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Abstract: I characterize the optimal accuracy level r of an unbiased Tullock contest between two
players with heterogeneous prize valuations. The designer maximizes the winning probability of
the strong player or the winner’s expected valuation by choosing a contest with an all-pay auction
equilibrium (r ≥ 2). By contrast, if she aims at maximizing the expected aggregate effort or the
winner’s expected effort, she will choose a contest with a pure-strategy equilibrium, and the optimal
accuracy level r < 2 decreases in the players’ heterogeneity. Finally, a contest designer who faces a
tradeoff between selection quality and minimum (maximum) effort will never choose a contest with
a semi-mixed equilibrium.

Keywords: Tullock contest; heterogeneous valuations; accuracy; discrimination; optimal design;
all-pay auction

JEL Classification: C72; D72

1. Introduction

I characterize the optimal accuracy level, sometimes also referred to as decisiveness
parameter or discriminatory power, of an unbiased Tullock contest between two players
with heterogeneous prize valuations under different objectives. As the accuracy level affects
efforts, winning probabilities, and payoffs, it is an important tool for designing a contest,
particularly when an explicit bias or affirmative action is not feasible. Real world examples
are countless and range from defining the type and size of the jury in litigation (number
of jurors/judges)1 to specifying the rules in sports like car racing (technical limitations)2,
table tennis (size of the ball)3, or soccer (tie breaking regulations)4.

The analysis thus contributes to the large literature on (optimal) contest design. More
specifically, it complements the articles that emphasize the role of the accuracy of the
contest success function, e.g., Nti [5], Alcalde and Dahm [6], Wang [7], and, particularly,
Ewerhart [8] and Chowdhury et al. [9]. Ewerhart [8] proves the uniqueness of the Nash
equilibrium in two-player Tullock contests and applies this finding to provide the following
ranking result: a designer who maximizes aggregate effort (i.e., revenue) and can opti-
mally bias the contest always prefers the highest possible accuracy level. By contrast, I
consider unbiased contests and use his uniqueness result to determine the optimal accuracy
level with regard to different design objectives. For example, a designer who maximizes
aggregate effort and cannot bias the contest always prefers to limit the level of accuracy
(Proposition 2). In their comprehensive survey on heterogeneity and affirmative action in
contests, Chowdhury et al. [9] make an analogous observation (see Observation 1.2.1 in [9]).
I add to their contribution by providing an exact specification of the optimal accuracy level
(Corollary 1) and considering alternative objectives (Propositions 1 and 3).

The paper is organized as follows. Section 2 introduces the formal set-up.
In Sections 3 and 4, I examine the optimal accuracy level under the assumptions that the

Games 2022, 13, 24. https://doi.org/10.3390/g13020024 https://www.mdpi.com/journal/games

https://doi.org/10.3390/g13020024
https://doi.org/10.3390/g13020024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/games
https://www.mdpi.com
https://orcid.org/0000-0002-6528-6551
https://doi.org/10.3390/g13020024
https://www.mdpi.com/journal/games
https://www.mdpi.com/article/10.3390/g13020024?type=check_update&version=1


Games 2022, 13, 24 2 of 6

designer maximizes the winning probability of the strong player, the winner’s expected
valuation, the expected aggregate effort, and the winner’s expected effort, respectively.
Section 5 discusses the optimal solution to different tradeoffs between selection quality and
effort. Section 6 concludes.

2. Set-Up and Notation

I consider the standard model of a Tullock contest [10] between two players with linear
effort costs and use the same notation as Ewerhart [8]. Player i’s probability of winning is

pi =

{
1/2 if x1 = x2 = 0,
(xi)

r

(x1)r+(x2)r else,

where xi ≥ 0 denotes the effort of player i ∈ {1, 2} and r ≥ 0 describes the accuracy level
of the contest.5 Player i ∈ {1, 2} chooses xi to maximize the payoff Πi = piVi − xi, where
the players’ valuations for the prize are normalized to V1 = 1 and V2 = ω ∈ (0, 1). I thus
refer to player 1 (2) as the strong (weak) player.

