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Abstract: Standardized longevity risk transfers often involve modeling mortality rates of multiple
populations. Some researchers have found that mortality indexes of selected countries are cointegrated,
meaning that a linear relationship exists between the indexes. Vector error correction model (VECM)
was used to incorporate this relation, thereby forcing the mortality rates of multiple populations to
revert to a long-run equilibrium. However, the long-run equilibrium may change over time. It is crucial
to incorporate these changes such that mortality dependence is adequately modeled. In this paper,
we develop a framework to examine the presence of equilibrium changes and to incorporate these
changes into the mortality model. In particular, we focus on equilibrium changes caused by threshold
effect, the phenomenon that mortality indexes alternate between different VECMs depending on the
value of a threshold variable. Our framework comprises two steps. In the first step, a statistical test is
performed to examine the presence of threshold effect in the VECM for multiple mortality indexes.
In the second step, threshold vector error correction model (TVECM) is fitted to the mortality indexes
and model adequacy is evaluated. We illustrate this framework with the mortality data of England and
Wales (EW) and Canadian populations. We further apply the TVECM to forecast future mortalities and
price an illustrative longevity bond with multivariate Wang transform. Our numerical results show
that TVECM predicted much faster mortality improvement for EW and Canada than single-regime
VECM and thus the incorporation of threshold effect significant increases longevity bond price.

Keywords: multi-population mortality; vector error correction; longevity risk; longevity bond;
Wang transform

1. Introduction

According to a recent report by World Health Organization (2015), global life expectancy raised
dramatically from 64 years in 1990 to 71 years in 2013. The global aging trend is primarily attributed
to greater consciousness of healthy lifestyles, development of new medicines, and improvement of
health systems in many countries. Milidonis and Efthymiou (2017) identified causation from wealth to
mortality improvement in Asia-Pacific countries and revealed that mortality improvements appear
faster in more developed than less developed countries. Although increased life expectancy is desirable
for individuals, this global trend poses significant financial burdens to social security systems, annuity
providers, and pension plan sponsors. As a result, hedging of longevity risk has become an important
issue which has attracted much discussion in recent years.

In general, longevity risk hedge can be categorized into customized hedge or standardized hedge.
Examples of customized hedge include buy-in, buy-out, and customized longevity swap. Tailored to
the hedger’s longevity exposure, customized hedge is effective in transferring longevity risk. However,
customized hedge is very illiquid and has long maturity. Alternatively, standardized hedge links the
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payoff of longevity securities to a broad longevity index. It is more transparent and liquid, but less
effective due to the difference between the population associated with the hedger’s longevity exposure
and that underlying the longevity index. The first standardized longevity hedge, which took place in
January 2008, is a q-forward contract written on mortality rates of 65-year-old males from England and
Wales (EW) between J. P. Morgan and the U.K. pension fund buy-out company Lucida. More recently,
Swiss Re launched the Kortis longevity bond to hedge the divergence in mortality improvement
between EW and the United States.

Standardized longevity hedge often involves the mortality rates of multiple populations.
For example, the Longevity Divergence Index of the Kortis bond depends on the mortality rates
of male populations in both EW and the United States. Modeling the mortality dependence of the
two populations is crucial for generating accurate forecasts of future Longevity Divergence Index
values. The promotion of standardized longevity hedge in recent years has motivated research in
multi-population mortality modeling. A comparative study of two-population mortality models can
be found in Villegas et al. (2017).

Existing literature in multi-population mortality modeling is often built on the concept of
coherence. Originally proposed by Li and Lee (2005), coherent mortality forecasting assumes that the
relative mortality rates of any two related populations are mean-reverting; hence, coherent mortality
forecasts do not diverge indefinitely over time. The model of Li and Lee (2005) has been adopted
by several researchers, including Biffis et al. (2017), Li and Hardy (2011), and Milidonis et al. (2011).
Other examples of coherent models include the two-population model proposed by Cairns et al. (2011),
the gravity model by Dowd et al. (2011), and the application of vector error correction model (VECM)
by Zhou et al. (2014).

Li et al. (2016) criticized that the hypothesis of coherence for being too strong and not always
appropriate. A coherent multi-population mortality model may understate the range of possible
mortality differentials between two populations. To address this problem, Li et al. (2016) proposed
the concept of semicoherence, which is incorporated into mortality forecasts by using a three-regime
threshold vector autoregression model. In the middle regime, where the mortality differential between
populations does not exceed a specific tolerance corridor, the mortality trajectories of two related
populations are allowed to diverge. In the lower and upper regimes, where the mortality differential
exceeds the tolerance corridor, mean reversion comes into effect and brings the mortality differential
back into the tolerance corridor.

Hunt and Blake (2015), after observing that the relative mortality rates appear to change over
time, advocated against the imposing of coherence. They used the the cointegration technique to allow
for covariation between mortality rates in the two populations. Cointegration and the resulted vector
error correction model (VECM) was introduced by Engle and Granger (1987) to model the long-term
tendency of cointegrated variables moving around common stochastic trends, i.e., the long-term
equilibrium of cointegrated variables. VECM is essentially a special case of vector autoregressive
(VAR) model. VECM has been used in mortality modeling by several other researchers including
Kuo et al. (2003), Darkiewicz and Hoedemakers (2004), Lazar (2004), Gaille and Sherris (2011),
Yang and Wang (2013), and Zhou et al. (2014).

