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1 Introduction

It is a well documented fact that the western world is ageing rapidly. Since the postwar

period, the ageing process can be attributed both to increased longevity and reduced fertility

(Lee, 2003). For example, in the Netherlands, life expectancy at birth rose from 71.5 years in

1950 to 78.5 years in 2000, whilst the annual (crude) birth rate fell from 2.3% to 1.3% of the

population. Because infant mortality stayed relatively constant during that period (at 0.8%

of the population), the increase in longevity must be attributed to reduced adult mortality.

Not surprisingly, the demographic change has led to a dramatic increase in the population

share of elderly people over that period—the old-age dependency ratio (measured as the ratio

of the population aged 65 years or over to the population aged 15-64) rose from 12.2% in 1950

to 20.1% in 2002. A similar demographic pattern can be observed for most OECD countries.

The objective of this paper is to investigate the effects on the economic growth perfor-

mance of a small open economy of substantial demographic shocks of the type and magnitude

mentioned above. We formulate a simple analytical growth model in which finitely-lived

agents accumulate both physical and human capital. Our analysis makes use of modelling in-

sights from two main bodies of literature. First, in order to allow for overlapping generations,

we employ the generalized Blanchard-Yaari model reported in our earlier paper (Heijdra and

Romp, 2005). In this model disconnected generations are born at each instant and individual

agents face a positive and age-dependent probability of death at each moment in time. By

making the mortality rate age-dependent, the model can be used to investigate changes in

adult mortality.

The second building block of our analysis concerns the engine of growth. Following Lucas

(1988), we assume that the purposeful accumulation of human capital forms the core mech-

anism leading to economic growth. More specifically, like Bils and Klenow (2000), Kalemli-

Ozcan et al. (2000), de la Croix and Licandro (1999), and Boucekkine et al. (2002), we

assume that individual agents accumulate human capital by engaging in full-time educational

activities at the start of life. The start-up education period is chosen optimally and the human

capital production function may include an intergenerational external effect of the “shoulders

of giants” variety, as proposed by Azariadis and Drazen (1990).

As we motivate in more detail in the paper, we extend the existing literature in the follow-

ing directions. First, we generalize Kalemli-Ozcan et al. (2000) by incorporating a realistic

(rather than a Blanchard) demographic structure, allowing for non-zero intergenerational

spillovers, and by fully characterizing the transitional dynamics. Second, we generalize the

analysis by de la Croix and Licandro (1999) and Boucekkine et al. (2002) by incorporating

both human and physical capital, by including a concave (rather than linear) felicity func-

tion, and by allowing the intergenerational spillover to differ from unity. Third, we generalize

the model of Bils and Klenow (2000) by recognising fully-insured-against lifetime uncertainty

(rather than a fixed planning horizon), by assuming a more realistic human capital produc-
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tion function, and by characterizing the transitional dynamics. Finally, we generalize all these

papers by including an educational subsidy and a labour income tax.

The remainder of the paper is organized as follows. In Section 2 we present the model

and demonstrate its main properties. A unique solution for the optimal schooling period is

derived which depends on the fiscal parameters and on the mortality process. The mortality

process, in combination with the birth rate, also determines a unique path for the population

growth rate. For a given initial level of per capita human capital, the model implies a unique

time path for all macroeconomic variables. Depending on the strength of the intergenerational

external effect, the model either displays exogenous growth (ultimate convergence to constant

per capita variables) or endogenous growth (convergence to a constant growth rate).

In Section 3 we study the determinants of the optimal schooling decision in detail. An

increase in the educational subsidy or the labour income tax leads to an increase in the length

of the educational period. Similarly, a reduction in adult mortality also prompts agents to

increase the schooling period. In contrast, a reduction in child mortality and a baby bust

both leave the optimal schooling period unchanged.

In Section 4 we investigate the effects of changes in the birth rate and adult mortality

on the population growth rate, both at impact, during transition, and in the long run. A

reduction in the birth rate reduces the steady-state population growth rate, whilst an increase

in longevity (due to reduced adult mortality) increases this rate because average mortality

falls. We estimate the Gompertz-Makeham mortality process, using data for the Dutch co-

hort born in 1920, and use it to illustrate the rather complicated (cyclical) adjustment path

resulting from once-off demographic changes. Especially for the embodied mortality shock,

convergence toward the new steady state is extremely slow. Indeed, due to the vintage na-

ture of the population, more than 150 years pass until the new demographic steady state is

reached.

Section 5 deals with the exogenous growth model, which, on the basis of the empirical

evidence, we consider to be the most relevant one. In it, we study the (impact, transitional,

and long-run) effects of fiscal and demographic changes on per capita human capital and the

other macroeconomic variables. A positive fiscal impulse leads to an increase in the per capita

stock of human capital but leaves the steady-state growth rate of the macro-variables in level

terms unchanged (and equal to the steady-state population growth rate). Furthermore, whilst

a reduction in the birth rate and an increase in longevity (due to reduced adult mortality)

both increase the steady-state per capita human capital stock, the growth effects on level

variables are opposite in sign. Again, for both fiscal and demographic shocks, the transitional

adjustment is rather slow.

In Section 6 of the paper we briefly discuss the endogenous growth version of the model.

Though this knife-edge case has been studied extensively in the theoretical literature, it is

based on an unrealistically strong intergenerational external effect in human capital creation

for which very little empirical backing exists. The positive fiscal impulse boosts the steady-
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state growth rate in per capita human capital due to the scale effect in the growth process. The

growth effects of demographic changes are theoretically ambiguous. For a realistic model cal-

ibration, however, the asymptotic growth rate is decreasing in the birth rate and in longevity

(as measured by life expectancy at birth).

Finally, in Section 7 we present some concluding thoughts and give some suggestions for

future research. The paper also contains a brief Appendix containing some key mathematical

derivations.

2 The model

2.1 Households

2.1.1 Individual plans

From the perspective of time t, a household born at time v (v ≤ t) has the following (remain-

ing) lifetime utility function:

Λ(v, t) ≡ eM(t−v)

∫ ∞

t
U [c̄(v, τ)] e−[θ(τ−t)+M(τ−v)]dτ, (1)

where U [·] is the felicity function, c̄ (v, τ) is consumption, θ is the constant pure rate of time

preference (θ > 0), and e−M(τ−v) is the probability that the household is still alive at time

τ .1 The cumulative mortality rate, M (τ − v), is defined as:

M (τ − v) ≡

∫ τ−v

0
m (α) dα, (2)

where m (α) is the instantaneous mortality rate of a household of age α. As was pointed out

by Yaari (1965), future felicity is discounted not only because of pure time preference (as

θ > 0) but also because of life-time uncertainty (as M (τ − v) > 0 for τ > v). The felicity

function is iso-elastic:

U [c̄ (v, τ)] =






c̄ (v, τ)1−1/σ − 1

1 − 1/σ
for σ 6= 1

ln c̄ (v, τ) for σ = 1

, (3)

where σ is the constant intertemporal substitution elasticity (σ ≥ 0).

The household budget identity is given by:

˙̄a (v, τ) = [r + m (τ − v)] ā (v, τ) + w̄ (v, τ) − ḡ (v, τ) − c̄ (v, τ) , (4)

1The appearance of the term eM(t−v) in (1) (and also in equations (9)-(10) below) is a consequence of

the fact that the distribution of expected remaining lifetimes is not memoryless in general. Blanchard (1985)

uses the memoryless exponential distribution for which M (α) = µ0α (where µ0 is a constant) and thus

M (t − v)−M (τ − v) = −M (τ − t). Equation (1) can then be written in a more familiar format as Λ(v, t) ≡∫ ∞

t
U [c̄ (v, τ)] e−(θ+µ0)(τ−t)dτ.
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where ā (v, τ) is real financial wealth, r is the exogenously given (constant) world interest rate,

w̄ (v, τ) is wage income, and ḡ (v, τ) is total tax payments (see below). As usual, a dot above

a variable denotes that variable’s time rate of change, e.g. ˙̄a (v, τ) ≡ dā(v, τ)/dτ . Following

Yaari (1965) and Blanchard (1985), we postulate the existence of a perfectly competitive

life insurance sector which offers actuarially fair annuity contracts to the households. Since

household age is directly observable, the annuity rate of interest faced by a household of age

τ − v is equal to the sum of the world interest rate and the instantaneous mortality rate

of that household. In order to avoid having to deal with a taxonomy of different cases, we

restrict attention in the remainder of this paper to the case of a nation populated by patient

agents, i.e. r > θ. Financial wealth can be held in the form of claims on domestic capital

(v̄ (v, τ)), domestic government bonds (d̄ (v, τ)), or foreign bonds (f̄ (v, τ)).

ā (v, τ) ≡ v̄ (v, τ) + d̄ (v, τ) + f̄ (v, τ) . (5)

These assets are perfect substitutes in the households’ portfolios and thus attract the same

rate of return.

