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Abstract: In this paper, we suggest a Bayesian multivariate approach for pricing a reverse mortgage,
allowing for house price risk, interest rate risk and longevity risk. We adopt the principle of maximum
entropy in risk-neutralisation of these three risk components simultaneously. Our numerical results
based on Australian data suggest that a reverse mortgage would be financially sustainable under the
current financial environment and the model settings and assumptions.

Keywords: reverse mortgage; house price risk; interest rate risk; longevity risk; risk-neutralisation;
principle of maximum entropy; Bayesian modelling

1. Introduction

A reverse mortgage allows the owner of a home property to make a loan based on the value of
the property while keeping the right to stay in the property for life. If the homeowner dies or moves
out, the sale proceeds of the property are used to pay back the loan as well as the accumulated interest.
In Australia, each product usually has a no-negative-equity guarantee such that the total final payment
is no more than the sale value of the mortgaged property. Seniors and retirees can use a reverse
mortgage to unlock their home equity and obtain extra funding to pay for their living expenses and
other needs. Under the ageing population and the common problem of being asset-rich-cash-poor1,
reverse mortgages represent a financially feasible solution for millions of households. This market has
been growing quite steadily in Australia2.

Providers of reverse mortgages encounter a wide range of market, insurance and business risks.
It is of utmost importance to assess these different risks adequately in pricing and reserving. Generally
speaking, the main ones are house price risk, interest rate risk, longevity risk and other types of
business risks. First, if the homeowner lives longer than anticipated, the exposure and thus the chance
of the property value dropping below the accumulated loan balance would be increased. Second,
the house price and the interest rate fluctuate over time and are subject to economic cycles, leading to
uncertainty in the financial outcomes. Moreover, there are various types of common business issues
such as fraud, legal risk and operational risk.

1 The average balance in superannuation of those Australians who were aged 60 to 64 was merely AUD$214,897 in 2015–2016,
but the amount required to achieve a “comfortable retirement” is estimated to be AUD$640,000 for couples and AUD$545,000
for singles (https://www.superannuation.asn.au/).

2 The reverse mortgage industry revenue in Australia has grown by about 0.9% p.a. in the last five years (https://www.
ibisworld.com.au/).
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In the literature of pricing reverse mortgages, many of the authors assumed a fixed interest rate
and allowed for either longevity risk or house price risk or both (e.g., Debón et al. 2013; Ji et al. 2012;
Kogure et al. 2014). A few took all of the house price risk, interest rate risk and longevity risk into
account but used different pricing methods for these three risks separately (e.g., Wang et al. 2008;
Lee et al. 2012). In this article, we suggest a Bayesian approach to include all the three risk components
in a more consistent manner. Particularly, we adopt the maximum entropy approach (Kogure and
Kurachi 2010; Li 2010) in risk-neutralisation, which has some potential advantages over the other
pricing methods such as the Esscher transform and Wang transform. It is more flexible in terms of
being able to incorporate more than one market price, allowing the use of different simulation methods,
and pricing multiple risk factors within the same framework. Moreover, Bayesian modelling offers
a number of desirable features. One can estimate the mortality structure and the time series process
more coherently in a single step, rather than the usual two separate steps in most of the previous
mortality projection work. It is relatively straightforward to deal with missing values, which can
be an important issue when the market is not fully developed and only limited data are available.
Other reference information may also be incorporated into the priors to assist in parameter estimation.
Finally, both process error and parameter error (uncertainty in estimating parameters), and possibly
model error (uncertainty in choosing between models), can readily be allowed for in the Bayesian
modelling process.

The remaining parts are presented as follows. Section 2 sets forth the concept of applying the
principle of maximum entropy in pricing reverse mortgages. Section 3 introduces the Bayesian models
we adopt for modelling house price risk, interest rate risk and longevity risk. Section 4 discusses
the numerical results of a hypothetical example based on Australian data and provides the analysis.
Section 5 gives the concluding remarks.