The existence of cointegration relation has been confirmed among the mortalities of selected
countries. The threshold behavior of the VAR model observed by Li et al. (2016) suggests that a
fixed relation may be inappropriate for certain countries. However, no existing literature on mortality
modeling has yet considered the possibility of changing cointegration relations over time. Changes in
the cointegration relation may lead to significant adjustments in the mortality dependence. Therefore,
it is essential to incorporate such changes in the multi-population mortality models. Although the
threshold VAR used in Li et al. (2016) can accommodate changes in the VAR relation, it does not take
cointegration or long-term equilibrium into account. In this paper, we improve on the threshold of
Li et al. (2016) by considering threshold VECM (TVECM) proposed by Hansen and Seo (2002),
which incorporates both threshold effect and cointegration relation.
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In particular, we develop a framework to examine the presence of long-term relation changes
and to incorporate these changes into the mortality model. We focus on the equilibrium changes
caused by threshold effect, the phenomenon that mortality indexes alternate between different VECMs
depending on the value of a threshold variable. We first perform a statistical test to examine the
presence of threshold effect in the VECM for multiple mortality indexes. We then apply TVECM to
model changes in the cointegration relation. The time series behavior is determined by whether the
deviation from the long-term relation is above or below certain threshold values.

For illustrative purposes, we fitted the TVECM model to the mortality rates of EW and Canadian
populations. Our statistical test suggests that the relation between EW and Canadian mortalities
changes when the deviation from the long-term equilibrium exceeds or fall below certain threshold
value; hence, the threshold effect exists. In addition, we used multivariate Wang transform to price an
illustrative longevity bond and demonstrate that incorporating changes in the cointegration relation
has a significant impact on longevity bond pricing.

The remainder of the paper is organized as follows: Section 2 introduces the dataset and the
base mortality model. Section 3 detects and removes outliers in the mortality indexes. Section 4
performs cointegration analysis and estimates VECM. Section 5 introduces TVECM and its estimation.
Section 6 applies TVECM in longevity bond pricing. Section 7 presents the conclusion.

2. The Base Mortality Model

2.1. The Lee–Carter Model

The Lee–Carter model, proposed in Lee and Carter (1992), is the most widely used mortality
model. It has been recommended for use by the US Bureau of the Census as a benchmark model
(Mitchell et al. 2013). The Lee–Carter model is expressed as:

ln(m(i)
x,t) = a(i)x + b(i)x k(i)t ,

where (i) represents the ith population; m(i)
x,t is the central mortality rate for a life aged x at time t from

population (i); a(i)x represents the stand-alone age-specific parameters describing the average level of
mortality at age x; k(i)t referred to as mortality index, is the time-varying parameter which signifies the

general speed of mortality improvement and captures the main time trend for all ages; and b(i)x is the
age-specific parameter that interacts with k(i)t .

Let D(i)
x,t and E(i)

x,t be the number of deaths and number of exposures-to-risk at age x in year t

for population (i). We assume that D(i)
x,t follows Poisson distribution with mean equal to E(i)

x,tm
(i)
x,t.

The loglikelihood for population (i) can be written as

LL(i) = ∑
x,t

D(i)
x,t ln E(i)

x,tm
(i)
x,t − E(i)

x,tm
(i)
x,t − ln(D(i)

x,t !).

We maximize the log-likelihood to obtain the parameter estimates of a(i)x , b(i)x , and k(i)t for each
population. To obtain a unique set of parameter estimates, we impose two identification constraints:

∑ b(i)x = 1 and ∑ k(i)t = 0. Details of the model estimation method can be found in Brouhns et al. (2002).
The model estimation can be performed in R using the “fit” function in the “StMoMo” package.
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2.2. Data and Estimated Parameters

We used the mortality data of EW and Canadian populations aged 50–89 from 1922 to 2011.1

The mortality rates were acquired from Human Mortality Database (2017). We use Superscript (1) for
EW and Superscript (2) for Canada in the mathematical expressions.

Parameter estimates of the Lee–Carter model of a(i)x and b(i)x are depicted in Figure 1. Figure 1a shows
that both a(1)x and a(2)x increase steadily as the age rises, thus indicating that average mortality rates
increase with age. a(1)x is higher than a(2)x , thereby suggesting that EW population has overall higher
mortality rate than Canadian population for the same age group. In Figure 1b, the decreasing trend of
b(i)x suggests that mortality rates at older ages are less sensitive to the changes in k(i)t .
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Figure 1. Parameter estimates of the Lee–Carter model using EW and Canadian mortality data.
(a) Stand-alone age-specific parameters; (b) Age-specific parameters that interact with time-varying
parameters; (c) Time-varying parameters.

1 EW and Canadian mortality data were intentionally selected to illustrate the occurrence of changing long-term relation.
We used a long sample period since our objective was to examine changes of long-term relation. The earliest year in which
mortality data are available for both EW and Canadian populations is 1922. The sample age range of 50–89 was chosen due
to our focus on longevity risk. Therefore, mortality rates of population close to or in retirement were considered.
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Figure 1c plots the estimated time-varying parameters k(1)t and k(2)t from 1922 to 2011. Both k(1)t

and k(2)t generally decline during this sample period, thus implying that mortality rates are decreasing

in both regions. The trajectories of k(1)t and k(2)t , which are very close, cross each other several times
over the sample period. Therefore, it is necessary to investigate whether these trajectories share a
common trend and to determine how they move around this trend.

