
von Engelhardt, Sebastian

Working Paper

Intellectual property rights and ex-post transaction
costs: the case of open and closed source software

Jena Economic Research Papers, No. 2008,047

Provided in Cooperation with:
Max Planck Institute of Economics

Suggested Citation: von Engelhardt, Sebastian (2008) : Intellectual property rights and ex-post
transaction costs: the case of open and closed source software, Jena Economic Research Papers, No.
2008,047, Friedrich Schiller University Jena and Max Planck Institute of Economics, Jena

This Version is available at:
https://hdl.handle.net/10419/25730

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/25730
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

JENA ECONOMIC
RESEARCH PAPERS

2008 – 047

Intellectual Property Rights and
Ex-Post Transaction Costs: the Case
of Open and Closed Source Software

by

Sebastian v. Engelhardt

www.jenecon.de

ISSN 1864-7057

The JENA ECONOMIC RESEARCH PAPERS is a joint publication of the Friedrich
Schiller University and the Max Planck Institute of Economics, Jena, Germany.
For editorial correspondence please contact m.pasche@wiwi.uni-jena.de.

Impressum:

Friedrich Schiller University Jena Max Planck Institute of Economics
Carl-Zeiss-Str. 3 Kahlaische Str. 10
D-07743 Jena D-07745 Jena
www.uni-jena.de www.econ.mpg.de

© by the author.

http://www.uni-jena.de/
http://www.econ.mpg.de/

Intellectual Property Rights and
Ex-Post Transaction Costs: the Case
of Open and Closed Source Software∗

Sebastian v. Engelhardt∗∗

Abstract

The economic characteristics of software and transaction costs ex-
plain, why closed source and open source software co-exist. It is about
the efficient use of a non- and anti-scarce resource. But because of
ex-post transaction costs that lead to information asymmetries, some
property rights regarding the resource „source code“ are not exclu-
sively separable. Thus, the first best allocation of property rights, that
would yield an optimal usage of a source code, is not realizable. Or,
that is to say, a first best realization of contracts is not feasible.

Hence, open and closed source software are two second best arrange-
ments, both with specific assets and drawbacks. The principle of closed
source benefits from direct (monetary) incentives and control, but has
limits in its scope (size) because of transaction costs. Open source,
on the one hand, benefits from its openness that creates spillovers and
enables to incorporate human capital that is not acquirable for closed
source firms. On the other hand, there are costs of openness, such as
coordination costs (consensus finding, etc.) the danger of free riding or
under provision, or forking.

JEL-classification: D23, L17, L22, O34

Keywords: open source, intellectual property rights, transaction costs,
information goods, modeling property rights

∗Financial support from the KLAUS TSCHIRA FOUNDATION is gratefully acknowledged.
Furthermore, I would like to thank the participants of the sixth session of the European
School on New Institutional Economics (ESNIE) 2007, as well as the participants of the
Annual Congress of the Society for Economic Research on Copyright Issues (SERCI) 2007
for valuable comments and suggestions on earlier versions of this paper.

∗∗Friedrich-Schiller-University Jena, Department of Economics and Business Administra-
tion, Carl-Zeiss-Str. 3, D-07743 Jena. E-mail: Sebastian.Engelhardt@wiwi.uni-jena.de

Jena Economic Research Papers 2008 - 047

http://www.klaus-tschira-stiftung.de/
mailto:Sebastian.Engelhardt@wiwi.uni-jena.de

Contents

1 Introduction 1

2 Intellectual Property Rights and a Non- and Anti-Scarce Resource 3
2.1 The Analytical Framework . 3

2.1.1 An Economic Resource 3
2.1.2 Definition of Scarce, Non- and Anti-Scarce 4
2.1.3 Property Rights . 4

2.2 The Resource Software . 5
2.2.1 About the Economic Characteristics of Software . . . 5
2.2.2 Software as a Non- and Anti-Scarce Ressource 7

2.3 Optimal Allocation and Optimal Licenses 9

3 The Role of Transaction Costs 12
3.1 Incomplete Information, Transaction Costs and Limits of In-

ternalizability . 12
3.2 Ex Post Transaction Costs and the Problem of Not Exclu-

sively Separable Rights . 14
3.2.1 The Problem . 14
3.2.2 Implications for Licensing: The Case of CSS vs. OSS

Licenses . 17
3.2.3 On the Rationality Not to Claim all Rights 19

3.3 Two Solutions: A Comparison of OSS and CSS 21
3.3.1 The Principle of CSS . 21
3.3.2 The Principle of OSS . 23
3.3.3 The Co-Existence of OSS and CSS 24

4 Summary and Outlook 25

A Appendix: On the Notation of Alienation Rights 27

References 28

2

Jena Economic Research Papers 2008 - 047

“If the main allocative function of property rights is the internal-
ization of beneficial and harmful effects, then the emergence of
property rights can be understood best by their association with
the emergence of new or different beneficial and harmful effects.”
h H. Demsetz, Towards a Theory of Property Rights, p 350

“The main reason why it is profitable to establish a firm would
seem to be that there is a cost of using the price mechanism.”
h R. H. Coase, The Nature of the Firm, p 390

1 Introduction

The software sector is characterized by the co-existence of two types of pro-
duction modes, based on two different concepts of ownership: closed source
software (CSS)—also called ‘proprietary’ software—and open source software
(OSS). OSS is developed by communities that include hobbyists as well as
companies, and the source code—the human-readable recipe—is ‘open’. This
means that everybody has access, and the right to read, modify, improve, re-
distribute and use it. Thus, OSS appears to be a case of a private provision
of a public good. Nevertheless, firms like IBM, Sun Microsystems, RedHad,
etc. use OSS based business models, i.e. make money by selling products
(hardware or service) that are complements to the software. Additionally,
thousands of software developers contribute voluntarily, i.e. without mone-
tary reward.

Economic research examines intrinsic and extrinsic motivations of the
OSS volunteers (Lerner & Tirole 2002, Ghosh et al. 2002, Rossi 2006), the ef-
fects of OSS on competition (Casadesus-Masanell & Ghemawat 2003, Bitzer
2004), as well as open innovations (von Hippel & Von Krogh 2003, von Hip-
pel 2005) and firm investments in OSS (e.g. Baake & Wichmann 2004, Henkel
2006, Lerner et al. 2006, Rossi & Bonaccorsi 2006). Institutional aspects—like
incomplete contracting/hold-up, different types of OSS licenses, community
norms, governance of OSS projects, etc.—were also brought into focus (We-
ber 2004, Brand & Schmid 2005, Gehring 2006, Bessen 2006, D’Antoni &
Rossi 2007). This paper contributes to the institutional literature. Using a
property right point of view, the rationale for open and closed source are ex-
amined. Hence, the paper also contributes to literature on possible transfers
of the ‘open source’ paradigm (Maurer 2008, Henkel & Maurer 2007).

One can interpret the production modes of CSS and OSS as being different
kinds of “institutional arrangements” (Davis & North 1971), and distinguish

1

Jena Economic Research Papers 2008 - 047

them by their different use of copyright law, codified in the software licenses.
This different types of ownership concept leads to different allocations of
intellectual property rights (IPRs) and different modes of organization. The
institutional arrangements represent strategies in use of the resource software
(source code respectively) and have specific assets and drawbacks regarding
individual and firm level as well as social welfare.

The property rights theory mostly concentrates on negative external ef-
fects, e.g. the widely discussed tragedy of the commons—as well as the tragedy
of the anti-commons (Heller 1998)—is a negative externality story, a scarce
resource story. This focus seems to draw back to Demsetz’ seminal article:
Although he points out in the beginning, that it is about “internalization of
external costs and benefits” (Demsetz 1967, p 349), he then focuses on nega-
tive externalities (Demsetz 1967, pp 350 ff.).

But the issue discussed in this paper is about a non-scarce, to some ex-
tent even an anti-scarce resource. The argument is, that property rights re-
garding some kind of non-rival and anti-rival applications of software (or: of
the source code) are not exclusively separable, because of ex post transaction
costs and the economic characteristics of software.

The paper starts in with an introduction to the analytical framework and
the characteristics of software (sections 2.1 and 2.2.1). Section 2.2.2 explains
why a source code is a non- and anti-scarce resource. I then show that neither
non- nor anti-rivalry as such, is a reason for the dichotomy of OSS vs. CSS,
as a perfect market would lead to a welfare optimal allocation of non- and
anti-rival applications. The optimal allocation of property rights, optimal
defined licensee agreements respectively, are derived from this (section 2.3).