Propositions 1–4 in Ewerhart [8] show that, for any given ω ∈ (0, 1),

• there is a unique Nash equilibrium, which is in pure strategies, if 0 ≤ r ≤ r̄,
• there is a unique Nash equilibrium, which is in semi-mixed strategies, if r̄ < r ≤ 2,
• any Nash equilibrium is an all-pay auction equilibrium (i.e., it yields the same expected

efforts, winning probabilities and expected payoffs as well as the same expected
revenue R for the contest designer as the unique equilibrium of the corresponding
all-pay auction) in mixed strategies if 2 < r,

where r̄ is an implicit function of ω defined by

r̄ = 1 + ωr̄ ⇔ ω = (r̄− 1)1/r̄. (1)

Below, I mark equilibrium values with an asterisk where appropriate.

3. Maximization of Selection Quality

I first consider different objectives associated with the selection quality of the contest.
Table 1 in Ewerhart [8] shows that for all ω ∈ (0, 1) we have dp∗1/dr > 0 if 0 < r ≤ 2 and
dp∗1/dr = 0 if 2 < r. Thus, for any ω ∈ (0, 1), the designer maximizes the strong player’s
winning probability by choosing any contest with an all-pay auction equilibrium (r ≥ 2).
Moreover, since the winner’s expected equilibrium valuation equals

EV = p∗1 · 1 + (1− p∗1) ·ω = ω + (1−ω)p∗1

and 1− ω > 0 for all ω ∈ (0, 1), a contest that maximizes the strong player’s winning
probability also maximizes the winner’s expected valuation.

Proposition 1. For any ω ∈ (0, 1), the designer maximizes the the strong player’s winning proba-
bility (winner’s expected valuation) by choosing any contest with an all-pay auction equilibrium
(r ≥ 2).

4. Effort Maximization

I now consider different objectives associated with effort maximization.

4.1. Maximization of Aggregate Effort

For any ω ∈ (0, 1), Nti [5] determines the accuracy level r that maximizes aggregate
effort in the range of pure strategy equilibria, i.e., under the constraint r ≤ r̄. Alcalde and
Dahm [6] show that for any r ≥ 2, there exists an all-pay auction equilibrium, and for
any r > 2, any equilibrium is an all-pay auction equilibrium. Epstein et al. [12] show that,
for any ω ∈ (0, 1), the accuracy level r that maximizes aggregate effort in the range of
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pure strategy equilibria also leads to a higher aggregate effort than an all-pay auction
(r ≥ 2). Wang [7] determines a semi-mixed equilibrium for all r̄ < r ≤ 2 and shows that,
within this class of equilibria, the aggregate equilibrium effortR decreases in the accuracy
level r for any ω ∈ (0, 1), i.e., dR/dr < 0 if r̄ < r ≤ 2. Finally, Ewerhart [8] shows that for
any r ≤ 2 the equilibrium is unique.

Together, these results allow for a unique identification of the optimal accuracy level.
More explicitly, Table 1 in Ewerhart [8] shows that for any ω ∈ (0, 1), aggregate equilibrium
effort R is a continuous function of r. This implies that, for any ω ∈ (0, 1), the optimal
accuracy level must satisfy r ≤ r̄. It thus coincides with the optimal accuracy level within
the region of pure-strategy equilibria as characterized by Nti [5]. I briefly summarize his
analysis and add an exact equation for the threshold he approximates (cf. Table 1 and
Proposition 3 in [5]).

For any ω ∈ (0, 1), the optimal accuracy level r maximizes aggregate equilibrium
effortR = rωr(1+ω)

(1+ωr)2 subject to the constraint that r ≤ r̄. The first order condition dR/dr =

(1 + ω) ωr

(1+ωr)3 F(ω, r) = 0 for an unconstrained maximizer rA implies

F(ω, rA) := 1 + ωrA + (1−ωrA) ln(ωrA) = 0. (2)

Straightforward calculations show that F(ω, 0) = 2 > 0, limrA→∞ F(ω, rA) = −∞,
and ∂F/∂rA < 0 for all ω ∈ (0, 1). As dR/dr and F have the same sign, R is inverted
U-shaped and single-peaked. Moreover, ∂F/∂ω > 0 for all rA > 0. Thus, Equation (2)
defines an implicit function rA(ω) satisfying drA/dω = − ∂F/∂ω

∂F/∂rA
> 0 for all ω ∈ (0, 1).

Notice from Equation (1) that r̄ is also an increasing function of ω ∈ (0, 1).