3. Removing Additive Outliers

Figure 1c shows that the EW population had mortality rate spikes in 1931 due to the Great
Depression, in 1941 due to World War II and, and in 1953 possibly due to the 1952 Great Smog of
London. At the same time, members of the Canadian population were not or marginally affected by
these one-time events. Outliers in the time series data may significantly affect model identification,
estimation, and forecasting (Bovas and Box 1979; Chen and Tiao 1990). In our case, the outliers in
k(1)t may also distort the estimated relation between k(1)t and k(2)t . Chen and Liu (1993) developed an
iterative procedure to detect outliers in univariate time series data and obtain joint estimates of model
parameters and outlier effects. In particular, four types of outliers were considered:

• Additive outlier, which causes an immediate and one-time effect on the observed series;
• Temporary change, which produces an initial effect that dies out gradually over time;
• Level shift, which produces an abrupt and permanent step change in the series; and
• Innovative outlier, which produces a temporary effect on stationary time series, but will gradually

converge to a permanent effect on non-stationary time series.

For more details about this procedure, readers are advised to read Chen and Liu (1993).
Here, we considered removing only additive outliers, because other types of outliers have

impact on mortality for multiple years and may still contain useful information about the relation
between the two populations. We used the “tso” function in the “tsoutlier” R package to identify and
remove additive outliers with the critical value of 3.5 as the criterion for the determination of outliers.
The detected additive outliers are shown in Table 1. Additive outliers only present in k(1)t . The original

and outlier-adjusted k(1)t series are displayed in Figure 2. In the following analysis, k(1)t represents

outlier-adjusted k(1)t data if not stated.

1920 1940 1960 1980 2000

−
30

−
20

−
10

0
10

20

Year

k t(1
)

Original
Adjusted

Figure 2. k(1)t series with additive outliers removed.
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Table 1. Detected additive outliers in the time-varying parameter series.

Population Type Year t-Value

EW
Additive Outlier 1931 3.54
Additive Outlier 1942 7.61
Additive Outlier 1953 4.58

Canada None

4. Vector Error Correction Model

4.1. Cointegration

Cointegration is an economic concept that mimics the existence of a long-term equilibrium among
an economic time series. A time series yt is integrated (I(1)) if its first difference ∆yt = yt − yt−1 is
stationary (I(0)). If two or more integrated time series have a stationary linear combination, then they
are cointegrated. In particular, k(1)t and k(2)t are cointegrated if

• k(1)t and k(2)t are both I(1) variables; and
• there exists a linear combination with a constant β and β 6= 0 such that

k(1)t + βk(2)t ∼ I(0).

When k(1)t and k(2)t are cointegrated, they are driven by a common trend and the variations of the
two variables are correlated.

4.2. VECM Model

VECM is a special case of vector autoregressive (VAR) model with cointegration relationship
taken into consideration. A VAR model with lag order p can be written as

(
k(1)t

k(2)t

)
= c +

p

∑
i=1

Φi

(
k(1)t−i

k(2)t−i

)
+

(
ε
(1)
t

ε
(2)
t

)
,

where c is a 2× 1 constant vector, Φi is a 2× 2 loading matrix for lag i, and
(

ε
(1)
t

ε
(2)
t

)
follows bivariate

normal distribution.
A p-order VAR can be written as a (p− 1)-order VECM, as shown below:

(
∆k(1)t

∆k(2)t

)
= c + Π

(
k(1)t−1

k(2)t−1

)
+

p−1

∑
i=1

Γi

(
∆k(1)t−i

∆k(2)t−i

)
+

(
ε
(1)
t

ε
(2)
t

)
,

where Π is a 2× 2 long-term loading matrix and Γi is a 2× 2 short-term loading matrix for lag i.
The rank of Π indicates whether k(1)t and k(2)t have a cointegration relationship. If the rank of Π is

0, then there is no long-term equilibrium and the differenced k(i)t series are stationary. If the rank of Π

is full, then the original time series k(i)t must be stationary. Otherwise, k(1)t and k(2)t are cointegrated.
Since we only have two time series in our study, the full rank is 2. Cointegration relationship exists
only when the rank of Π is equal to 1. In the case that cointegration exists, VECM can be rewritten
as follows: (

∆k(1)t

∆k(2)t

)
= c + α

(
k(1)t−1 + βk(2)t−1

)
+

p−1

∑
i=1

Γi

(
∆k(1)t−i

∆k(2)t−i

)
+

(
ε
(1)
t

ε
(2)
t

)
,
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where α is the 2× 1 adjustment coefficient vector and β is the cointegrating value. VECM incorporates
both the long-term equilibrium relationship and the short-term relationship. In the long run, the two
time series are expected to follow the relationship k(1)t + βk(2)t = 0. If there is deviation from this

equilibrium, the error correction term α(k(1)t + βk(2)t ) pulls the time series towards the equilibrium.
In the short-term, the two time series are affected by their autoregressive terms. We can also allow
constant and time trend in the cointegration term. However, we find that these terms are not necessary
for our dataset during the process of model building described in the following section.

4.3. Model Building

We used the following procedures to build and estimate VECM:

1. Test if k(1)t and k(2)t follow I(1) process.
2. Determine the lag order of VECM.
3. Perform cointegration tests to examine if a cointegration relationship exists.
4. Estimate the VECM with selected lag order.
5. Check residual diagnostics.

