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1 Introduction

Dynamic macroeconomic theory nowadays relies heavily on infinite horizon

optimization models which usually give rise to a system of nonlinear differ-

ential equations. This dynamic system is then interpreted to describe the

evolution of the economy under consideration. Many studies in the field

of growth theory have confined their analysis to the balanced growth path

(BGP). A comprehensive understanding of the respective model under study

requires, however, that we investigate in addition the transition process. At

least two important arguments support this view: First, the positive and

normative implications might differ dramatically depending on whether an

economy converges towards its BGP or grows along the BGP (e.g. Jones,

1995). Second, dynamic macroeconomic models are often employed to con-

duct comparative welfare investigations of different policy regimes or in-

struments. In this context, the transition process needs to be taken into

account. Linearizing the dynamic system might be appropriate in many

cases but can be potentially misleading especially when the analysis aims

at a Pareto-ranking of different policy instruments. This overall perspective

is nicely summarized by the following statement due to Jonathan Temple

(2003, p. 509): Ultimately, all that a long-run equilibrium of a model de-

notes is its final resting point, perhaps very distant in the future. We know

very little about this destination, and should be paying more attention to the

journey.

The models employed in growth theory are often multi-dimensional in

the sense that there is more than one (predetermined) state variable. Ex-

amples comprise R&D-based growth models (e.g. Romer, 1990; Jones, 1995;

Eicher and Turnovsky, 1999) as well as human-capital based growth models

(e.g. Lucas, 1988; Mulligan and Sala-i-Martin, 1993; Benhabib and Perli,

1994). This class of models frequently exhibits characteristics which make

the use of standard procedures fairly inconvenient if not impossible. Here
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we would like to stress two issues: First, assuming usual stability prop-

erties in multi-dimensional models implies that the stable manifold is also

multi-dimensional.1 Moreover, if the dynamic system is characterized by sta-

ble eigenvalues which differ substantially in magnitude (i.e. stiff differential

equations), then usual procedures are either not applicable or highly ineffi-

cient. This characteristic property is not at all a special (or even pathologi-

cal) case but instead occurs quite frequently; an example is the well-known

Jones (1995) model. Second, most standard simulation procedures are not

applicable to dynamic systems giving rise to a continuum of saddle-point

stable stationary equilibria (i.e. a center manifold). This property arises, for

instance, in the popular Lucas (1988) model.

The paper at hand contributes to the literature on dynamic macroeco-

nomic theory by proposing the relaxation algorithm as a powerful method to

simulate the transition process in growth models. We show that this proce-

dure is in general well-suited and highly efficient. This will be demonstrated

by simulating the transition process of two prominent growth models, i.e. the

Jones (1995) model and the Lucas (1988) model. Despite the fact that these

models are widely employed in growth theory, their adjustment processes

have hardly been investigated. This is probably due to the characteristics

mentioned above, which give rise to serious conceptual difficulties when it

comes to simulation issues.

In the context of growth theory, the most prominent approaches to simu-

late the transition process comprise shooting (e.g. Judd, 1998, Chapter 10),

time elimination (Mulligan and Sala-i-Martin, 1991), backward integration

(Brunner and Strulik, 2002), the projection method (Judd, 1992) as well

as the discretization method of Mercenier and Michel (1994). The similari-

ties and differences of the relaxation procedure and the methods mentioned

above will be discussed concisely below. The above enumeration shows that
1In the case of saddle-point stability, the dimension of the stable manifold equals the

dimension of the state space, while indeterminacy implies that the dimension of the stable
manifold exceeds the dimension of the state space.
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there are already some procedures which have been used in economics to

solve dynamic systems. Nonetheless, we think that there are a number of

good reasons to include additionally the relaxation procedure into the tool-

box of dynamic macroeconomic theory:

First, our experiences with the relaxation algorithm are positive through-

out. We have applied the procedure to a wide range of dynamic systems,

including stiff differential equations, dynamic systems with saddle-point sta-

ble center manifolds as well as highly dimensional computable general equi-

librium models. The algorithm performed amazingly well. It is remarkable

that an increase in the dimension of the model under study does not cause

any conceptual problems. The researcher need not take restrictions with

respect to the model dimension into account. In addition, the procedure

seems to be efficient with respect to computer time.

