
von Engelhardt, Sebastian

Working Paper

The economic properties of software

Jena Economic Research Papers, No. 2008,045

Provided in Cooperation with:
Max Planck Institute of Economics

Suggested Citation: von Engelhardt, Sebastian (2008) : The economic properties of software, Jena
Economic Research Papers, No. 2008,045, Friedrich Schiller University Jena and Max Planck Institute
of Economics, Jena

This Version is available at:
https://hdl.handle.net/10419/25729

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/25729
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

JENA ECONOMIC
RESEARCH PAPERS

2008 – 045

The Economic Properties of Software

by

Sebastian von Engelhardt

www.jenecon.de

ISSN 1864-7057

The JENA ECONOMIC RESEARCH PAPERS is a joint publication of the Friedrich
Schiller University and the Max Planck Institute of Economics, Jena, Germany.
For editorial correspondence please contact m.pasche@wiwi.uni-jena.de.

Impressum:

Friedrich Schiller University Jena Max Planck Institute of Economics
Carl-Zeiss-Str. 3 Kahlaische Str. 10
D-07743 Jena D-07745 Jena
www.uni-jena.de www.econ.mpg.de

© by the author.

http://www.uni-jena.de/
http://www.econ.mpg.de/

The Economic Properties of Software

Sebastian von Engelhardt∗

Department of Economics
Carl-Zeiß-Str. 3

D-07743 Jena, Germany

zAbstract
Software is a good with very special economic characteristics. Taking
a general definition of software as its starting-point, this article sys-
tematically elaborates the central qualities of the commodity which
have implications for its production and cost structure, the demand,
the contestability of software-markets, and the allocative efficiency.

In this context it appears to be reasonable to subsume the various
characteristics under the following generic terms: software as a means
of data-processing, software as a system of commands or instructions,
software as a recombinant system, software as a good which can only
be used in discrete units, software as a complex system, and software
as an intangible good.

Evidently, software is characterized by a considerable number of
economically relevant qualities—ranging from network effects to a sub-
additive cost function to nonrivalry. Particularly to emphasise is the
fact that software fundamentally differs from other information goods:
First, from a consumer’s perspective the readability and other aspects
concerning how the information is presented, is irrelevant. Second,
the average consumer/user is interested only in the funtionality of the
algorithms but not in the underlying information.

Key words: digital goods, compatibility, information good, network
effects, nonrivalry, open source, recombinability, software

JEL-classification: D82, D83, D62, D85, K11

∗EMail: Sebastian.Engelhardt@wiwi.uni-jena.de

Jena Economic Research Papers 2008-045

Contents

1 The Object of Study 1

2 The Economic Characteristics of Software 2
2.1 Software as a System for Data Processing 3
2.2 Software as a System of Commands or Instructions 8
2.3 Software as a Recombinant System 12
2.4 Software as a Good Which Can Only Be Used in Discrete Units 13
2.5 Software as a Complex System . 14
2.6 Software as an Intangible Good . 18

3 Summary 19

References 21

Remark

The paper at hand is a translation of my 2006 paper “Die ökonomischen
Eigenschaften von Software”, published in the series Jenaer Schriften zur
Wirtschaftswissenschaft, with number 14/2006. Therefore I would like to
thank Antje Russ (Email: antjeruss@hotmail.com) for the translation. Of
course, any mistakes, errors or omissions in this paper are mine.

II

Jena Economic Research Papers 2008-045

1 The Object of Study

In the strict sense the term ‘software’ refers to all non-physical functional
components of a computer and thus not only to the computer programs
themselves but also to the data which are intended to be processed by the pro-
grams (Küchlin & Weber 2005, p 15-16). However, very frequently the term
‘software’ is used synonymously with ‘program’ and in contrast to ‘data’.
The following definition illustrates this specific usage: software is a list of
commands and instructions for data-processing (Gröhn 1999, p 4). This pa-
per adopts this distinction between software and data. Possible distinctions
like the one between application and system software (Gröhn 1999, p 5) are
not considered.

Software of any kind exists generally in two forms: on the one hand
there is the so-called source program (source code) and on the other hand the
machine-readable binary code. This is a direct consequence of the process
of programming of software: a program—i.e. the logical structure, the com-
mands and instructions—is written in a specific programming language. The
result is a source code which can be read and understood by human beings.
In a second step this code is translated into machine-readable form so that
the computer can execute the program. This operation is called compiling
and the output is the binary code which is—from a semantic perspective—
not readable by human beings. To draw conclusions concerning the struc-
ture and the programming of the software merely on the basis of the binary
code is hardly possible. Accordingly, this paper ignores the possibility of
such conclusions about the underlying programming method and also the
so-called reverse engineering. Instead it is assumed that the various steps of
programming can only be reconstructed when the source code is available
(Kooths et al. 2003, p 13-15; Hansen & Neumann 2001, p 155-156).

It is also possible to classify software products according to the rights of
ownership respectively exploitation rights and/or different methods of pro-
duction, that is, one can distinguish between closed source software (CSS) and
open source software (OSS). A further distinction between non-commercial
OSS, commercial OSS, free-ware, share-ware, and commercial software is
also possible (Wichmann & Spiller 2002, p 11). However, it shall not be
considered in this paper; for the following explanations it is sufficient to fall

1

Jena Economic Research Papers 2008-045

back on the strongly stylized and typified comparison between OSS and CSS.
In this the paper follows Pasche & v. Engelhardt (2004), p. 1:

• In the case of OSS the source code and within the underlying pro-
gramming accomplishment is disclosed. It is permitted to copy, to
distribute, to utilize, to modify OSS and to pass on modified versions
of OSS (for detailed information see the definition of open source in
Open Source Initiative 2004). There are also commercial OSS-products,
so-called OSS-distributions. These are coordinated and optimized pack-
ages of OSS, and usually services like utility programs, support ser-
vices and user manuals are added. Although the providers of com-
mercial OSS with their specific products are in competition with one
another, they contribute to the same OSS-projects with own develop-
ments. This allows cost-sharing and is comparable with the situation
in R&D cooperation. (Pasche & v. Engelhardt 2006, p 105).

