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Abstract: Production emissions in the industrial sector are a major source of environmental pollution.
In this paper, we explore how emission considerations are integrated with production decisions.
We develop a dynamic model consisting of two firms located in the same industrial park, which sat-
isfies exogenously given demands in separate markets. The two firms can build up or rundown
stocks (full backlogging), both of which are costly. The emission cost depends on the total output
of the two firms. We develop Nash equilibrium feedback strategies, where each firm decides on its
output based on its inventory or the inventories of both. We also develop a social planning solution
where decisions are centralized. We present the analytic results for the total profits in these settings.
The results show the benefits of a decentralized approach over a centralized one, provided there is a
mechanism for coordination. Finally, emission costs are compared for the various solution concepts.

Keywords: decentralized; centralized; industrial parks; differential games; emission

1. Introduction and Literature Review

The industrial manufacturing sector consumes the lion’s share of the total consumption
of electricity. In the Organisation for Economic Co-operation and Development (OECD)
alone, electricity consumption in the industrial sector accounted for 32% in 2018 and
accounted for 42% globally [1]. This global consumption figure is expected to exceed 50%
by 2050 [2]. This constitutes an enormous burden to industry and makes up a considerable
part of the total worldwide carbon emissions. Manufacturing and production activities
are responsible for a massive part of the total emissions. For example, food production is
responsible for 25% of the world’s greenhouse gas emissions [3]. Hence, any attempt to
improve production activities by incorporating emission considerations into the decision-
making process constitutes the right step forward.

Electricity providers use various technologies to produce electricity, each with a
bounded capacity. These technologies range from those with minimal impact on the
environment, e.g., dedicated wind parks and bio-mass electricity generators, to those with
an obvious impact on the environment, e.g., conventional carbon-based technologies. Thus,
electricity providers have an array of technologies at their disposal. Typically, a provider
starts with the less expensive technology, and then once that capacity no longer suffices,
it turns to the second least expensive one and so forth until the total capacity is met.
However, environmental regulations have forced electricity providers to utilize newer
technologies that are less polluting. In recent years, the electricity cost of renewable
technologies, which are less polluting, has dropped, and in many cases is cheaper than
coal [4]. Hence, as the total demand for electricity increases, the burden on the environment
is likely to increase. Thus, frameworks and policies to control or mitigate the total quantities
of emissions are critical.

A growing fraction of industrial activity today takes place in industrial parks, where a
cluster of businesses engage in industrial activity in the same location [4,5]. Industrial
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parks do not only cover a major part of industrial activity, but also create a unique oppor-
tunity from a sustainability perspective [6]. Examples include District Heating (DH) and
managing electricity consumption in micro-grids. Since heating is responsible for large
amounts of energy consumption (in 2009, heating was 47% of the total energy consumption
worldwide, [7]), centralized DH solutions have proven to be efficient in reducing CO2
emissions. Likewise, we posit that by coordinating the production of firms in an industrial
park, we can reduce the amount of emissions they generate.

A micro-grid consists of several components: a carbon-emission-reduced generation
method, such as a wind park, the industrial users of the park, and an independent load
manager [8–10]. One practical approach considers that the industrial park can play a role
in reducing the burden on the environment by influencing the production policies of the
firms in the park. Initiatives that exemplify how energy consumption can be managed in a
coordinated fashion to improve the performance can be found, for example, in [11].

The idea of controlling the impact of electricity generation on the environment is not
limited to industrial parks. It can also be implemented on an individual basis, where a
manufacturer utilizes an electricity pricing scheme to efficiently schedule operations so
that the demand for electricity is leveled. The objective in this case is to minimize costs
including electricity by leveling the peak-to-average ratio (see, e.g., [11]). Thus, coordi-
nating energy consumption with operations, whether through scheduling or production
planning, can lead to better and sustainable decisions, at least from the angle of lowering
CO2 emissions whose negative impact on the environment has been amply demonstrated.
This approach has been applied in a variety of settings, such as for electricity providers and
retailers [12,13] and building electricity management [14–16]. Ref. [17] studied peak-load
reduction for a manufacturing job scheduling problem, and [18] investigated peak-load
reduction in a stochastic make-to-stock manufacturing setting.

Most operation management models for manufacturing or service operation policies
assume constant operating costs, but in fact the impact of energy consumption on the
environment is, by nature, far from being linear. Moreover, in most cases, studies have not
considered the effects of production quantities on the level of carbon emissions (e.g., [19,20]).
In this paper, we shed light on the relationship between these two and analyze the carbon
emission with respect to the total production quantities. This is consistent with previous
studies that have dealt with peak-load leveling; see, e.g., [20]. Ref. [21] was among the
first to explicitly consider electricity prices in the management of a simple make-to-stock
manufacturing facility with a base-stock policy.

In a deterministic setting, sustainability considerations have been incorporated with
inventory in an Economic Order Quantity (EOQ) setting (e.g., [22–26]). However, this line
of research only considers a single manufacturing facility and exogenously determined
electricity prices. Other studies that have examined a game-theoretic setting, such as [27],
have focused on a supplier-manufacturer setting.