Second, the application of the procedure is fairly user friendly. Specifi-

cally, the only input which must be provided by the researcher consists in

the dynamic system and the set of underlying parameters. No preliminary

manipulations of the dynamic system under study must be conducted before

the procedure can be applied; this is different from most other procedures

as described in Section 3.

Third, the variant of the relaxation algorithm we propose exploits in a

natural manner the infinite time horizon which usually underlies standard

optimal control problems. This is achieved by a simple transformation of

real calendar time into a transformed time scale (as explained in Section

2.1). For most other procedures, this issue must explicitly be dealt with

(explained in Section 3).

Overall, it seems that the relaxation algorithm can easily cope with a

large number of problems which arise frequently in the context of multi-

dimensional, infinite-time horizon optimal control problems. Finally, it

should be noted explicitly that the focus here is on continuous time dy-

namic models, which have been extensively employed in growth theory. The
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relaxation procedure has been employed to investigate discrete time dynamic

macroeconomic models (Laffargue 1990, Juillard et al. 1998). However, it is

well known that discrete time models are conceptually different from con-

tinuous time models and hence the application of algorithms designed to

investigate discrete time models to continuous time models is very inconve-

nient.

The paper is structured as follows: In Section 2, the relaxation proce-

dure is described concisely and then evaluated numerically employing the

Ramsey-Cass-Koopmans model as a basic example. Section 3 provides a

short comparison to alternative methods. In Section 4, we apply the proce-

dure to simulate the transition process of the Jones (1995) model and the

Lucas (1988) model. Section 5 summarizes and concludes. The appendix

(Section 6) provides a more formal description of the relaxation procedure.

Finally, the relaxation algorithm has been programmed in MatLab. This

program together with a concise instruction manual is available for free

download at: www.rrz.uni-hamburg.de/IWK/trimborn/relaxate.htm.

2 The relaxation procedure

2.1 Description of the relaxation procedure

The principle of relaxation can be applied to various numerical problems.

Here we use it to solve a differential equation numerically. Relaxation type

algorithms applied to differential equations have two very useful proper-

ties. First of all, they can easily cope with boundary conditions, such as

initial conditions for state variables and transversality conditions of opti-

mal growth. Second, additional equations, e.g. equilibrium conditions or

feasibility constraints, can be incorporated straight away. Beyond, by trans-

formation of the (independent) time variable one can solve infinite horizon

problems, as they arise from many dynamic optimization problems in eco-

nomics.
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Suppose we want to compute a numerical solution of a differential equa-

tion in terms of a large (finite) sequence of points representing the desired

path. To start with, we take an arbitrary trial solution, typically not satisfy-

ing the slope conditions implied by the differential equation nor the bound-

ary conditions. We measure the deviation from the true path by a multi-

dimensional error function and use the derivative of the error function to

improve the trial solution in a Newton type iteration. Hence, at each point

of the path the correction is related to the particular inaccuracy in slope and

in solving the static equation. The crucial difference to the various shooting

methods is the simultaneous adjustment along the path as a whole.

Figure 1 illustrates the adjustment by relaxation of a linear initial guess

towards the saddle path in the Ramsey-Cass-Koopmans model. The initial

guess starts with a fixed initial value of the state variable k and an arbitrary

initial value of the control variable c. It consists of 30 mesh points lined

up equidistantly between the starting point and the known steady state of

the model. Evaluating the multi-dimensional error function the algorithm

realizes that the fit to the differential equation can be improved by an upward

shift of the curve without jeopardizing the boundary conditions. After a few

steps the error is sufficiently small and the algorithm stops.