• CSS on the other hand emphasizes the exclusive use of software. In
other words, here the source code, which can be read by human be-
ings, is not disclosed and the software is distributed only in the form
of the machine readable binary code. A complete software product
is sold but not the underlying programming knowledge which effects
the solution. The technical procedure of the compiling prevents the
access to the source code. Also, in addition to this, the binary code
is equipped with property rights, and the consumer receives the right
to use the software by purchasing the corresponding licence (Pasche &
v. Engelhardt 2004, p 8). To enforce the excludability, usually a com-
bination of technical and legal copy protection is employed (Kotkamp
2001, p 53).

2 The Economic Characteristics of Software

In order to systematically describe the economically relevant characteristics
of the comodity software, the following general definition is used:

Software as a complex and recombinant system of commands and
instructions for data processing is an intangible good which can be
used only in discrete units.

2

Jena Economic Research Papers 2008-045

This definition explicitly emphasizes the various aspects of software as a co-
modity. In the following, this definition will be used in order to derive the
different specific characteristics of software.

2.1 Software as a System for Data Processing

Software as a complex and recombinant system of commands and
instructions for data processing is an intangible good which can be
used only in discrete units.

The fundamental principle of software (or, the basal sequence of operations
in computing in general) is the so-called IPO-principle (Hansen & Neumann
2001, p 652-653): input–processing–output. Whenever data processing takes
place also data exchange occurs—during the data input as well as during the
data output. This becomes obvious when looking at the example of a word
processing program: with the help of the keyboard the user ‘feeds’ the com-
puter with data. If one wants to print the text the user gives a print command.
The word processing program interprets this command and sends the data to
a printer driver. This printer driver (which is also a software product) trans-
lates the received data into the adequate printer language. Afterwards it sends
the result of this translation to the printer, which in turn outputs the data
in form of printed text on paper. Already this simple example shows three
forms of data exchange: the exchange between user and software, between
software and software, and between software and hardware. In addition to
this, there also exists the possibility of exchange among users: if a file, which
was generated with the help of the word processing program, is stored on a
disk or USB flash drive, it can be passed on to another user who can mod-
ify it if necessary. Here the rule applies “[t]he more users deploy a certain
operating system or application software, the easier it is to exchange files”
(Kooths et al. 2003, p 18). Thus, the utility of a software product increases
with the total number of users of this software, i.e. the size of the network.
Software is one of those “products for which the utility that a user derives
from consumption of the good increases with the number of other agents
consuming the good” (Katz & Shapiro 1985, p 424). Thus, so-called network
effects occur and software is a network good (Pasche & v. Engelhardt 2006,
p 102). In contrast to physical network goods which are characterized by

3

Jena Economic Research Papers 2008-045

physical connections and network nodes software is a virtual network good
(Fichert 2002, p 2).

According to Blankart & Knieps (1992), p 79, network effects can generally
be described with a utility function of the following form:

u(x) = ux + u(Nx) (1)

Here x is the network good, ux is the basic or stand alone utility of the good,
and u(Nx) the utility depending on the size of the network Nx . Furthermore
d u(Nx)

dNx
> 0 applies.1 In the broadest sense of the word there are network

goods of which the stand alone utility is zero, for example the telephone
or the fax machine.2 With software, the basic utility can also be zero (e.g.,
instant messenger programs) but normally one can assume a positive basic
utility of software (word processing, spreadsheet analysis). However, one
can also imagine software products of which the utility almost completely
consist of the stand alone utility and thus the network utility is close to zero
(Fichert 2002, p. 4).

In the case of network effects (of which the consumer mostly benefits)
the expectations of the consumer can have a great influence on the buying
decision: if the consumer expects that a technologically inferior technology
b will prevail over technology a, then b has a great advantage over a as far as
the expected size of the network is concerned. If the network effect, which is
valued according to the expected network size, overcompensates the technical
inferiority (ua > ub), then technology b is actually chosen (Fichert 2002, p
5). This is formally expressed as follows:

E [u(b)] = ub + E
�

u(Nb)
�
> E [u(a)] = ua + E

�
u(Na)

�
(2)

or

E
�

u(Nb)
�− E

�
u(Na)

�
> ua − ub . (3)

Thus, in the case of network goods the dominance of inferior technologies
over superior technologies is possible.

1Of course, negative feedback effects are also possible as well. Thus, there might be cases,
where the network effect has a inverse U form.

2The copy-function of the fax machine shall not be considered.

4

Jena Economic Research Papers 2008-045

In the utility function u(x) = ux + u(Nx) network effects are globally
summarized in the term u(Nx). However, one can distinguish between direct
and indirect network effects. (Katz & Shapiro 1985, p 424):

Direct network effects result directly from the network characteristics of the
good, that is, the utility increases with the distribution of this good and the
distribution of compatible goods respectively (Ehrhardt 2001, p 25). Exam-
ples for this are the platforms of Apple and the Wintel standard 3. As Erhardt
points out, the more users actually employ the respective platform, the easier
it is for the single user to exchange data with others (Ehrhardt 2001, p 26).
The effects of direct network effects are described with ‘Metcalfe’s Law’: if
the number of participants n is proportional to the value u(.) of the network
or the network good for each participant, the interrelation can be describes
as follows: u(.)∼ n · (n− 1) (Shapiro & Varian 1999, p 184).

Indirect network effects have basically two causes: first, there is the rele-
vance of complementary products and services, and second, there are learn-
ing effects and learning spillovers (Ehrhardt 2001, p 27-29). The latter refers
to the relevance of exchange of knowledge among the participants in a net-
work. The larger the network is and the more users employ the same sys-
tem software or the same application software, the more likely is it so find
somebody who can help you to solve a problem with the software or who
can answer your questions about it, and the more attractive is the network
good (Kooths et al. 2003, p 18). Such indirect network effects of learning-
effects and of learning spillovers can especially be observed in the market for
personal computer software (Cowan 1992, p. 291). In the case of new, inno-
vative technologies of which the qualities and possible applications are not
yet fully known, information spillovers have another effect: if new technolo-
gies, which the consumer can not completely assess, are in competition with
one another, it is more attractive for the potential user to buy the technology
which has been chosen by the majority of costumers so far. Here, according
to Erhardt, the uncertainty concerning the performance of the technology is
the lowest because of the numerous adoptions before (Ehrhardt 2001, p 29).
The relevance of complementary products and services, i.e., complementary
software, is very obvious: the more application programs run on an operat-

3‘Wintel’ is a blending of ‘Windows’ and ‘Intel’ and refers to a computer architecture which
is also known as ‘IBM compatible PC’.