The household engages in full time schooling during the early stages of life and works full

time thereafter. The production function for human capital is given by:2

h̄ (v, τ) =

{
0 for v ≤ τ ≤ v + s (v)

AHh (v)φ s (v) for τ > v + s (v)
, 0 ≤ φ ≤ 1, (6)

where h̄ (v, τ) is the human capital of the agent upon completion of the schooling period, AH

is an exogenous productivity index, h (v) is per capita human capital at time v (see below),

and s (v) is the length of the schooling period chosen by an agent born at time v. Special

cases of equation (6) are used by de la Croix and Licandro (1999, p. 257) and Boucekkine

et al. (2002, p. 347) who set φ = 1, and by Kalemli-Ozcan et al. (2000, pp. 5, 10) who set

φ = 0.

Available human capital is rented out to competitive producers so that wage income,

w̄ (v, τ), can be written as:

w̄ (v, τ) = w (τ) h̄ (v, τ) , (7)

2This formulation was first proposed in the context of Diamond-Samuelson style overlapping models by

Azariadis and Drazen (1990, p. 510) and Tamura (1991, p. 524). Abstracting from their work experience

term and using our notation, Bils and Klenow (2000, p. 1161) model the human capital production function

as follows:

h̄ (v, t) = h̄ (v − ū, t)φ eζ(s), for t − v > s, (6′)

where ū is interpreted as the age of the teachers (assumed to be fixed), and ζ (s) captures the productivity

effect of schooling (ζ′ (s) > 0). Clearly, for ζ (s) ≡ ln s the second term on the right-hand side of (6′) is equal

to s. In our view, equation (6′) does not adequately capture the notion of an intergenerational externality as

the link is only operative between generations v and v − ū, who are locked in a tango through time. In (6)

the economy-wide stock of per capita human capital determines the inital condition facing newborns. Hence,

every agent alive at time v exerts an external effect on these newborns.
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where w (τ) is the market-determined rental rate of human capital (see below).

The tax system takes the following form. First, throughout its entire life, the household

pays a lumpsum tax. Second, during its educational phase, the household receives a study

grant from the government. Third, during its working life, the household faces a labour

income tax on its wage earnings. The tax system is thus given by:

ḡ (v, τ) =

{
[z (τ) − ρ] w (τ)AHh (v)φ for v ≤ τ ≤ v + s (v)

[z (τ) + tLs (v)]w (τ) AHh (v)φ for τ > v + s (v)
, (8)

where ρ is the educational subsidy rate (ρ > 0), tL is the marginal labour income tax rate (0 ≤

tL < 1), and z (τ) represents the lumpsum part of the tax. All tax instruments are indexed to

the value of marginal schooling productivity to the vintage-v household (i.e. AHh (v)φ). This

is done to ensure that the tax system continues to play a nontrivial role even in the presence

of ongoing economic growth.3

From the perspective of the planning date t, the household chooses remaining time in

school (v+s (v)−t), and sequences for c̄ (v, τ) and ā (v, τ) (for τ ∈ [t,∞)) in order to maximize

Λ(v, t) subject to (4)-(8), a non-negativity constraint v + s (v) ≥ t,4 and a transversality

condition. By using this transversality condition as well as equations (4)-(8), the lifetime

budget constraint for a household with age u ≡ t − v can be written as follows:

eM(t−v)

∫ ∞

t
c̄(v, τ)e−[r(τ−t)+M(τ−v)]dτ = ā (v, t) + li (v, t) , (9)

where we have used the fact that generations are born without financial assets (i.e. ā (v, v) =

0) and where li (v, t) is (remaining) lifetime after-tax wage income of the household:

li (v, t) ≡ AHh (v)φ eM(t−v)

[
ρ

∫ max{t,v+s(v)}

t
w (τ) e−[r(τ−t)+M(τ−v)]dτ

+ (1 − tL) s (v)

∫ ∞

max{t,v+s(v)}
w (τ) e−[r(τ−t)+M(τ−v)]dτ

−

∫ ∞

t
z (τ)w (τ) e−[r(τ−t)+M(τ−v)]dτ

]
. (10)

According to (9), the present value of consumption expenditure (left-hand side) must equal

total lifetime resources (right-hand side). In the presence of actuarially fair annuity contracts,

the annuity rate of interest, r + m (τ − v), is used for discounting purposes in (9)-(10).

The following two-stage solution approach can now be used. In the first step, the household

chooses s (v) in order to maximize lifetime wage income, li (v, t). This pushes the lifetime

budget constraint out as far as possible and fixes the right-hand side of (9). In the second

step, the household chooses the optimal sequence for consumption in order to maximize Λ(v, t)

subject to (9).

3Alternatively, current gross per capita labour income, w (τ) h (τ), could have been used for indexing pur-

poses, but this makes the model intractable.
4Older households have already completed the educational phase (t − v > s (v)) and only choose paths for

consumption and financial assets. Labour market entry is thus assumed to be an absorbing state.
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Schooling period By using equation (10), the first-order condition for the optimal school-

ing period, s∗ (v), is given by dli (v, t) /ds (v) = 0 which can be written as:

∫ ∞

v+s∗(v)
w (τ) e−[r(τ−v)+M(τ−v)]dτ =

[
s∗ (v) −

ρ

1 − tL

]
w (v + s∗ (v)) e−[rs∗(v)+M(s∗(v))]. (11)

For the case studied in this paper, the wage rate is constant (see below), and equation (11)

reduces to:

s∗ −
ρ

1 − tL
= ∆ (s∗, r) , (12)

where ∆ (u, λ) is defined in general terms as:

∆ (u, λ) ≡ eλu+M(u)

∫ ∞

u
e−[λα+M(α)]dα, (for u ≥ 0), (13)

where α ≡ τ−v is the household’s age at time τ . For future reference, Proposition 1 establishes

some important properties of the ∆ (u, λ) function.

Proposition 1 Let ∆ (u, λ) be defined as in (13) and assume that the mortality rate is non-

decreasing, i.e. m′ (α) ≥ 0 for all α ≥ 0. Then the following properties can be established for

∆ (u, λ):

(i) decreasing in λ,
∂∆ (u, λ)

∂λ
= −eλu+M(u)

∫ ∞

u
[α − u]e−[λα+M(α)]dα < 0;

(ii) non-increasing in household age,
∂∆ (u, λ)

∂u
= (λ + m (u))∆ (u, λ) − 1 ≤ 0;

(iii) ∆ (u, λ) > 0 for u < ∞;

(iv) lim
λ→∞

∆ (u, λ) = 0;

(v) for m′ (α) > 0 and m′′ (α) ≥ 0, the inequality in (ii) is strict and lim
u→∞

∆ (u, λ) = 0.

Proof: see Heijdra and Romp (2005).

Equation (12) determines the age at which the vintage-v household completes its education.

With a constant mortality process, the optimal schooling period is independent of the house-

hold’s date of birth. Since the left-hand side of (12) is increasing in s∗ and (by Proposition

1(ii)) the right-hand side is non-increasing in s∗, it follows that the optimal schooling period

is positive and unique.5 In Section 3 below we study changes in the tax parameters and the

demographic structure which give rise to once-off changes in the optimal schooling period.

5Indeed, for the Blanchard case with a constant death rate, ∆ (u, λ) = 1/ (λ + µ0), and (12) simplifies even

further to s (v) = ρ/ (1 − tL) + 1/ (r + µ0). Apart from the fiscal parameters, this is the expression found in

de la Croix and Licandro (1999, p. 258).
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Consumption By using (1) and (9), the first-order conditions for optimal consumption

can be written as c̄ (v, τ) = eσ[r−θ](τ−v)/λu, where λu (> 0) is the Lagrange multiplier for the

lifetime budget constraint (9). Since r > θ, it follows that the household adopts an upward

sloping time profile for its consumption provided the intertemporal substitution elasticity is

strictly positive (σ > 0). The growth rate of household consumption is thus given by the

familiar Euler equation:

˙̄c (v, τ)

c̄ (v, τ)
= σ [r − θ] , (for τ ∈ [t,∞)). (14)

By using (14) in (9) the expression for the consumption level in the planning period is ob-

tained:

∆ (u, r∗) c̄ (v, t) = ā (v, t) + li (v, t) , (15)

where r∗ ≡ r−σ [r − θ] can be interpreted as the effective discount rate facing the household.

2.1.2 Demography

We allow for non-zero population growth by employing the analytical framework developed

by Buiter (1988) and extended to a non-constant mortality rate by Heijdra and Romp (2005).