2. Pricing Mechanism

Let X be the random value of a risk factor at time T, f (x) be its real-world probability density
function (pdf), hi(X) be the random payoff of the ith security at time T, vi be the time-0 market
price of that security and r be the risk-free interest rate. Under the principle of maximum entropy,
the risk-neutral pdf f ∗(x) is obtained by minimising the Kullback–Leibler information criterion∫

f ∗(x) ln f ∗(x)
f (x) dx, subject to the constraints

∫
f ∗(x)dx = 1 and (1 + r)−T∫ hi(x) f ∗(x)dx = vi for

i = 1, 2, . . . , m. This pricing method has several advantages. Firstly, any number m of market prices
can be embedded into the constraints in principle. This property is suitable for the currently developing
and illiquid life market. Secondly, different simulation and bootstrapping methods (e.g., Li 2014a) can
readily be implemented under this method. It allows one to avoid complex derivations and facilitates
implementation in practice. Thirdly, this method can be applied to multiple risk factors simultaneously.
This treatment is arguably more consistent or coherent than the way of arbitrarily applying different
risk-neutral measures to different risk factors, which is usually seen in the literature. Finally, there
are both theoretical arguments and empirical evidence supporting the use of this pricing method.
For instance, the maximum entropy principle is closely related to the expected utility hypothesis,
and this measure can produce prices similar to Black–Scholes ones in a simulated environment based
on the Black–Scholes model settings (e.g., Li 2010).

In the next two sections, we use Bayesian modelling to generate n random scenarios with equal
real-world probability πj = 1/n for j = 1, 2, . . . , n. Accordingly, we utilise the discrete form
of the maximum entropy principle, in which the Kullback–Leibler information criterion becomes

∑n
j=1 π∗j ln

π∗j
πj

and the constraints are ∑n
j=1 π∗j = 1 and (1 + r)−T∑n

j=1 hi,j π∗j = vi. The term π∗j
represents the risk-neutral probability and hi,j is the jth simulated payoff of the ith security at time T.
The Lagrange expression is stated as:

L=
n

∑
j=1

π∗j ln
π∗j
πj
− λ(

n

∑
j=1

π∗j − 1)−
m

∑
i=1

γi((1 + r)−T
n

∑
j=1

hi,j π∗j − vi),
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in which λ and γi are the Lagrange multipliers. To find the risk-neutral probabilities π∗j which minimise
the Kullback–Leibler information criterion, all the partial derivatives of the Lagrange expression are
first set to zero:

∂L
∂π∗j

= ln
π∗j
πj

+ 1− λ−
m

∑
i=1

γi(1 + r)−Thi,j = 0,

∂L
∂λ

= −(
n

∑
j=1

π∗j − 1) = 0,

∂L
∂γi

= −((1 + r)−T
n

∑
j=1

hi,j π∗j − vi) = 0.

The last two equations are just the two constraints, while the first one can be expressed as:

π∗j = πj exp(−1 + λ +
m

∑
i=1

γi(1 + r)−Thi,j).

Since ∑n
j=1 π∗j = 1, the following can be deduced:

n

∑
j=1

π∗j = exp(−1 + λ)
n

∑
j=1

πj exp(
m

∑
i=1

γi(1 + r)−Thi,j) = 1,

exp(−1 + λ) =
1

n
∑

j=1
πj exp(

m
∑

i=1
γi(1 + r)−Thi,j)

,

π∗j =

πj exp(
m
∑

i=1
γi(1 + r)−Thi,j)

n
∑

j=1
πj exp(

m
∑

i=1
γi(1 + r)−Thi,j)

=

exp(
m
∑

i=1
γi(1 + r)−Thi,j)

n
∑

j=1
exp(

m
∑

i=1
γi(1 + r)−Thi,j)

. (1)