In this paper, we analyze how incorporating the impact of electricity consumption
into the total cost affects the production strategies of two manufacturers located in the
same industrial park, who share the same sources of electricity. We investigate how carbon
emissions and the total profitability of each manufacturer are affected by the level of
coordination between the two firms. To take these into account, we evaluate the carbon
emission costs as a function of the total sum of the production volumes of these two
manufacturers, which allows for coordination between the two.

For that purpose, we compare the performances of the system in three scenarios: (1) a
decentralized strategy depending on inventories, (2) a decentralized strategy depending
solely on each firm’s own inventory, and (3) a centralized strategy. The decentralized strate-
gies are coordinated via the production quantities of both firms. We develop the models
and derive analytic results. The optimal production quantities and the optimal inventory
levels are derived. Our results show that a decentralized approach with coordination
performs better than a centralized strategy.

This paper is organized as follows: in Section 2 we present the model formulation and
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in Section 3, we analyze the model and obtain the analytic results. In Section 4, we conduct
comparisons and in Section 5 we report the sensitivity analyses. We conclude and discuss
the managerial implications and future directions in Section 6. All the technical proofs
appear in the Appendix A.

2. Model Formulation and Notation

We consider an industrial park with two manufacturing units. Each manufacturing
unit faces an exogenous market demand at an exogenous price. In order to produce
electricity, the park’s energy management unit uses various types of technologies in a
decreasing order of electricity production/supply costs. The level of carbon emission per
unit of electricity consumed increases in the overall load of the industrial park, because,
as mentioned earlier, renewable technologies are increasingly becoming cheaper than coal.
Thus, the energy management unit can incentivize the firms to coordinate production
quantities such that electricity consumption peak levels are leveled as much as possible.
We describe a way to coordinate these decisions.

The manufacturing units decide on the production output that replenishes their in-
ventories. In principle, the manufacturing units aim to supply the demand while reducing
the carbon emissions associated with the quantities produced. This approach resonates
with their overall sustainability business strategy. To control emission costs, each manufac-
turing unit is charged a penalty for the carbon emissions that stem from the production
activity. Here we assume that this penalty pertains to the carbon emissions arising from
the generation of the electricity consumed in the production of each unit produced by each
manufacturing firm. In Figure 1, we depict the structure of this setting.
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The production output qj(t) j = 1, 2, replenishes the inventory, whose dynamics can be
captured by the following differential equation:

.
I j(t) = qj(t)− Sj(t), Ij(0) = I0

j ≥ 0, j = 1, 2. (1)

In (1), Ij(t) and Sj(t) represent the inventory and the sales rate of manufacturer j at
time t, respectively, and Ij(0), is the initial inventory level. In this study we tackle the case
where the demand rate is known and constant, which represents the best nominal (average)
forecast for each firm for the foreseen horizon (e.g., [28]).

According to Equation (1), for manufacturing unit j, if the output rate is greater than
the sales rate, then inventory is accumulated. If the opposite is true, then the inventory
depletes. Thus, the inventory is a stock variable that measures the accumulated imbalance
between quantities produced and demanded over time. A positive inventory level means
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that products are physically available, whereas a negative inventory level means that the
company has outstanding backorders, i.e., we assume full backlogging.

The manufacturing units earn a positive margin from their sales but must pay a
cost for holding positive inventory and for backorders (negative inventory). In addition,
they incur a penalty (i.e., a cost) for the carbon emissions stemming from their production.
Note that in the sustainability literature, it is common to assume that the manufacturer is
charged for the carbon emissions proportionally to the quantity produced.

Given the above, the discounted (r is the discount rate) sum of the future profits of
manufacturer j is:

Πj =

∞∫
0

e−rt[pjSj(t)− qj(t)Ce(q1(t) + q2(t))− Kj
(

Ij(t)
)]

dt

where pj is the constant revenue obtained from selling a unit of firm j, Kj(.) is the sum of
holding and backorder costs. Based on the above, we have,

Sj(t) = Sj = constant.

We assume that Kj (.) is strictly convex in its argument (inventory level), which is
typical for inventory and shortage costs. The term Ce (.) is the penalty cost for carbon
emissions and increases with respect to the production quantities of both firms.

In the above model the total electricity load of the industrial park dictates the carbon
emission penalty incurred by each manufacturing unit, which also depends on the sum of
the produced quantities of both manufacturers (q1 + q2). Thus, the two units are in a game
situation, where the high production rate of one manufacturer may replenish the inventory
to a satisfactory level but at the same time increase the carbon penalty for both firms in
the park. By introducing this term into the production planning model, we derive a set of
policies that can help coordinate the carbon emissions via the production quantities hence,
controlling the negative effects that production may have on the environment.

Next, we introduce different setups for the manufacturing firms. Specifically, we con-
sider three settings: (1) each player decides on the production quantities knowing the
inventory of the other, (2) each player is aware of its inventory but not of the other’s, (3) a
central entity makes decisions on behalf of the manufacturers, and the policy is dependent
on both quantities.