We assume that the size of a newborn generation at time v is proportional to the current

population at that time, i.e. L(v, v) = bL(v), where b is the constant crude birth rate (b > 0),

and L(v) is the population size at time v. The size of cohort v at some later time τ is given

by:

L (v, τ) = L (v, v) e−M(τ−v) = bL (v) e−M(τ−v). (16)

By definition, the total population at time t satisfies the following expressions:

L (t) ≡

∫ t

−∞
L (v, t) dv, (17)

L (t) ≡ L (v) eN(v,t), N (v, t) ≡

∫ t

v
n (τ) dτ, (18)

where n (τ) is the growth rate of the population at time τ . Finally, by combining (16)-(18)

we obtain:

l (v, t) ≡
L (v, t)

L (t)
= be−[N(v,t)+M(t−v)], t ≥ v, (19)

1

b
=

∫ t

−∞
e−[N(v,t)+M(t−v)]dv. (20)

Equation (19) generalizes the corresponding expression found in Heijdra and Romp (2005) to

the case of a non-constant population growth rate, n (t). Equation (20) implicitly determines

n (t) for given demographic parameters (see also Section 4).6

6For an economy which has faced the same demographic environment (b(v) = b and M(t − v)) for a long

time, the population growth rate is constant (n(τ) = n) and equation (20) reduces to 1/b = ∆(0, n). This is

the expression reported in Heijdra and Romp (2005).
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2.1.3 Per capita household plans

Per capita variables are calculated as the integral of the generation-specific values weighted

by the corresponding generation weights. For example, per capita human capital is defined

as:

h (t) ≡

∫ t

−∞
l(v, t)h̄(v, t)dv, (21)

where l(v, t) and h̄ (v, t) are given in, respectively, (19) and (6) above. In a similar fashion,

per capita consumption is given by c(t) ≡
∫ t
−∞ l(v, t)c̄(v, t)dv, where l (v, t) is defined in (19)

and c̄(v, t) is given by (15). By differentiating c (t) with respect to time and noting (14) we

obtain an expression for the “Euler equation” for per capita consumption:

ċ (t) = bc̄ (t, t) + σ [r − θ] c (t) − n (t) c (t) −

∫ t

−∞
m (t − v) l (v, t) c̄ (v, t) dv, (22)

where we have used the fact that l̇ (v, t) /l (v, t) ≡ − [n (t) + m (t − v)]. Per capita consump-

tion grows over time because new generations are born at each instant who start to consume

out of human wealth (first term on the right-hand side) and because individual consump-

tion of existing generations grows (second term). The third term on the right-hand side

of (22) corrects for time-dependent population growth, whilst the fourth term corrects for

(age-dependent) mortality.

Turning to the wealth components, per capita financial wealth is defined as a(t) ≡∫ t
−∞ l(v, t)ā(v, t)dv. By differentiating this expression with respect to time we obtain the

dynamic path of per capita financial assets:

ȧ (t) = [r − n (t)] a (t) + w (t)h (t) − g (t) − c (t) , (23)

where g(t) ≡
∫ t
−∞ l(v, t)ḡ(v, t)dv is per capita tax payments. In deriving (23) we have used

equation (4) and noted the fact that agents are born without financial assets (ā (t, t) = 0).

Throughout this paper we assume that the interest rate net of population growth is positive,

i.e. r > n (t). As in the standard Blanchard model, annuity payments drop out of the

expression for per capita asset accumulation because they constitute transfers (via the life

insurance companies) from the deceased to agents who continue to enjoy life.

2.2 Firms

Perfectly competitive firms use physical and human capital to produce a homogeneous com-

modity that is traded internationally. The technology is represented by the following Cobb-

Douglas production function:

Y (t) = K (t)ε [AY H (t)]1−ε , 0 < ε < 1, (24)
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where Y (t) is output, AY is an exogenous index of labour-augmenting technological change,

K (t) is the aggregate stock of physical capital, and H (t) ≡ L (t)h (t) is the aggregate stock

of human capital. The cash flow of the representative firm is given by:

Π (t) ≡ Y (t) − w (t)H (t) − I (t) , (25)

where w (t) is the rental rate on human capital, and I (t) ≡ K̇ (t)+δK (t) is gross investment,

with δ representing the constant depreciation rate. The (fundamental) stock market value

of the firm at time t is equal to the present value of cash flows, using the interest rate for

discounting, i.e. V (t) ≡
∫ ∞
t Π (τ) er(t−τ)dτ . The firm chooses paths for I (τ), K (τ), H (τ),

and Y (τ) (for τ ∈ [t,∞)) in order to maximize V (t) subject to the capital accumulation

constraint, the production function (24) and the definition of cash flows (25). Since there are

no adjustment costs on investment, the value of the firm equals the replacement value of the

capital stock, i.e. V (t) = K (t). In addition, the usual factor demand equations are obtained:

∂Y (t)

∂K (t)
= r + δ = ε

(
AY h (t)

k (t)

)1−ε

, (26)

∂Y (τ)

∂H (τ)
= w (τ) = (1 − ε)AY

(
AY h (t)

k (t)

)−ε

. (27)

For each factor of production, the marginal product is equated to the rental rate. Since the

fixed world interest rate pins down the ratio between human and physical capital, it follows

from (27) that the wage rate is time-invariant, i.e. w (τ) = w,7 and that physical capital is

proportional to human capital at all time:

k (t) = AY

(
ε

r + δ

)1/(1−ε)

h (t) . (28)

2.3 Other model elements

In the absence of government consumption, the government (flow) budget identity in per

capita terms is given by:

ḋ (t) = [r − n (t)] d (t) − g (t) , (29)

where d(t) ≡
∫ t
−∞ l(v, t)d̄(v, t)dv is per capita government debt. The government solvency

condition is lim
τ→∞

d(τ)er(t−τ)+N(t,τ) = 0, so that the intertemporal budget constraint of the

government can be written as:

d(t) =

∫ ∞

t
g (τ) er(t−τ)+N(t,τ)dτ. (30)

7With labour-augmenting technological change, λ ≡ ȦY /AY , the wage rate grows exponentially at rate λ

and equation (12) changes to:

s∗ −

ρ

1 − tL

= ∆ (s∗, r − λ) .

It follows from Proposition 1(i) that ∂s∗/∂λ > 0, i.e. the schooling period increases with anticipated wage

growth. See also Bils and Klenow (2000, p. 1161) on this issue.
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To the extent that there is outstanding debt (positive left-hand side), it must be exactly

matched by the present value of current and future primary surpluses (positive right-hand

side), using the net interest rate (r − n (τ)) for discounting purposes.

By using the marginal productivity conditions (26)-(27) and noting the linear homogeneity

of the production function (24) and the constancy of factor prices, we find that per capita

output can be written as follows:

y (t) = (r + δ) k (t) + wh (t)

=
[
(r + δ)ε/(ε−1) (εAY )1/(1−ε) + w

]
h (t) , (31)

where y (t) ≡ Y (t) /L (t) and k (t) ≡ K (t) /L (t) =
∫ t
−∞ l(v, t)k̄(v, t)dv. In going from the

first to the second line we have made use of (28). It follows from the definition of gross

investment that the dynamic evolution of the per capita stock of capital is given by:

k̇ (t) = i (t) − [δ + n (t)] k (t) , (32)

where i (t) ≡ I (t) /L (t) is per capita investment. Finally, the current account of the balance

of payment, representing the dynamic change in the per capita stock of net foreign assets,

f (t), takes the following form:

ḟ (t) = [r − n (t)] f (t) + y (t) − c (t) − i (t) , (33)

where f(t) ≡
∫ t
−∞ l(v, t)f̄(v, t)dv.8

2.4 Model solution

The model is recursive and can be solved in three steps. First, for a given demography

and with constant tax parameters ρ and tL, equation (12) determines the optimal schooling

period for each household. Similarly, for a given birth rate, equation (20) can be solved for

the population growth rate, n (t). Next, conditional on the optimal value for s∗ and the path

for n (t), equation (21) can be solved for the equilibrium path of human capital, h (t). Finally,

the lumpsum tax z is used to balance the government’s intertemporal budget restriction (30),

after which the values for all remaining variables are fully determined.

In Section 3 the effect on the optimal schooling period of both fiscal and demographic

shocks are studied. Next, we note that the path for human capital depends critically on the

8The dynamic expression for per capita assets is given in equation (23), where a (t) ≡ k (t) + d (t) + f (t)

(recall that V (t) = K (t)). Clearly, total per capita assets a (t) move smoothly over time but its constituting

components (k (t), f (t), and d (t)) need not. Hence, even in the absence of discrete adjustments in government

debt, the capital stock can jump as only k (t)+ f (t) moves smoothly over time in that case. A discrete change

in k (t) would be engineered by means of an asset swap. Throughout the paper, however, the world interest

rate (r) is held constant so that (via (28)) the physical capital stock, k (t), will move smoothly because the

stock of human capital, h (t), moves smoothly. As a result, the model also gives rise to well-defined current

account dynamics—see also Figures 4-6 below.
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magnitude of the intergenerational externality parameter, φ. For values of φ in the range

0 ≤ φ < 1, the model implies a unique steady-state level of per capita human capital, i.e. the

long-run growth rate in the economy is exogenous (and equal to the population growth rate).

This exogenous growth case is studied in Section 5.

For the knife-edge case with φ = 1, equation (21) gives rise to a unique steady-state

growth rate in per capita human capital, so that the long-run growth rate is endogenous.

This endogenous growth model is studied in Section 6 below.

3 Determinants of schooling

In this section we study the comparative static effect on the optimal schooling period of

changes in the fiscal parameters and the demographic process. To keep things simple, only

step-wise changes are considered that occur at impact. The time at which the unanticipated

and permanent shock occurs is normalised at t = 0.