The outline of the algorithm proposed in this paper leans on Press, Flan-

nery, Teukolsky and Vetterling (1989, pp. 645-672). We have implemented

the algorithm in MatLab. The code is published for free download in the

internet2 and a print version is available on request.3

We apply the method to the following kind of problem: Consider a

system of Ñ ordinary differential equations together with N − Ñ (static)

equations in N real variables. This system describes a vector field on an Ñ -

dimensional surface in R
N . We impose a list of n1 boundary conditions at

the starting point and n2 at the end point of a path sufficient to determine a
2http://www.rrz.uni-hamburg.de/IWK/trimborn/relaxate.htm
3In the appendix we give a detailed description of the algorithm.
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Figure 1: Relaxation in the Ramsey-Cass-Koopmans model

particular trajectory. To meet all dimensional requirements n1 and n2 must

add up to Ñ .

For the finite representation of the problem we fix a time mesh of M

points in time. In case of an infinite time horizon we choose a transformation

to map the interval [0,∞] to [0, 1]. At each point in time an N -dimensional

vector has to be determined. We approximate the differential equation by

M−1 systems of equations of dimension Ñ for the slope between neighboring

mesh points. Together with Ñ boundary conditions we have an M × Ñ

dimensional system of equations. After adding the N − Ñ static equations

which have to hold at each of the M mesh points we have incorporated all

restrictions available. The final system of nonlinear equations is of dimension

M ×N and involves the same number of unknowns.
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We apply a Gauß-Newton procedure to compute a root of this system.

Step by step we adjust the trial solution until the error is sufficiently small.

This involves the solution of a linear equation with the Jacobian matrix

of the system of nonlinear equations. At first glance, there seems little

chance to achieve good solutions because the complexity of the problem is

proportional to the size of the Jacobian matrix which is quadratic in M .

However, the Jacobian is not an arbitrary matrix of dimension M × N .

The Jacobian matrix inherits a specific structure from the approxima-

tion of the differential equation. The boundary conditions and the static

equations each depend only on one respective vector, and the interior slope

conditions only on neighboring vectors. Hence the Jacobian matrix shows

nonzero entries only close to the diagonal. This can be used to solve the lin-

ear system by a special version of a Gauß algorithm carried out recursively

onN -dimensional blocks along the diagonal. This recursive procedure allows

to increase the number M of mesh points without increasing the dimension

of the blocks. Only the number of blocks increases in proportion to M . The

complexity of the problem is only linear in the number of mesh points and

not quadratic. Hence, a fairly good approximation of the continuous path

is possible without using too much computer time.

2.2 Implementation of the algorithm

To illustrate, we describe the steps which must be taken when implementing

the relaxation algorithm using the Ramsey-Cass-Koopmans model (Ramsey,

1928; Cass, 1965; Koopmans, 1965) as an example. It is important to notice,

however, that this description serves as an illustration only. The researcher

who intends to simulate a specific model using the program (provided as a

supplement to this paper) need not follow these steps.

It is well known that this simple growth model exhibits saddle-point

stability and hence the determination of the solution is all but trivial.4 The
4Nonetheless, the model is comparably simple in that the stable manifold is one di-
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model gives rise to a system of two differential equations for consumption

c and capital per effective labor k (Barro and Sala-i-Martin, 2004, Chapter

2):

ċ =
c

θ

(
αkα−1 − (δ + ρ+ xθ)

)
(1)

k̇ = kα − c− (n+ x+ δ)k, (2)

where α denotes the elasticity of capital in production, n the population

growth rate, δ the depreciation rate, x the exogenous growth rate of tech-

nology, ρ the parameter for time preference and θ the inverse of the in-

tertemporal elasticity of substitution, respectively. The steady state is

k∗ =
(

α
δ+ρ+xθ

) 1
1−α and c∗ = (k∗)α − (n + x + δ)k∗ and is saddle point

stable.

As a first step, one must choose a time mesh, i.e. a set of points in time

at which the solution should be calculated. We select the time mesh to be

uniform in the transformed time scale (as explained in section 2.1).

Second, the two differential equations have to be transformed into two

non-linear equations which describe the slope between two neighboring mesh

points. These equations have to be satisfied between every two mesh points.

For M mesh points this leads to 2 · (M − 1) nonlinear equations.