2.1. The Decentralized with Full Information (DFI) Problem

In this setting, we consider two independent manufacturing units seeking to maximize
their own profits. They make their decisions independently and in their own best interest
while observing the production rate and inventory of the other unit. We term this problem
Decentralized with Full Information (DFI). The resulting situation becomes a dynamic
game where the two manufacturers are strategically interacting players. For a given level
of price and sales, manufacturer j chooses its output level qj that maximizes its profits,
and thus faces the following maximization problem:

Maxqj(t)Π
D
j =

∞∫
0

e−rt[pjSj − qj(t)Ce(q1(t) + q2(t))− Kj
(

Ij(t)
)]

dt

s.t.
.
I j(t) = qj(t)− Sj, Ij(0) = I0

j
and qj(t) = qj(I1(t), I2(t)),

}
, j = 1, 2

, j = 1, 2. (2)

The type of game that the two units play corresponds to an infinite horizon differential
game in which the players choose feedback strategies. Thus, they design their actions as
state-dependent decision rules with production strategies depending on the current levels
of inventories, I1(t) and I2(t). When employing feedback strategies, both units immediately
respond to any changes in the inventories I1(t) and I2(t). Hence, any action triggers a
reaction so that this game fully captures strategic interactions.
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One possible variant to this situation is when players are not allowed to be aware of
the inventories of the other. This Decentralized with Partial Information (DPI) is treated
below in Section 3.1.

Next, we develop a model to which we benchmark the decentralized models above.
We introduce the case where the management of the industrial park can decide centrally
on the production rates of the firms.

2.2. The Centralized (C) Problem

In this setting, we assume that both manufacturing firms have agreed to comply with
a central decision maker; The need for a centralized authority can arise in cases where
there are specialist manufacturers in a highly concentrated sector, e.g., Apple and Sony,
which are competing for specific component from a single manufacturer. In this type of
setting, the performance of both manufacturers may be harmed by rationing games. Thus,
it may be justified to establish a central authority to help maximize performance for the
whole system. This central authority may be viewed as the park’s energy management
unit, for purposes of determining quotas the manufacturers must comply with. To properly
determine these quantities, that central authority takes the inventory levels of both firms
and the overall electricity load of the industrial park into account. The central authority
aims at maximizing the sum of the firms’ profits.

In this centralized setting, production becomes a standard optimal control problem
that corresponds to a centralized solution. The centralized optimal control problem is
given by:

Maxq1(t),q2(t)Π
C =

∞∫
0

e−rt
2
∑

j=1

[
pjSj − qj(t)Ce(q1(t) + q2(t))− Kj

(
Ij(t)

)]
dt

s.t.
.
I j(t) = qj(t)− Sj, Ij(0) = I0

j
and qj(t) = qj(I1(t), I2(t))

}
, j = 1, 2

. (3)

This problem corresponds to the one analyzed in [29,30] in which production strategies
in an inventory model are optimized.

3. The Optimal Strategies

In our analysis we used the following specifications for the cost structures:

Kj
(

Ij
)
= 0.5kIj

2, j = 1, 2
Ce(q1(t) + q2(t)) = 0.5c(q1(t) + q2(t))

}
(4)

where k and c are strictly positive constants representing supply chain costs (inventory
holding and shortage) and carbon emissions costs, respectively. We tackle the homogenous
case, where the values of k and c are identical for both manufacturing firms. These assump-
tions are common in studies aiming to gain insights into the structural properties of the
strategies in these games; see, e.g., [31].

As the carbon emission cost structure is linear, we have Ce(q1 + q2) = Ce(q1) + Ce(q2).
These models are standard in the literature on dynamic games; see, for example, [31]. Next,
we analyze each of the settings modeled above.

3.1. Analysis of the Decentralized with Full Information (DFI) Setting

Though each manufacturer is independent, each considers the reaction and the state
of the other manufacturer, i.e., each manufacturer has visibility of the inventory situation
in the industrial park. This generates a closed-loop game situation in which strategic
interactions among the production firms are inevitable. Thus, they design their actions as
state-dependent decision rules with different valuations of the shadow prices, which results
in a strategic externality with severe value effects for both players.

Taking into account the specification in (4) the production game (2) becomes
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Maxqj Π
D
j =

∞∫
0

e−rt
[

pjSj − qj(I1, I2)(0.5c(q1(I1, I2) + q2(I1, I2)))− 0.5kI2
j

]
dt

.
I j = qj(I1, I2)− Sj, Ij(0) = I0

j , j = 1, 2

, j = 1, 2. (5)

Our next result characterizes a feedback Nash equilibrium of the game (5).