We used the Augmented Dickey–Fuller (ADF) test to check whether the two time series are I(1)
processes. The null hypothesis of ADF test is that unit roots exist. The existence of unit roots indicates
that the tested time series is non-stationary. We expect that the null hypothesis is accepted for the
original I(1) process and rejected for the first-order difference of the I(1) process. In other words,
we expect k(1)t and k(2)t to be non-stationary processes but their first-order differences to be stationary.

Table 2 summarizes the ADF test results for k(1)t , k(2)t , ∆k(1)t , and ∆k(2)t . The tests include a drift
and use Akaike Information Criteria to select lag order in the test regression. The test statistics for
both k(1)t and k(2)t have p-value greater than 10%, indicating that we cannot reject the null hypothesis

that k(1)t and k(2)t are non-stationary at 10% significance level. The test statistics for ∆k(1)t and ∆k(2)t are
both smaller than 1%, suggesting that we reject the null hypothesis at 1% significance level. Therefore,
both ∆k(1)t and ∆k(2)t are stationary. According to the definition of I(1) process, we can conclude that

both k(1)t and k(2)t are I(1) processes.

Table 2. Augmented Dickey–Fuller test results.

Data Test Statistic p-Value

k(1)t 3.81 >10%
k(2)t 3.44 >10%

∆k(1)t −8.83 <1%
∆k(2)t −8.15 <1%

To select the lag order for VECM, we first determine the lag order for VAR, and then deduct the
order by one for VECM. In the lag order selection for VAR, we consider two criteria: Akaike Information
Criteria (AIC), and Bayes Information Criteria (BIC). Since the VAR models are estimated by Ordinary
Least Square (OLS) method, AIC and BIC are calculated using the following equations:

AIC = ln

∣∣∣∣∣ 1
T

T

∑
t=1

εtε
′
t

∣∣∣∣∣+ 2
T

pK2,

BIC = ln

∣∣∣∣∣ 1
T

T

∑
t=1

εtε
′
t

∣∣∣∣∣+ ln(T)
T

pK2
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where εt = [ε
(1)
t , ε

(2)
t ]′, |X| denotes the determinant of a matrix X, T is the sample size, p is the lag

order, and K is the dimension of the time series data. The lower the criteria values, the better the
goodness of fit.

Table 3 shows that lag order 4 has the lowest AIC, while lag order 2 has the lowest BIC. The two
criteria lead to different conclusions since they penalize extra parameters to different extents. It is
often believed that AIC selects the model that most adequately describes the data and BIC tries to find
the true model among the set of candidates. As a result, the model selected by AIC tends to overfit
while the one selected by BIC may underfit. We fit both VECM(1) and VECM(3) one lag less than the
corresponding VAR model, and check residual diagnostics to select an adequate model.

Table 3. Lag order selection for VAR model.

Criteria
Lag Order

1 2 3 4 5

AIC −0.04 −0.53 −0.57 −0.58 −0.52
BIC 0.13 −0.24 −0.17 −0.07 0.11

Next, we test whether k(1)t and k(2)t are cointegrated using the Engle–Granger test. We first perform

a linear regression of k(1)t on k(2)t , and then conduct ADF test on the regression residuals. The estimated
linear regression model is shown below:

k(1)t = −0.1574
(0.1959)

+ 0.9863
(0.0159)

k(2)t ,

where the numbers in parentheses are the standard deviations of the estimated parameters. The ADF
test on the regression residuals returns a p-value smaller than 5%, indicating that we reject the null
hypothesis of the existence of unit roots at 5% significance level. Therefore, the regression residuals
are stationary and k(1)t and k(2)t are cointegrated. Since the constant term in the regression model is
insignificant, we choose not to include a constant in the cointegration term.

Finally, VECM is estimated by the Engle–Granger two-step ordinary least squares (OLS).
The estimation can be conducted in R using the “VECM” function in the “tsDyn” package. The first
OLS determines the cointegrating value β by a linear regression of k(1)t on k(2)t , which has been carried
out in the cointegration test. Conditioning on the estimated β, the second OLS is performed to obtain
other parameters in VECM. VECM can also be estimated by a one-step maximum likelihood estimation
(MLE) method. However, in our case, the MLE estimates are very unstable when we use different
number of lag orders.

Since AIC and BIC suggest different lag orders, we fit both VECM(1) and VECM(3) and examine
the adequacy of the estimated models. Table 4 presents the results of Ljung–Box autocorrelation
test for VECM(1) and VECM(3). The p-values for both VECM(1) and VECM(3) are all significantly
greater than 5%, thereby indicating autocorrelation has been properly captured by the two models.
Table 5 presents the results of univariate and bivariate Doornick–Hansen (DH) normality test for
the residuals from VECM(1) and VECM(3). Residuals from VECM(1) fails the bivariate normality
test and also the univariate normality test for k(2)t at 5% significance level. In contrast, residuals
from VECM(3) pass all the normality test at 5% significance level. Overall, the residual diagnostics
suggest that VECM(3) is more adequate than VECM(1) for our data. Therefore, we use VECM(3) in the
following analysis.
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Table 4. p-values of Ljung–Box autocorrelation test for VECM.

Model
Lag Order

2 4 6 8 10

VECM(1) 0.95 0.21 0.15 0.16 0.12
VECM(3) 0.97 0.30 0.26 0.16 0.20

Table 5. p-values of Doornick–Hansen normality test.