The Lagrange multipliers γi and so the risk-neutral probabilities π∗j can then be obtained by

incorporating Equation (1) into the market price constraints (1 + r)−T∑n
j=1 hi,j π∗j = vi and using

numerical optimisation to solve the resulting equations3.
The derivation above is based on one risk factor and can readily be extended to multiple risk

factors. For instance, the following equation can be used when all of the house price risk, interest rate
risk and longevity risk are integrated into pricing a reverse mortgage:

π∗j =

exp(
m
∑

i=1
γi pvi,j)

n
∑

j=1
exp(

m
∑

i=1
γi pvi,j)

, (2)

where pvi,j is the simulated time-0 present value of the ith security in the jth scenario. The value
of each security is a function of one or two or all of the three risk factors. Note that the underlying
discount rate can be treated as stochastic in this more generalised setting.

3 For the numerical results in Section 4, we have empirically verified the minimisation of the information criterion by testing
several other randomly picked values of risk-neutral probabilities and checking whether the numerically optimised values
do represent the minimum. Another theoretical way to verify the minimisation is to compute the bordered Hessian matrix
and apply the second derivative test for an extrema of a Lagrange expression. However, this approach is impractical for our
analysis as the dimension of the matrix is too large.



Risks 2019, 7, 11 4 of 12

3. Bayesian Modelling

Consider a person aged x who has purchased a reverse mortgage at time 0. Let Lt be the
outstanding loan balance and Pt be the mortgaged property’s market value at time t. Suppose
the loan interest rate is constant at l p.a. and so Lt = L0 exp(lt). When the borrower dies
between time t − 1 and time t, the loan is terminated and the lender receives a lump sum of
min(Lt, Pt) = Lt −max(Lt − Pt, 0) at time t4. In effect, max(Lt − Pt, 0) refers to the potential payoff to
the homeowner from the no-negative-equity guarantee, which can be viewed as a put option written
on the house price with a moving strike price. For a large portfolio of borrowers5 from the same birth
cohort with homogenous house price growth experience and mortality improvement, define It as
the future percentage of this group who die between time t− 1 and time t. The lender then receives
min(Lt, Pt) It at t = 1, 2, 3, . . . on average per borrower. Denote r0,t as the risk-free rate per annum
covering time 0 to time t. The time-0 expected present value of the reverse mortgage per capita is
E∗[∑t exp(−r0,t t)min(Lt, Pt) It] under the risk-neutral measure. The reverse mortgage is financially
viable for the lender if this expected present value is larger than the initial loan size L0. Note that
there are three stochastic variables in this formula: r0,t (interest rate risk), Pt (house price risk) and It

(longevity risk), which require proper modelling to allow for their uncertainties. It is assumed that
longevity risk and market risks are real-world independent.

We set It = (1− qx,0)(1− qx+1,1) . . . (1− qx+t−2,t−2)qx+t−1,t−1, in which qx,t is the mortality rate
that a life aged x at time t dies during the next year. Assuming the force of mortality µx,t remains
unchanged within every age–time cell and it is equal to the central death rate mx,t, it can be deduced
that qx,t = 1− exp(−mx,t). We use the well-known Lee and Carter (1992) model ln mx,t = αx + βx κt,
where αx describes the overall age schedule and βx measures the age-sensitivity of the log central
death rate to the mortality index κt

6. We assume the number of deaths Dx,t ∼ Poisson(ex,t mx,t)

with ex,t as the central exposed to risk, and the random walk with drift κt = µ + κt−1 + εt for
the mortality index, in which µ is the drift and εt ∼ N(0, σ2

ε ). Under the Bayesian framework,
following Kogure et al. (2009) and Li (2014b), we set the priors αx ∼ N(0, σ2

α), βx ∼ N( 1
no. o f ages , σ2

β),

µ ∼ N(µ0, σ2
µ) and σ−2

ε ∼ Gamma(a, b)7. The major step is to obtain the posterior distribution of
the unknown quantities and parameters given the dataset, using f (θ|D) ∝ f (D|θ) f (θ) . However,
the derivation of an explicit solution of the posterior density is intractable for the models being
used here. Therefore, we utilise the Markov chain Monte Carlo (MCMC) method to simulate random
samples based on a Markov chain which has its stationary distribution equivalent to the required
posterior distribution. These random samples are then put into Equations (1) or (2) to compute the
risk-neutral probabilities.