5

Jena Economic Research Papers 2008-045

ing system (or are expected to be available in the future), the more attractive
it is for the consumer.

The network effects of complementary goods on the demand side are also
known as ‘hardware-software’-paradigm in network theory (Katz & Shapiro
1985, p 424). This term is derived from the fact that the decision for a cer-
tain hardware configuration implicitly limits the set of possible operating
systems, for example think about Apple vs. Wintel. Accordingly, Shy (2001)
says: “Complementary means that consumers in these markets are shopping
for systems” (Shy 2001, p 2, emphasis in original). In addition to this, it is the
more attractive for producers of application software to develop programs for
a certain operating system, the more consumers are using this operating sys-
tem or are expected to use it. This relevance of the (expected) network size
for the vendors of complementary products refers to network effects on the
supply side (for further information on this issue see for example Kooths et al.
2003, p 17). In my opinion these network effects on the supply side can be
ascribed to the network effects on the demand side, in other words, on the
fact, that these goods form a system. Therefore, in the following I do not
distinguish between network effects on the supply side and network effects
on the supply side.

The relevance of complementability for (indirect) network effects refers
to the relevance of compatibility: complementability is usually achieved by
the compatibility of the various components (Lopatka & Page 1999, p 955).
Compatibility is the fundamental feature of network goods: The decision
whether a good belongs to the network x (the system x) or not, depends
on the question whether this good is compatible with the other goods of
the network x or not. Therefore, compatibility is the central distinguishing
mark of different network systems (Katz & Shapiro 1985, p 424 f). This
interrelation is presented in figure 1, which shows—in a very general form—
the networks respectively the network effects in the area of software. While
indirect network effects such as learning-effects and information spillovers
are not considered in the figure,4 the hardware-layer is included for more

4This is done because a) the number of users is not depicted and b) the relation between the
number of users and the occurrence of these indirect network effects is rather trivial: all
users, for example of operating system A, are effected by the learning effects and infor-
mation spillovers related to operating system A. This is very similar to direct network
effects.

6

Jena Economic Research Papers 2008-045

Figure 1: Substitutes, Complements, Horizontal and Vertical Compatibility

Hardware Architecture I Hardware Architecture II

A
AA

³³³³³³³³

HHHHH

©©©©©

¢
¢¢

Operating System A Operating System B Operating System C

@
@@

»»»»»»»»»»

XXXXXXXXXX

¡
¡¡

Application a Application b Application c Application d

Data Format α

clarity. The application-software a can only be installed on operating system
A but application-software b can be installed on operating system A and B .
Accordingly, application a and the operating system A are complementary
goods; they are vertically compatible. The same holds true for application b
and operation system A. Concerning indirect network effects, the operating
systems A and B are superior to operating system C because for the first two
there are more complementary applications available (two for each: a and b
or b and c respectively) than for C . The applications a and d can—as far
as direct network effects are concerned (data exchange)—be understood as
substitutes: as both applications operate with the same data format α, they
are horizontally compatible. The operating systems A and B can also be seen
as substitutes when application b is considered to be the network good: on
both operating systems the application b can be installed. If one compares
the indirect network effects of application b with those of application c , then
b is the superior application because there are more complementary goods
available for b , in other words, there are the compatible operating systems A
and B .

7

Jena Economic Research Papers 2008-045

2.2 Software as a System of Commands or Instructions

Software as a complex and recombinant system of commands and
instructions for data processing is an intangible good which can be
used only in discrete units.

The term software denotes successive commands, i.e. a system of instructions
for the processing of data. Therefore, all software can be seen as logic con-
structs of algorithms and instructions which have to perform one or more
tasks. Dosi (1996) distinguishes information from knowledge and explicitly
names algorithms and instructions as examples of information (Dosi 1996, p
84). Accordingly, software belongs to the group of information goods. In
connection with information goods, that is, whenever the information good
is to be traded, the so-called information paradox occurs (Kotkamp 2001, p p
55): The buyer of information is not able to determine the value of the in-
formation before the transaction unless the vendor reveals the information.
However, if the information is revealed, there is no longer a motivation nor
a necessity for the buyer to actually purchase the information. Therefore,
before the transaction, the information is not or only insufficiently revealed.
Consequently, the acquisition of information is always a decision under un-
certainty. This explains why

• CSS is solely distributed in the form of the binary code. If the source
code was available, nobody would have an incentive to buy the soft-
ware (in sense of paying a price for the software only, without any
service or support etc.). Therefore, there is also no market for OSS
itself but only for complementary goods and services. These are, how-
ever, often sold together with OSS in so-called OSS distributions (see
also section 1).

• consumers as well as the general public are somewhat distrustful of a
CSS producer because, due to the concealed source code, the informa-
tion (the algorithms) remain inaccessible to the consumer even after
the purchase. For example, in 1999 there was a hot debate about the
defragmentation program Diskeeper, which is included in the operat-
ing system Windows 2000. The computer magazine c’t had reported
that Diskeeper was developed by a company named ‘Executive Soft-
ware Inc.’ The founder and executive manager of this company, Craig

8

Jena Economic Research Papers 2008-045

Jensen, is a professed scientologist (Göhring 1999, p 58 ff). As such
a program has generally direct and active access to all data (Göhring
1999, p 58), this report lead to severe reactions: sect referees called
consumers to boycott Windows 2000 (Heise News 2000), in catholic
dioceses priests were advised not to use Windows 2000 (Spiegel Online
2000) and the Federal Office for Security in Information Technologies
demanded to have access to the source code so that it would be able
to evaluate possible dangers caused by the defragmentation program.5

Moreover, the discussion whether or not the second key ‘NSAKey’ of
the Windows Crypto API is controlled by the US-American intelli-
gence service NSA (cf. Heise News 1999) and the question whether or
not Microsoft collects individual-related data unnoticed by the users
(e.g. see the critical report about the transfer of a system ID to Mi-
crosoft by Persson & Siering 1999, p. 16-18) are expressions of the
uncertainty of the consumers. No matter whether or not such accu-
sations and suspicions are correct in particular cases, they are the con-
sequence of an uncertainty of the consumers even after the purchase,
which in turn is caused by the fact that the information (the algorithm)
remains concealed.