Third, two boundary conditions have to be chosen to complete the set of

equations to 2·M . In this example the relaxation algorithm needs one initial

boundary condition and one terminal boundary condition. We set the initial

value of the state variable (capital) equal to 10% of its steady state value. For

the terminal boundary condition there are several possibilities to formulate

an equation. It would be possible to choose each of the two equations (1) or

(2) and set the RHS equal to zero. However, here the steady state values for

consumption and capital can be computed analytically and, therefore, we

can set consumption equal to its steady state value as the terminal boundary

condition. It should be noted that only one terminal condition is needed.

mensional. We will turn to a model with a multi-dimensional stable manifold below.
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Thus the algorithm does not make use of the knowledge of the steady state

value of capital. It is reached automatically.

At last an initial guess for the solution has to be made. For instance,

we can choose c and k to be constant at their steady state values (ct, kt) ≡
(c∗, k∗).5 The Newton procedure always converged quickly, indicating a high

degree of robustness with respect to the initial guess.

2.3 Evaluation of the procedure

For the special parametrization θ = δ+ρ
α(δ+n+x)−x the representative consumer

chooses a constant saving rate s = 1
θ and hence the solution can be expressed

analytically (Barro and Sala-i-Martin, 2004, pp. 106-110).6 This allows us to

compare the computed results with the analytical solution, which has a pre-

cision close to the machine epsilon. The relative error is computed for every

mesh point. Table 1 shows the maximum relative error of consumption and

capital per effective labor for different numbers of mesh points. In addition,

the quadratic mean error of combined c and k provides information about

the distribution of the error.7 Table 1 reveals that multiplying the number

of mesh points by x reduces the maximum error of each solution vector by

the factor 1
x2 , which indicates the order 2 of the difference procedure. Even

with a moderate number of mesh points and therefore a short computation

time, a sufficiently high degree of accuracy can be achieved. Moreover, the

accuracy can be improved to a very high degree by increasing the number

of mesh points.8 The treatment of higher dimensional systems with multi-

dimensional stable manifolds is largely analogous to the example described
5This is in contrast to Figure 1 where the initial guess is an upward sloping line.

6The analytical solution is k(t) =
[

1
(δ+n+x)θ

+
(
k1−α
0 − 1

(δ+n+x)θ

)
e−(1−α)(δ+n+x)t

] 1
1−α

and c(t) = (1 − 1
θ
)k(t)α.

7It is defined as ε = 1
NM

√∑N
i=1 ε2

ci
+

∑N
i=1 ε2

ki
with εci and εki denoting the relative

error of k and c at mesh point i, respectively.
8It should be mentioned that the allocation of the mesh was chosen exogenously. The

accuracy of the algorithm could be improved with a self allocating time mesh.
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Table 1: Accuracy of the relaxation algorithm for the Ramsey-Cass-
Koopmans model

number of mesh points max error c max error k mean error
10 < 1.3 · 10−2 < 3.4 · 10−2 < 3.0 · 10−3

100 < 1.1 · 10−4 < 8.6 · 10−5 < 2.7 · 10−6

1,000 < 1.1 · 10−6 < 8.5 · 10−7 < 8.2 · 10−9

10,000 < 1.1 · 10−8 < 8.5 · 10−9 < 2.6 · 10−11

100,000 < 1.1 · 10−10 < 8.5 · 10−11 < 8.2 · 10−14

above. This is the reason why the the algorithm performs similarly well for

more complicated models.

3 Comparison to other procedures

The relaxation procedure is concisely compared to the most popular alterna-

tive solution methods employed in growth theory. These comprise backward

integration (Brunner and Strulik, 2002), multiple shooting (e.g. Judd, 1998,

Chapter 10), time elimination (Mulligan and Sala-i-Martin, 1991), projec-

tion methods (e.g. Judd, 1992; Judd, 1998, Chapter 11) and the method of

Mercenier and Michel (1994). This section is kept brief since most of the

procedures and their relative advantages are described in Judd (1998) and

Brunner and Strulik (2002).