Based on this, the Coasean approach of explaining non-market coordina-
tions is used. Thus, I ask, what kind of transaction cost driven problems
limit market transactions such that this can explain the co-existence of CSS
and OSS. Although transaction costs limit the internalizability of some of
the positive effects, this can not explain the OSS-CSS phenomena as such
(section 3.1). Hence, the argument is, that because of ex post transaction costs
some of the property rights are not exclusively separable, which leads to a con-
trol problem, i.e. a de facto dilution of exclusive ownership. The principle
of CSS and OSS are thus interpreted as being two different kinds of solution
for this. The former maximizes control and exclusive ownership while the
latter minimizes control and exclusive ownership (section 3.2).

2

Jena Economic Research Papers 2008 - 047

2 Intellectual Property Rights and a Non- and
Anti-Scarce Resource

2.1 The Analytical Framework

This section provides some definitions used in this paper. Although this an-
alytical framework was developed in order to analyze the resource ‘source
code’, it can be used to analyze any kind of economic resource.

2.1.1 An Economic Resource

A resource can be defined as a technically meaningful set of certain elements,
e.g. a source code can be defined as a technically meaningful set of code lines.
Therefore, a given source code is described as a set X . As X can be split up
into subsets, there is a set of all subsets P(X) = {A |A⊆X }.

Let y = f (Z , ·) denote that Z ∈ P(X) is used for an application y. The
‘use’ f (Z , ·) is one of several possible forms of transformation of Z with or
without the use of other code lines, e.g. y = f (Z ,W)would be an application
of the combined code line sets Z and W , which can be rewritten as y = f (V)
with V = {Z ∪W } 6= ;. However, y = f (Z) is possible as well.

Because of technical reasons, applications do not exist for all Z , the triv-
ial example is Z = ; ∈ P(X). Hence, there exists a set of technically not
meaningful subsets of X : U (X) = {Z ∈P(X) | ∄ y = f (Z , ·)}. This leads to:

Definition 2.1. The set of technically meaningful subsets of X is

X (X) = {P(X) \U (X)}= {Z ∈P(X) | ∃ y = f (Z , ·)}. (1)

Notice, that there can be Z with multiple applications, i.e. there can exist
several Z ∈X with ∃!y= (y1, . . . , yn), y i = f (Z , ·), n ≥ 2.

With Definition 2.1 it is possible to define for each X the corresponding
set of applications, denoted by Y :

Definition 2.2. The corresponding set of applications of X is

Y (X) = {y | y = f (Z , ·),Z ∈X (X)}. (2)

As mentioned above, y = f (Z , ·) indicates, that Z might be but does not have
to be combined with other code. Therefore, a more general notation is to

3

Jena Economic Research Papers 2008 - 047

write y = f (Z , ·) ∈ { f (Z), f (V)}with V = {Z∪W } 6= ; and Z ∈X (X). This
yields the following general notation of the corresponding set of applications:
Y (X) = { f (Z), f (V)}= Y (Z)∪Y (V).

2.1.2 Definition of Scarce, Non- and Anti-Scarce

A scarce ressource is a ressource with rivalry in use. This is the case, if the use
of a Z ∈X for any application y̆ ∈ Y̆ leads to rivalry in use.

Definition 2.3. X is called a scarce resource with respect to Y̆ ⊆Y , if

∀ y̆ = f (Z , ·) |
�

Y new(X new)⊂Y (X)
�

. (3)

A non-scarce ressource is a ressource with non-rivalry in use, this refers
to public and club/toll goods. In such a case, the use of a Z ∈ X for any
application ỹ ∈ Ỹ leads to no rivalry in use.

Definition 2.4. X is called a non-scarce resource with respect to Ỹ ⊆ Y , if

∀ ỹ = f (Z , ·) |
�

Y new (X new) =Y (X)
�

. (4)

An anti-scarce ressource is a ressource with anti-rivalry in use, i.e. the more
the ressource is used, the higher is the value of the ressource, because the set
of applications increases1 due to use. Thus, a resource is anti-scarce, if the use
of a Z ∈X for any application ŷ ∈ Ŷ leads to anti-rivalry in use.

Definition 2.5. X is called a anti-scarce resource with respect to Ŷ ⊆ Y , if

∀ ŷ = f (Z , ·) |
�

Y new(X new)⊃Y (X)
�

. (5)

2.1.3 Property Rights

The theoretical framework of this paper has to contain (intellectual) prop-
erty rights. As this paper is about software, I will always refer to IPRs only,
although in principle the notation can be applied to PRs and IPRs.

1Notice, that the formulation “applications” catches qualitative as well as quantitative
changes of the resource.

4

Jena Economic Research Papers 2008 - 047

Following Furubotn & Richter (2005), Eggertsson (1990), Hart & Moore
(1990), and others, I distinguish coordination rights (usus and abusus) from
residual rights (usus fructus and alienation rights). The complete set of rights
is defined as H = {H c ∪H r }, with H c as the set of coordination rights, and
H r as the set of residual rights. Let h ∈ H denote one property right.

At first, coordination rights are defined: The conjunction of a coordina-
tion right h c ∈ H c with a resource X (I write “h c : X ”) leads to a distinction-
criteria between the applications that are covered by the IPR and those which
are not. Notice that there is no need to know the whole set of possible appli-
cations, as the distinction-criteria yields a selecting-rule r that tells whether
a y ∈ Y (X) is covered by the IPR or not: r : y→ [0,1] ∀ y ∈ Y . This yields

h c : X −→
�

y ∈ Y | r (y) = 1
	

. (6)

For example, let hu denote the vector of all usus rights, ha the vector of all
abusus rights, and hu&a all usus and abusus rights. This yields e.g.

hu : X −→
�

y ∈ Y | y = f (Z)
	

= Y (Z), (7)

hu&a : X −→
�

y ∈ Y | y = f (V)
	

=Y (V). (8)

Next is to define the residual rights, where I have to distinguish between usus
fructus and alienation rights: Let h f denote the vector of all usus fructus

rights, and π the payoff gained from y, then

h f : X −→
�

π |π= f (y), y ∈ Y
	

. (9)

The right to transfer IPRs of a resource has to be represented in a slightly
different way, as it is a ‘right on rights’. You can find a formal notation of
alienation rights in the appendix A (p 27).

2.2 The Resource Software

2.2.1 About the Economic Characteristics of Software

Software is a good with particular economic characteristics. To simplify, one
can subsume the economic properties of software as follows (for more details
see von Engelhardt 2006, 2008):

5

Jena Economic Research Papers 2008 - 047

• Software is a digital good and therefore recombinant: software prod-
ucts are “cumulative and emergent—new digital goods that arise from
merging antecedents have features absent from the original, parent dig-
ital goods” (Quah 2003, p 19). Within this text, the terms recombin-
able and combinable (for the term cumulative, see page 7) are defined
as follows: Let S(X) denote the set of all permutations of X , and
S ∈ S(X) denote one permutation of X . X is called recombinable if
∃ S 6= X s.t. ∃ y = f (S). Of course, deriving from one given source
code at least one new recombinant source code just by rearranging the
code lines, is more or less a theoretical eventuality only. More likely (a
part of) a source code is combined with other/new code lines.

Definition 2.6. Z ∈X is called combinable with respect to W , if

∃W 6= ; s.t. ∃ y = f (V), V = {Z ∪W } 6= ;. (10)

• Software is aspatial, thus it is infinitely expansible and therefore nonri-
val: once software is produced, it can be reproduced without any loss
of quality and the reproduction costs are virtually zero. But there are
high development and pre-launch testing costs (high first copy costs).
These high sunk costs combined with the low marginal costs lead to a
subadditive cost function.2

• Software is a network good with direct and indirect network effects.3

Network effects are intimately connected with complementarity which
“means that consumers in these markets are shopping for systems [...]
rather than individual products” (Shy 2001, p 2, emph. in original), and

2Economies of scope do not necessarily support subadditivity, see Baumol (1977).
3As software is data processing, there is an exchange of data. This exchange happens ei-

ther with other software (applications and/or operating system) or hardware or both,
which requires compatibility. This implies that producers have an incentive either to use
the dominant standard or try to push their own standard. Consequently a coordination
problem arises: which standard should be used, will it be proprietary or open? On the
supply and the demand side two different forms of network effects play a role. The first
is the so-called installed base effect, i.e. the utility increases with the total number of users
(producers and consumers). Second, there is a personal network effect (Westarp 2003),
where the adoption decision is determined less by the total numbers of users but by the
adoption decisions in the personal network.