One immediately notices that the commodity software occurs in two distinct
variants: either the information is from the very beginning publicly available
information—we then speak of OSS, which is not traded in a market.6 Or,
the information is concealed to the costumer before and after the purchase—we
then speak of CSS, which is traded in markets.

Accordingly, software is clearly different from other information goods. For
example, if you buy a newspaper, the information contained in the newspa-
per is naturally accessible to the consumer after the purchase. The reason
for this difference is that with software, as far as the informational content is
concerned, for consumers, there is no relevant ‘utility in addition’ because of
what embeds the information. This utility in addition because of how the in-
formation is presented refers to the following circumstance: For example, the

5This has been denied to the German authority. The first governmental office of Europe,
which was permitted to view the source code, is the Federal Ministry of the Interior of
Austria (Heise News 2001).

6To avoid mistakes: OSS distributions and other combinations of OSS with complementary
goods are traded in markets, but here I refer to OSS only.

9

Jena Economic Research Papers 2008-045

utility of a newspaper can be divided into the utility derived from the infor-
mation contained in it and the additional utility derived from the selection
and the editing of the information and the readability of the text (the editorial
and journalistic service). The existence and relevance of this additional util-
ity of information embedding and presenting are the unique selling propo-
sition of daily newspapers. The great national newspapers differ mostly in
their edition and evaluation of contents. The relevance of the utility in ad-
dition because of what embeds the information can also be illustrated with
the example of scientific texts: two articles about the same topic or with the
same thesis may contain exactly the same information. However, because of
differences between how the information is embedded/explained the reader
may judge/evaluate their quality very differently. This also illustrates why
copyright protects the expression but not the underlying information. In the
case of professional articles the copyright protects the concrete formulation
(expression) but not the underlying discovery (Quah 2003, p 24).

In the case of software, however, such a relevant additional utility for the
consumer is missing: possible aspects like an elegant programming, good
documentation and a sufficient annotation of the source code are only rel-
evant for software engineers (i.e. the developers, the producers) but not for
the users (i.e. the consumers). For the user of the information good software
only the ‘functioning’ of the algorithm, of the technical solution is impor-
tant and decisive while a possible utility because of the ‘expression’ is not
relevant for the functioning of the software. Thus, software consumers are
primarily interested in the effects of the algorithms but not in the algorithms
themselves. Moreover, a printed version of the source code is mostly useless
for users as they lack the knowledge to understand this source code. Ac-
cordingly, for the consumers only the fact, that the algorithm of a software
product generates a result, is important, i.e. the effects of software are of inter-
est: a movie is reproduced, a pdf-file can be read etc. This explains why the
commodity software creates utility for the consumer even if the information
is not revealed after the purchase.

As in the case of all information goods, high costs—so-called first copy
costs—arise also in the production of software. These costs are also to be con-
sidered as sunk costs (Kooths et al. 2003, p 16). In contrast to this, the costs
of the reproduction of the complete, digital form of the software-product
are rather low. Thus, the crucial production costs are the sunk costs of the

10

Jena Economic Research Papers 2008-045

design, the programming, testing procedure etc. while the costs of copying,
packing and distribution can be disregarded (see also section 2.6) (Pasche &
v. Engelhardt 2004, p 5 f). These first copy costs are a function of the com-
plexity of the software (Bitzer 1997, p 7). For example, the development
costs of the operating system Windows 3.1 amounted to about 50 million of
US-dollars while the development costs of Windows 2000 were as high as 1
billion of US-dollars (Stelzer 2000, p 837, Arthur1996, p 103, and operating-
system.org, 2004). .

When the source code of software is accessible for the general public or
for a certain group of users, spillover effects occur which can be interpreted
as knowledge spillovers (Pasche & v. Engelhardt 2004, p 18). As the term
‘knowledge spillover’ includes the term ‘knowledge’, the terms ‘informa-
tion’ and ‘knowledge’ shall be differentiated. According to Dosi’s definition,
which is used in this paper, algorithms are information. Therefore, in this
article software is considered to be an information good. Knowledge on the
other hand includes cognitive categories, rules for the interpretation of infor-
mation, tacit skills as well as problem-solution and retrieval strategies, which
cannot be captured in exact algorithms (Kotkamp 2001, p 30). To illustrate
this distinction Dosi (1996) names the example of the argument in mathemat-
ics: the argument itself is information but only few mathematicians have the
knowledge to understand the argument (Dosi 1996, p 84). However, when
in the following explanations knowledge spillovers are mentioned, we refer
to the diffusion of information as well as the learning and knowledge-related
effects on a population which are caused by the diffusion: when an argument
is published in a scientific journal it has a number of consequences which go
beyond the primary effect of the diffusion of the information itself. By study-
ing the argument some mathematicians may refine their own mathematical
skills; some scientists may use the insights of the argument for solutions of
other problems etc. All these effects of a publication, i.e. the effects on math-
ematical skills as well as on the diffusion of the information itself, are in the
following explanations included in the term knowledge spillovers.7 The publi-
cation of a source code is analogous to the publication of an argument. Here
also spillovers occur. The effects of the knowledge spillovers are very diverse:

7For the interdependence between knowledge and information see (Quah 2003, p 36 f;
Loasby 1999, p 148).