Model Bivariate
Univariate

(1) (2)

VECM(1) 0.03 0.62 0.01
VECM(3) 0.28 0.68 0.12

The estimated VECM(3) is shown below:(
∆k(1)t

∆k(2)t

)
=

(
−0.7820
−0.4041

)
+

(
−0.0781
0.0711

)(
k(1)t−1 − 0.9862k(2)t−1

)

+

(
−0.6308 0.2571
0.0617 −0.1474

)(
∆k(1)t−1

∆k(2)t−1

)

+

(
−0.0952 0.0230
0.1046 −0.0873

)(
∆k(1)t−2

∆k(2)t−2

)

+

(
−0.0136 0.0425
−0.0468 0.2245

)(
∆k(1)t−3

∆k(2)t−3

)
+

(
ε
(1)
t

ε
(2)
t

)
.

The estimated long-term equilibrium is k(1)t−1 − 0.9862k(2)t−1 = 0. The cointegrating value is close to

−1, thereby indicating that k(1)t and k(2)t are close. However, because of the downward trend in the

mortality indexes, the gap between k(1)t and k(2)t enlarges over time and k(1)t and k(2)t diverge slowly
and indefinitely.

When k(1)t−1 is larger than 0.9862k(2)t−1 in year t− 1, the deviation from the equilibrium is positive.

This deviation is multiplied by −0.0781 for ∆k(1)t and 0.0711 for ∆k(2)t , resulting in a reduction of

∆k(1)t and increase of ∆k(2)t in year t. Therefore, the expected difference between k(1)t and 0.9862k(2)t
in year t narrows. This is how the error correction term forces the two time series to revert to the
long-term equilibrium.

5. Threshold Vector Error Correction Model

5.1. TVECM Model

Li et al. (2016) found threshold behavior when modeling multi-population mortality by VAR
model, i.e., the time series data follow different VAR models depending on the value of a threshold
variable. Since VECM is a special case of VAR model, we are interested in whether threshold
effect also presents in VECM and how to incorporate the threshold effect by the threshold VECM
(TVEM) model. The difference between TVECM and threshold VAR (TVAR) is that TVECM takes into
account cointegration and hence an explicit long-term relation. Although the TVAR model used in
Li et al. (2016) implies a mean-reverting mechanism, there is no explicit long-term relation.

Consider a two-regime TVECM in which the threshold variable is the deviation from the
long-term equilibrium. Depending on whether the threshold variable exceeds the threshold value,
VECM parameters may take different values. This TVECM can be expressed as:
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(
∆k(1)t

∆k(2)t

)
=


c1 + α1

(
k(1)t−1 + βk(2)t−1

)
+ ∑

p−1
i=1 Γ1,i

(
∆k(1)t−i

∆k(2)t−i

)
+

(
ε
(1)
t

ε
(2)
t

)
, zt−1 > γ

c2 + α2

(
k(1)t−1 + βk(2)t−1

)
+ ∑

p−1
i=1 Γ2,i

(
∆k(1)t−i

∆k(2)t−i

)
+

(
ε
(1)
t

ε
(2)
t

)
, zt−1 ≤ γ

where cn is the constant vector for regime n; αn is adjustment coefficient vector for regime n; β is
cointegrating value; Γn,i is the AR coefficient for regime n and lag i; zt−1 = k(1)t−1 + βk(2)t−1 measures the
deviation from the long-term equilibrium; and γ is the threshold value.

Which regime the time series lies in at time t depends on the value of zt−1. If zt−1 is higher than
the threshold value γ, then the time series switches to the first regime at time t. If zt−1 is lower than γ,
then it switches to the second regime at time t. When there are more than two regimes, this expression
can be easily extended. It is often assumed that there are one or two threshold values for model
parsimony corresponding to two or three regimes, respectively.

5.2. Threshold Effect and Model Estimation

We fit the estimated {k(1)t , k(2)t } by a two-regime TVECM. We do not consider TVECM with
higher regimes due to the consideration of model parsimony. The estimation of TVECM model is
achieved by minimizing the residual sum of squares using a two-dimensional grid search on β and
γ. The estimation can be performed in R using the “TVECM” function in the “tsDyn” package.
The estimated model is shown below:(

∆k(1)t

∆k(2)t

)
=

(
−1.3482
−0.8089

)
+

(
−0.3737
0.2631

)
zt−1

+

(
−0.4041 −0.4338
0.0890 −0.2212

)(
∆k(1)t−1

∆k(2)t−1

)

+

(
−0.3235 −0.3778
−0.0629 −0.1135

)(
∆k(1)t−2

∆k(2)t−2

)

+

(
−0.3580 −0.4661
−0.2245 0.3769

)(
∆k(1)t−3

∆k(2)t−3

)
+

(
ε
(1)
t

ε
(2)
t

)
, zt−1 > −0.0754

(
∆k(1)t

∆k(2)t

)
=

(
0.0354
−0.2738

)
+

(
0.0244
0.0518

)
zt−1

+

(
−0.5945 0.4531
0.0768 −0.1493

)(
∆k(1)t−1

∆k(2)t−1

)

+

(
−0.0602 0.5960
0.2504 −0.0170

)(
∆k(1)t−2

∆k(2)t−2

)

+

(
0.1456 0.3559
0.1018 0.0535

)(
∆k(1)t−3

∆k(2)t−3

)
+

(
ε
(1)
t

ε
(2)
t

)
, zt−1 ≤ −0.0754

where zt = k(1)t − 0.9667k(2)t , and the estimated variance-covariance matrix for the error term is(
1.0042 0.2562
0.2562 0.4512

)
.
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Before we apply the estimated TVECM, it is important to verify whether the threshold effect is
significant in the dataset. We follow Hansen and Seo (2002) and test the presence of threshold effect in
{k(1)t , k(2)t } based on the Lagrange multiplier principle. Asymptotic critical values and p-values of this
test are calculated using fixed regressor bootstraps. Under the null hypothesis, there is no threshold
effect, so the model reduces to a conventional VECM. Under the alternative hypothesis, the time series
data follow a two-regime TVECM. This test can be implemented in R using the “TVECM.SeoTest”
function in the “tsDyn” package. Given the cointegrating value of 0.9667, the p-value of the threshold
effect test is 0.0272, thereby rejecting the null hypothesis of no threshold effect at 5% significance level.