6

Jena Economic Research Papers 2008 - 047

modularity (even of parts of software) plays an important role (Weber
2004, pp 172 ff; Langlois 2002, pp 22 f). A necessary condition for
‘complementarity’ and ‘modularity’ is compatibility.

• This leads to another characteristic of software, for which compatibil-
ity and combinability are necessary (but not sufficient) conditions: If
X is combinable and V is compatible to X , then X can be cumulative.
X is cumulative, if V itself is part of the new X new .

Definition 2.7. X is called cumulative with respect to W , if

∃W 6= ; s.t.
�

∃ y = f (V), V =
�

Z ∪W
	

6= ;
�

∧
�

Z ,V ⊆X new
�

(11)

• Software is an information good because the source code (the system of
algorithms) is information, i.e. a human-readable recipe. But software
differs from other information goods, as the average consumer does
not care about the information but merely about the impact (e.g. re-
ceive and send emails rather than read the source code). This explains
why software is an information good that can be sold in a state users
can not read the information: closed source software is typically given
away only in state of (only machine-readable) binary codes and there-
fore the information is ‘closed’.

2.2.2 Software as a Non- and Anti-Scarce Ressource

Due to the economic characteristics of software, a source code is a non-scarce
ressource. Obviously there is no rivalry in consumption, but there is also no
rivalry in production:

(i) Because of virtual zero reproduction costs, a given first copy X is a
non-scarce resource for producing n+ 1 copies. X can be copied with-
out any loss of quality, thus y := ‘copying’ |Y new =Y .

(ii) Because of lack of physical abrasion and being combinable, a given
source code X is a non-scarce resource for further software develop-

7

Jena Economic Research Papers 2008 - 047

ment. X can be used (even in parts) as input stock for developing first-
copies of new, derived software product:4 y = f (V) | Y new = Y .

(iii) Because of software is an information good, a given source code X is
a non-scarce resource for transfer of ideas and learning, thus knowl-
edge spillover. A source code is a list of programming solutions. For
a new software project, several solutions provided by existing source
code might be useful and can be used in sense of a transfer of ideas and
concepts even from one programming language to another. Addition-
ally, reading a source code of interest can be beneficial for a software
engineer, as one can learn from it and thereby improve programming
skills. Hence, for all ‘applications’ y that are transfer of ideas or learn-
ing, applies y = f (Z) |Y new = Y .

Thus, a source code is a non-scarce ressource. Furthermore, software is an
‘at least’ non-scarce ressource, as there is not only non-rivalry in use, but to
some extent even anti-rivalry5 in use, hence it is a anti-scarce ressource

(iv) Because of the importance of standards and network effects, software is
a network good with respect to the supply side as well as to the demand
side (e.g. see White et al. 2004, Kooths et al. 2003, Gröhn 1999, Gandal
1994). If X is a network good regarding a set of ‘network applications’
ynw ∈ Y , then the following holds: ∀ynw | Y new ⊃ Y . Thus, X is an
anti-scarce resource with respect to ynw , see the definition 2.5, p 4.

This is true for all network goods, or network effects respectively. One
intuitive example is a network of telephone wires: The more users plug
in to the network, the more applications (‘call person A’) are possible.

(v) Because of cumulativenes, there is anti rivalry in use of a source code:
If X is cumulative with respect to any W ∈W , then X is an anti-scarce
resource with respect to W .

4Because of this there are whole catalogs of complete elements of programs (Gröhn 1999,
p 5) and a distinct programming approach—the so-called component-based software
engineering—emerged. This approach also includes the re-use of software components
across producers (Romberg 2003, pp 253 ff.).

5Compare the following also with Weber (2004, pp 153 ff.), where one can find similar
thoughts, Weber uses the term ‘antirivalness’.

8

Jena Economic Research Papers 2008 - 047

Proof: From the definition 2.7 of cumulative (p 7) we get

∀W ∈W |
�

∃ y c = f (V), V =
�

Z ∪W
	

6= ;
�

∧
�

Z ,V ⊆X new
�

⇒
�

(V *X)∧ (V ⊆X new)
�

∧
�

(y c /∈ Y)∧ (y c ∈ Y new)
�

⇒∀y c = f (V) |
�

Y new(X new)⊃Y (X)
�

,

which is just equal the definition of anti-scarcity (definition 2.5, p 4).

If a software engineer further develops a module—e.g. because of own
needs—others can benefit from this improvement as long as the new
piece of source code is still compatible and the new ‘module’ is imple-
mented in, and improves users’ software systems. Thus, a source code
is a potential input stock for further software development, where the
new output is (potentially) another incorporable module for the soft-
ware system and at the same time is again (potential) input stock that
lowers further software development costs, where the result again can
be implemented, and so on.

2.3 Optimal Allocation and Optimal Licenses

This section is about IPRs with respect to a non- and anti-scarce resource in
a world without transaction costs. As the paper focuses on the resource soft-
ware (source code), this section is about the role of copyright based licenses,
because software is traditionally protected by copyright law (Graham & So-
maya 2004, p 269), and the software license agreements define the transfer of
the rights.

Anyhow, in this section I argue, that there exists an optimal allocation of
rights regarding non- and anti-rival applications. Hence, optimal licensees
can be defined:

With respect to the non-rival applications it is about a private provision of
a good without rivalry in use, hence a club good story. It is well known from
standard micro-economics, that a commodity without rivalry in use should
be supplied, if the sum over each individual’s willingness pays (WTP) at least
covers the total costs (C), hence if

∑m
j=1

WTP j ≥C , with m agents.

Let’s assume, that there is a finite number of applications y i ∈ Y , i =
[1 . . . n], and each of the n applications is traded in one market each. It is also
assumed, that

9

Jena Economic Research Papers 2008 - 047

(i) the owner of the resource can price discriminate, such that each agent
pays an individual price for the application i denoted by p i

j

and

(ii) each of the n-markets is a contestable market, such that the incumbent
has to choose the lowest price-vector covering the costs.6

This yields

m
∑

i=1

p i
j =C i , p i

j ≤W T P i
j , ∀i = [1 . . . n] ∀ j = [1 . . . m] (12)

with C i is the portion of y i of the (first copy) costs of Y . Obviously this is a
welfare maximizing private provision of the resource.

Additionally, anti-rival applications—the rights to use the anti-rival appli-
cations respectively—can be allocated optimal as well: It is known from net-
work theory, that ownership can internalize network effects, because if it is
possible to price every single plug-in, the network effects can perfectly be
internalized by dynamic pricing, i.e. by individual price discrimination that
takes into account the marginal benefits of adoption (Liebowitz & Margolis
2002, 1994, Katz & Shapiro 1994). Thus, optimal internalization requires
perfect price discrimination with respect to adoption, hence each adoption
must be traded separately. This can be applied to any kind of positive feedback
mechanism in use. Thus, regarding to the model of this section, it is again
sufficient, that the source code owner can perfectly price discriminate, the
result is a welfare maximizing allocation.

Hence, there are n markets where the y i s are traded, and m agents paying
a price p i

j
≥ 0 for each y i ∈ Y . A price p i

j
= 0 implies that agent j has a zero

WTP for application i and hence does not buy it at all.7 Therefore one can

6Of course, assuming perfect contestable markets in context of software seems to be a some-
how problematic assumption. But the argument does not change, if one allows market
power: In this case the monopolist or oligopolist is able to gain an extra profit, but be-
cause of perfect price discrimination, welfare is maximized also in this case. Hence the
contestable-market-assumption is not a critical one for the argument.

7In principle, one could also allow for ‘negative prices’, thus p i
j
< 0. This would imply, that

the agent gets paid for his activity causing e.g. a cumulative effect, hence being a software
developer. But in order to keep the analysis simple, this is not done here.

10

Jena Economic Research Papers 2008 - 047

represent the whole economy with the payment matrix P given by

P =

p1
1

. . . pn
1

...
. ..