11

Jena Economic Research Papers 2008-045

in addition to the mere diffusion of the information a general distribution
and an enhancement of programming skills within the observed population
occur. Furthermore, parts of the source code may be used when new soft-
ware is developed, i.e. they may be directly adopted and integrated. The last
mentioned spillover effect refers to a characteristic of software, which will be
discussed in the next section, namely the fact, that software is recombinant.

2.3 Software as a Recombinant System

Software as a complex and recombinant system of commands and
instructions for data processing is an intangible good which can be
used only in discrete units.

According to Quah (2003), software belongs to the class of digital goods.
Thus, the following statement holds true also for the commodity which is
discussed in this paper: “Digital goods are recombinant. By this I mean they
are cumulative and emergent new digital goods that arise from merging an-
tecedents have features absent from the original, parent digital goods” (Quah
2003, p 19). As suggested in section 2.2, elements of programs which al-
ready exist can be inserted into other programs. Because of this there are
whole catalogues of complete elements of programs (Gröhn 1999, p 5) and
a distinct programming approach—the so-called component-based software
engineering—emerged. This approach also includes the re-use of software
components across producers (Romberg 2003, p 253 ff). Theoretically, there
is the possibility to create a new program completely out of elements of al-
ready available software products. In other words, it is theoretically possible
to recombine parts of existing source codes and never write a line of new
source code and yet receive a new software product. In practice, however,
available parts of programs are combined with new source code.8.

Also, the permanent enhancement of software (versions) illustrates the re-
combinability: out of an old version a new version can be generated by re-
combining the old source code with new source code elements. This recom-
binability can be understood as a local spillover. Or, in other words, in the

8A popular example for this is the programming environment Delphi of the Borland com-
pany: the programming under Delphi is more or less the assignment of attributes to pre-
defined components and the combination of these components. In addition to this, it is
also possible to develop new components (Bohne & Lang 2000)

12

Jena Economic Research Papers 2008-045

production of software products economies of scope are very likely to occur.
Economies of scope arise when in the production of n goods production fac-
tors can be used, which display the characteristics of collective goods.9 In the
case of software economies of scope arise because the same element of source
code can be used for the production of several software products, i.e. n prod-
ucts, without a rivalry in the use of the element of the source code. Thus,
source code components are production factors with the characteristics of
collective goods.

2.4 Software as a Good Which Can Only Be Used in Discrete
Units

Software as a complex and recombinant system of commands and
instructions for data processing is an intangible good which can be
used only in discrete units.

Software is a good which can only be used in discrete units Quah (2003).
On the one hand this means that software is an indivisible good: a software
product of which only 50 per cent are copied is not a working program. In
contrast to this, 50 per cent of an apple are still half an apple and benefit can
be derived form it. A software product is only of use if it is complete, that
is, it is beneficial only in integer amounts. On the other hand, software is
usually consumed in one unit only. Per combination ‘consumer and com-
puter’ it is sensible to install a certain software product only once; it makes
no sense to install it several times. Of course, various consumers can use
one and the same computer and therefore, so-called parallel installations may
exist. However, these are instances of several consumer-computer combina-

9Here the term ‘collective good’ refers to those characteristics of a production factor which
allow its use in several production lines while at the same time its use in one production
line does not reduce its use in the other production line (Windisch 1987, p 50). As an
example Windisch (1987) names—among others—machines that are not working to full
capacity. The term collective good is kept in this paper in order to distinguish linguisti-
cally between collective goods and the basic forms of the distribution of software—as club
goods or public goods—though obviously the terms ‘collective goods’ and ‘public goods’
are synonyms.

13

Jena Economic Research Papers 2008-045

tions. In general, the consumption of any software product a per consumer-
computer combination is always a binary variable:

c(a) = x, with x ∈ [0,1] (4)

Accordingly, the aggregated demand
∑n

m=1 cm(a) =C (a) of n combinations
consumer-computer

C (a) =X with X ∈ � (5)

is a discrete function.
The fact that software can be used only in discrete units and that in the

case of software indivisibility prevails refers to the ‘fragility’ of software .
(Quah 2003, p 17). This fragility is due to the intangibility of software: a
software program that was correctly transmitted to 99 per cent is useless as
software consists of a complex system of commands (figuratively a logic ma-
chine) which does not function if the crucial command is missing. Software
as a complex system will be discussed in the next section.

2.5 Software as a Complex System

Software as a complex and recombinant system of commands and
instructions for data processing is an intangible good which can be
used only in discrete units.

Software has a very complex structure, consisting of if-then-sequences, logic
loops, either/or devices etc. Because of this complexity it is hardly possible
to create a program which is completely without mistakes (Graser 2003)—at
least if one considers rather comprehensive software products and ignores
the more trivial programs like very simple text editors etc. For example, it
is assumed that in proprietary software there are in average 0,51 mistakes
per one thousand lines of source code (tecChannel News 2003). As the op-
erating system Windows 2000 consists of approximately 30 million of lines
(Hochschulrechenzentrum 2003), one can assume that there are about 15.000
mistakes in the source code. Some of these mistakes are never recognized,
others lead to program crashes. The fact that software possesses relevant
gaps in security, which allow computer viruses to intrude into the computer,

14

Jena Economic Research Papers 2008-045

may be interpreted as a special kind of mistake in the source code. One dis-
tinguishes between programming mistakes, application mistakes and system
mistakes. Programming mistakes in the broadest sense can be described as
logic mistakes and slips on the level of the program, i.e. in the interior pro-
gram structure (Bohne & Lang 2000, p 460-462). Typing errors, so-called
infinite loops and periodical fetches, overrun errors or missing releases of
resources are examples of this. Application mistakes (user mistakes) on the
other hand occur when the user does not use the program ‘appropriately’,
when he makes invalid entries, executes operations in a wrong order or does
anything unexpected to the program (Bohne & Lang 2000, p 477). These
mistakes still belong to programming mistakes because programs ought to
be designed so that the user is guided so far that such misuses can not oc-
cur. There are good examples for such a design in practice: for instance, if
you enter an ambiguous destination or an illogical date on the online infor-
mation of the Deutsche Bahn (German Railway Company) you receive the
according feedback. Here the system does not permit invalid entries. The
last category—system mistakes—concerns the interaction between software
and its environment. System mistakes occur for example when the resources
of the computer (e.g. working memory) are not sufficient or if peripherals
are not accessible (e.g. when a printer is not switched on) (Bohne & Lang
2000, p 482).