3.1 Fiscal shocks

By using (12) the comparative static effects of fiscal changes can be computed:

∂s∗

∂ρ
=

1

(1 − tL) (1 − ∂∆/∂s∗)
> 0, (34)

∂s∗

∂tL
=

ρ

(1 − tL)2 (1 − ∂∆/∂s∗)
> 0, (35)

where the signs follow from the fact that ∂∆/∂s∗ ≤ 0 (see Proposition 1(ii)). Not surprisingly,

an increase in the educational subsidy leads to a reduction in the opportunity cost of schooling

and a longer optimal schooling period. Interestingly, provided the educational subsidy is

strictly positive, an increase in the marginal labour income tax also increases the optimal

schooling period. Because the educational subsidy is untaxed, the effective subsidy affecting

the schooling decision is ρ/ (1 − tL), which is increasing in tL.

The effect of fiscal shocks on the optimal schooling period have been illustrated in Figure

1(a) for the case with a Gompertz-Makeham (G-M) mortality process fitted to actual mor-

tality data for the cohort born in the Netherlands in 1920. The instantaneous mortality rate

associated with the G-M process takes the following format:

m (u) = µ0 + µ1e
µ2u, (36)

where u is the household’s age, and the parameter estimates (and associated t-statistics) are

µ̂0 = 0.2437 × 10−2 (65.8), µ̂1 = 0.5520 × 10−4 (20.5), and µ̂2 = 0.0964 (138.2); see Heijdra

and Romp (2005). The estimated survival function fits the data rather well. It predicts an

average mortality rate of 1.02% per annum and a proportion of centenarians equal to 0.1%.
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Figure 1: Schooling Period

In terms of Figure 1(a), the initial optimum, s∗0, occurs at the intersection of the line

labelled ∆ + [ρ/ (1 − tL)]0 and the 45◦ line. An increase in either ρ or tL leads to a parallel

upward shift in the former line to ∆ + [ρ/ (1 − tL)]1 so that the new equilibrium is at s∗1.

3.2 Demographic shocks

Two types of demographic shocks are considered in our analysis, namely a change in the birth

rate and a change in the mortality process. Clearly, in view of (12), the birth rate does not

affect the optimal schooling period. The mortality process, however, does affect the ∆ (u, λ)

function and thus the optimal schooling decision. In order to study the effects of changes in

the demographic process, we write the instantaneous mortality rate as m (α,ψ), where ψ is

a (vector of) parameter(s).9 In order to investigate the effects of a change in ψ we make the

following assumptions.

Assumption 1 A mortality shock takes the following format:

(i) m (α,ψ) is non-negative, continuous, and non-decreasing in age, ∂m (α,ψ) /∂α ≥ 0;

(ii) m (α,ψ) is convex in age, ∂2m (α,ψ) /∂α2 ≥ 0;

(iii) m (α,ψ) is non-increasing in ψ for all ages, ∂m (α,ψ) /∂ψ ≤ 0;

(iv) the effect of ψ on the mortality function is non-decreasing in age, ∂2m (α,ψ) /∂ψ∂α ≤ 0.

9In the Blanchard case, ψ = −µ0 (a scalar), but for the G-M process stated in equation (36) ψ =

− [µ0, µ1, µ2] (a vector).
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Figure 2: Reduced Adult Mortality

An example of a mortality shock satisfying all the requirements of Assumption 1 consists

of a decrease in µ1 or µ2 of the G-M mortality function. In terms of Figure 2(a), the shock

shifts the mortality function downward, with the reduction in mortality being increasing in

age. In panel (b) the function for the surviving fraction of the population shifts to the right.

The shock that we consider can thus be interpreted as a reduction in adult mortality. Of

course, in view of the terminology of Assumption 1, an increase in ψ leads to an increase in

the expected remaining lifetime for all ages.

The following results can now be proved.

Proposition 2 Define M (u, ψ) and ∆ (u, λ, ψ) as:

M (u, ψ) ≡

∫ u

0
m (α,ψ) dα, (2′)

∆ (u, λ, ψ) ≡ eλu+M(u,ψ)

∫ ∞

u
e−[λα+M(α,ψ)]dα. (13′)

Under Assumption 1, the following results can be established.

(i)
∂M (u, ψ)

∂ψ
=

∫ u

0

∂m(α,ψ)

∂ψ
dα ≤ 0;

(ii)
∂2M (u, ψ)

∂u∂ψ
=

∂m(u, ψ)

∂ψ
≤ 0;

(iii)
∂∆ (u, λ, ψ)

∂ψ
= eλu+M(u,ψ)

∫ ∞

u

[
∂M(u, ψ)

∂ψ
−

∂M(α,ψ)

∂ψ

]
e−[λα+M(α,ψ)]dα > 0.

Proof: see Appendix.
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By using equation (12), and noting the definition (13′), the comparative static effect on

the optimal schooling period of a reduction in adult mortality can be computed:

∂s∗

∂ψ
=

∂∆/∂ψ

1 − ∂∆/∂s∗
> 0, (37)

where the sign follows from the fact that ∂∆/∂s∗ ≤ 0 (see Proposition 1(ii)) and ∂∆/∂ψ > 0

(see Proposition 2(iii)). An increase in longevity prompts agents to increase their human

capital investment at the beginning of life. In terms of Figure 1(b), the mortality shock

shifts the demographic discount function to the right, and leads to an increase in the optimal

schooling period from s∗0 to s∗1.

Bils and Klenow argue that a higher life expectancy (as captured in their model by an

increase in the exogenous planning horizon) leads to an increase in the optimal schooling

period “since it affords a longer working period over which to reap the wage benefits of

schooling” (2000, p. 1164). Similarly, de la Croix and Licandro (1999, p. 258) and Kalemli-

Ozcan et al. (2000, p. 11), using the Blanchard demography, show that a decrease in the

death probability leads to an increase in the expected planning horizon for all agents and

an increase in the optimal schooling period. Our discussion shows that these conclusions are

misleading in the presence of lifetime uncertainty and age-dependent mortality. In our model,

a decrease in child mortality increases expected remaining life time at birth but leaves the

optimal schooling period unchanged. In terms of Figure 1(b), reduced child mortality flattens

the left-hand section of the line ∆0 +ρ/ (1 − tL) but the equilibrium solution stays at s∗0.
10 11

Of course, with the Blanchard demography one cannot distinguish between child mortality

and adult mortality because the death probability is age-independent.

4 Demographic Shocks and the Population Growth Rate

Demographic changes affect the growth rate of the population, both at impact, during tran-

sition, and in the long run. Armed with Proposition 1 we can compute the long-run effects

of changes in the birth rate and the mortality process. Indeed, since equation (20) reduces in

the steady state to b∆ (0, n̂, ψ) = 1, it follows that n̂ is an implicit function of b and ψ, the

10Boucekkine et al. also distinguish age-dependent mortality and argue that “an increase in life expectancy

increases the optimal length of schooling” (2000, pp. 352, 370). They thus fail to notice that the mechanism

producing this result runs via reduced old-age mortality, not via increased life expectancy in general.
11Bils and Klenow (2000, p. 1175) also report that their model implies an unrealistically high sensitivity of

the optimal schooling period with respect to life expectancy that is close to unity. In contrast, in the calibrated

version of our model, ds∗/dR (0) = 0.06 which comes close to the empirical estimate mentioned by Bils and

Klenow (2000, p. 1175n27).
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partial derivatives of which are given by:

∂n̂

∂b
= −

∆ (0, n̂, ψ)

b∂∆ (0, n̂, ψ) /∂n̂
> 0, (38)

∂n̂

∂ψ
= −

∂∆ (0, n̂, ψ) /∂ψ

∂∆ (0, n̂, ψ) /∂n̂
> 0, (39)

where a hat overstrike designates the steady-state value of the variable in question, i.e. n̂ is the

steady-state growth rate of the population. The signs in (38)-(39) follow from Propositions

1(i) and 2(iii). Not surprisingly, an increase in the birth rate and an increase in longevity

both lead to an increase in the steady-state growth rate of the population.

To compute the transition path for the growth rate of the population we assume that

at time t = 0 both the mortality process and the birth rate change in a stepwise fashion.

The mortality shock is assumed to be embodied, i.e. it only affects generations born from

time t = 0 onwards. Indeed, the mortality process for pre-shock cohorts (with a negative

generation index, v < 0) is described by M0(t− v) and m0(t− v), whereas post-shock cohorts

(with v ≥ 0) face the mortality process described by M1(t − v) and m1(t − v). In a similar

fashion, the pre-shock and post-shock birth rates are denoted by, respectively, b0 and b1. The

system is initially in a demographic steady state and the pre-shock population growth rate

is denoted by n̂0 (defined implicitly by the condition 1 = b0∆0 (0, n̂0), where ∆0 (0, n̂0) is the

demographic discount function associated with the initial mortality process).

As a consequence of the demographic changes, the path for the population growth rate is

implicitly determined by the following expression:

1 = b0

∫ 0

−∞
e−M0(t−v)−N(v,t)dv + b1

∫ t

0
e−M1(t−v)−N(v,t)dv, (40)

where N (v, t) ≡
∫ t
v n (τ) dτ (see also (18) above). It is shown in the Appendix that equation

(40) can be rewritten in the form of a linear Volterra equation of the second kind with a

convolution-type kernel for which efficient numerical solution algorithms are available. In

Figure 3 we plot the transition path for n (t) for both types of demographic shocks. Panel

(a) depicts the path for a baby bust. There is an immediate downward jump at impact

(n (0) = n̂0 − b0 + b1) followed by gradual cyclical adjustment. Adjustment is rather fast

because the birth rate change applies to the entire (pre-shock and post-shock) population alike.