Backward integration as suggested by Brunner and Strulik (2002) ex-

ploits the numerical stability of the backward looking system by inverting

time. By starting near the steady state of the transformed system, the re-

sulting initial value problem is stable and the solution converges towards

the stable manifold of the forward looking system quickly. This method can

solve systems with one-dimensional stable manifolds very conveniently. For

multi-dimensional manifolds Brunner and Strulik (2002) suggest to generate

starting values on an orbit around the steady state. To pass through a pre-

11



specified point (determined by the specific shock under study), it is necessary

to iterate until the trajectory hits this point. However, if the real parts of

the stable eigenvalues differ substantially, the problem of stiff differential

equations occurs. It is well-known that these problems are very hard to

handle numerically. For large differences between the stable eigenvalues, it

is impossible to meet the pre-specified point, because the backward directed

trajectories will be attracted by the submanifold, which is determined by

the eigenvalue with the smallest real part. The resulting trajectories hence

cannot represent a specified shock and potentially have no economic mean-

ing. Furthermore, if there exists a continuum of steady states represented

by a (saddle-point stable) center manifold, then the specific steady state to

which the economy converges depends on the initial boundary conditions.9

If one particular steady state is chosen for backward integration, then only

one initial condition can be satisfied. To find a trajectory which fulfills all

initial conditions, an iteration process has to be applied. This procedure

typically gives rise to problems of convergence.

Mercenier and Michel (1994) propose to transform the continuous time,

infinite horizon problem into a finite horizon maximization problem in dis-

crete time with the same steady state. The transformed problem can be

solved with a static optimization procedure. This leads to a system of non-

linear equations, which is solved by a Newton algorithm. Our approach is

to solve the system of differential equations directly. Here the discretization

is done at a later stage. To apply the relaxation algorithm the researcher

simply has to insert the differential equations into the program code, instead

of converting the complete maximization problem. Apart from simplicity,

the relaxation algorithm has some further advantages.

First, the relaxation procedure is more general in that the system of

differential equations can be attained in different ways. In particular, the
9For instance, in the Lucas (1988) model presented below the actual steady state to

which the economy converges depends on the initial level of human and physical capital
h0 and k0.
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approach of Mercenier and Michel requires the discount factor to be constant

in order to achieve invariance of the steady state. However, if the firm also

faces an intertemporal optimization problem, the discount factor is related

to the real interest rate which might be time-variant. Second, the proposed

version of the relaxation algorithm can deal with a compactification of the

time interval. It is not necessary to choose an adequate terminal time where

the optimization is truncated. Also, the treatment of a post terminal sta-

tionary phase does not apply. Third, the relaxation algorithm leaves room

for selecting different discretization rules, also of higher order. This leads

to a higher level of accuracy with the same number of mesh points. The

discretization rule of the method of Mercenier and Michel is a first order

rule, whereas the relaxation procedure uses a second order rule.10

Projection methods, introduced in Judd (1992) and Judd (1998, Chapter

11), cover a very wide range of algorithms. For many problems they prove to

be fast and accurate, but also require a high programming effort. Moreover,

they are usually applied to solve for the policy function. However, if the

model exhibits non-monotonic adjustments, the policy function cannot be

computed at the turning points. Furthermore, if there exists a continuum

of steady states represented by a center manifold, the interval of integration

is not known in advance since it depends on the final steady state to which

the economy converges. In this case, projection methods appear to be inap-

propriate. In addition, the polynomial bases and therefore the computation

costs grow exponentially when the dimension of the problem increases. To

avoid this “curse of dimensionality”, a special complete polynomial basis is

chosen but still the computation costs grow considerably.

Similar remarks apply to the time elimination method: First, in the case

of non-monotonic adjustments, the policy functions cannot be computed at

the turning points and, second, if there exists a continuum of steady states,
10When multiplying the number of mesh points with x a first order rule leads to a

reduction of the global error by 1
x
, whereas a second order rule reduces the error by 1

x2 .
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the interval of integration is unknown.

4 Two illustrative applications

The relaxation procedure is employed to investigate the transition process

of two prominent growth models. As a first example, we consider the Jones

(1995) model. For usual calibrations this model gives rise to a system of stiff

differential equations. The second example, the Lucas (1988) model, implies

a saddle-point stable center manifold. Note that the transition process of

these popular growth models has hardly been investigated so far, which is

probably due to the conceptual problems mentioned above.