It is estimated that the economic costs of defective software in the USA
amount up to one per cent of the gross domestic product (NIST & Tech-
nology 2002, p ES–2). According to a study of the US-American National
Institute of Standards and Technology insufficient quality checks cause an-
nual costs of about 60 million dollar for the US-economy. This study, which
concentrates on software developers and users of the automotive industry,
the air and space industry as well as the financial sector, concludes that the
cost minimizing potential of an improved quality check is about 22 million
dollars (NIST & Technology 2002, p ES–11, 1 ff; Heise News 2002). Also
the damages caused by computer viruses should not be disregarded. The US-
American Computer and Communications Industry Association estimates
that the damages caused by the worm SoBig amount to 30 billion US-Dollars
and refers to the data of the London-based company mi2g Ltd. which con-
firms that the “global damage from malicious software inflicted as much as
$107 billion in global economic damage” (Bace et al. 2003, p 10).

15

Jena Economic Research Papers 2008-045

A consequence of the complexity and defectiveness of software is that a
bigger part of the performance of programming consists of troubleshooting
and debugging. Some errors become apparent only during the usage of the
software by the users. Permanent maintenance is a precondition for a long-
lasting use of software products (Franck & Jungwirth 2002, p 125). Accord-
ing to Raymond (1999) about 75 per cent of all costs of a software product
in a company are due to maintenance. In addition to the concrete and indi-
vidual maintenance as a complementary service of the producer of software
or other providers, the participation in the continuing further development
and improvement of a software product with the help of publicly available
updates and patches play an important role for the user. The latter mainly
takes place via internet downloads. In so far one can assert that software
is a good which is not distributed in a final state but which is continually
modified and/or enhanced by complementary services, updates and patches.

The fact that some mistakes become apparent only during the use of the
software points to another characteristic of software, which can be derived
from its complexity: software is a so-called experience good10—and so in two
senses (Pasche & v. Engelhardt 2004, p 3; Pasche & v. Engelhardt 2006, p.
101-102):

1. Software is an experience good in the conventional sense (Ewers et al.
2003, p 284 f) because the consumer can only partially assess the char-
acteristics (including possible errors) of a software product before the
purchase. The user acquires full knowledge of the benefit only when he
practices the use of the purchased software product. Thus, in the case
of software the buying decision is always a decision under uncertainty
(Pasche & v. Engelhardt 2004, p 3). In order to reduce the uncertainty
producers of software often offer a 30-day test version to download
from their web-sites.

2. Furthermore, the user establishes a specific form of human capital by us-
ing the software product; from an inexperienced user he or she devel-
ops into an experienced user. This is the second meaning of experience
goods (Pasche & v. Engelhardt 2004, p 3): by using software every day
the user becomes better acquainted with the software and extends his

10For the term experience good in general see Nelson (1970).

16

Jena Economic Research Papers 2008-045

or her abilities in using it. In consequence he or she has ‘experience
in the usage of the software product z’ or ‘experience in the usage of
common office applications’, etc. Accordingly, the efficiency in the
usage of software increases with the human capital that is generated in
this way. For a user without any experiences in the usage of a software
product this software can even be useless. This highlights that the util-
ity of software arises in the interplay of software and human capital,
which is a good example of Becker’s theory of household production
(Becker & Michael 1973). This human capital can be generated in a
very specific form or a rather broad competence, i.e. on one end of the
spectrum there is the knowledge which is related to a certain, highly
specific software product and on the other hand there is the general
ability to deal with computers (or various operating systems). In this
relation software is not different from other tools or machines. Here,
too, human capital is generated when the use of these tools or machines
is practiced every day and experiences in dealing with them are made
(Arrow 1962). This can also be of a rather general or a very specific
nature. The same is valid for the fact that tools can be used efficiently
only if the users/workers have the necessary knowledge at their dis-
posal. This is even more true, the more complicated and complex a
tool or machine is.

The software-specific human capital is a resource (or competence) which
can be sold in the labour market. Its significance becomes apparent e.g.
in the case of job applications, where software-related requirements
are explicitly mentioned, or, when individuals emphazise their soft-
ware skills in their applications for certain positions. A number of
signals have also been established in order to confirm the existence of
such human capital. Examples for this are the European Computer
Driving Licence (ECDL) or other computer courses where the partici-
pant receives a certificate which lists the acquired skill and proficiencies
(Pasche & v. Engelhardt 2004, p 3).

In summary, one can establish that:

• the potential utility of software can often be completely assessed only
after the purchase (experience good in the first sense),

17

Jena Economic Research Papers 2008-045

• the realised utility of using a software product arises out of the inter-
play between the program and the according human capital,11

• the latter is generated by the use of software (experience good in the
second sense),

• human capital is a resource or competence which can be sold in the
labour market.

2.6 Software as an Intangible Good

Software as a complex and recombinant system of commands and
instructions for data processing is an intangible good which can be
used only in discrete units.

Software is intangible or, in the words of Quah: software is aspatial (Quah
2003, p 18). Software requires a carrier medium, that is a storage medium in
order to exist (Cowan & Harison 2001, p 2), but it cannot be identified with
the storage medium. For example, a ‘CD-ROM of SuSE Linux’ or a ‘CD-
ROM of Windows XP’ is merely a CD-ROM on which the respective oper-
ating system is stored. More abstractly speaking, the CD-ROM is the storage
medium, on which the intangible good is stored—encoded as a sequence of
zeros and ones.