Panel (b) of Figure 3 depicts the adjustment path following a decrease in adult mortality.

Nothing happens at impact and the population growth rate only gradually rises to its long-run

steady-state value. Transition is much slower than for the baby bust because the ageing shock

is embodied, i.e. the shock only applies to post-shock generations and pre-shock generations

only die off gradually during the demographic transition.

16



0 50 100 150
0.009

0.01

0.011

0.012

0.013

0.014

0.015

Time

P
op

ul
at

io
n 

gr
ow

th
 (

n)

0 50 100 150
0.013

0.0135

0.014

0.0145

0.015

0.0155

0.016

Time

P
op

ul
at

io
n 

gr
ow

th
 (

n)

(a) Baby bust (b) Reduced adult mortality

Figure 3: Population Growth Rate

5 Exogenous growth

In the previous section it was shown that both fiscal and demographic shocks lead to a change

in the optimal schooling period, s∗. In this section we study the resulting transitional and long-

run effects on human capital formation for the exogenous growth case, i.e. we assume that the

intergenerational knowledge transfer incorporated in the human capital production function

(6) is either absent (φ = 0) or subject to diminishing returns (0 < φ < 1). This section

proceeds as follows. First, in Subsection 5.1 we analytically characterize the steady-state and

study its sensitivity with respect to fiscal and demographic shocks. Next, in Subsection 5.2 we

visualise the rather complicated transitional dynamics associated with the various shocks for

a plausibly parameterized model which incorporates the estimated G-M process introduced

above (see the discussion below equation (36)).

5.1 Long-run effects

In the long-run equilibrium, equation (21) gives rise to the following expression for the steady-

state stock of per capita human capital, ĥ:

ĥ1−φ = AHs∗b

∫ ∞

s∗
e−[n̂u+M(u,ψ)]du. (41)

Equation (41) clearly shows the various mechanisms affecting ĥ, namely (i) the birth rate, (ii)

the optimal schooling decision of agents, s∗, which itself depends on the fiscal and mortality

parameters (ρ, tL, ψ), (iii) the population growth rate, n̂, which depends on (b, ψ), and (iv)

the cumulative mortality factor, M(u, ψ), which depends on the mortality parameter ψ.

Pure schooling shock In order to facilitate the interpretation of our results, we first study

the effects of a change in the schooling period in isolation. By differentiating equation (41)
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with respect to s∗ and simplifying we obtain:

∂ĥ1−φ

∂s∗
= AHbe−[n̂s∗+M(s∗,ψ)] [∆(s∗, n̂) − s∗]

= AHbe−[n̂s∗+M(s∗,ψ)]

[
∆(s∗, n̂) − ∆(s∗, r) −

ρ

1 − tL

]
, (42)

where we have used (12) to arrive at the second expression. In the absence of an educational

subsidy (ρ = 0), a pure schooling shock unambiguously leads to an increase in the per capita

stock of human capital. Indeed, since the interest rate exceeds the steady-state growth rate

of the population (r > n̂), it follows from Proposition 1(i) that ∆(s∗, n̂) > ∆(s∗, r) so that

∂ĥ1−φ/∂s∗ > 0 in that case. With a non-zero educational subsidy, equation (42) shows that

the effect on ĥ of a pure schooling shock is no longer unambiguous because a sufficiently high

effective educational subsidy will render the term in square brackets negative even for the

case with r > n̂. Intuitively, in such a case the economy is “over-educated”, i.e. agents study

for too long a period and thus have too short a career as productive workers. Because in

actual economies r is much greater than n̂ and educational subsidies are typically quite low,

we make the following assumption which rules out over-education and ensures that ∂ĥ1−φ/∂s∗

is positive.

Assumption 2 The steady-state net interest rate r− n̂ is sufficiently positive to ensure that

∆(s∗, n̂) > ∆(s∗, r) + ρ
1−tL

.

Fiscal shock A fiscal shock, consisting of an increase in either ρ or tL, affects the steady-

state per capita human capital stock according to:

∂ĥ1−φ

∂ [ρ/ (1 − tL)]
=

∂ĥ1−φ

∂s∗
∂s∗

∂ [ρ/ (1 − tL)]
> 0, (43)

where the sign follows from (34)-(35) above. The fiscal shock leads to an increase in the

optimal schooling period which, in view of Assumption 2, leads to an increase in ĥ.

Birth rate shock A change in the birth rate affects steady-state per capita human capital

both directly and via its effect on the steady-state population growth rate. By differentiating

equation (41) with respect to b and simplifying we obtain:

∂ĥ1−φ

∂b
= AHs∗

[∫ ∞

s∗
e−[n̂u+M(u,ψ)]du − b

∂n̂

∂b

∫ ∞

s∗
ue−[n̂u+M(u,ψ)]du

]

=
AHs∗

b
Ψ (s∗) < 0, (44)

where we have used (38) to arrive at the second expression and the sign follows from Lemma

A.1 in the Appendix. Intuitively, a higher birth rate leads to an upward shift in the steady-

state path of the human capital stock in level terms, but also induces an increase in the

population growth rate. The latter effect dominates the former so that per capita human

capital declines in the steady state.
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Mortality shock The mortality change is by far the most complicated shock under con-

sideration because it affects the schooling period, s∗, the population growth rate, n̂, and the

cumulative mortality factor, M (u, ψ). By differentiating (41) with respect to ψ we obtain:

∂ĥ1−φ

∂ψ
=

∂ĥ1−φ

∂s∗
∂s∗

∂ψ
+ AHs∗b

∂Ξ(s∗, ψ)

∂ψ
> 0, (45)

where the sign follows from (37), (42), and Lemma A.2 in the Appendix. The first compos-

ite term on the right-hand side is straightforward: increased longevity boosts the optimal

schooling period which in turn increases per capita human capital in the steady state. The

second term on the right-hand side represents the joint effect of increased longevity on the

integral appearing on the right-hand side of (41). An increase in ψ has two effects on the dis-

counting factor of that integral. First, the population growth rate is increased (∂n̂/∂ψ > 0)

leading to heavier discounting and a lower value for the integral. Higher population growth

constitutes a higher drag on human capital as the cake must be shared over ever more peo-

ple. This effect leads to a decrease in per capita human capital. Second, the cumulative

mortality factor is decreased for higher age levels (∂M (u, ψ) /∂ψ < 0) leading to reduced

discounting and a higher integral. Educated people live longer as a result of the shock and per

capita human capital increases as a result. Lemma A.2 in the Appendix shows that, under

our set of assumptions regarding mortality change, the first effect is dominated by the sec-

ond (∂Ξ(s∗, ψ)/∂ψ > 0) and, ceteris paribus the schooling period, human-capital deepening

occurs as a result of increased longevity.

Balanced growth Up to this point attention has been restricted to steady-state per capita

human capital. This focus is warranted because all remaining variables are uniquely related

to ĥ. Indeed, it follows directly from, respectively, (28) and (31), that k̂ and ŷ are both pro-

portional to ĥ. Furthermore, the steady-state versions of (22), (29), (32), and (33) determine

unique values for î, d̂, f̂ , and ĉ as a function of ĥ, n̂, and the parameters. Hence, in level terms

the steady-state growth rate for output, consumption, investment, physical capital, human

capital, financial assets, net foreign assets, and debt is equal to the steady-state population

growth rate, n̂.

5.2 Transitional dynamics

In this subsection we compute and visualise the transitional effects of fiscal and demographic

shocks using a plausibly calibrated version of the model.12 The world interest rate is r = 0.055,

the pure rate of time preference is θ = 0.03, the intertemporal substitution elasticity is σ = 1,

the capital depreciation rate is δ = 0.07, and the efficiency parameter for physical capital is

ε = 0.3.

12Kalemli-Ozcan et al. (2000) restrict attention to the steady state. Boucekkine et al. (2002, pp. 363-365)

only show the adjustment path in the endogenous growth rate following a drop in the birth rate.
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The human capital externality parameter is set at φ = 0.3. We rationalize this choice as

follows. In a recent paper, de la Fuente and Doménech (2006, p. 12) formulate an aggregate

production function of the form:

ln yi (t) = lnTFP i (t) + α1 ln ki (t) + α′
2 ln si (t) , (46)

where i is the country index, TFP i is total factor productivity, ki is capital per worker, and

si measures education attainment, i.e. the average years of education of employed workers.

Since their data on educational attainment refers to the total (rather than the employed)

population, they postulate the relationship ln si (t) = β1 ln s̄i (t) − β2 lnPRi (t), where s̄i

measures population average education attainment (i.e. average years of schooling in the

adult population), and PRi is the participation rate (i.e. the proportion of employed adults).

Substituting this expression into (46) they derive the equation to be estimated:

ln yi (t) = lnTFP i (t) + α1 ln ki (t) + α2 ln s̄i (t) + α3 lnPRi (t) , (47)

where α2 ≡ α′
2β1 and α3 ≡ −α′

2β2. They present panel data estimates for the parameters,

using different specifications for lnTFP i (t), and find large and highly significant values for

α2 ranging from 0.378 to 0.958 (de la Fuente and Doménech, 2006, p. 14). They argue

on the basis of meta-estimation that the lower bound for the key parameter of interest,

α′
2, lies in the range of 0.752 to 0.844 for the fixed-effect regressions. They conclude that

“...investment in human capital is an important growth factor whose effect on productivity

has been underestimated in previous studies because of poor data quality” (de la Fuente and

Doménech, 2006, p. 28).