To cope with the autocorrelations and cross-correlations found in the house price growth rates8

and interest rates, we adopt the vector autoregressive process, VAR(p):

(
gt+1,t
rt+1,t

)
=

(
φ
(0)
1

φ
(0)
2

)
+

(
φ
(1)
1,1 φ

(1)
1,2

φ
(1)
2,1 φ

(1)
2,1

)(
gt,t−1

rt,t−1

)
+

(
φ
(2)
1,1 φ

(2)
1,2

φ
(2)
2,1 φ

(2)
2,1

)(
gt−1,t−2

rt−1,t−2

)
+ . . .+

(
φ
(p)
1,1 φ

(p)
1,2

φ
(p)
2,1 φ

(p)
2,1

)(
gt−p+1,t−p
rt−p+1,t−p

)
+

(
νt+1

ωt+1

)

4 For convenience, we assume that the repayment is settled at the end of the year of death.
5 We assume that the reverse mortgage portfolio is very large and so sampling error due to individual uncertainty

(non-systematic longevity risk) is negligible.
6 In Bayesian modelling, all the unknown parameters are treated as random variables, and so in theory there is no identifiability

issue and parameter constraints are not needed. But we realise that our simulation algorithm converges much more slowly if
there is no constraint. Hence, we set the two constraints ∑x βx = 1 and k0 = c, along the line of the initial Lee–Carter model.

7 The variances σ2
α and σ2

β are set as the sample variances of the estimated αx and βx over age times 10; a is set to be 2.1; b is

set to be 1.1 times the sample variance of the estimated κt − κt−1 over time; µ0 and σ2
µ are computed from the sample mean

and its standard error of the estimated κt − κt−1. These values are largely chosen to represent vague prior knowledge.
8 Due to the existence of autocorrelations and cross-correlations, the widely used assumption of the geometric Brownian

motion is not suitable here.
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where gt+1,t = ln(Pt+1/Pt), φ’s are the autoregressive coefficients and (νt, ωt)′ are bivariate normal
with zero mean. As stated in Rosenberg and Young (1999), autoregressive processes are more
straightforward to implement in a Bayesian setting compared to moving-average processes. If the
order p of the autoregressive terms is high enough, the modelling results would be similar to a given
autoregressive moving-average process. We set the prior of φ’s as multivariate normal with zero mean,
and the prior of the inverse covariance matrix of (νt, ωt)′ distributed as Wishart9.

In the MCMC simulation process, we discard the starting 5000 iterations in order to eliminate the
impact of the initial values and collect 1000 sample paths afterwards. As shown in the Appendix A,
the resulting autocorrelations between successive MCMC samples of each variable are minimal, which
suggest that the extent of convergence is adequate in our computations. We apply the Bayesian
software WinBUGS (Spiegelhalter et al. 2003) to perform the MCMC simulation via Gibbs sampling.
The fundamental idea is to sequentially generate samples from the distribution of each variable
conditional on all the other variables. Li (2014b) provided some examples of writing WinBUGS codes
for projection and simulation of future death rates.

4. Analysis of Modelling Results

We obtain Australian male mortality data from the Human Mortality Database (Human Mortality
Database HMD) for a period of 40 years from 1975 to 2014 and an age range of 65 to 99. Figure 1
exhibits the central death rates across age for each decade. It can be seen that generally there has been
a continual mortality improvement over time. The extent appears to be more significant at ages 80 and
above in the most recent period. Figure 2 presents the estimated Lee–Carter mortality index, which
is decreasing mostly linearly across time, and its projected central values (sample means) and the
corresponding 95% prediction intervals from the MCMC simulation. Figure 3 displays the simulated
density functions of the future survival probabilities from age 65 (at time 0) to ages 75, 85 and 95.