In general, a sequence of zeros and ones can be duplicated or copied as of-
ten as one wishes. The result of the copying process—the copy—is a second
original. This can be compared with the copyability of texts encoded in let-
ters: it can be duplicated and the result is also a second original even it the
storage or carrier medium has changed. There may be a text in a book and a
photocopied version of the text. One is a hardcover (book), the other one is
a number of loose sheets of paper (photocopies) but this does not have any
influence on the content of the text. The reproducibility of software is analo-
gous to this. However, software is copied digitally and therefore, in general,
there is no deterioration of quality—unlike in the analogical process of copy-
ing. The costs of reproducing software are nearly zero, only the costs of the
storage media (e.g. DVDs) and the abrasion of the physical duplication tech-
nology (e.g. DVD burner) are a cost factor. Quah refers to this characteristic
11The same idea in relation to information in general can be found in Kotkamp 2001, p. 56.

18

Jena Economic Research Papers 2008-045

as the infinite expandability of software (Quah 2003, p 13). Consequently,
once a software product is developed, it is not a scarce resource. Only the
storage media (e.g. a CD-ROM) may be subjects of scarcity.

A good which is infinitely expansible cannot be marked by rivalry in use,
either (Quah 2003, p 15).12 This nonrivalry in consumption of software pre-
vails on the temporal level as well as on the quantitative level. The intangible
commodity software does not wear off, in other words, it is not subject to
physical abrasion or consumption (Fichert 2002, p 3; Kooths et al. 2003, p
18). Therefore, an infinite number of individuals may successively use a soft-
ware product. Also in terms of quantity there are no restrictions because
a software-product can be reproduced at marginal costs of nearly zero and
thus, it can be provided for an infinite number of individuals at the same
time.

3 Summary

The insights of this paper may be summarized as follows: Being a network
good, software exhibits direct as well as indirect network effects (informa-
tion spillovers, complementary goods). Consequently, a software product is
tendentially the more attractive the more users employ the product. Soft-
ware belongs to the category of information goods but it differs from other
information goods like newspapers, as there is (for the consumer) no utility
in addition because of the expression of the information. Moreover, users
of software are usually interested only in the functionality of the program
but not in the underlying information (algorithm). This phenomenon to-
gether with the information paradox explains the twofold distinction be-
tween closed source software and open source software. The development
of software causes very high costs, the so-called first-copy-costs. In the case
of a disclosure of the source code one can expect knowledge spillovers. The
recombinability of software leads to economies of scope in the production of
software. Software is a good which can be used only in discrete entities and
the individual demand for software can be characterized as binary. One can
also say that software is distributed in a non-final state: because of the com-

12This relation is always valid. However, there are goods which exhibit nonrivalry in con-
sumption but which are not infinitely expansible. See also Quah (2003), p 16 on this.

19

Jena Economic Research Papers 2008-045

plexity of software it is hardly possible to program a software product which
is completely faultless, especially since many errors become apparent only
when the program is used. Software is an experience good in two senses: on
the one hand the adequacy and the quality can fully be evaluated only after
the purchase, in the every day use. On the other hand, the user generates a
specific form of human capital while using a software product. A once devel-
oped software product is infinitely expansible and is therefore a non-scarce
resource. Consequently software is marked by nonrivalry in consumption.

20

Jena Economic Research Papers 2008-045

References
Arrow, K. J. (1962), ‘The economic implications of learning by doing’, The Review

of Economic Studies pp. 155–173.

Arthur, W. B. (1996), ‘Increasing Returns and the New World of Business.’, Harvard
Business Review pp. 100–109.

Bace, R., Geer, D., Gutmann, P., Metzger, P., Pfleeger, C. P., Quarterman, J. S. &
Schneier, B. (2003), CyberInsecurity: The Cost of Monopoly. How the Dom-
inance of Microsoft?s Products Poses a Risk to Security, Report, Computer &
Communications Industry Association, Washington.

Becker, G. S. & Michael, R. T. (1973), ‘On the new theory of consumer behavior’,
Swedish Journal of Economics 75, 378–396.

Bitzer, J. (1997), The Computer Software Industry in East and West. Do Eastern Eu-
ropean Countries Need a Specific Science and Technology Policy?, DIW Diskus-
sionspapiere 149, Deutsches Institut für Wirtschaftsforschung, Berlin.

Blankart, C. B. & Knieps, G. (1992), Netzökonomik., in E. Böttcher, ed.,
‘Ökonomische Systeme Und Ihre Dynamik’, Jahrbuch Für Neue Politische
Ökonomie, J.C.B. Mohr (Paul Siebeck), Tübingen.

Bohne, A. & Lang, G. (2000), Go To Delphi 5., Addison-Wesley-Longman, München
[u.a.].

Cowan, R. (1992), High Technology and the Economics of Standardization., in
M. Dierkes, ed., ‘New Technology At the Outset : Social Forces in the Shaping
of Technological Innovations’, Campus Verlag, Frankfurt am Main, pp. 279–300.

Cowan, R. & Harison, E. (2001), Protecting the Digital Endeavour. Prospects for
Intellectual Property Rights in the Information Society, Research Memoranda 28,
MERIT, Maastricht Economic Research Institute on Innovation and Technology,
Maastricht.

Dosi, G. (1996), The Contribution of Economic Theory to the Understanding of
a Knowledge-based Economy., in ‘Employment and Growth in the Knowledge-
Based Economy’, OECD Documents, OECD, Paris, pp. 81–92.

Ehrhardt, M. (2001), Netzwerkeffekte, Standardisierung und Wettbewerbsstrategie.,
Gabler Edition Wissenschaft : Strategische Unternehmungsführung, Deutscher
Universitäts-Verlag, Wiesbaden.

21

Jena Economic Research Papers 2008-045

Ewers, H.-J., Fritsch, M. & Wein, T. (2003), Marktversagen und Wirtschaftspolitik.
mikroökonomische Grundlagen staatlichen Handelns, Vahlen, München.

Fichert, F. (2002), ‘Wettbewerbspolitik im digitalen zeitalter. öffnung verma-
chteter märkte virtueller netzwerkgüter’, Beitrag zum 3. Workshop ‘Ord-
nungsökonomik und Recht’ des Walter Eucken Instituts.

Franck, E. & Jungwirth, C. (2002), ‘Das Open-Source-Phänomen jenseits des Gift-
Society-Mythos.’, WiSt - Wirtschaftswissenschaftliches Studium 31(3), 124–129.