Theorem 1. Consider the Decentralized with Full Information (DFI) production problem presented
in (5). The Nash equilibrium feedback strategy of each firm is given by

qj
(

Ii, Ij
)
= 2

3c
(
2bj − bi + (4g− f )Ij + 2( f − g)Ii

)
qi + qj =

2(bi+bj)+(2g+ f )(Ii+Ij)
3c

}
, i, j = 1, 2, j 6= i. (6)

The coefficients f, g, bi and bj, are solutions of the following equations

28 f 2 − 56 f g + 64g2 − 9ck− 18cgr = 0
(4 f − 16g + 3cr)(−14 f 2 + 64 f g− 32g2 − 9c f r) + 64( f − g)3 = 0

16Abj + Bbi − 3c[−432cg2rSi + 54c2gr2Si − 192 f g2(Si − 3Sj) + 72c f gr(Si − 3Sj) + 64g3(12Si − Sj) + 27c2 f r2Sj
−192 f 2g(Si + 2Sj) + 18c f 2r(2Si + 3Sj) + 8 f 3(6Si + 11Sj)] = 0

16Abi + Bbj − 3c[−432cg2rSj + 54c2gr2Sj − 192 f g2(−3Si + Sj) + 72 f cgr(−3Si + Sj) + 64g3(−Si + 12Sj) + 27c2 f r2Si
−192 f 2g(2Si + Sj) + 18c f 2r(2Sj + 3Si) + 8 f 3(11Si + 6Sj)] = 0


(7)

with
A = ( f − g)(16 f 2 − 56 f g + 112g2 + 12c f r− 66cgr + 9c2r2)
B = (16 f 3 + 3200g3− 132c f 2r− 3264cg2r + 936c2gr2− 81c3r3− 48 f (40g2− 37cgr + 6c2r2)).

Proof. See Appendix A.
Considering the latter two equations we obtain

b = bi + bj =
3Sc[−432cg2r+54c2gr2+384 f g2−144c f gr+704g3+27c2 f r2−576 f 2g+90c f 2r+136 f 3]

16A+B = 3cDS,

where D = [−432cg2r+54c2gr2+384 f g2−144c f gr+704g3+27c2 f r2−576 f 2g+90c f 2r+136 f 3]
16A+B

where,
S = S1 + S2.

Thus, the total production in (7) becomes

qi + qj =
2b + (2g + f )I

3c
, 2g + f < 0. (8)

By substituting (6) and (8) into the dynamic system of the equations in (5), we obtain
a differential equation for the optimal inventory policy:

.
I j(t) = 2

3c
(
2bj − bi + (4g− f )Ij(t) + 2( f − g)Ii(t)

)
− Sj,

.
Ii(t) = 2

3c

(
2bi − bj + (4g− f )Ii(t) + 2( f − g)Ij(t)

)
− Si

Using (10) we obtain,

.
I(t) =

2
3c

(b + (2g + f )I(t))− S

Thus, for I(0) = I0,

I(t) = e
2
3c (2g+ f )t[I0 +

b− 3c
2 S

(2g + f )
]−

b− 3c
2 S

(2g + f )
.
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�

Remark 1. lim
t→∞

I(t) =− b− 3c
2 S

(2g+ f ) ; lim
t→∞

q(t) = DS + S
2 = (D + 1

2 )S (proportional to S).

Note that although the solution is analytic, it is rather cumbersome to analyze it
further due to the various complex coefficients. In what follows, we explore this solution
numerically to get the flavor of the results and to compare it to the other analytical solutions.

Next, we examine the case of Decentralized with Partial Information (DPI), where qj = qj(Ij),
j = 1, 2. In this setting we assume that each player is not affected directly by the other player’s
quantity. Thus, (5) becomes

Maxqj Π
D
j =

∞∫
0

e−rt
[

pjSj − qj
(

Ij
)(

0.5c
(
qj
(

Ij
)
+ qi(Ii)

))
− 0.5kI2

j

]
dt

.
I j = qj

(
Ij
)
− Sj, Ij(0) = I0

j , j = 1, 2

, j = 1, 2. (9a)

We obtain the following result.

Theorem 2. Consider the Decentralized with Partial Information (DPI) production problem
presented in (8). Assume that the Nash equilibrium feedback strategy of each firm is of the form
qj(Ij), j = 1, 2. Then, the sum of production rates satisfies

q = q1 + q2 =
β̃S

β̃− r
+ β̃I, where β̃ =

1
2

(
r−

√
r2 +

8k
3c

)
< 0. (9b)

Proof. See Appendix A.
By substituting (9b) into the dynamic system of equations in (9a), considering I(0) = I0,

we obtain:
I(t) = eβ̃t[I0 +

rS
β̃(β̃− r)

]− rS
β̃(β̃− r)

. (10)

�

Remark 2. lim
t→∞

I(t) =− rS
β̃(β̃−r)

, lim
t→∞

q(t) = β̃S
β̃−r
− rβ̃S

β̃(β̃−r)
= S.

This result represents the steady-state inventory and production rate of the total game.

3.2. Analysis of the Centralized (C) Setting

When the industrial park is managed by a central decision maker, the optimal control
problem (3) given (4) becomes:

Maxq1,q2 ΠC =
∞∫
0

e−rt
2
∑

j=1

[
pjSj − qj(I1, I2)(0.5c(q1(I1, I2) + q2(I1, I2)))− 0.5kI2

j

]
dt

s.t.
.
I j = qj(I1, I2)− Sj, Ij(0) = I0

j , j = 1, 2

. (11)

This is a standard optimal control problem in which the production quantities are two
control variables and the inventories are two state variables.