...
p1

m · · · pn
m

,

with each market represented by a column. The payment structure of an
agent is given by the corresponding row and can be written as p j = (p

1
j
, . . . , pn

j
)

One can represent the complete allocation with one matrix: Let A be a

n×m matrix with a j
i
= y j

i
. Due to (12) we have y j

i
= 1⇔ p j

i
> 0 and y j

i
= 0

else. For example, with n = 5 and m = 4 one possible allocation is given by

A=

1 0 0 0 1
1 1 0 1 0
0 1 1 1 0
1 0 1 1 0

.

Assumed, that it makes sense to write a license agreement that covers a set
of applications instead of trading each application separately, then this license
agreement is optimal if it transfers IPRs to agent i such that all applications
are covered the agent would pay a positive price for:

h j : X →{y i | p i
j > 0}. (13)

And finally, the price for this license agreement is given by

p j =
n
∑

i=1

p i
j = (p

1
j , . . . , pn

j) · 1
T , (14)

with 1T is the transpose of the one-vector.
To sum up: One can define the welfare maximal allocation of non- and

anti-rival applications, and a perfect market with perfect price-discrimination
would lead to this allocation. Based on this, optimal defined, copyright based
licensee agreements can be defined, hence an optimal allocation of IPRs is
theoretically possible as well.

11

Jena Economic Research Papers 2008 - 047

3 The Role of Transaction Costs

In a world with rational individuals having complete information and knowl-
edge, there would be bargaining and trade of each y ∈ Y . Thus, transaction
costs leading to incomplete information/knowledge, give reason to the fact
that property rights are defined in a license agreement, and then traded. For
example, if agents only know Y ′i ⊂ Y it makes sense to trade ‘rules’ rather
than applications. Hence, incomplete knowledge changes the standard mar-
ket game into a Bayesian market game, with the agents defining, trading and
pricing the rights optimally based on their subjective expectations regarding
Y . Additionally, one of the basic functions of markets is to create new knowl-
edge (Hayek) by rewarding innovative use of resources, and (I)PRs enable
innovators to appropriate such returns.

Anyhow, the question remains, what is so unique about software, what
distinguishes software from other resources, such that ‘open source’ estab-
lishes. Thus, what kind of characteristics of software in combination of what
kind of market imperfection because of transaction costs (TC) constitutes the
conditions for the co-existence of OSS and CSS?

3.1 Incomplete Information, Transaction Costs and Limits of
Internalizability

Some TC, i.e. search, bargain and information costs, limit the internalizabil-
ity of some of the positive external effects. One could think, that this gives
reason to the fact, that OSS exists. I will show, that this is not the case, i.e. the
limits of internalizability can not explain the co-existence of OSS and CSS.

Let us start with the two effects that are responsible for the anti-rivalry. As
already mentioned before, network effects can be internalized via property
rights. This in principle still holds in a world with TC, simply because a new
network member causes a (more or less countable) increase of the value of
the network only once and exactly at the moment of plug-in. Hence, as this
plug-in can be connected with a right, one can price this dynamically.

But in order to internalize the positive effects caused by the the cumula-
tive effects described in item (v) (p 8) one would have to be able to provide
the engineer a benefit each time the new source code—the new module—is
incorporated in someone’s software system. Obviously, TC inhibit such an

12

Jena Economic Research Papers 2008 - 047

internalization, especially when it is about only (very) small steps in improve-
ment and little changes, thus small step cumulative development.

In the case of knowledge spillovers described in (iii) (p 8), it is even more
obvious, that neither the point of time nor the frequency of future value cre-
ation is known. The moment of ‘adoption’ that causes knowledge spillovers
is hard to observe and moreover the value of the ‘adoption’ is hard to evaluate
as the results are increased skills that might lead to better future performance.

The economic value of this knowledge spillovers as well as future cumu-
lative effects are obviously hard to measure ex ante, especially in the context
of innovations, because “as Arrow himself pointed out long ago, if an inno-
vation is truly an innovation it is impossible for a finite observer to precisely
forecast it.” (Dosi 1996, p 84). Thus, the positive external effects of knowl-
edge spillovers and cumulative effects can not be internalized, as they are hard
to observe and measure.

This implies, that there is a lack of internalization because of lack of inter-
nalizability. This lack of internalization, thus the existence of positive exter-
nalities leads to too little of the relevant activity as the social benefit is greater
than the private benefit. That means, if IPRs fail to some extent to internalize
positive external effects with respect to source code, one can postulate a mar-
ket failure to some extent. But the degree of this ‘market failure’ is to some
extend limited: individuals are able to form subjective expectations regard-
ing the future benefit, just like in case of the expected gains from knowledge
spillovers caused by reading a reference book or textbook for example. One
can argue, that a price of such a book also reflects expected future gains from
knowledge spillovers.

Anyhow, even more important is the fact that—just as the book example
shows—this phenomena is not unique to software markets. A lack of inter-
nalization because of a lack of internalizability also exists in other markets,
where we can not observe such a co-existence of open and closed source.

13

Jena Economic Research Papers 2008 - 047

3.2 Ex Post Transaction Costs and the Problem of Not
Exclusively Separable Rights

3.2.1 The Problem

Obviously it makes no sense to claim non-enforceable IPRs, but it also makes
no sense to transfer rights, that are not exclusively separable. I call a right
exclusively separable, if the right holder is de facto only able to do, what is
covered by the right. Let Di = Di (X) denote the set of applications, the
right holder i is de facto able to do. A right is a exclusively separable right, if
h : X −→ Y h

i
⊇ Di

Examples with respect to software are the right to use a software without
changing the source code, and the right to copy a software, as usually the
transfer of such rights implies that the software is given away only in state of
binary codes. In case of use, there is technical copy protection in addition.
Hence, who ever receives such rights is—at least to some extend—de facto not
able to do things that are not covered by the rights. Thus, IPRs with respect
to software are exclusively separable at least if the applications covered by the
right do not imply the need for access to the source code. With respect to the
list in section 2.2.2 (p 7,8) this is true for the applications described in item (i)
(n+1 copies) and (iv) (network effects). But what is about applications that
imply access to the source code?

Before I discuss this, let me first define not exclusive separable rights:

Definition 3.1. A right is a not exclusively separable right, if

h : X −→ Y h
i ⊂ Di ⇒ ∃y ∈Di | y /∈ Y h

i (15)

The problem of defining exclusively separable IPRs with respect to (ii)
(source code as input), (iii) (knowledge spillover), and (v) (cumulativenes) is,
that such applications need access to the source code. Thus, (ii), (iii), and (v)
are in principle not exclusively separable.

Indeed, one has to recognize, that the existence of organizations like ‘code-
sell.com’ prove, that selling source code as input is to some extend possible,
although TC probably impede a lot of such market transactions: If one wants
to trade rights that belong to the set of not exclusively separable rights, one
has to grant access to the source code. This leads in a sense to a club of source
code users, and and this might affect other rights, as problems with misuse can

14

Jena Economic Research Papers 2008 - 047

occur. The term misuse refers to the problem, that the source code is used in
a way that is not covered by the contract.

Transaction costs can cause misuse (because control and monitoring is
costly), thus may inhibit reaching the optimal club size. A club owner nor-
mally offers only the usus of the club-good, and often keeps a right of expul-
sion, that is to fetch back the usus from members who did not comply with
the rules. But in our case there is a de facto ‘dilution of the property rights’
(Picot et al. 2005, p 47): Although the original owner of the source code
might be still the formal owner—i.e. formally still exclusively holds abusus,
usus fructus, alienation right and the right of expulsion—, in practical there
is a dilution of the IPRs, because of TC: An increase of club members induce
control costs, thus with a huge amount of members it is simply not possible
anymore to control if some members re-use the source code for own purpose
and/or re-sell the code. The latter gives reason to the fact, that a right to ex-
pulse is not enforceable in groups with (too) many members. Hence, with an
increase of ‘cooperation-club’ members c. p. the feasibility of misuse increases
as policing and enforcement costs increase. Figure 1 depicts this problem:

TC
TC

R

m

R

max

Figure 1: Transaction Costs and Limits of Size (Members)

15

Jena Economic Research Papers 2008 - 047

With increasing number of members, TC increase. Assumed that the owner
of the resource would first trade with the agent offering the highest price,
the m agents are arranged by the price they are willing to pay. Hence, the
returns as a function of club members R = f (m) is concave.8 The optimal
number of members is indicated by the dotted line. It is easy to see, that if
TC are high, the optimal number is small, maybe zero.