Since VECM and TVECM are nested models, we also perform a likelihood ratio test to compare
their goodness of fit. The test statistics is 2 × (loglikelihood of TVECM − loglikelihood of VECM),
equal to 2(−37.7441 + 59.7507). The degree of freedom is (number of parameters in TVECM −
number of parameters in VECM), equal to (34− 17). The p-value of the likelihood ratio test is 0.0003,
thereby suggesting that TVECM provides significant improvement over VECM.

As we can see from the estimated model, the threshold value is estimated to be −0.0754 and
the long-term equilibrium is k(1)t − 0.9667k(2)t = 0. When the deviation is higher than −0.0754,

the corresponding adjustment coefficient vector is
(
−0.3737
0.2631

)
. If the deviation is below −0.7654,

then the corresponding adjustment coefficient vector is
(

0.0244
0.0518

)
.

To understand how error correction works in the TVECM, we consider three cases:

• Case 1: zt−1 > 0. The time series data are in the upper regime. k(1)t−1 is higher than it should be in
the long-term equilibrium. Multiplying the deviation by the negative coefficient −0.3737 for EW
pulls down k(1)t . At the same time, multiplying the deviation by the positive coefficient 0.2631 for

Canada pulls up k(2)t . This adjustment brings k(1)t and k(2)t closer to their long-term equilibrium.

• Case 2: −0.0754 < zt−1 ≤ 0. The time series data are still in the upper regime, but k(1)t−1 is lower
than it should be in the long-term equilibrium. The deviation is multiplied by −0.3737 for EW
and 0.2631 for Canada, thereby pulling k(1)t up and k(2)t down. The error correction term narrows
the deviation again and brings the time series towards their long-term equilibrium.

• Case 3: zt−1 ≤ −0.0754. The process is in the second regime and k(1)t−1 is lower than it should be
in the long-term equilibrium. The negative deviation is multiplied by 0.0244 for EW and 0.0518
for Canada, thereby pulling both k(1)t and k(2)t down. However, k(1)t is pulled down to a smaller
extent which results in a smaller deviation from the long-term equilibrium.

Figure 3 presents the historical process of the deviation zt in a solid line and the threshold value
in a dashed line. During the periods of 1922 to 1940 and 1970 to 1995, the deviation is mostly greater
than the threshold value. This indicates that the process is in the upper regime. During 1940–1970 and
1995–2011, the deviation is mostly smaller than the threshold value and hence the process is in the
lower regime.

Based on the estimated TVECM model, the reversion to the long-term equilibrium is much faster
in the upper regime than it is in the lower regime. Therefore, when experiencing higher mortality than
that suggested by the long-term equilibrium, EW population improves their mortality at a faster rate,
compared to the Canadian population. Causality analysis employed in Milidonis and Efthymiou (2017)
may be used to study the causes of the difference between mortality improvement in the two populations.

Finally, we examine the autocorrelation and normality of the residuals obtained from TVECM.
Table 6 shows the result of the Ljung–Box autocorrelation test. The p-values for all the lag orders
examined are greater than 5%, thereby indicating no significant autocorrelation in the residuals.
We again perform the univariate and multivariate Doornick–Hansen normality test for the residuals.
Test results are shown in Table 7. Both multivariate test and univariate test for the residuals pass the
normality test at 5% significance level.
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Figure 3. Historical process of deviation zt.

Table 6. p-values of Ljung–Box autocorrelation test for TVECM.

Model
Lag Order

2 4 6 8 10

TVECM 0.98 0.76 0.45 0.33 0.25

Table 7. p-values of Doornick–Hansen normality test for TVECM.

Model Multivariate
Univariate

(1) (2)

TVECM 0.75 0.59 0.66

5.3. Comparing Mortality Forecasts of VECM and TVECM

We simulate the paths of k(1)t and k(2)t from year 2012 to 2031 based on the estimated VECM and
TVECM model, and determine the 95% prediction intervals. The simulation procedures are shown
as follows:

1. Let t = 2012. Generate 5000 bivariate normal random vectors as the simulated error terms

{ε(1)t , ε
(2)
t }.

2. Calculate the values of k(1)t and k(2)t based on the simulated errors for t = 2012.
3. Repeat Steps (1) and (2) for t = 2013, 2014, . . . , 2031.

Figure 4a compares the forecasts of k(1)t obtained from VECM and TVECM. The mean forecasts of

k(1)t using the two models are close from 2012 to 2018, but gradually diverge afterwards. The forecasts
from TVECM become lower than those from VECM as the forecast period increases. The prediction
interval of TVECM is also smaller than that of VECM, because TVECM explains more variation in the
data and hence yields residuals with smaller variance. Figure 4b compares the forecasts of k(2)t using

VECM and TVECM. We again observe that the forecasts of k(2)t from TVECM are much lower than



Risks 2019, 7, 14 13 of 18

those from VECM. The prediction interval of TVECM is slightly smaller than that of VECM. Overall,
we find that TVECM predicts much faster mortality improvement than VECM for both populations.
The mortality improvement pattern predicted by TVECM appears to be more in line with which has
been observed in recent years.