Theorem 3. Consider the Centralized (C) production problem in (11). The optimal feedback
strategy satisfies:

q1 + q2 =

_
β S

_
β − r

+
_
β I, where

_
β =

1
2
(r−

√
r2 +

2k
c
) < 0 (12)
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Proof. See Appendix A.
By substituting (12) into the dynamic system of equations in (11), given I(0) = I0,

we obtain

I(t) = e
_
β t[I0 +

rS
_
β (

_
β − r)

]− rS
_
β (

_
β − r)

. (13)

�

Remark 3. lim
t−>∞

I(t) =− rS
_
β (

_
β−r)

; lim
t→∞

q(t) =
_
β S

_
β−r
−

_
β rS

_
β (

_
β−r)

= S.

Again, this result represents the steady-state inventory and production quantities of
the total game.

With respect to Remarks 2 and 3, the limit inventory level (steady state) under all the
strategies for Theorems 2 and 3 will always converge to negative values. The negative value
of the steady state means that in the long run, the firms will prefer to pay the cost for the
negative backlogged inventory. We conject that this happens because the inventory costs
are quadratic, regardless of whether there is an excess or shortage (equal cost), and because
of the emission term. Thus, in the case of higher shortage costs than holding, the system
inventories would likely converge to a positive value.

4. Comparisons of Policies

We explored the differences in inventory levels, production levels, profits, and emis-
sion costs in each of the settings analytically. We first propose a general comparison of the
Decentralized with Full Information strategy (DFI) to the Centralized strategy (C). We show
that in our setting, and assuming the centralized quantity is the sum of the decentralized
quantities, adopting a decentralized approach where full information is shared is more
advantageous than a centralized approach. This is a somewhat counter-intuitive result
since after all; a centralized strategy typically should do at least as well as a decentralized
strategy. We show that when coordination is properly enforced, the benefits of decentral-
ization are far greater than the benefits of centralizing the decisions. Corollary 1 below
expresses a well-known argument in mathematical analysis that the sum of a maximum on
quantities is greater than or equal to the maximum of the sum of quantities.

Corollary 1. Consider the decentralized and centralized profit functions:

ΠD
j (q1, q2) =

∞∫
0

e−rt
[

pjSj − qj(0.5c(q1 + q2))− 0.5kI2
j

]
dt, j = 1, 2

ΠC(q1 + q2) =
∞∫
0

e−rt
2
∑

j=1

[
pjSj − qj(0.5c(q1 + q2))− 0.5kI2

j

]
dt

=
∞∫
0

e−rt

(
2
∑

j=1

[
pjSj − 0.5kI2

j

]
dt−

(
0.5c(q1 + q2)

2
)

dt

)

Let q0j
1 , q0j

2 be the optimal strategies for ΠD
j (q1, q2) and let q∗ be the optimal strategy for

ΠC(q), where q = q1 + q2. Then the sum of optimal profits of the decentralized firms is higher than
or equal to the optimal profit of a centralized firm, i.e.,

ΠD
1 (q

01
1 , q01

2 ) + ΠD
2 (q

02
1 , q02

2 ) ≥ ΠC(q∗)

Proof. See Appendix A.
The results of Corollary 1 show the benefits of a decentralized approach over a

centralized one, provided there is a mechanism for coordination. �
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Inventory, Production Quantities, Profits and Emissions

In this section, we derive the relationships between inventory levels, production
quantities, profits, and emission costs. For purposes of illustration, we use the following
base case for the parameter values:

R = 0.1, k = 1, c = 0.05, Sj = 1000, Si = 500, I0
j = 50, I0

i = 100, pj = 50, pi = 25. (14)

Proposition 1. Consider the strategies under Theorems 2 and 3. (a) For lower values of inventory
levels, the total production quantities of the Decentralized with Full Information strategy are
higher than those under the Centralized strategy, (b) For higher values of inventory levels, the total
production quantities under the Centralized strategy are higher than those under the Decentralized
with Full Information strategy.

Proof. See Appendix A.
Thus, Proposition 1 states the relationship between the total production quantities and

the inventory level for the two strategies that result from Theorems 2 and 3. In addition,
we also present the D strategy from Theorem 1. We illustrate the result in Figure 2, based on
the parameters presented in (14). �
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Figure 2. Total production quantities and total inventory.

Proposition 2. Consider the strategies under Theorems 2 and 3. (a) For earlier times, the total
inventory (production) under the Decentralized with Full Information strategy is lower (higher)
than under the Centralized strategy. (b) For later times, the total inventory (production) under the
Decentralized with Full Information strategy is higher than under the Centralized strategy.

Proof. See Appendix A.
Proposition 2 implies that in the long run, the Decentralized with Full Information

strategy converges to a higher inventory (production) level than the Centralized strategy.
In Figure 2 we present the behavior of the total production and inventory that results from
Theorems 1–3, using the parameters for the base case presented in (14). �

In Figure 3, we present the behavior of the total profits emission costs as a function of
time of strategies that result from Theorems 1–3, using the parameters for the base case
presented in (14).
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5. Sensitivity Analysis

In this section, we explore how the results obtained in this study change when uncertainty
is introduced into the parameters. We explore the sensitivity of the objective function to
uncertainty in the emission parameter, the inventory parameter, and the discount rate. We are
interested in the percentage of change relative to the objective function at baseline. Each change
in a parameter was made using changes ±90% with steps of 10% from the baseline value.
In each case, the axis grid represents the deviation in percentage from the baseline value.
We start with the inventory and emission parameters and then explore the discounting.