Policing and enforcement costs c. p. decrease with the decrease of specificity
of the cooperation contract,9 but a decrease of specificity c. p. increases feasi-
bility of misuse. The first part of this logic is shown in figure 2: the TC

T C

Y

Figure 2: Transaction Costs and Specification of Contract

decrease with decrease of specificity i.e. the increase of set of allowed ap-
plications, simply because if one allows every possible application one does
not have to control anything. (Notice, that for the argument it is irrelevant
whether one assumes that the decreasing transaction cost curve is convex or
linear.) The question is, whether a market for such unspecific licenses would
establish, would be stable respectively.

The price one can get from selling somebody a licensee agreement would
be maximal if this licensee would allow every possible application. Of course,

8The argument also holds, if one assumes, that all agents have the same WTP, hence if R =
f (m) is linear.

9This is also true for ex ante TC, namely bargaining and decision costs.

16

Jena Economic Research Papers 2008 - 047

a decrease of specificity c. p. increases feasibility of misuse. But the set of appli-
cations an agents de facto can use, and hence the price an agent will be willing
to pay for an complete unspecific contract, is determined by the agent’s set
of realizeable applications (Y tc

i
). This implies, if the resource owner would

know each Y tc
i

, optimal PR-allocation would be reached again.
Obviously the problem is that the agents do not know other agent’s Y tc

i
.

Hence, they do not know the type of the other agents, and this leads to a
problem well known as ‘adverse selection’—because Y tc

i
determines ex post

(hidden) action of agent i , the ex post problem can be transferred to an ex
ante information problem. As there are incentives to indicate a smaller Y tc

i
than the real one, because this would lead to a smaller price, the agents will
not truly indicate their Y tc

i
. The owner of the source code might know—

or has a sufficiently correct idea about—the distribution of Y tc
i

, the average

set of realizeable and tradeable applications Ȳ tc
i

respectively. But given the

corresponding average price, at least some agents with Y tc
i
< Ȳ tc

i
won’t pay

for this, and leave the market in a sense. This increases the average set of
applications and therefore the average price, and so on. This yields the well-
known result of adverse selection: At the end, only the agent with the largest
set of applications will rest in the market.

To sum up: Because of ex post TC, IPRs that imply access to the source
code are de facto not exclusively separable. This inhibit optimal allocation
of the IPRs, as the selling of not exclusively separable is limited. If one wants
to transfer such not exclusively separable rights to many agents, one has to
forgo the exclusivity of the rights.

3.2.2 Implications for Licensing: The Case of CSS vs. OSS Licenses

The existing software licenses can be classified by the scope of transferred
rights (for the following see Hawkins 2004 p 107, Böhnlein 2003, p 19 ff, and
Nüttgens & Tesei 2000, p 11):

• CSS licenses are exclusive as they are based on the principle of closeness,
i.e. a user (licensee) of CSS typically receives only the usus and (maybe
restricted) usus fructus from the licenser, and the alienation right is not
transferred or restricted (see table 1).

17

Jena Economic Research Papers 2008 - 047

• OSS licenses are inclusive as they are based on the principle of open-
ness: The licenser offers the license to anybody who wants it, and OSS
licenses in principle transfer the whole set of rights (see table 1). But
they differ in the scope of transferred rights. Public OSS licenses—
like the BSD license—do not restrict the use of the software and the
source code in any way. So-called viral licenses—like the GPL—differ
in the alienation rights, as the right to redistribute is restricted: Any
further developed software as well any derived work must be licensed
as a whole under the same type of license. Hence, OSS is not software
without any property, as e.g. the GPL is based on copyright.10 An OSS
license is a contract that offers everybody the whole set of rights while
the possible constraint, thus possible limitation of the alienation right,
must be considered only at the moment of redistribution.

usus usus fructus abusus alienation right
CSS + + - (-)
OSS (viral license) + + + (+)
OSS (public license) + + + +

Table 1: The Transfer of Usus, Usus Fructus, Abusus and Alienation Right

The different kinds of licenses can be explained by the theory of not ex-
clusively separable rights: CSS licenses, based on the principle of exclusive
ownership, trade only such IPRs, that are exclusively separable, and do not
allow access to the source code. OSS licenses in contrast offer the complete
set of rights, as they allow access to the source code. Both type of license im-
ply a certain kind of organization of production, thus governance structure.

The question remains, whether it can be rational to choose an OSS li-
cense, thus to forgo the exclusivity of some rights. Therefore the next section
discuss the rationality to forgo the exclusivity of (not exclusively separable)
rights of an non- and anti-scarce resource.

10The “GPL contains provisions covering property rights (...) [,] is based on copyright prin-
ciples (...) [and] does not (...) remove copyright protection” (Gehring 2006, pp 62, 70).
Thus, it is somehow misleading, that the counterpiece of OSS only is called proprietary, as
‘proprietary’ comes from the latin terms proprietarius and proprietas, meaning ‘protected
by copyrights’. Therefore I prefer to use the term closed source software.

18

Jena Economic Research Papers 2008 - 047

3.2.3 On the Rationality Not to Claim all Rights

It might not cause real costs for the source code owner to freely transfer some
rights. The real costs are only the lost revenues regarding the set of rights
one could have sold. Let Y tc

i
⊂ Y denote the set of applications an agent i

can realize and/or trade, can trade the corresponding IPRs respectively. The
superscript tc indicates, that this set is determined by TC while the subscript
i indicates that this set also depends on individual ‘factors’, e.g. the access
to necessary resources, etc. To give an example: a student’s Y tc

i
of a certain

source code might be smaller than Microsoft’s Y tc
i

of the same source code.
First, the role of IPRs regarding non-scarce resources is defined: Assuming

that envy and (irrational) stinginess does not play a role, there is no reason
why an agent i should claim and/or not freely transfer the rights h that cause

no real costs: h : X −→
¦

ỹ /∈ Ỹ tc
i
| (∄ y tc ∈ Y tc

i
| ǫ≤ 0)
©

with ǫ as the cross-

price elasticity of y tc ∈ Y tc
i

regarding ỹ.
This leads to the definition of the optimal exclusive IPRs with respect to a

non-scarce resource.

Definition 3.2. In case of a non-scarce resource, the rights h that should be
exclusively claimed are given by

h : X −→ Ỹ h
i =
�

{ỹ tc
i ∈ Ỹ tc

i } ∪ {ỹ /∈ Ỹ tc
i | (∃ y tc

i ∈ Y tc
i | ǫ > 0)}
	

,

simply because πi (Ỹ
h
i) =πi (Ỹ

tc
i
).

Thus, exclusive IPRs regarding a non-scarce resource are defined in an op-
timal way, if they protect (a) all applications agent i can realize and/or trade,
and (b) all applications that are substitutes to any y tc

i
Regarding the feedback-effects, the argument is basically the same. Addi-

tionally one has to take into account, that it can be rational not to claim
exclusive IPRs regarding some {ŷ /∈ Ŷ tc

i
| (∃ y tc

i
∈ Y tc

i
| ǫ > 0)} and even re-

garding some ŷ tc
i
∈ Y tc

i
, if the benefits (i.e. payoff) from the feedback effects

(over)compensate the costs. Because of the definition 2.5 (anti-scarcity, p 4)
we know that ∀ ŷ |

�

Y new ⊃ Y
�

, ⇒ ∃Y+ = {Y new \Y }, ⇒ ŷ→Y+.
This leads to the definition of the optimal exclusive IPRs with respect to a

anti-scarce resource, rights covering anti-scarce applications respectively.

19

Jena Economic Research Papers 2008 - 047

Definition 3.3. In case of an anti-scarce resource, the rights h that should be
exclusively claimed are given by

h : X −→Ŷ h
i

=
n

�

Ŷ tc
i ∪ {ŷ /∈ Ŷ tc

i | (∃ y tc
i | ǫ > 0)}
	

\
�

ŷ | πi (Y
+)≥πi (ŷ), ŷ→ Y+

	

o

.

Notice, that in order to be able to benefit from the feedback effects, one
has to keep the usus fructus right.

Anyhow, taking together the facts, that some rights are not exclusively
separable and that it can be rationale not to claim all rights of a non- and anti-
scarce resource, then neither CSS nor OSS licenses seem to be irrational: The
above definition of optimal defined property rights with respect to the non-
and anti-scarce applications needs only the modification to take into account
that some rights have to stay bundled. Based on this, it can be rational either
to keep this bundle of rights (taking into account that the not exclusively
separable rights can not be sold), or to forgo the exclusive claim, i.e. choose
OSS. It is the decision between two possibilities, two second best solutions,
as the first-best allocation (see section 2.3) is not realizeable.