We collect the quarterly residential property price index values (calculated as a weighted average
of eight capital cities) from the Australian Bureau of Statistics (ABS) for the period 2003 to 2018.
We also obtain the 3-month bank accepted bills yields from the Reserve Bank of Australia (RBA)
for the same period. Note that the property price index (a price-based index) is taken as a proxy,
as each property is unique by nature itself and is infrequently traded. Figure 4 shows that the overall
property market in Australia has experienced significant growth over the past sixteen years. Despite
this major trend, the house prices do not simply increase linearly but move in some forms of cycles.
The quarterly growth rates during the period actually range widely from −2.2% to 5.4%. The figure
also demonstrates the cyclical interest rate movements for the period and the broad level has decreased
from above 5% p.a. to around 2% p.a. of late. Figure 5 illustrates that there are significant sample
autocorrelations and cross-correlations in between the time series of the house price growth rates and
interest rates. A bivariate autoregressive process can be adopted to capture these time-dependent
patterns. After examining the sample partial autocorrelation matrices and the sample cross-correlation
matrices, we notice that a VAR(5) process (i.e., a maximum lag of five quarters) appears to fit the data
reasonably well and the corresponding residuals do not have significant time-varying patterns in
general, as shown in Figure 6. The sample autocorrelations of the squared residuals are also found to
be insignificant and so a GARCH-type model for conditional heteroscedasticity is not required here.
Figure 7 plots the simulated density functions of the future quarterly house price growth rates and
interest rates after 10, 20 and 30 years.

9 The inverse covariance matrix of φ’s is assumed as Wishart with a degree of freedom of 4p + 4. The inverse covariance matrix
of (νt, ωt)′ is assumed as Wishart with a degree of freedom of 4. The small degrees of freedom are selected to represent
vague prior knowledge.
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Since the Australian annuity market is very thin, we use the mortality investigation reports
published by the Institute of Actuaries of Australia10 and the underlying improvement rates to
deduce the annuity market price. We also take the ABS property price index as the house market
price, and collect the latest Australian government bond price in the market. These market
prices are substituted into the constraints as noted in Section 2. Figure 8 exhibits the resulting
risk-neutral probabilities.

10 It is now called the Actuaries Institute and the website is www.actuaries.asn.au.

www.actuaries.asn.au
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Figure 8. Risk-neutral probabilities calculated from simulated values and market price constraints.

Suppose the valuation date (t = 0) is as at the start of 2019 and P0 = 550,00011. We consider an
individual aged 65 or 75 entering into a reverse mortgage contract with a loan-to-value (LTV) ratio
of 10%, 20%, . . . , or 100%, i.e., L0 = 55,000, 110,000, . . . , or 550,000, and l = 1%, 2%, . . . , or 10% p.a12.
These are a total of 200 cases in which we examine the calculated market prices of the reverse mortgage
based on the different terms being offered.

Tables 1 and 2 give the (risk-neutral) expected present values of the reverse mortgage under
various loan interest rates and LTV ratios. When the loan interest rate is 1% or 2% p.a., the initial loan
size is larger than the expected present value, and the reverse mortgage is then financially infeasible
for the lender. As the loan interest rate rises, the reverse mortgage value increases and the contract
becomes more feasible for the lender. But this effect is lesser if the LTV ratio is higher, because under
the no-negative-equity guarantee, the embedded put option is worth more when there is a higher
chance for the market value of the mortgaged property to be lower than the accumulated loan balance.
In the current market, the loan interest rate is above 6% p.a. for reverse mortgages (see Table 3),
which is 1% to 2% higher than for a standard home loan, and the LTV ratio is around 20% (30%) for
a borrower aged 65 (75). The figures in Tables 1 and 2 pinpoint that the reverse mortgage products
presently offered are financially viable from the providers’ perspective.