1920 1940 1960 1980 2000 2020
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VECM 95% prediction interval
TVECM mean forecast
TVECM 95% prediction interval
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20
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k t(2
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VECM 95% prediction interval
TVECM mean forecast
TVECM 95% prediction interval

(b)

Figure 4. Forecasts of k(i)t using VECM and TVECM. (a) k(1)t ; (b) k(2)t .

6. Pricing Longevity Bond

6.1. An Illustrative Longevity Bond

In this section, we price an illustrative longevity bond that hedges unexpected mortality
improvement associated with EW and Canadian populations. Assume that this bond is issued at the
end of 2011 and matures at the end of 2019. The bond issuer has annuity policies in both EW and
Canada and annuitants are between age 75 and 85 at the beginning of 2012.

The longevity bond is traded at its face value. It pays quarterly coupon at three-month London
Interbank Offered Rate (LIBOR) plus a spread. When the bond matures, the principal will be returned
but may be subject to erosion. The principal repayment is associated with the mortality improvement
of EW and Canada populations.

Let Improvement(i)x be the annual mortality improvement for an individual aged x from
population (i). It is defined as

Improvement(i)x = 1−

m(i)
x,2019

m(i)
x,2011

1/8

.

The mortality improvement index for population (i) is then defined as

MI(i) =
1

11

85

∑
x=75

Improvement(i)x .

The payment of the bond is linked to the weighted average of the mortality improvement (WMI)
of the two populations. It is expressed as:

WMI = 0.625MI(1) + 0.375MI(2).
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We set the respective weights of MI(1) and MI(2) at 0.625 and 0.375, because Canadian population
size is approximately 60% of EW population size. The principal of the bond is reduced if the realized
mortality improvement is higher than a certain threshold value, thereby providing hedge for longevity
risk. More specifically, the principal is reduced by a “principal reduction factor” (PRF) given below:

PRF = max
(

min
(

WMI − ap
ap− ep

, 1
)

, 0
)

,

where ap is the point of attachment and ep is the point of exhaustion. There are three possible scenarios
for the principal repayment:

1. WMI < ap and PRF = 0:
The mortality improvement of EW and Canadian populations is small, and hence the longevity
risk exposure is moderate. Full principal will be returned to bond investors.

2. ap < WMI < ep and PRF = WMI−ap
ap−ep :

Mortality improvement is significant and the annuity provider suffers loss from its annuity book.
The principal of the bond is partially reduced to compensate the loss.

3. WMI > ep and PRF = 1:
In this scenario, the mortality improvement is extremely high and the loss on the annuity book is
severe. The principal is reduced by 100% to relieve the financial burden of the annuity provider.

We set the point of attachment and point of exhaustion at the 94th and 98th percentile of simulated
WMIs based on VECM forecasts. Using these values, the probability of first loss is 6% and the
probability of 100% principal reduction is 2%. The point of attachment is 2.23% and the point of
exhaustion is 2.52%.

6.2. Risk-Neutral Pricing

Cox et al. (2006), Wang (2007), and Yang and Wang (2013) applied Wang transform to obtain
risk-neutral measure and price mortality/longevity-linked securities. We follow this work and apply
multivariate Wang transform to TVECM. To obtain the mortality rates under risk-neutral measure,
we transform the error term in TVECM. Since the error term follows normal distribution, it is still
normally distributed after the multivariate Wang transform. Let {ε̃(1)t , ε̃

(2)
t } be the error term in TVECM

under the risk-neutral measure. Using the multivariate Wang transform, we have:

ε̃
(1)
t = ε

(1)
t +

(
λ
(1)
ε + λ

(2)
ε ρ12

)
σ1,

ε̃
(2)
t = ε

(2)
t +

(
λ
(1)
ε ρ12 + λ

(2)
ε

)
σ2,

where λ
(1)
ε and λ

(2)
ε are the risk adjustment parameters for the mortality indexes; ρij is the correlation

between ε
(i)
t and ε

(j)
t ; and σi is the standard deviation of ε

(i)
t . After the transform, the mean of

{ε̃(1)t , ε̃
(2)
t } becomes {(λ(1)

ε +λ
(2)
ε ρ12)σ1, (λ(1)

ε ρ12 +λ
(2)
ε )σ2} and the variance-covariance matrix remains

the same with that of {ε(1)t , ε
(2)
t }. Based on the value of λ

(1)
ε and λ

(2)
ε and the distribution of {ε̃(1)t , ε̃

(2)
t },

we simulate mortality paths and principal repayment of the bond under the risk-neutral measure.
Let x denote the spread over LIBOR. Since the bond is traded at its face value, the spread over

LIBOR is the “price” we try to determine. Under the risk-neutral measure, the bond value is calculated
as the expected present value of future coupon payments and principal repayment discounted at
risk-free interest rate. The bond value is equal to its face value. We assume that the face value is
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1 without loss of generality. We use the spot curve for commercial bank liability in England on 31
December 20112 as the risk-free interest rate. The three-month LIBOR is set at 0.48%.