Thus, OSS is a rational choice, if the lost of exclusive rights either cause
no real costs, or the (expected) benefits11 caused by the ant-rival applications
overcompensate the real costs. Such benefits (payoffs) are the more likely,

• the smaller the set Ŷ tc
i

, and the more motives like reputation (Lerner
& Tirole 2002), hobby reasons etc. play a role.

• the more agents cause cumulative effects because of their use of the
code. Thus, the more unspecific the license agreement is.

• the more it is possible to gain profits from selling goods that are com-
plementary to the software.

• the less the other agents are direct competitors, thus the less likely
∃ y tc

i
∈ Y tc

i
| ǫ > 0.

11I am not going to discuss here, how, why and when ‘coordination’ (thus contribution) is a
equilibrium strategy in such OSS-games (that are somehow public good games). For the
purpose of this paper it is sufficient to recognize, that OSS exists in the real world.

20

Jena Economic Research Papers 2008 - 047

3.3 Two Solutions: A Comparison of OSS and CSS

In the last section, I explained, why individuals can not reach the first best al-
location of IPRs because of ex post transaction costs that lead to the problem
of not exclusively separable rights. I then showed that OSS and CSS licensees
are two pragmatic real life solutions for this problem. Finally, I explained
the individual rationality, i.e. the conditions for not to claim all rights, and,
based on this, the individual rationality for OSS or CSS.

In this section, I also take into account welfare aspects. Based on the analy-
sis above, I discuss the different institutional arrangements based on the OSS
and CSS principles with respect to their assets and drawbacks.

3.3.1 The Principle of CSS

In case of CSS, only the exclusively separable rights are trade. Thus, these
rights are sold in the market, and hence the effects of the applications covered
by this rights are internalized (at least in principle).

Obviously, the resource source code is used by more than one individual
having access to the source code. Here, the solution to solve the ‘dilution-
of-control’-problem is to increase control by adding a second set of rules,
thus to build a governance structure that ensures control, i.e. build a ‘firm’.
Thus, CSS is based on the principle to maximize exclusive rights. Using
the governance structure of a firm, it is possible to produce software as a
coordinated work of several software developers, who are employees. This
enables to benefit from direct control, thus the used input resources—namely
human capital—are employed in a efficient way.

Of course, there are some hierarchy costs, e.g. induced by principal-agent
problems. As developing software is sometimes like finding solutions for
a problem, one may not be able to conclude directly from the output the
effort of the developer. Software is therefore developed in a principal-agent-
structure, as the principal defines certain aims and arranges a team of pro-
grammers, testers, etc., but can barely monitor the effort and/or perfor-
mance of these agents, because of monitoring costs (Pasche & von Engelhardt
2004, p 9). Such hierarchy costs limit the size of a firm. Hence, a firm can
not include everybody who would have been able to submit something. Ob-
viously it is not possible to write an employment contract with everybody

21

Jena Economic Research Papers 2008 - 047

who would have been able to do some cumulative activities. Thus, some
human capital is not acquirable for CSS firms, as the search, bargaining and
enforcement costs are too high. Other kind of contract based relationships
are also limited (see p 16) Thus, with respect to the maximal possible num-
ber of agents who could generate positive effects, a CSS firm can not reach the
optimal size.

Additionally, with respect to applications covered by the not exclusively
separable rights, the firm has some limits. Of course, within a CSS firm,
positive effects are internalized: The firm owner not only owns X but also
exclusively owns X new , as the employment contracts contain a paragraph that
makes sure, that all the possible copyrights are transferred to the company,
thus at the end of the day they do not own any IPRs concerning the source
code. And additionally to the cumulativenes aspects, the benefits of knowl-
edge spillovers are also internalized, at least as long the employee work for
the firm.

But the set of beneficiaries of the positive effects that imply access to the
source code is suboptimal small. As CSS is sold only in state of binary code,
no one outside the firm gets access to the source code. This is different to
how copyright protection (and IPR in general) works in other fields, that is
to combine ex ante incentive to produce with the ex post disclosure of the
information (Cowan & Harison 2001, Quah 2003, pp 16 f, 19 ff).12 In case
of software this is not possible, because of the problem of exclusively not
separable rights.

12 Intellectual property law is defined in a way, that the rights protect the tradeable, hence
private internalizeable effects, and forgoes the right for such positive effects, that are not
internalizeable. Patents do not protect the idea itself but its application in form of ma-
chine, method or matter (Besen & Raskind 1991, p 12). The right to be a temporary
monopolist regarding the economic use of a novel technical solution is bundled with the
constraint to disclosure the information that stands behind the innovation, as the techno-
logical solution has to be described in the patent specification. Similarly, copyright does
not protect the idea itself—the pure information—but its expression. Thus, in the case
of e.g. a copyright protected book the author earns money from its publication, which
is a disclosure of the ideas (or: information). With increasing sales figures, the author
earns more money and the ideas of—the information within—that book diffuse, because
everybody who buys that book can read it.

22

Jena Economic Research Papers 2008 - 047

3.3.2 The Principle of OSS

OSS licenses are very non-specific cooperation contracts, designed in order to
attract a large number of club members, and realize benefits from knowledge
spillover and the cumulative feedback mechanism. As OSS licenses are not
limited in time, they seem to be designed for a cooperation with—at least
potentially—infinite duration: At any time, anyone can access the source
code and use it however long, given that the possible constraint, that is a
possible limitation of the alienation right, is considered.

This implies, that the principle of OSS maximizes the number of individ-
uals, who can cause positive effects. And, with respect to the cumulative
effects, the institutions of OSS support, and to some degree even guarantee
it: Although one agent might be able to make money selling further devel-
oped source (hence, it causes significant real costs to give it away for free), li-
censees like the GPL force this agent to contribute his work back. In addition
to this copyright-based institution, informal rules like the hacker ethic and
community norms (incl. the enforcement characteristics) also support this
cumulative effects, as at least some kind of contribution may be expected by
the community. Thus, social norms can play a role here, as breaking the rules
will be sanctioned by the community, that is stop cooperating or migrate to
other projects (Osterloh et al. 2001, p 16 f).

Of course, as such effects are not (sufficiently) internalized, individuals
involved tend to underprovide, although the number of participants is some-
how maximized.

Anyhow, as OSS licenses are inclusive, with respect to the source code, the
number of (potential) beneficiaries is also maximized (Of course, restricted
licenses like the GPL somehow limit this, as CSS producer can not use GPL
protected code as direct input).

A second implication of the inclusive OSS licenses is, that it is not possi-
ble to hold exclusive rights, and therefore it is not possible to divide neither
consumers from producers, nor software developers from coordinators or di-
viding coordination and ownership. Everybody involved holds the complete
set of rights regarding the source code.13 This raises the question of control

13In case of viral licensees there is of course a limitation of the alienation right, but this
limitation affects everybody, thus all involved holds the same amount of limited alienation
right.

23

Jena Economic Research Papers 2008 - 047

and coordination. Of course, the different OSS projects are clear structured,
the basic organizational structure of such OSS-Projects is often labeled the
‘onion layer’ model (for details see e.g. Jensen & Scacchi 2007, Crowston
et al. 2006, Wendel de Joode et al. 2003, pp 18,19). It exist clear rules about
how one can move from the outermost layer into the core of the project,
e.g. one has to prove software development skills, reliability etc. At the core,
there exist so-called core developers, who oversee the design and evolution of
the project. And, maybe most important, the core developers control—thus,
manage—the project by using passive control rights, that are their exclusive
rights to decide whether to accept or reject contributions (McGowan 2001,
Wendel de Joode et al. 2003, p 20). The passive control rights are enforced by
using the concept of ownership regarding the database in which the software
is stored and the name—thus, the trademark14—of the project. This prevents
cloning of projects and supports the signalling function of the project’s name,
thus trademark.

Although such passive control rights and other aspects of the governance
of OSS projects (e.g. see de Laat (2007) on this topic) exist, one can state the
following: Compared to CSS firms, OSS projects are likely to have higher
coordination costs. The concept of openness and the inclusive licenses can
lead to coordination problems like forking (a project splits up into several
incompatible projects because of different goals of the individuals involved)
or failed establishing of new standards. Additionally, as consensus plays an
important role in OSS projects (Brand & Schmid 2005), there is the danger
of ‘never ending’ discussions and other costs of consensus finding.