What does this say about our φ parameter? In the steady state our model implies the

following relationship:

ln ŷ = α0 + ε ln k̂ +
1 − ε

1 − φ
ln s∗, (48)

where α0 ≡ (1 − ε) lnAY + 1−ε
1−φ ln

(
bAH

∫ ∞
s∗ e−[n̂u+M(u,ψ)]du

)
. Ignoring the fact that in equa-

tion (48) the constant term itself depends negatively on s∗, we find that α̂1 is an estimate for ε

and α̂′
2 is an estimate for (1 − ε) / (1 − φ). De la Fuente and Doménech find estimates for α̂1 in

the range 0.448 to 0.491, so that the implied estimate for φ is given by φ̂ ≡
(
α̂′

2 + α̂1 − 1
)
/α̂′

2

which ranges from 0.266 to 0.397.13 Our chosen value of φ falls within this region.

On the demographic side, we interpret the estimated G-M demography as the truth and

choose the birth rate, b, such that n̂ = 0.0134 (the average population growth rate during the

period 1920-1940). This yields a value of b = 0.0237 (which falls in between the observed birth

rates for 1920 (= 0.028) and 1940 (= 0.02)). The estimated G-M model yields an expected

13Of course, this is only a very tentative estimate for φ for at least two reasons. First, the data may not

represent observations for the steady state. Second, the procedure ignores the fact that α0 itself also depends

on s∗. This may lead to an under-estimate for φ.
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remaining lifetime at birth of 65.5 years. We compute the implied wage rate from the factor

price frontier and find w = 1.019. The initial lumpsum tax follows from the government

solvency condition for an initial debt level of d̂0 = −2.112 and fiscal parameters ρ = 4.915

and tL = 0.15. The implied value for the lumpsum tax is z0 = 0.2645. Finally, for the scaling

variables we use AH = AY = 1. The initial age at which agents leave school and enter the

labour market is s∗0 = 21.82 years. The initial steady state has the following main features:

â0 = 7.8, l̂i0 = 647.2, ĥ0 = 36.1, ŷ0 = 52.6, ĉ0 = 37.2, î0 = 10.5, k̂0 = 126.2, and f̂0 = −116.2.

The output shares of consumption, investment, and net exports are, respectively, 0.71, 0.20,

and 0.09.

The economy is initially in a steady-state equilibrium, the stepwise shock occurs at time

t = 0, and we refer to pre-shock (v < 0) and post-shock agents (v ≥ 0). In the interest of

brevity, we focus the discussion on the transition path of per capita human capital. As is seen

readily from (28) and (31), the time paths for k (t) and y (t) are proportional to that of h (t).

The remaining variables of the model (such as d (t), i (t), f (t), li (t), a (t), and c (t)) feature

more complicated dynamic adjustment paths but are of less interest for the main purpose of

this paper. Where no confusion can arise we drop the “per capita” adjective in the intuitive

discussion of our results.

Fiscal shock In Figure 4 we illustrate the transitional dynamics associated with a fiscal

education impulse, consisting of a 20% increase in the educational subsidy, from ρ0 = 4.915 to

ρ1 = 5.897. There is no effect on the demography so the population growth rate is unchanged

(n (t) = n̂0). The human capital of pre-shock workers is unaffected because labour market

entry is an absorbing state, i.e. workers cannot go back to school by assumption. Pre-shock

students, however, react to the improved fiscal incentives by extending their schooling period

from s∗0 = 21.8 to s∗1 = 22.9. As a result, in the time interval 0 ≤ t < s∗1 − s∗0 there are no

new labour market entrants and human capital declines sharply as a result of the mortality

process—see Figure 4(a). Labour market entry resumes for t ≥ s∗1 − s∗0 and the entrants

have a higher level of education, so human capital starts to rise as a result. During the

interval s∗1 − s∗0 ≤ t < s∗1 entry consists entirely of pre-shock students, whereas for t ≥ s∗1 only

post-shock cohorts enter the labour market. Since these cohorts choose the same schooling

period s∗1, adjustment in human capital is monotonic. For t → ∞, the system reaches a new

steady-state which features a higher stock of human capital (see also (43) above).

Panels (b)-(f) of Figure 4 illustrate the adjustment paths of the other macroeconomic

variables. In panel (b) consumption falls at impact due to the once-off increase in the lumpsum

tax needed to finance the increase in the educational subsidy. During transition, however,

consumption increases monotonically as a result of the increase in lifetime income cause by

the increase in human capital. In panel (e) the path for government debt is illustrated. Debt

fluctuates during transition because the government engages in tax smoothing with respect

to the lumpsum tax, z. The current account dynamics is illustrated in panel (f). At impact,

21



the reduction in consumption and investment dominates the reduction in output, so that net

exports increase and the stock of net foreign assets rises sharply. During transition, however,

net foreign assets gradually fall during the first two decades of adjustment after which they rise

to a permanently higher level. In a similar fashion, the path for total assets is non-monotonic

due to the population heterogeneity that exists during transition. Indeed, during transition

three broad cohort types coexist, namely pre-shock workers (who base their savings decisions

on the pre-shock schooling choice s∗0), pre-shock students (who switched from s∗0 to s∗1 at time

t = 0 and changed their savings plans accordingly), and post-shock cohorts (who all choose

s∗1 and, provided φ > 0, face changing initial conditions because human capital changes over

time).

Birth rate shock In Figure 5 we illustrate the transitional dynamics associated with a baby

bust, that is the birth rate drops once and for all by 10% from b0 = 0.0237 to b1 = 0.0213.

Nothing happens to the optimal schooling choice, but the population growth rate falls in a

non-monotonic fashion from n̂0 = 0.0134 to n̂1 = 0.0099 as is illustrated in Figure 3(a). The

sharp increase in human capital in Figure 5(a) is entirely attributable to the fast reduction

in n (t) during the early phase of transition. At time t = s∗0, the population growth rate is

close to its new steady state and the slope of the per capita human capital stocks flattens

out. This is because the flow of labour market entrants is smaller than before as it consists

entirely of post-shock newborns. In the new steady state, per capita human capital increases

as a result of the baby bust (see also (44) above). For completeness sake, the paths for the

remaining macroeconomic variables are also illustrated in panels (b)-(f) of Figure 5.

Mortality shocks In Figure 6 we illustrate the transitional dynamics associated with an

adult mortality shock leading to increased longevity, that is the µ2-parameter of the G-M

process is reduced by 10% leading to an increase of the expected lifetime at birth from

R0 (0) = 65.45 to R1 (0) = 71.03. In the face of increased longevity, post-shock cohorts

choose a longer schooling period (s∗1 = 22.2 instead of s∗0 = 21.8). Furthermore, the shock

perturbs the demographic steady-state and causes a rather slow non-monotonic increase in

the population growth rate, from n̂0 = 0.0134 to n̂1 = 0.0149 as is illustrated in Figure 3(b).

The transition in human capital passes through the following phases. During the interval

0 ≤ t < s∗0 nothing happens to human capital because only pre-shock students (facing an

unchanged mortality process) enter the labour market and the mortality process for pre-

shock workers has not changed. For s∗0 ≤ t < s∗1 there are no new labour market entrants at

all because post-shock students choose a schooling period s∗1. Human capital declines sharply

because (a) pre-shock cohorts die off at the rate implied by the pre-shock mortality process,

and (b) the population growth rate increases. For t ≥ s∗1 post-shock cohorts enter the labour

market. The closer the birth rate of such cohorts is to s∗1, the worse are their initial conditions

in the human capital formation process. Indeed, the cohort born at time t = s∗1 faces low
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(e) Government debt (rd(t)/ŷ) (f) Foreign assets (rf(t)/ŷ)
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schooling productivity because h (s∗1) is quite low. As is clear from Figure 6(a), human capital

increases in a non-monotonic fashion after t = s∗1, where the bump after about 95 years is due

to the corresponding maximum in the population growth rate at that time—see Figure 3(b).

5.3 Discussion

The main findings of this section are as follows. Provided the intergenerational externality

parameter is below the knife-edge value of unity, the stock of per capita human capital settles

at a constant level in the long run. Balanced growth in consumption, investment, output,

employment, and human and physical capital is thus entirely due to population growth as in

the celebrated Solow-Swan model. Fiscal incentives, though causing permanent level effects,

only produce temporary growth effects. In contrast, demographic shocks change both levels

and the population growth rate in the long run. In particular, the baby bust reduces long-run

growth whilst increased longevity—due to reduced adult mortality—increases it. It is thus

an empirical issue whether ageing countries, experiencing the combined demographic shock

mentioned in the introduction, will ultimately converge to a lower or a higher long-run growth

rate. Since convergence is extremely slow, time series tests for the exogenous growth model

will be hard to conduct given the paucity of data.