Göhring, H.-P. (1999), ‘Windows 2000 droht ein Bann. Kritik aus den Kirchen an
Scientology-Beteiligung’, C’t - Magazin Für Computertechnik 25, 58–61.

Graser, F. (2003), ‘Pragmatischer Umgang mit Softwarefehlern empfohlen’, Com-
puter Zeitung 18.

Gröhn, A. (1999), Netzwerkeffekte und Wettbewerbspolitik. Eine ökonomische Analyse
des Softwaremarktes, Mohr Siebeck, Tübingen.

Hansen, H. R. & Neumann, G. (2001), Grundlagen betrieblicher Informationsverar-
beitung, Lucius & Lucius, Stuttgart.

Heise News (1999), ‘Debatte um NSAKey geht weiter’, Online Artikel.
www.heise.de/newsticker/meldung/6019.

Heise News (2000), ‘Sektenbeauftragter ruft zum Windows-2000-Boykott auf’, On-
line Artikel. www.heise.de/newsticker/meldung/7708.

Heise News (2001), ‘Wien darf Windows-Quellcode zuerst prüfen’, Online Artikel.
www.heise.de/newsticker/meldung/23105.

Heise News (2002), ‘Bugs kosten fast sechzig Milliarden Dollar pro Jahr’, Online
Artikel. www.heise.de/newsticker/meldung/28604.

Hochschulrechenzentrum, U. (2003), ‘MS-Windows und Verwandte’, Online Ar-
tikel. www.hrz.uni-wuppertal.de/dienste/software/os/windows/.

Katz, M. L. & Shapiro, C. (1985), ‘Network Externalities, Competition, and Com-
patibility.’, American Economic Review 75(3), 424–440.

Kooths, S., Langenfurth, M. & Kalwey, N. (2003), Open-Source Software: An Eco-
nomic Assessment, Vol. 4 of MICE Economic Research Studies, Muenster Institute
For Computational Economics, Münster.

22

Jena Economic Research Papers 2008-045

Kotkamp, S. (2001), Electronic Publishing. Ökonomische Grundlagen des Handels
mit Informationsprodukten, Dissertation, Universität Fridericiana zu Karlsruhe,
Karlsruhe.

Küchlin, W. & Weber, A. (2005), Einführung in die Informatik, Springer, Berlin Hei-
delberg.

Loasby, B. J. (1999), Knowledge, Institutions, and Evolution in Economics., Routledge,
London.

Lopatka, J. E. & Page, W. H. (1999), Network Externalities., in B. Bouckaert &
G. De Geest, eds, ‘Encyclopedia of Law and Economics’, Edward Elgar Publish-
ing Limited, Cheltenham [u.a.], pp. 952–980.

Nelson, P. (1970), ‘Information and Consumer Behavior.’, Journal of Political Econ-
omy 78(2), 311–329.

NIST, T. N. I. o. S. & Technology, eds (2002), The Economic Impacts of Inadequate
Infrastructure for Software Testing. Final Report, Planning Report.

Open Source Initiative (2004), ‘The Open Source Definition’, Online Dokumrnt.
www.opensource.org/docs/definition_plain.php.

operating-system.org (2004), ‘Windows Family’, Online Artikel. www.operating-
system.org/betriebssystem/_german/bs-windows.htm.

Pasche, M. & v. Engelhardt, S. (2004), Volkswirtschaftliche Aspekte der Open-
Source-Softwareentwicklung., Jenaer Schriften Zur Wirtschaftswissenschaft
18/2004, Friedrich Schiller Universität, Jena.

Pasche, M. & v. Engelhardt, S. (2006), Führt Open-Source-Software zu ineffizienten
Märkten?, in B. Lutterbeck, R. A. Gehring & M. Bärwolff, eds, ‘Open-Source-
Jahrbuch 2006’, pp. 93–108.

Persson, C. & Siering, P. (1999), ‘Big Brother Bill. Microsofts heimliche ID-
Nummern - angeblich eine Panne’, C’t - Magazin Für Computertechnik 6, 16–20.

Quah, D. (2003), Digital Goods and the New Economy., CEP Discussion Papers
563, London School of Economics, London.

Raymond, E. S. (1999), ‘The Magic Cauldron’, Paper.
www.catb.org/ esr/writings/magic-cauldron/magic-cauldron.ps.

23

Jena Economic Research Papers 2008-045

Romberg, T. (2003), Herstellerübergreifende Wiederverwendung von Komponen-
ten., in ‘Handbuch Zur Komponentenbasierten Softwareentwicklung’, -.

Shapiro, C. & Varian, H. R. (1999), Information Rules. a strategic guide to the network
economy, Harvard Business School Press, Boston.

Shy, O. (2001), The Economics of Network Industries., Cambridge University Press,
Cambridge.

Spiegel Online (2000), ‘Katholiken misstrauen Scientology-Software’, Online Ar-
tikel. www.spiegel.de/netzwelt/politik/0,1518,79730,00.html.

Stelzer, D. (2000), ‘Digitale güter und ihre Bedeutung in der Internet-ökonomie’,
WiSt - Wirtschaftswissenschaftliches Studium 6, 835–842.

tecChannel News (2003), ‘Apache-Code ist kommerziellen Produkten eben-
bürtig’, Online Artikel. www.tecchannel.de/news/20030702/thema20030702-
11120.html.

v. Engelhardt, S. (2006), Die ökonomischen Eigenschaften von Software, Jenaer
Schriften Zur Wirtschaftswissenschaft 14/2006, Friedrich Schiller Universität,
Jena.

Wichmann, T. & Spiller, D. (2002), Free/libre and open source software: Survey and
study – final report, Part 3: Basics of open source software markets and business
models, Berlecon Reasearch, Berlin.

Windisch, R. (1987), Privatisierung natürlicher Monopole. Theoretische Grundla-
gen und Kriterien, in R. Windisch, ed., ‘Privatisierung Natürlicher Monopole
Im Bereich von Bahn, Post Und Telekommunikation’, Mohr Siebeck, Tübingen,
pp. 1–146.

24

Jena Economic Research Papers 2008-045