Sensitivity of Optimal Profits to c and k: In this case we do a two-dimensional
sensitivity analysis, we obtain a surface since we have a tuple {parameter 1, parameter
2, objective value}. Consider Figure 4, which shows the results for the Centralized case.
The figure indicates that the optimal profit in the Centralized setting is more sensitive to
the inventory parameter than to the emission parameter, at least for larger values of the
emission parameter. While the profit is nonlinearly dependent on k (for large values of c),
it is linearly dependent on c (for almost all values of k). The graph for the Decentralized
setting looks the same (and have the same scale). This is plausible since the various settings
differ solely by a factor of k/c under the root.
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Sensitivity of Optimal Profits to r: Discounting in such a setting is an impactful
factor. We explored the discounting impact on profits in all three settings. The results
showed that the optimal profits are linearly sensitive to changes in the range of [−20%,
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+20%]. However, in the range of +20% and more, the objective becomes flat, but in the
range of −20% or less, it becomes very sensitive.

6. Conclusions, Managerial Implications, and Future Directions

In this paper, we analyzed a Decentralized with Full Information strategy of produc-
tion decisions in a differential game framework involving profit maximizing output in an
industrial park when emission costs are considered. The resulting dynamic game analyzed
coordination through emission costs. Two alternative decentralized and centralized formu-
lations were compared. In the case where decentralized firms can fully share information,
the resulting equilibrium results in the best outcomes.

In our analysis we developed the optimal equilibrium production quantities and the
resulting optimal trajectories of the inventory policies. The optimal policies show that
inventories decrease over time and converge to a certain value, whereas the production
quantities increase over time and converge to the total sales rate (except the fully coor-
dinated case, which is proportional to the sales rates). Different patterns were observed.
If the initial inventory is zero, the profit function has a global maximum and then decreases
and converges to a certain value. If the initial inventory is greater than zero, the structure
becomes more complex, but the final values converge to the same values as before. A cen-
tralized strategy yields lower profits than a decentralized with full information strategy.
However, in the short term, the centralized approach results in lower total emission costs
and higher total profits. We explored the sensitivity of total profits in each of the settings to
key parameters.

The theoretical results derived in this paper on the coordination of emission consider-
ations have crucial implications for management. There is no doubt that decentralization
works if the units involved are appropriately coordinated. If they are not, pursuing divi-
sional objectives results in severe profit losses. Hence, if a company wants to exploit the
benefits of decentralization, it needs to implement a sound coordination policy, in which
besides considering the production costs, they must consider the cost of emissions and
coordinate these two forces. Management needs to weigh the benefits and losses aris-
ing from decentralization and choose a strategy that comes close to its best profit levels,
while mitigating emissions in a balanced way.

Future research in this area could concentrate on several issues:
Uncertainty: adding uncertainty to the input of the problem could lead to greater

insights and add more practicality to the model. More specifically, studies could explore
the case where the cost parameters vary in a closed interval.

Stochasticity: If the knowledge base on the uncertain parameter is denser and fre-
quencies can be derived, probability theory can be implemented to possibly determine the
stochastic structure of these inputs, in which case a stochastic differential game should
be pursued.

Setup cost: We assumed that changing the output rate would have no cost or time
implications. In practice, any change in production capacity entails costs, such as changing
the personnel supporting production or calibrating the manufacturing machines. Thus,
it would be of interest to model such an extension and explore its impacts. We conjecture
that this might affect the structure of the optimal policy.

Multiple Manufacturers: In an industrial park, there tend to be multiple manufacturers.
It would be interesting to see how the structure of the optimal policy changes when there
are multiple manufacturers and assuming different levels of coordination, e.g., coordination
among individuals or groups of individuals.
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Appendix A

To prove Theorems 1–3 we use techniques from [32].

Proof of Theorem 1. To find the feedback strategies each player has the value function:

rV j = max
qj

{
pjSj − 0.5cqj

(
Ii, Ij

)(
qi
(

Ii, Ij
)
+ qj

(
Ii, Ij

))
− 0.5kI2

j + V j
Ij
(qj(Ii, Ij)− Sj) + V j

Ii
(qi(Ii, Ij)− Si)

}
,

j = 1, 2, j 6= i

 (A1)

where V j
Ij

, V j
Ii

refer to the derivative of Vj with respect to Ij and Ii, respectively. The max-
imization with respect to qj yields

−cqi
(

Ii, Ij
)
− 2cqj

(
Ii, Ij

)
+ 2V j

Ij
= 0, j = 1, 2, j 6= i, (A2)

Or
qj
(

Ii, Ij
)
=

2
3c

(
2V j

Ij
−Vi

Ii

)
, j = 1, 2, j 6= i. (A3)