6 Endogenous growth

Up to this point we have restricted attention to the case for which the intergenerational

knowledge externality is relatively weak (i.e. 0 ≤ φ < 1) and the system reaches a steady

state in terms of per capita levels. In this section we study the knife-edge case for which the

intergenerational knowledge transfer is very strong and subject to constant returns (φ = 1).

This case has been studied extensively in the literature; see among others Azariadis and

Drazen (1990) and Boucekkine et al. (2002).

6.1 Long-run effects

The steady-state growth path for per capita human capital can be written as follows:

ĥ(t) =

∫ t−s∗

−∞
l(t − v)ˆ̄h(t − v)dv

= AHs∗b

∫ t−s∗

−∞
e−[n̂(t−v)+M(t−v,ψ)]ĥ(v)dv, (49)

where we have used (6) and (19) to arrive at the second expression. For convenience we state

the key properties of the steady-state growth path.

Proposition 3 The endogenous growth model (φ = 1) features the following properties:
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(i) there is a unique steady-state growth rate of per capita variables;

(ii) all per capita variables feature uniform convergence to their respective steady-state

growth path.

Proof: see Heijdra and Romp (2006).

Denoting the steady-state growth rate by γ̂, it follows that along the balanced growth

path we have ĥ (v) = ĥ (t) e−γ̂(t−v). By using this result in (49) and simplifying we obtain the

implicit definition for γ̂:

1 = AHs∗b

∫ ∞

s∗
e−[(γ̂+n̂)u+M(u,ψ)]du. (50)

Clearly, the model implies a scale effect in the growth process, i.e. a productivity improvement

in the human capital production function gives rise to an increase in the steady-state growth

rate (∂γ̂/∂AH > 0). Equation (50) can also be used to compute the effect on the asymptotic

growth rate of the fiscal and demographic shocks.

Pure schooling shock Just as in Subsection 5.1 above, the interpretation of our results is

facilitated by first considering a pure schooling shock. By differentiating (50) with respect to

γ̂ and s∗, and gathering terms we find:

∂γ̂

∂s∗
=

e−[(γ̂+n̂)s∗+M(s∗,ψ)] [∆ (s∗, γ̂ + n̂) − s∗]

s∗
∫ ∞
s∗ ue−[(γ̂+n̂)u+M(u,ψ)]du

=
e−[(γ̂+n̂)s∗+M(s∗,ψ)]

s∗
∫ ∞
s∗ ue−[(γ̂+n̂)u+M(u,ψ)]du

[
∆ (s∗, γ̂ + n̂) − ∆ (s∗, r) −

ρ

1 − tL

]
> 0, (51)

where we have used equation (12) to arrive at the final expression. The sign of ∂γ̂/∂s∗ is

determined by the term in square brackets on the right-hand side of (51). By appealing to

the endogenous-growth counterpart to Assumption 2 (with n̂ replaced by n̂ + γ̂) we find that

the steady-state growth rate increases as a result of the pure schooling shock.

Fiscal shock An increase in the educational subsidy or the labour income tax affects the

steady-state growth rate via its positive effect on the schooling period. Indeed, we deduce

from (34)-(35) and (51) that:

∂γ̂

∂ [ρ/ (1 − tL)]
=

∂γ̂

∂s∗
∂s∗

∂ [ρ/ (1 − tL)]
> 0. (52)

Birth rate shock The growth effects of a birth rate change are computed most readily by

restating the shock in terms of the steady-state population growth rate, n̂, and noting the

monotonic relationship between n̂ and b stated in (38) above. Indeed, by substituting the

steady-state version of (20) into (50) we find an alternative implicit expression for γ̂:
∫ ∞

0
e−[n̂u+M(u,ψ)]du = AHs∗

∫ ∞

s∗
e−[(γ̂+n̂)u+M(u,ψ)]du. (53)
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Figure 7: Growth and Demography

Since the birth rate shock leaves the schooling period unchanged, it follows from (53) that:

∂γ̂

∂b
=

∂γ̂

∂n̂

∂n̂

∂b
=

∂n̂

∂b

[ ∫ ∞
0 ue−[n̂u+M(u,ψ)]du

AHs∗
∫ ∞
s∗ ue−[(γ̂+n̂)u+M(u,ψ)]du

− 1

]
R 0. (54)

Despite the fact that ∂n̂/∂b > 0, the growth effect of a birth rate change is ambiguously

because the term in square brackets on the right-hand side of (54) cannot be signed a priori.

Indeed, using the calibrated version of the model, we find that the relationship between γ̂

and b is hump-shaped. As is illustrated in Figure 7(a), the growth rate rises with the birth

rate for low birth rates, but is decreasing for higher birth rates. For the calibrated model,

the maximum growth rate is attained at a birth rate of 1.25% per annum.

Mortality shock Just as in the exogenous growth model, increased longevity constitutes

by far the most complicated shock studied here. Indeed, as can be seen from equation (50)

above, a mortality shock affects three distinct items featuring in the implicit expression for

the steady-state growth rate, γ̂, namely (a) the optimal schooling period, s∗, (b) the steady-

state growth rate of the population, n̂, and (c) the cumulative mortality factor, M (u, ψ). By

differentiating (50) with respect to γ̂ and ψ (and recognising the dependence of s∗ and n̂ on

ψ) we find after some steps:

∂γ̂

∂ψ
=

∂γ̂

∂s∗
∂s∗

∂ψ
−

∂n̂

∂ψ
+

∫ ∞
s∗ −

∂M(u,ψ)
∂ψ

e−[(γ̂+n̂)u+M(u,ψ)]du
∫ ∞
s∗ ue−[(γ̂+n̂)u+M(u,ψ)]du

R 0. (55)

The overall growth effect of increased longevity is ambiguous. The first composite term on

the right-hand side of (55) represents the schooling effect, which is positive (see (37) and

(51)). The third term on the right-hand side represents the cumulative mortality effect and

is also positive (given Proposition 2(i)). The ambiguity thus arises because the second term
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on the right-hand side exerts a negative influence on growth, i.e. increased longevity boosts

the steady-state population growth rate (see (39) above) which in turn slows down growth.

In Figure 7(b) we use the calibrated version of the model to plot the relationship between

the steady-state growth rate and a measure of longevity, namely life expectancy at birth,

R (0, ψ) ≡ ∆ (0, 0, ψ). Except for very low values of R (0, ψ), there is negative relationship

between long-term growth and longevity.

6.2 Transitional dynamics

In this subsection we visualise the transitional effects of fiscal and demographic shocks in

the endogenous growth model. For reasons of space we ignore the adjustment paths for the

remaining macroeconomic variables and restrict attention to the growth rate of per capita

human wealth, γ (t) ≡ ḣ (t) /h (t). Except for φ and AH , we use the same calibration values

as before (see Subsection 5.2). Because the model contains a scale effect, we set AH = 0.13

and obtain a realistic steady-state growth rate, γ̂0 = 1.096%. The discussion here can be

quite brief because, following a shock, the transition proceeds along the same phases as in

the exogenous growth model.

Fiscal shock Figure 8(a) illustrates the path for γ (t) following a 20% increase in the

educational subsidy. For 0 ≤ t < s∗1 − s∗0 there are no new labour market entrants and the

growth rate collapses. Then, for s∗1 − s∗0 ≤ t < s∗1 pre-shock students enter the labour market

and the growth rate jumps above its initial steady-state level. Finally, for t ≥ s∗1 the growth

rate converges in a non-monotonic fashion to its long-run value, i.e. lim
t→∞

γ(t) = γ̂1 = 1.111%,

where γ̂1 exceeds the initial steady-state growth rate γ̂0 (see equation (52) above).

Birth rate shock In Figure 8(b) the transitional effects of a baby bust are illustrated.

There is no effect on the optimal schooling period but the population growth rate falls from

n̂0 to n̂1—see Figure 3(a). Growth jumps sharply due to the fast reduction in n (t) that occurs

at impact and immediately hereafter. Intuitively, pre-shock students enter the labour market

but their human capital is spread out over fewer people than before the shock so that growth

in per capita terms increases sharply. About twenty-two years after the shock, n (t) ≈ n̂1 and

there is a sharp decline in growth. This is because the post-shock students start to enter the

labour market. Despite the fact that they have higher human capital than existing workers,

as a group they are not large enough to maintain the previous growth in per capita human

capital. Thereafter, the growth rate converges in a non-monotonic fashion to its long-run

level γ̂1 = 1.193%, which is higher than the initial steady-state growth rate, i.e. γ̂1 > γ̂0.

Given our calibration, the economy lies to the right of the peak in the curve for γ̂ in Figure

7(a) so that a baby bust increases long-run growth.

29



Mortality shock In Figure 8(c) the effect on the growth rate of increased longevity of

generations born after time t = 0 is illustrated. Just as for the exogenous growth model,

nothing happens to growth for the period 0 ≤ t < s∗0 because only pre-shock agents enter

the labour market and the same type of agents die off. For s∗0 ≤ t < s∗1 there are no new

labour market entrants and the growth rate collapses. At time t = s∗1 the oldest of the

post-shock cohorts enter the labour market and as a result growth is boosted again. For

t > s∗1, the growth rate converges non-monotonically towards the new steady-state growth

rate γ̂1 = 1.088% < γ̂0. In terms of Figure 7(b), the calibration places the economy on the

downward sloping segment of the γ̂ curve so increased longevity reduces the long-run growth

rate.