Proposition 2. For any ω ∈ (0, 1), aggregate effort is an inverted U-shaped function of the
accuracy level. The designer maximizes aggregate effort by choosing a contest with a pure-strategy
equilibrium. The optimal accuracy level equals r = min{rA, r̄} and decreases as the players’
heterogeneity increases: dr/dω > 0.6

Inserting ω = (rA − 1)1/rA into Equation (2) implies

f (rA) := rA + (2− rA) ln(rA − 1) = 0.

It is straightforward to show that f is strictly increasing for all rA ∈ (1, 2) and has a
unique root which I denote by r̄A. Therefore, rA < r̄ if and only if rA < r̄A or, equivalently,
ω < ω̄A, where

ω̄A := (r̄A − 1)1/r̄A and r̄A + (2− r̄A) ln(r̄A − 1) = 0. (3)

Corollary 1. The designer maximizes aggregate effort by choosing

(a) r = rA if 0 < ω < ω̄A,
(b) r = r̄ if ω̄A ≤ ω < 1.

Figure 1 illustrates Proposition 2 and Corollary 1. The solid (dotted) curve depicts rA
(r̄) as a function of ω. The curves intersect at some point A ≈ (0.2804; 1.2137) to the left
(right) of which the optimal accuracy level is unconstrained (constrained).



Games 2022, 13, 24 4 of 6

B

A

rA(ω )
rB(ω )

r=1+ω r

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

ω

r

Figure 1. Optimal accuracy level and heterogeneity.

4.2. Maximization of the Winner’s Expected Effort

Straightforward calculations show that, for all ω ∈ (0, 1), the winner’s expected
equilibrium effort EXW = p1x1 + p2x2 is also a continuous function of r with dEXW/dr < 0
for r̄ < r ≤ 2. Again, these observations imply that, for any ω ∈ (0, 1), the optimal accuracy
level must satisfy r ≤ r̄ and thus coincides with the optimal accuracy level within the
region of pure-strategy equilibria.

For any ω ∈ (0, 1), the optimal accuracy level r maximizes the winner’s expected

equilibrium effort EXW = rωr(1+ωr+1)
(1+ωr)3 subject to the constraint that r ≤ r̄. The first order

condition dEXW/dr = ωr

(1+ωr)4 G(ω, r) = 0 for an unconstrained maximizer rB implies

G(ω, rB) := 1+ln(ωrB )+ωrB [1−2 ln(ωrB )]+ωrB+1[1+2 ln(ωrB )]+ω2rB+1[1−ln(ωrB )] = 0. (4)

Straightforward calculations show that G(ω, 0) = 2(1 + ω) > 0, limrB→∞ G(ω, rB) =
−∞, and ∂G/∂rB < 0 for all ω ∈ (0, 1). As dEXW/dr and G have the same sign, EXW is
inverted U-shaped and single-peaked.

Proposition 3. For any ω ∈ (0, 1), the winner’s expected effort is an inverted U-shaped function
of the accuracy level. The designer maximizes the winner’s expected effort by choosing a contest
with a pure-strategy equilibrium. The optimal accuracy level equals r = min{rB, r̄}.

Moreover, numerical approximations suggest drB/dω = − ∂G/∂ω
∂G/∂rB

> 0 for all
ω ∈ (0, 1), i.e., the optimal accuracy level decreases as the players’ heterogeneity increases.

Inserting ω = (rB − 1)1/rB into Equation (2) implies

g(rB) := rB + rB(rB − 1)
1+rB

rB + ln(rB − 1)[3− 2rB + (3− rB)(rB − 1)
1+rB

rB ] = 0.
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One can show that g is strictly increasing7 and has a unique root which I denote by r̄B.
Therefore, rB < r̄ if and only if rB < r̄B or, equivalently, ω < ω̄B, where

ω̄B := (r̄B − 1)1/r̄B and g(r̄B) = 0. (5)

Corollary 2. The designer maximizes the winner’s expected effort by choosing

(a) r = rB if 0 < ω < ω̄B,
(b) r = r̄ if ω̄B ≤ ω < 1.

Figure 1 illustrates Proposition 3 and its Corollary. The dashed (dotted) curve depicts
rB (r̄) as a function of ω. The curves intersect at some point B ≈ (0.2337; 1.1799) to the
left (right) of which the optimal accuracy level is unconstrained (constrained). While
maximizing the aggregate effort is equivalent to maximizing the players’ average effort
(with equal weights), maximizing the winner’s expected effort is equivalent to maximizing
the players’ weighted average effort with a higher equilibrium weight p1 > p2 on the
stronger player. Intuitively, the solution to this problem is thus a compromise between
the maximization of aggregate effort and the maximization of the strong player’s winning
probability. As a result, rB ≥ rA for all ω ∈ (0, 1). Hence, the range of heterogeneities ω
for which rB is constrained by r̄ must be larger than that for which rA is constrained by r̄,
i.e., 0 < ω̄B < ω̄A.