Thus substituting (A3) into (A1) leads to (removing the arguments)

rV j = pjSj − 2
9c

(
2V j

Ij
−Vi

Ii

)(
Vi

Ii
+ V j

Ij

)
− 0.5kI2

j + V j
Ij
( 2

3c

(
2V j

Ij
−Vi

Ii

)
− Sj) + V j

Ii
( 2

3c

(
2Vi

Ii
−V j

Ij

)
− Si),

j = 1, 2, j 6= i

. (A4)

Note that in (A4) both Vi
Ij

, V j
Ii

appear. Solving the system of differential equations

represented by (A4) means finding the value functions V j(Ii, Ij), j = 1, 2, j 6= i that satisfy
them. The following value functions are proposed as solutions,

V j(Ii, Ij) = aj + bj Ij + gI2
j + dj Ii + eI2

i + f Ii Ij, (A5)

which implies, for
V j

Ij
= bj + 2gIj + f Ii,

V j
Ii
= dj + 2eIi + f Ij.

In order for the value functions proposed in (A5) to be solutions to (A4), the coefficients
must have the “right” values. To find them, substitute last two equations into (A4) to get
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r
(

aj + bj Ij + gI2
j + dj Ii + eI2

i + f Ii Ij

)
= pjSj − 2

9c

(
2[bj + 2gIj + f Ii]− [bi + 2di Ii + f Ij]

)(
[bi + 2gIi + f Ij] + [bj + 2gIj + f Ii]

)
−0.5kI2

j + [bj + 2gIj + f j Ii](
2
3c

(
2[bj + 2gIj + f Ii]− [bi + 2gIi + f Ij]

)
− Sj)

+[dj + 2eIi + f Ij](
2
3c

(
2[bi + 2gIi + f Ij]− [bj + 2gIj + f Ii]

)
− Si)

j = 1, 2, j 6= i


(A6)

r
(

aj + bj Ij + gI2
j + dj Ii + eI2

i + f Ii Ij

)
= pjSj − 2

9c

(
(2bj − bi) + (4g− f )Ij + 2( f − g)Ii

)(
(bi + bj) + (2g + f )Ii + ( f + 2g)Ij

)
−0.5kI2

j + (bj + 2gIj + f Ii)
(

2
3c (2bj − bi)− Sj +

2
3c (4g− f )Ij +

4
3c ( f − g)Ii

)
+(dj + 2eIi + f Ij)

(
2
3c (2bi − bj)− Si +

2
3c (4g− f )Ii +

4
3c ( f − g)Ij

)
j = 1, 2, j 6= i


(A7)

This implies,

Coeficient of Ii : rdj =
−(8bi−16bj+6dj) f+(8bi−16bj+24dj)g+24( f−g)g

9c − Sj f ,
j = 1, 2, j 6= i

(A8)

Coeficient of I2
i : re =

8( f − g)2

9c
(A9)

Coeficient of Ij : rbj =
4bi(6e + 4 f − g) + 12(dj f − djg− f g + 4g2) + bj(12e + 14 f − 8g)

9c
, j = 1, 2, j 6= i (A10)

Coeficient of Ii Ij : r f =
−14 f 2 − 12e( f − 4g) + 62 f g− 8g2

9c
(A11)

Coeficient of Ij : rbj =
4bi(6e + 4 f − g) + 12(dj f − djg− f g + 4g2) + bj(12e + 14 f − 8g)

9c
, j = 1, 2, j 6= i. (A12)

By manipulating (A8)–(A12) we obtain the coefficients of

qj
(

Ii, Ij
)
=

2
3c
(
2bj − bi + (4g− f )Ij + 2( f − g)Ii

)
, j = 1, 2, j 6= i.

Which completes the proof. �

Proof of Theorem 2. To solve this problem we use the Hamiltonian approach. The Hamil-
tonian of this problem is

Hj = pjSj − qj
(

Ij
)
0.5c

(
qj
(

Ij
)
+ qi(Ii)

)
− 0.5kI2

j + λj(qj(Ij)− Sj), j = 1, 2

The maximization condition is

∂Hj/∂qj = −0.5c
(
2qj
(

Ij
)
+ qi(Ii)

)
+ λj = 0, j = 1, 2

.
λj = rλj −

∂Hj

∂Ij
= rλj + kIj, j = 1, 2

We denote λ = λ1 + λ2, and I = I1 + I2, thus

λ =
3c
2
(
qj
(

Ij
)
+ qi(Ii)

)
and

.
λ = rλ + kI.
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Assume λ = αd + βd I. Substituting into
.
λ = rλ + kI and

.
I = 2λ

3c − S we obtain

.
I = r(

αd

βd + I) +
k

βd I =
4(αd + βd I)

3c
− S

By comparing coefficients we obtain

βd =
3c
4
(r−

√
r2 +

8k
3c

) and αd = − Sβd

r− 2βd

3c

.

Therefore,

q1 + q2 =
2(αd + βd I)

3c
=

2βd

3c S
2βd

3c − r
− 2βd

3c
I.

Let β̃ =
2βd

3c
thusq1 + q2 =

β̃S
β̃− r

+ β̃I, β̃ =
1
2

(
r−

√
r2 +

8k
3c

)
.