6.3 Discussion

The main findings of this section are as follows. For the calibrated model, the long-run growth

rate in per capita human capital increases as a result of a positive fiscal impulse or a fall in the

birth rate. Increased longevity, however, reduces this long-run growth rate. The transition

path in the growth rate is cyclical and rather complex for all shocks considered, and the new

equilibrium is reached only very slowly.

7 Conclusion

We have studied how fiscal incentives and demographic shocks affect the growth performance

of a small open economy populated by disconnected generations of finitely-lived agents facing

age-dependent mortality and constant factor prices. Our main findings have been summarized

in a number of propositions throughout the text and thus need not be restated here. Among

other things, the paper highlights the crucial role played by the strength of the intergener-

ational external effect in the production of human capital. Also, the vintage nature of the

model gives rise to very slow and rather complicated dynamic adjustment. This feature of

the model may help explain why robust empirical results linking education and growth have

been so hard to come by.

In the near future we intend to extend the paper in the following direction. As was

mentioned in the introduction, many OECD countries have experienced an increase in the

old-age dependency ratio over the last half century. This has important implications for the

feasibility of existing pay-as-you-go pension schemes, a phenomenon that has been abstracted

from in this paper. In future work we plan to endogenize the agent’s labour force participation

decision in the presence of a stylized public pension system including realistic institutional

features such as the early retirement age and the mandatory retirement age (Gruber and

Wise, 1999). With this extended model we hope to contribute to the literature on pension

reform in an ageing society.
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Figure 8: Per Capita Human Capital Growth
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Appendix

In this brief appendix we derive some key results used in the paper. More detailed derivations

are presented in Heijdra and Romp (2006).

Population growth and demography

The transition path for n (t) is determined implicitly by equation (40) in the text. By mul-

tiplying both sides of this expression by eN(0,t), and noting that N(v, t) ≡ N(0, t) − N(0, v),

we obtain:

eN(t) = b0

∫ 0

−∞
e−M0(t−v)+N(v)dv + b1

∫ t

0
e−M1(t−v)+N(v)dv, (A.1)

where we define N(t) ≡ N(0, t) for notational convenience. Since N(v) = n̂0v for v < 0 we

find that:

eN(t) = b0e
n̂0t

∫ 0

−∞
e−n̂0[t−v]−M0(t−v)dv + b1

∫ t

0
eN(v)−M1(t−v)dv

= b0e
n̂0t

∫ ∞

t
e−n̂0u−M0(u)du + b1

∫ t

0
eN(v)−M1(t−v)dv (A.2)

= b0e
−M0(t)∆0(t, n̂0) + b1

∫ t

0
eN(v)−M1(t−v)dv, (A.3)

where we incorporate a change of variables (from the cohort domain to the age domain) in

going from the first to the second line, and use the definition of ∆0(t, n̂0) in going from the

second to the third line.

Since the long-run population growth rate equals n̂1, it follows that (A.3) can be rewritten

in a stationary format by multiplying both sides of the expression by en̂1t. We obtain:

ξ(t) = χ (t) +

∫ t

0
K(t − v)ξ(v)dv, (A.4)

where ξ(t) ≡ eN(t)−n̂1t, χ(t) ≡ b0e
−M0(t)−n̂1t∆0(t, n̂1), and K(t − v) ≡ b1e

−M1(t−v)−n̂1(t−v).

Equation (A.4) is a so-called renewal equation, i.e. a linear Volterra equation of the second

kind with a convolution type kernel—see inter alia Linz (1985, p. 14) and Bellman and

Cooke (1963, ch. 7). By using standard numerical methods to solve this family of integral

equations we obtain a path for ξ(t) from which the path for n(t) can be derived by noting

that n (t) ≡ ξ̃ (t)− n̂1, where ξ̃ (t) ≡ d ln ξ (t) /dt can be computed easily with the aid of finite

difference methods. It remains to determine the initial growth rate, n (0). By differentiating

(A.2) with respect to time and evaluating the result for t = 0 we find that n (0) = n̂0−b0 +b1.

In deriving this result we make use of the fact that M0 (0) = M1 (0) = 0, N (0) = 0, and

b0∆0 (0, n̂0) = 1.
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Useful Lemmas

Lemma A.1 Define for s ≥ 0:

Ψ(s) =

∫ ∞
s e−[n̂u+M(u,ψ)]du∫ ∞
0 e−[n̂u+M(u,ψ)]du

−

∫ ∞
s ue−[n̂u+M(u,ψ)]du∫ ∞
0 ue−[n̂u+M(u,ψ)]du

,

with n̂ > 0 and M(u, ψ) as defined in equation (2′). The following results can be established:

(i) Ψ(s) ≤ 0 for all s ≥ 0,

(ii) Ψ(0) = 0,

(iii) lim
s→∞

Ψ(s) = 0.

Proof. Results (ii) and (iii) follow directly from the definition of Ψ(s). Differentiation with

respect to s gives

∂Ψ

∂s
= e−[n̂s+M(s,ψ)]

[
s∫ ∞

0 e−[n̂u+M(u,ψ)]du
−

1∫ ∞
0 ue−[n̂u+M(u,ψ)]du

]
, (A.5)

which is continuous in s and has only one root. The second derivative is positive in this

unique stationary point, so it is a global minimum. Together with (ii) and (iii) this implies

result (i). ¤

Lemma A.2 Define Ξ(s,ψ) for s ≥ 0 as:

Ξ(s,ψ) =

∫ ∞

s
e−[n̂u+M(u,ψ)]du.

Then
∂Ξ(s,ψ)

∂ψ
≥ 0 for all s > 0, where the equality holds if and only if

∂2m(u, ψ)

∂u∂ψ
= 0.

Proof. For the sake of readability define

Ξψ(s,ψ) ≡
∂Ξ(s,ψ)

∂ψ

=

∫ ∞

s

∂M(u, ψ)

∂ψ
e−[n̂u+M(u,ψ)]du −

∂n̂

∂ψ

∫ ∞

s
ue−[n̂u+M(u,ψ)]du, (A.6)

Note that lim
s→∞

Ξψ(s,ψ) = 0 and:

∂n̂

∂ψ
=

∫ ∞
0

∂M(u,ψ)
∂ψ

e−[n̂u+M(u,ψ)]du
∫ ∞
0 ue−[n̂u+M(u,ψ)]du

. (A.7)

By substituting (A.7) into (A.6) we find that Ξψ(0, ψ) = 0. The stationary points of Ξψ(s,ψ)

with respect to s are determined by the roots of:

∂Ξψ(s,ψ)

∂s
= e−[n̂u+M(u,ψ)]

[
∂M(s,ψ)

∂ψ
− s

∂n̂

∂ψ

]
. (A.8)
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From Proposition 2 we know that ∂M(s,ψ)
∂ψ

is non-positive, non-increasing and concave in s.

This implies together with
∂Ξψ (0,ψ)

∂s = 0 that
∂Ξψ (s,ψ)

∂s has at most two roots (one at s = 0) or

is 0 everywhere (if
∂Ξψ (0,ψ)

∂s = 0 on the interval [0, s∗], 0 ≤ s∗ ≪ ∞, then lim
s→∞

Ξψ(s,ψ) = 0

does not hold). If
∂Ξψ (s,ψ)

∂s = 0 for all s ≥ 0, then Ξψ(s,ψ) = 0 for all s ≥ 0. This last

situation only occurs if ∂M(s,ψ)
∂ψ

is linear in s, i.e. if ∂2m(u,ψ)
∂u∂ψ

= 0.

If ∂2m(u,ψ)
∂u∂ψ

< 0 for some s ≥ 0, then Ξψ(s,ψ) has exactly two stationary points for a given

ψ, one at s = 0 and one at s = s∗ > 0. Concavity of ∂M(s,ψ)
∂ψ

implies that the stationary

point at s = s∗ is a maximum. Since ∂Ξ(s,ψ)
∂ψ

goes to 0 as s → ∞ and is continuous, ∂Ξ(s,ψ)
∂ψ

must be positive for all s > 0, otherwise there would be a minimum somewhere at s > s∗.

This completes the proof. ¤

34



References

Azariadis, C. and Drazen, A. (1990). Threshold externalities in economic development. Quar-

terly Journal of Economics, 105:501–526.

Bellman, R. and Cooke, K. L. (1963). Differential-Difference Equations. Academic Press,

New York.

Bils, M. and Klenow, P. J. (2000). Does schooling cause growth? American Economic Review,

90:1160–1183.

Blanchard, O.-J. (1985). Debts, deficits, and finite horizons. Journal of Political Economy,

93:223–247.

Boucekkine, R., de la Croix, D., and Licandro, O. (2002). Vintage human capital, demograpic

trends, and endogenous growth. Journal of Economic Theory, 104:340–375.

Buiter, W. H. (1988). Death, birth, productivity growth and debt neutrality. Economic

Journal, 98:279–293.

de la Croix, D. and Licandro, O. (1999). Life expectancy and endogenous growth. Economics

Letters, 65:255–263.
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