most of
the literature compared and contrasted organic and conventional production. There is
a clear consensus that organic production normally results in much lower input costs,
higher labor need, lower yields, and higher prices compared to a conventional system.
Diversification helps to reduce income risks, as well as to balance input purchases and
product marketing. Naturally, these differences vary greatly from product to product or
country to country. Agronomic crops normally perform better than fruits, vegetables, and
livestock. Country-level comparisons demonstrated that organic farms usually have better
financial performance. In addition, organic production provides environmental benefits
at the micro level that is often challenging to monetize. With these enticements in mind,
the transition from conventional to organic production is a unique issue as farmers face all
the disadvantages (higher labor cost and lower yield) without any price premium in the
interim. It should be noted that there are diversified farming systems that, while inspired
by a given system, do not cleanly align. For example, biodynamic farms even surpass the
strict production rules of organic farming regarding the use of herbal and mineral additives.

IPM is a system agnostic potentiator. It is a broadening approach that employs
decision-making informed by scouting and economic thresholds. Injury and damage
abatement tools abound, and are often used in harmonious concert. It can represent
considerable cost savings and ecological enhancements. However, it is also labor and
knowledge intensive, a potentially daunting constraint for farmers with limited technical
support (e.g., Extension services).

Biotechnology is a relatively new approach. In areas of widespread adoption, it has
often paralleled the industrial model, yet garners environmental benefits. Based on the
reviewed articles, GM typically provides lower production cost, higher yield, and more
efficient production. However, there are concerns about horizontal gene transfer and resis-
tance, potential allergenicity, and dependency on seed providers. The economic benefits
are mainly at the farm level, stemming from lower pesticide use, (therefore) reduced fuel
and labor need, and higher yields. It should be noted that GM crop technologies are
scale neutral, thus smaller and lower income farmers may achieve higher gross margin.
Additionally, the use of “no-till” and “reduced-till” farming practices that leverage envi-
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ronmentally friendly herbicidal chemistries facilitate considerable gains in the arenas of
soil erosion and carbon sequestration.

The main issues confronting biotechnology are (organic) coexistence and labeling. The
maintenance of seed purity is especially important for organic farmers as contamination
sabotages their price premium, though the legal concept of adventitious presence allows
for a minor degree of adulteration without penalty (below a set threshold). In addition,
labeling is often viewed as a consumer’s right to know, especially in those countries more
skeptical of GM-based foods.

Table 1 provides a summary of the major characteristics of these different crop pro-
duction systems.

Table 1. Major Characteristics of Crop Production Systems.

Characteristics Conventional Conventional Plus
Biotechnology Organic IPM

Yield Normal Up to 15% higher At least 10% lower Comparable to Conventional
Pesticide Cost Normal Lower Much lower Much lower
Fertilizer Cost Normal Normal Much lower Normal

Labor Cost Normal Lower Higher (+15%) Higher
Product Variety Specialization Specialization Diversification Diversification
Product Price Normal Normal High price premium Normal
Gross Margin Normal Much higher Generally higher Higher

Pricing/Business Model Volume Volume Margin Margin
Environmental Benefits Normal Higher Much higher (at the micro level) Much higher

Source: authors’ composition based on the analyzed literature.

The major limitation of this study was the selection method. Other authoritative
sources can be used, e.g., Scopus, ISI Web of Science, JSTOR, and ProQuest. However, the
value of additional databases is nominal, as the majority of articles have an overlapping
occurrence. Keyword searches can also be structured to further leverage and diversify
content for inclusion.

Moreover, some referenced studies attributed disparities in organic/conventional
profitability using different crops, a figurative apples-to-oranges comparison. Though this
may or may not be representative of prevailing trends, single-crop standardization would
be more prudent and reflective of market-driven differences.

Overall, competing production schemas are generally assessed on three factors: envi-
ronmental impacts, energetics, and economics. Invariably, the latter two are embodied in an
economic assessment. Although this investigation specifically focused on the comparative
economics of “competing” agricultural systems, attempts to monetize energetics (briefly
alluded to) and environmental impacts provide a valuable corollary to the discussion.

With the exception of organics, farmers are not singularly empowered nor restricted to
use a given technological innovation or practice. Yet, the returns associated with organics
has genuine appeal for entrenched farmers and newcomers. Despite that, production
systems are largely artificial constructs, and considerable cross functionality exists between
them. Thus, system distinctions can quickly become muddled. Indeed, it’s largely an
artifact of marketing.

A frequent mistaken notion is that specific practices are system exclusive. The use
of IPM and/or biotechnology in a system otherwise identified as conventional is a case
in point. Another example is the use of cover cropping, rotation, and biocontrols in a
conventional framework. Or a conventional system that practices diversified cropping in
discrete, small blocks (e.g., fractional monoculture). Alternatively, a conventional/IPM
system may identify as “biointensive” and use biorational (naturally derived pesticides),
but also utilize synthetic legacy chemistries that have largely been phased out—on a
calendar basis no less—because no useful substitute exists, and the IPM threshold for the
pest (or pathogen responsible for disease) is essentially zero. Moreover, USDA organic
systems do permit the use of select synthetic materials, as per the Organic Materials Review
Institute (OMRI) standards.
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The reality is that production philosophies are rarely as rigid and orthodox as inferred.
Most are a composite, guided by the respective farmer’s worldview, available resources,
market/clientele demand, and financial expediency. This confounds efforts to fully capture
the economic costs and ecological valuations of competing typologies.

The next 30 years are a critical juncture in human history. Merely keeping pace
with population growth will necessitate significant gains in agricultural output per unit
area. To satisfy this projected growth—without substantial extensification of farmland—
agricultural yields must commensurately increase. As such, sustainable pathways for
bolstering productivity, farmer income, and food security/safety are paramount. No single
production typology is the panacea to this challenge, especially in light of farm-specific
circumstances. The empirical literature suggests that a composite system can embody
ecological reverence, social justice, and economic fundamentals—the requisite elements in
an often-bewildering search for reconciliation.

Indeed, farmers should focus on an a la carte approach when possible, with site-
specific optimization of practices and marketing. In addition to aforementioned approaches,
this can include the planting of perennialized crops, independent labeling programs, the
formation of cooperatives, buy local initiatives, as well as community supported agriculture
and U-Pick, where applicable. All of these exist outside of the orderly confines of an
organic/conventional dichotomy.
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