And this completes the proof. �

Proof of Theorem 3. The Hamiltonian of this problem is:

H =
2
∑

j=1

[
pjSj − qj(I1, I2)(0.5c(q1(I1, I2) + q2(I1, I2)))− 0.5kI2

j + λj(qj(I1, I2)− Sj)
]

∂H
∂qj

= −c(q1(I1, I2) + q2(I1, I2)) + λj = 0
∂H
∂qi

= −c(q1(I1, I2) + q2(I1, I2)) + λi = 0

}
⇒ λ1 = λ2 = λ⇒ q1(I1, I2) + q2(I1, I2) =

λ
c

⇒
.
λ = rλ + kIj.
λ = rλ + kIi

}
⇒
{

let I = I1 + I2 ⇒
.
I = [(q1 + q2)− (S1 + S2],

.
λ = rλ + k

2 I

Let λ = α + βI

⇒
.
λ = β

.
I ⇒ r(α + βI) + k

2 I = β[(q1 + q2)− (S1 + S2)]

⇒ r(α + βI) + k
2 I = β

[
α+βI

c − (S1 + S2)
]

⇒ α( β
c − r) = β(S1 + S2)⇒ α = cβ(S1+S2)

β−cr

⇒ β
2 − rcβ− k

2 c = 0⇒ β = 1
2 c(r−

√
r2 + 2k

c )⇒
β
c = 1

2 (r−
√

r2 + 2k
c )⇒

α
c = β/c(S1+S2)

(β/c−r)

⇒ q1 + q2 = α+βI
c =

β
c (S1+S2)

(
β
c −r)

+ β
c I =

_
β (S1+S2)

(
_
β−r)

+
_
β I,

_
β = 1

2 (r−
√

r2 + 2k
c )

And this completes the proof. �

Proof of Corollary 1. By definition

Maxq1,q2

(
ΠD

1 (q1, q2) + ΠD
2 (q1, q2)

)
= ΠD

1 (q
∗
1 , q∗2) + ΠD

2 (q
∗
1 , q∗2) = MaxqΠC(q) = ΠC(q∗) (A13)

Also

Maxq1 ΠD
1 (q1, q2) = ΠD

1 (q
01
1 (q2), q2) ≥ ΠD

1 (q1, q2), ∀q1 ≥ 0, q2 ≥ 0 (A14)

Maxq2 ΠD
2 (q1, q2) = ΠD

2 (q1, q02
2 (q1)) ≥ ΠD

2 (q1, q2), ∀q1 ≥ 0, q2 ≥ 0 (A15)

From (A14) and (A15) it follows that

ΠD
1

(
q01

1 (q∗2), q∗2
)
≥ ΠD

1 (q
∗
1 , q∗2),



Games 2021, 12, 15 15 of 16

ΠD
2

(
q∗1 , q02

2 (q∗1)
)
≥ ΠD

2 (q
∗
1 , q∗2)

Hence

Maxq1 ΠD
1 (q1, q∗2) + Maxq2 ΠD

2 (q
∗
1 , q2) ≥ ΠD

1 (q
∗
1 , q∗2) + ΠD

2 (q
∗
1 , q∗2)

Considering (A13)

ΠD
1 (q

∗
1 , q∗2) + ΠD

2 (q
∗
1 , q∗2) = Maxq1,q2

(
ΠD

1 (q1, q2) + ΠD
2 (q1, q2)

)
= MaxqΠC(q).

Therefore,

Maxq1 ΠD
1 (q1, q∗2) + Maxq2 ΠD

2 (q
∗
1 , q2) ≥ Maxq1,q2

(
ΠD

1 (q1, q2) + ΠD
2 (q1, q2)

)
= MaxqΠC(q)

Thus

Maxq2 Maxq1 ΠD
1 (q1, q∗2) + Maxq1 Maxq2 ΠD

2 (q
∗
1 , q2) ≥ MaxqΠC (q) = ΠC(q∗)

Or
ΠD

1 (q
01
1 , q01

2 ) + ΠD
2 (q

02
1 , q02

2 ) ≥ ΠC(q∗)

�

Proof of Proposition 1. By definition

0 ≥ β̂ ≥ β̃. (A16)

From (A16)
_
β S

_
β − r

≤ β̃S
β̃− r

. (A17)

With respect to (A17), when, the total production rate, starts at a higher value in the
Centralized setting than in the Decentralized with partial Information setting. However,
as the total inventory increases and, given (A16), since the slope, in absolute values, of the
Decentralized with Partial Information strategy is higher than that of the Centralized
strategy, at some total inventory level the total production rate for the Decentralized with
Partial Information strategy will be lower than that of the Centralized strategy. �

Proof of Proposition 2. From (A13) can also be shown that

1
β̂(β̂− r)

≥ 1
β̃(β̃− r)

. (A18)

At t = 0 the total inventory, I1 + I2, starts at I0 and decreases with t. Given (A18),
and (10), (13) the Decentralized with Partial Information strategy is higher than the Central-
ized strategy. However, as t increases, in long run the total inventory of the Decentralized
with Partial Information is higher than the Centralized strategy. The part for production
follows from this proof and from Proposition 1. �
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