3.3.3 The Co-Existence of OSS and CSS

OSS and CSS are somehow complementary in their assets and drawbacks.
OSS has weaknesses where CSS has strengths, and vice versa. This is true on
an individual level as well as on social level (welfare aspects).

Thus, the co-existence of OSS and CSS can be explained by the fact, that
different individuals with different sets of tradeable rights, different resources
etc., need different ‘solutions’. Additionally, an OSS-CSS mix can be optimal

14E.g. Apache is a trademark of The Apache Software Foundation, KDE and K Desktop En-
vironment are trademarks of KDE e.V., Linux is a registered trademark of Linus Torvalds,
and so on (see www.apache.org, www.kde.org, www.linuxmark.org).

24

Jena Economic Research Papers 2008 - 047

from a social point of view: Whereas CSS is better in using the acquired
resources efficiently namely via direct control, internalizing the positive ef-
fects, create user-friendly innovations (plug and play, easy installation rou-
tines and ‘nice’ graphical user interfaces) and radical innovations (because
the positive effects of a paradigm change can be internalized, which enables
to bear the costs of it) etc., OSS can integrate human capital CSS can not
acquire, create spillovers more individuals can benefit from, and is better in
more incremental technical innovations and user innovations (von Hippel &
Von Krogh 2003, von Hippel 2005) etc. It is possible, that these effects are
really complementary to each other, thus that a co-existence of OSS and CSS
is welfare optimal. Of course, the intersting question is, whether, or under
which conditions, the ‘optimal’ OSS-CSS mix establishes, or not. Although
an intersting topic, this is beyond the scope of this paper.

4 Summary and Outlook

The paper at hand examines the rationale for open and closed source from
property right point of view. Software is somehow seen as an example, where
open and closed source co-exist. The findings of this paper can be summa-
rized as follows:

1.) Because of ex-post TC and the economic characteristics of software,
some IPRs are not exclusively separable. Namely IPRs covering appli-
cations that imply access to the source code can’t be unbundled. Thus,
the first best allocation of IPRs, that would yield an optimal usage of a
source code, is not realizable. Or, that is to say, a first best realization
of contracts is not feasible.

2.) Because of TC, the set of individuals one can contract with without
having a de facto dilution of ownership, the ‘club of source code users’,
is limited. Unspecific contracts concerning the code have lower TC,
hence can reach more individuals. In other words: minimized exclusive
ownership and restrictions enables to contract with more individuals.

3.) It can be rational, to forgo some rights, either because this does not
cause any real costs, or because feedback mechanisms overcompensate
real costs, or because of both. The benefits (payoff) caused by feedback

25

Jena Economic Research Papers 2008 - 047

mechanisms are c.p. higher, the more profits can be made by selling
goods and services, that are complementary to the software. Of course,
this is true for not exclusively separable rights as well.

4.) CSS trades the exclusive separable rights only. Production takes plays
in firms, based on the principle of exclusive ownership of the source
code. The other solution, OSS, minimizes the restrictions regarding
the source code, thus OSS licenses are unspecific contracts, transferring
not exclusive separable rights.

Both principles can be a rational choice. The decision depends on the
individual’s set of tradeable applications/rights, the (expected) feed-
back effects, the individual resources, the possibility to gain profits
from complementary products, etc.

5.) From a social point of view (welfare point of view), OSS and CSS are
two second best arrangements, both with specific assets and drawbacks.
The principle of CSS benefits from direct (monetary) incentives and
control, but has limits in its scope (size) because of TC. OSS, on the
one hand benefits from its openness, that creates spillovers and enables
to incorporate human capital that is not acquirable for CSS firms. On
the other hand, there are costs of openness, such as coordination costs
(consensus finding, etc.), the danger of free riding or under provision,
or forking. Hence, as OSS and CSS have their specific assets and draw-
backs, an OSS-CSS co-existence can be welfare optimal.

The analysis presented in this paper also yields some further research ques-
tions: Under which conditions is an OSS-CSS mix welfare optimal? Will such
an optimal mix establish, and/or will it be stable? OSS-projects are based on
the principle of minimized exclusive ownership combined with passive con-
trol rights. Ho does this kind of passive control work? And finally: As more
and more firms use OSS, how can such a OSS vs. CSS license decision of a
firm be modeled in a simple way?

26

Jena Economic Research Papers 2008 - 047

A Appendix: On the Notation of Alienation Rights

Let h h denote the alienation right regarding h . An individual holding an
alienation right with respect to h can therefore decide wether to keep on
holding this right, or transfer it, i.e. do not hold it anymore:

h h = ‘decision’ ◦ h =

(

0 if right h is transferred,

h if right h is not transferred.
(16)

Let hh be the vector of all alienation rights. Holding alienation rights on a
resource X is then formally given by

hh : X =

h h1
: X
...

h hn
: X

=

[0,1] · h1 : X
...

[0,1] · h n : X

. (17)

Notice, that there exist “recursive” alienation rights. A recursive alienation
right is the right to transfer an alienation right. This means, that

∃ h k ∈ {h1 . . . h n} s.t.
h

h k = h h j
with h j ∈ {h1 . . . h n}, h j /∈ hh

i

. (18)

27

Jena Economic Research Papers 2008 - 047

References

Baake, P. & Wichmann, T. (2004), Open source software, competition and
potential entry., Berlecon Research Papers 5, Berlecon Research, Berlin.

Baumol, W. J. (1977), ‘On the proper cost tests for natural monopoly in a
multiproduct industry’, American Economic Review 67(5), 809–22.

Besen, S. M. & Raskind, L. J. (1991), ‘An introduction to the law and eco-
nomics of intellectual property’, Journal Of Economic Perspectives (1), 3–
27.

Bessen, J. (2006), Open source software: Free provision of complex public
goods, in J. Bitzer & P. Schröder, eds, ‘The Economics Of Open Source
Software Development’, Elsevier, pp. 57–81.

Bitzer, J. (2004), ‘Commercial versus open source software: The role of prod-
uct heterogeneity in competition’, Economic Systems 28(4), 369–381.

Böhnlein, I. (2003), Anwendung von Aspekten der Neuen Institutio-
nenökonomik auf Open Source Software. Produktion, Verfügungsrechte
und Transaktionskosten – eine theoretische und empirische Unter-
suchung, Master’s thesis, Johann Wolfgang Goethe-Universität, Frankfurt
am Main.

Brand, A. & Schmid, A. (2005), Koordination in einem Open Source-Projekt,
Technical report.

Casadesus-Masanell, R. & Ghemawat, P. (2003), Dynamic mixed duopoly. a
model motivated by linux vs. windows, IESE Research Papers 519, IESE
Business School, Barcelona.

Coase, R. H. (1937), ‘The nature of the firm’, Economica 4(16), 386–405.

Cowan, R. & Harison, E. (2001), Protecting the digital endeavour. prospects
for intellectual property rights in the information society, Research Mem-
oranda 28, MERIT, Maastricht Economic Research Institute on Innova-
tion and Technology, Maastricht.

28

Jena Economic Research Papers 2008 - 047

Crowston, K., Wei, K., Li, Q. & Howison, J. (2006), Core and periphery
in free/libre and open source software team communications, System Sci-
ences: HICCS (Hawaii International Conference) Proceedings, pp. 118a–
118a.

D’Antoni, M. & Rossi, M. A. (2007), Copyright vs. copyleft licencing and
software development, Working Paper of the Department of Economics
University of Siena 510, Department of Economics, University of Siena.

Davis, L. E. & North, D. C. (1971), Institutional Change and American Eco-
nomic Growth, University Press.

de Laat, P. (2007), ‘Governance of open source software: state of the art’,
Journal of Management and Governance 11(2), 165–177. Special Issue on
the Governance of OSS.

Demsetz, H. (1967), ‘Towards a theory of property rights’, American Eco-
nomic Review (2), 347–359.

Dosi, G. (1996), The contribution of economic theory to the understand-
ing of a knowledge based economy, in OECD, ed., ‘Employment And
Growth in The Knowledge-Based Economy’, Paris, pp. 81–92.

Eggertsson, T. (1990), Economic Behavior And Institutions, Cambridge Uni-
versity Press.