4.1 The Jones (1995) model

The technology for final output Y is given by Y = αF (φL)σL
∫ A
0 x(i)1−σLdi,

where φ denotes the share of labor allocated to final-output production,

x(i) the amount of differentiated capital goods of type i, A the number of

differentiated capital goods, αF a constant overall productivity parameter

and σL the elasticity of labor in final-output production. Noting the general

symmetry among x(i) and using the definition of aggregate capital K :=

Ax, the final-output technology can be written as Y = αF (AφL)σLK1−σL .

The R&D technology is Ȧ = J = αJA
ηA [(1 − φ)L]ηL with ηL := ηp

L + ηe
L,

ηp
L = 1,−1 < ηe

L < 0, where Ȧ := dA/dt, αJ denotes a constant overall

productivity parameter, ηA the elasticity of technology in R&D and ηL the

elasticity of labor in R&D.

The dynamic system which governs the evolution of the economy under

study can be summarized as follows:11

k̇ = y − c− δk − βKnk (3)

ȧ = j − βAnk (4)
11For a detailed derivation of the dynamic system for the general R&D-based non-scale

growth model see Steger (2005).
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ċ =
c

θ
[r − δ − ρ− (1− γ)n]− βKnc (5)

v̇a = va[r − (βK − βA)n]− π (6)

σLy

φ
= va

ηp
Lj

1− φ
(7)

where y = αF (aφ)σLk1−σL , j = αJa
ηA(1 − φ)ηL , r = (1−σL)2y

k , π =
σL(1−σL)y

a , βK = 1−ηA+ηL
1−ηA

, βA = ηL
1−ηA

. Note that the dynamic system is

expressed in scale-adjusted variables, which are defined by y := Y/LβK ,

k := K/LβK , c := C/LβK , a := A/LβA , j := J/LβA and va := v/LβK−βA .

The (unique) stationary solution of this dynamic system corresponds to the

(unique) BGP of the economy expressed in original variables.

Equations (3) and (4) are the equations of motion of (scale-adjusted) cap-

ital and technology, (5) is the Keynes-Ramsey rule of optimal consumption c,

(6) shows capital market equilibrium with va denoting the (scale-adjusted)

price of blueprints and (7) determines the privately efficient allocation of

labor across final-output production and R&D.

The objective is to solve the four-dimensional system of differential equa-

tions (3) - (6), taking into account the static equation (7), which must hold at

all points in time. The steady state is a saddle point with a two-dimensional

stable manifold. Since the steady state can be determined numerically only,

the algorithm computes the steady state of the system first by applying a

Newton algorithm. The choice of k(0) = k0 and a(0) = a0 as initial bound-

ary conditions is obvious since k and a are the state variables. Again, there

is some freedom when it comes to the determination of boundary conditions.

We have set the RHS of equations (5) and (6) equal to zero. Moreover, we

choose once more, as an initial guess, all variables to be constant at their

steady state values. This always lead to quick convergence, indicating that

the procedure is relatively robust with respect to the initial guess.

The transition process considered below results from a combination of

two simultaneous shocks. Specifically, it is assumed that the overall pro-

ductivity parameter in the production function for final output αF increases

15



from 1.0 to 1.3, while the overall productivity parameter in the production

function for new ideas αJ decreases from 1.0 to 0.9. This shock was cho-

sen to demonstrate that the adjustment can be non-monotonic (as can be

recognized by inspecting Fig. 2 (vi), for instance) and therefore the policy

functions cannot be computed at certain points with conventional meth-

ods.12 Figure 2 gives a summary of the adjustment process. The plots (i)
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Figure 2: Summary of the transition of the Jones (1995) model

to (iii) show the time path of the jump variables c, φ, va, plots (iv) and (v)

display the time path of the state variables k and a, while plot (vi) gives the

projection of the adjustment trajectory into the (k,a)-plane.
12The set of parameters used for simulation is: σL = 0.6, σK = 0.4, δ = 0.05, n = 0.015,

ηA = 0.6, ηL = 0.5, ηp
L = 0.6, ρ = 0.04 and γ = 1.
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4.2 The Lucas (1988) model