In the next section, I characterize the optimal compromise between conflicting objec-
tives more generally.

5. Conflicting Objectives

Contest designers often have multiple objectives which may conflict. During a pre-
election, for example, a political party tries to select the best candidate but, at the same time,
limit pre-election efforts in order to save resources for the main election campaign; see,
e.g., Bruckner and Sahm [13]. By contrast, the organizer of a qualifying competition tries
to select the best athlete and provoke as much effort as possible because a highly intense
competition attracts more attention from spectators and sponsors.

5.1. Tradeoff between Selection Quality and Minimum Effort

Obviously, the contest that minimizes aggregate effort is purely random: an accuracy
level of r = 0 leads to zero efforts. The previous analysis thus suggests that a designer
who optimally solves a tradeoff between selection quality and minimum aggregate effort
(rent dissipation) will never choose a contest with a semi-mixed equilibrium because,
in this range, an increasing accuracy implies both, better selection and lower efforts. More
precisely, for any ω ∈ (0, 1), he will choose an all-pay auction (r∗ ≥ 2) if and only if he puts
sufficiently much weight on selection quality. Otherwise, he will choose an accuracy level
r∗ < min{rA, r̄} that leads to a pure-strategy equilibrium. A smaller upper-bound for the
optimal r∗ is then given by the (smallest) accuracy level r that equates the aggregate effort
in the pure-strategy equilibrium and the expected aggregate effort of the all-pay auction
equilibrium:

rωr(1 + ω)

(1 + ωr)2 =
(1 + ω)ω

2
⇔ H(ω, r) := (1 + ωr)2 − 2rωr−1 = 0.

5.2. Tradeoff between Selection Quality and Maximum Effort

By contrast, a designer who optimally solves a tradeoff between selection quality and
maximum aggregate effort will always choose an accuracy level r that is larger than the one
that maximizes aggregate effort. In particular, he may choose a contest with a semi-mixed
equilibrium (if he puts sufficiently much weight on selection quality), and will definitely
chose an accuracy level r ≥ r̄ if ω̄A ≤ ω < 1 (see Corollary 1).
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6. Conclusions

I have examined the optimal accuracy level r of an unbiased Tullock contest between
two players with heterogeneous prize valuations under different objectives. The designer
maximizes the winning probability of the strong player or the winner’s expected valuation
by choosing a contest with an all-pay auction equilibrium (r ≥ 2). By contrast, if she aims at
maximizing the expected aggregate effort or the winner’s expected effort, she will choose a
contest with a pure-strategy equilibrium, and the optimal accuracy level r < 2 decreases
in the players’ heterogeneity. Finally, a contest designer who faces a tradeoff between
selection quality and minimum (maximum) effort will never (may) chose a contest with a
semi-mixed equilibrium.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Notes
1 In many countries (like France or Germany), the size of the jury depends on the importance of the case (amount in dispute,

public interest, severeness) and increases from level to level of jurisdiction. Moreover, the legislator can adjust it according to the
contemporary priorities: fore example, in 2012, France reduced the number of jurors from 9 to 6 for first instance proceedings and
from 12 to 9 for appeal proceedings [1].

2 Mastromarco and Runkel [2] provide an overview and suggest an alternative argument for the numerous rule changes in Formula
One motor racing.

3 In October 2000, the International Table Tennis Federation replaced the older 38 mm (1.50 in) balls by 40 mm (1.57 in) balls to
reduce the speed (and thus inherent noise) of the game [3].

4 For example, the golden goal (sudden death)—a tie breaking rule by which the first team to score during extra-time was declared
to be the winner—was introduced experimentally in 1993, used at the 1998 and 2002 FIFA World Cup tournaments, and abolished
again in 2004 [4].

5 Skaperdas [11] provides an axiomatic foundation for this type of contest success function.
6 Chowdhury et al. [9] make an analog observation and provide graphical representations (see Observation 1.2.1 and Figure 1

in [9]; see also Figure 1 in [7]).
7 I used the software Mathematica to verify that dg/drB > 0 for all rB ∈ (1, 2).
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