Furubotn, E. G. & Richter, R. (2005), Institutions And Economic Theory :
The Contribution Of The New Institutional Economics, Univ. Of Michigan
Press.

Gallini, N. T. (2002), ‘The economics of patents: Lessons from recent u.s.
patent reform’, Journal Of Economic Perspectives 16(2), 131–154. available
at http://ideas.repec.org/a/aea/jecper/v16y2002i2p131-154.html.

Gandal, N. (1994), ‘Hedonic price indexes for spreadsheets and an empirical
test of the network externalities hypothesis’, RAND Journal Of Economics
(1), 160–170.

29

Jena Economic Research Papers 2008 - 047

Gehring, R. A. (2006), ‘The institutionalization of open source’, Poiesis &
Praxis: International Journal Of Technology Assessment And Ethics Of Sci-
ence 4(1), 54–73.

Ghosh, R. A., Glott, R., Krieger, B. & Robles, G. (2002), Free/libre and
open source software: Survey and study (floss) part 4: Survey of develop-
ers, Technical report, International Institute of Infonomics, University of
Maastricht.
URL: http://www.infonomics.nl/FLOSS/report/

Graham, S. & Somaya, D. (2004), The use of patents, copyrights and trade-
marks in software: Evidence from litigation, in OECD, ed., ‘Patents, In-
novation And Economic Performance’, OECD, Paris.

Gröhn, A. (1999), Netzwerkeffekte und Wettbewerbspolitik. Eine Ökonomische
Analyse Des Softwaremarktes, Mohr Siebeck, Tübingen.

Hart, O. & Moore, J. (1990), ‘Property rights and the nature of the firm’,
Journal Of Political Economy 98(6), 1119–1158.

Hawkins, R. E. (2004), ‘The economics of open source software for a com-
petitive firm’, Netnomics 6(2), 103–117.

Heller, M. (1998), ‘The tragedy of the anticommons: Property in the transi-
tion from marx to markets’, Harvard Law Review (3), 621–688.

Henkel, J. (2006), ‘Selective revealing in open innovation processes: The case
of embedded linux’, Research Policy 35(7), 953–969.

Henkel, J. & Maurer, S. M. (2007), ‘The economics of synthetic biology’,
Molecular Systems Biology 3(Article number: 117).

Jensen, C. & Scacchi, W. (2007), Role migration and advancement processes
in ossd projects, International Conference On Software Engineering, To
Appear (29), Minneapolis, MN, USA.

Katz, M. L. & Shapiro, C. (1994), ‘Systems competition and network ef-
fects. (symposia network externalities)’, Journal Of Economic Perspectives,
8(2), 93–115.

30

Jena Economic Research Papers 2008 - 047

Kooths, S., Langenfurth, M. & Kalwey, N. (2003), Open-Source Software: An
Economic Assessment, Vol. 4 of MICE Economic Research Studies, Muenster
Institute For Computational Economics, Münster.

Langlois, R. N. (2002), ‘Modularity in technology and organization’, Journal
Of Economic Behavior & Organization 49(1), 19–37.

Lerner, J., Pathak, P. A. & Tirole, J. (2006), ‘The dynamics of open-source
contributors’, The American Economic Review 96(2), 114–118.

Lerner, J. & Tirole, J. (2002), ‘Some simple economics on open source’, Jour-
nal Of Industrial Economics 50(2), 197–234.

Liebowitz, S. J. & Margolis, S. E. (1994), ‘Network externality: An uncom-
mon tragedy.’, Journal Of Economic Perspectives 8(2), 133–150.

Liebowitz, S. J. & Margolis, S. E. (2002), Network effects, in M. Cave, S. Ma-
jumdar & I. Vogelsang, eds, ‘Handbook Of Telecommunications Eco-
nomics’, Vol. 1, pp. 76–94.

Maurer, S. M. (2008), ‘Open source biology: Finding a niche (or maybe sev-
eral)’, UMKC Law Review 76(2).

McGowan, D. (2001), ‘The legal implications of open source software’, Illi-
nois Law Review (1), 241–304.

Nüttgens, M. & Tesei, E. (2000), Open Source: Marktmodelle und Net-
zwerke, Veröffentlichungen des Instituts für Wirtschaftsinformatik, Saar-
brücken.

Osterloh, M., Rota, S. & von Wartburg, M. (2001), Open source - new rules
in software development, Technical report.

Pasche, M. & von Engelhardt, S. (2004), Volkswirtschaftliche Aspekte der
Open-Source-Softwareentwicklung, Jenaer schriften zur wirtschaftswis-
senschaft.

Picot, A., Dietl, H. & Franck, E. (2005), Organisation: eine ökonomische Per-
spektive, 4., überarb. und erw. aufl edn, Schäffer-Poeschel.

31

Jena Economic Research Papers 2008 - 047

Quah, D. (2003), Digital goods and the new economy, CEP Discussion Pa-
pers 563, London School of Economics, London.

Romberg, T. (2003), Herstellerübergreifende Wiederverwendung von Kom-
ponenten, in ‘Handbuch Zur Komponentenbasierten Softwareentwick-
lung’, Frauenhofer-Institut Für Experimentelles Software Engineering /
Forschungszentrum Informatik.

Rossi, C. & Bonaccorsi, A. (2006), Intrinsic motivations and profit-oriented
firms in open source software: Do firms practise what they preach?, in
J. B. Schröder & P. J. H., eds, ‘The Economics Of Open Source Software
Development’, Elsevier, pp. 84–109.

Rossi, M. A. (2006), Decoding the free/open source software puzzle: A sur-
vey of theoretical and empirical contributions, in J. Bitzer & P. Schröder,
eds, ‘The Economics Of Open Source Software Development’, Elsevier,
pp. 15–55.

Shy, O. (2001), The Economics Of Network Industries., Cambridge University
Press, Cambridge.

von Engelhardt, S. (2006), Die ökonomischen Eigenschaften von Software,
Jenaer Schriften zur Wirtschaftswissenschaft.

von Engelhardt, S. (2008), The economic properties of software, Jena Eco-
nomic Research Papers 2008-045, Friedrich-Schiller-University Jena and
Max-Planck-Institute of Economics.

von Hippel, E. (2005), Open source software projects as user innovation net-
works - no manufacturer required, in J. Feller, B. Fitzgerald, S. A. Hissam
& K. R. Lakhani, eds, ‘Perspectives On Free And Open Source Software’,
MIT Press, Cambridge, Mass. [u.a.].

von Hippel, E. & Von Krogh, G. (2003), ‘Open source software and the
"private-collective" innovation model: Issues for organization science’, Or-
ganization Science 14(2), 209–223.

Weber, S. (2004), The Success Of Open Source, Harvard University Press.

32

Jena Economic Research Papers 2008 - 047

Wendel de Joode, R. V., Bruijn, J. A. d. d. & Eeten, M. J. G. V. (2003), Protect-
ing The Virtual Commons – Self-Organizing Open Source And Free Software
Communities And Innovative Intellectual Property Regimes, T.M.C. Asser
Press, The Hague.

Westarp, F. v. (2003), Modeling Software Markets, Physica-Verlag, Heidelberg
[u.a.].

White, A. G., Abel, J. R., Berndt, E. R. & Monroe, C. W. (2004), Hedonic
price indexes for personal computer operating systems and productivity
suites, NBER Working Papers 10427, National Bureau of Economic Re-
search, Inc.

33

Jena Economic Research Papers 2008 - 047

	Introduction
	Intellectual Property Rights and a Non- and Anti-Scarce Resource
	The Analytical Framework
	An Economic Resource
	Definition of Scarce, Non- and Anti-Scarce
	Property Rights

	The Resource Software
	About the Economic Characteristics of Software
	Software as a Non- and Anti-Scarce Ressource

	Optimal Allocation and Optimal Licenses

	The Role of Transaction Costs
	Incomplete Information, Transaction Costs and Limits of Internalizability
	Ex Post Transaction Costs and the Problem of Not Exclusively Separable Rights
	The Problem
	Implications for Licensing: The Case of CSS vs. OSS Licenses
	On the Rationality Not to Claim all Rights

	Two Solutions: A Comparison of OSS and CSS
	The Principle of CSS
	The Principle of OSS
	The Co-Existence of OSS and CSS

	Summary and Outlook
	Appendix: On the Notation of Alienation Rights
	References