To obtain the spread x, we solve the following equation:

∑
i= 1

4 , 2
4 ,...,7 3

4 ,8

e−iri

(
0.48% + x

4

)
+ [1− EQ(PRF)]e−8r8 = 1

where ri is the yield rate of a i-year commercial bank liability and EQ(PRF) is the expectation of PRF
under the risk-neutral measure. The EQ(PRF) is calculated as the average of the simulated PRFs under
the risk-neutral measure.

6.3. Pricing Results

Cox et al. (2006) found that the market price of risk is 0.1792 for male annuitants and 0.2312 for
female annuitants in survivor derivatives. Lin and Cox (2008) discovered that the market price of
risk for EIB bond is 0.2408. Therefore, the range of 0.1 to 0.3 is reasonable for the risk adjustment
parameters. Table 8 demonstrates the pricing results using VECM and TVECM model when both risk
adjustment parameters are set to −0.1, −0.2 and −0.3. Note that the risk adjustment parameters are
negative in our case because longevity risk represents the risk of lower than expected k(i)t and hence a
left shift in the error term distribution.

Table 8. EQ(PRF) and spread over LIBOR.

Model λ
(1)
ε , λ

(2)
ε EQ(PRF) Spread over LIBOR

VECM
0 0.0356 1.62%
−0.1 0.0923 2.27%
−0.2 0.1853 3.33%
−0.3 0.3249 4.92%

TVECM
0 0.2141 3.65%
−0.1 0.3097 4.74%
−0.2 0.4221 6.0%
−0.3 0.5446 7.42%

We observe that the spread over LIBOR increases with the absolute value of the risk adjustment
parameters. A higher absolute value of risk adjustment parameter indicates that bond investors
demand higher compensation for taking the same risk and thus a higher quarterly coupon rate.

We also notice that TVECM yields 2.03–2.67% higher spreads than VECM. Recall that TVECM
predicts much faster mortality improvement than VECM. There is a higher chance of exceeding the
attachment point using TVECM forecasts than using VECM forecasts. As a result, TVECM leads
to higher expected principal reduction and also higher coupon rate as compensation to the
principal reduction.

7. Conclusions

Our analysis shows that a long-term equilibrium exists between the mortality indexes of EW and
Canadian populations. This relation can be captured using VECM, which incorporates an adjustment
coefficient and a cointegrating value to revert the time series toward their long-term relation.

However, we also find that threshold effect exists in the VECM, i.e., the time series data follow
different VECMs depending on the value of a threshold variable. Therefore, we further consider
TVECM to incorporate the threshold effect. In TVECM, the threshold variable is set to the level of

2 Downloaded from http://www.bankofengland.co.uk/statistics/Pages/yieldcurve/archive.aspx.

http://www.bankofengland.co.uk/statistics/Pages/yieldcurve/archive.aspx
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deviation from the long-term equilibrium. When comparing the forecasts of mortality index between
TVECM and VECM, we find TVECM yields lower mean mortality forecasts and narrower prediction
intervals. The mortality improvement pattern predicted by TVECM is more in line with that observed
in recent years, in contrast with VECM.

Finally, we price an illustrative longevity bond that hedges the longevity risk for an annuity
provider that operates in both EW and Canada. Due to the higher mortality improvement forecasts,
the coupon rates required by bond investors based on the TVECM forecasts are much higher than
those based on the VECM forecasts. Capturing the changes in the long-term relation has a significant
impact on the longevity bond price.

By allowing regime switching, TVECM can capture potential changes in the dependence structure,
and hence the flexibility. The VECM in each regime is estimated using the portion of mortality
data that belong to the corresponding regime, thereby more accurately representing the mortality
dynamics in that regime. In contrast, single-regime VECM assumes that mortality dependence remains
unchanged over the sample period. Parameter estimates of single-regime VECM are obtained utilizing
the entire dataset. When change of mortality dependence occurs in the historical data, the estimates
of the single-regime VECM cannot fully reflect the new mortality dynamics. Therefore, the mortality
forecasts using single-regime VECM are less consistent with most recent mortality trend.

Furthermore, TVECM is a nonlinear model while single-regime VECM is linear. Since we observe
some curvature in the estimates of k(1)t and k(2)t , it is expected that the nonlinear TVECM is more
suitable for modeling the pair. Since the nonlinear model can capture the acceleration of mortality
improvement in the past few decades, TVECM predicts faster mortality improvement than VECM.
As a result, longevity risk pricing using TVECM is more conservative compared to VECM, as shown in
the pricing of the illustrative longevity bond. For similar reasons, we should also expect higher prices
for annuity portfolios using TVECM than single-regime VECM.

We note that the presence of threshold effect is data dependent. For example, there is insignificant
threshold effect in the mortality dependence of Canadian and US populations. If we switch to different
sample period or sample age range, we might also arrive at different results. Therefore, it is important
to test the presence of threshold effect before applying TVECM to mortality data.

When performing residual diagnostics, we observe non-normality caused by outliers in EW mortality.
Identifying and removing outliers in time series was extensively studied by Chen and Liu (1993). In future
work, we are interested in studying how the removal of outliers affects the long-term relation and the
longevity bond pricing. Another venue of future work is to simplify the estimated TVECM. One of the
drawbacks of TVECM is the large number of parameters. Given that the sample size of mortality data is
relatively small, the large number of parameters introduces great parameter uncertainty. Therefore, it is
important to explore various techniques to reduce the model parameters.
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