To further differentiate the outcomes, we also examine the percentage differences between the
expected present value and the initial loan size in each case. Ignoring expenses (e.g., commissions,
distribution costs), in Tables 1 and 2, those cases incurring a loss are shaded as dark grey; the offers
that generate a less than 10% profit are noted as medium grey; those giving 10% to 50% of profit are
highlighted as light grey; and all the other cases with more than 50% gain are not shaded. It seems
that the current providers are actually overly conservative in designing their products (the range of
which is circled) and the existing market offers tend to be too expensive. There appears to be some
room for Australian banks and insurers to provide more attractive products by increasing the LTV
ratio, decreasing the loan interest rate or delivering more flexible solutions. As noted in Australian
Securities and Investments Commission (Australian Securities and Investments Commission ASIC),
however, the current market is highly concentrated with the largest four lenders accounting for 92%
of new approved loans during 2013 to 2017. The lenders imposed limits on the maximum LTV ratio
which were lower than the levels prescribed in the enhanced consumer protections. There may also be
a barrier for lenders to enter the market such as the capital requirement and the difficulty accessing
wholesale funding after the global financial crisis. Besides improving the protection for customers’
interests, the government can actually consider giving more incentives for the industry to supply

11 The national median home price in Australia is AUD$552,141 as of 31 August 2018. (https://edge.alluremedia.com.au/
uploads/businessinsider/2018/09/CoreLogic-home-value-index-August-2018-table.jpg).

12 The analysis can readily be extended to a floating loan interest rate, which can be set as the risk-free rate plus a spread.
Accordingly, there would be some offsetting between the loan interest rate and the discounting. There may then be less
interest rate risk and the calculated reverse mortgage price may be lower. We leave this interesting option for future research.

https://edge.alluremedia.com.au/uploads/businessinsider/2018/09/CoreLogic-home-value-index-August-2018-table.jpg
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reverse mortgage products (e.g., the US Home Equity Conversion Mortgage program managed by the
Department of Housing and Urban Development). More education and promotion can also be used to
increase the public awareness of these products in an ageing society.

Table 1. Expected present values of the reverse mortgage under different loan interest rates and
loan-to-value (LTV) ratios for a homeowner aged 65.
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discounting. There may then be less interest rate risk and the calculated reverse mortgage price may be 
lower. We leave this interesting option for future research. 

Table 2. Expected present values of the reverse mortgage under different loan interest rates and LTV
ratios for a homeowner aged 75.
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P&N Bank 6.24%

Note: These figures were collected from https://www.finder.com.au/reverse-mortgages on 28 November 2018.

5. Concluding Remarks

Our proposed Bayesian multivariate risk-neutral pricing method has been shown to be very
flexible in dealing with multiple risks and setting market price constraints. It gives a more coherent
treatment of the various steps and components, compared to the other earlier approaches on pricing
reverse mortgages. The results of our case study further suggest that a reverse mortgage provider in
Australia can operate in a sustainable manner, under the current financial environment and the model
settings and assumptions.
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There are a number of areas which require future research. While we have focused on a plain
vanilla type of reverse mortgage, there are other features that are worth studying such as joint lives,
multiple decrements and a variety of other product designs (e.g., income payments, variable loan
interest rate, capital protection and long-term care). Relevant prior information can be put into the
modelling process and the resulting impact can be investigated. One can also replace the Lee–Carter
model and the VAR process with other models and compare the corresponding results. Furthermore,
model uncertainty can further be integrated by setting prior probabilities on a few pre-selected model
choices and then deriving their posterior distributions.
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Appendix A

As shown below, the autocorrelations between successive WinBUGS samples of each variable
are negligible. It appears that the level of convergence is adequate in our simulations. The Monte
Carlo errors are only around 1% of the sample standard deviations, which further confirm sufficient
convergence. Different initial values are also tested and the corresponding simulated results are similar.Risks 2019, 7, x FOR PEER REVIEW 12 of 13 
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