Another very interesting example is the model discussed by Mulligan and

Sala-I-Martin (1993) and Benhabib and Perli (1994), which is based on the

seminal contribution of Lucas (1988). Assume final output is produced from

physical and human capital, k and h. The stock of human capital can be

split into a share u used for final output production and 1− u employed to

increase human capital. Due to human capital spill over effects there are

increasing returns to scale in the production sector. Intertemporal utility

of consumption c with constant elasticity of intertemporal substitution σ−1

and discount rate ρ is to be maximized. First order conditions for opti-

mal solutions can be computed in the usual way. In terms of growth rates

(denoted by a hat) the system is

k̂ = APK − c/k (8)

ĥ = δ(1− u) (9)

ĉ = σ−1(αAPK − ρ) (10)

û =
(γ − α)δ

α
(1− u) +

δ

α
− c

k
(11)

where APK := Akα−1h1−α+γu1−α denotes the average productivity of cap-

ital.

Balanced growth requires that u, c/k as well as APK are constant. The

latter requirement in turn demands (1− α)k̂ = (1− α+ γ)ĥ.

The common balanced growth rate µ of k and c can be computed by

solving the system under balanced growth assumptions:

µ =
1− α+ γ

(1− α+ γ)σ − γ
(δ − ρ)

Growth is balanced if the four variables of the system satisfy three equations:

1− u =
1− α

(1− α+ γ)σ − γ
(1− ρ/δ)

c/k = ((γ − α)ψµ+ δ)/α

17



kα−1h1−α+γ =
σµ+ ρ

αA
(u∗)α−1

where ψ := (1 − α)/(1 − α + γ). The question arises whether other

solutions initially suffering from unbalancedness converge to a BGP. One

method to check whether convergence occurs is scale adjustment. Scale

adjustment slows down the motion of variables according to their respective

balanced growth rates. The transformed variables are

ke−µ t , he−ψµ t , ce−µ t and u

To avoid extra notation we continue to use the old designations of variables.

The new, adjusted growth rates are reduced by the constants of adjustment,

µ and ψµ, respectively. The growth rate of u remains unchanged. Due

to scale adjustment, the BGP of the original system [shown in Figure 3

(i)] turns into a curve representing a continuum of stationary equilibria,

which is labeled CSE [displayed in Figure 3 (ii)] with the same shape. This

curve represents a (saddle-point stable) center manifold of the new system.13

An optimal solution with unbalanced initial state conditions (k0, h0) now

approaches a particular point on the curve CSE. Yet, there is no way to

compute this point analytically.

Numerical computation requires the solution of a differential equation

system with two initial conditions and two final conditions. The initial con-

ditions are given by the inital values of state variables k(0) = k0, h(0) = h0.

Final conditions which determine the path, and work well with the relax-

ation algorithm, are stationarity conditions for the state variables, implicitly

defined by k̇(∞) = 0 and ḣ(∞) = 0.

By numerical simulation of the scale adjusted model we can now answer

the following type of question: Consider two economies (1 and 2) differing in

their initial states (k1
0, h

1
0) and (k2

0, h
2
0) only. Will they converge to the same

13The scale adjusted system has one zero eigenvalue, which gives rise to a continuum
of stationary equilibria (i.e. a center manifold). For details on the basic concept of center
manifolds see, for instance, Tu (1994, pp. 187-191).
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Figure 3: Summary of the transition of the Lucas (1988) model

point on the CSE? Or will, alternatively, one economy have a permanent

advantage in the sense of exhibiting a higher level of consumption along

the BGP? Figure 3 illustrates such a situation, where the solid trajectories

display a development implying a higher long run consumption level, as can

be recognized by inspecting Figure 3 (iii).
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5 Summary

We propose the relaxation algorithm as a powerful and efficient procedure

to investigate the transition process of continuous-time growth models. At a

very general level, this method has two main advantages: First, it is simpler

than most other procedures. Second, and more importantly, the relaxation

procedure can easily deal with complex dynamic systems for which conven-

tional algorithms appear to be inappropriate. Specifically, the relaxation

procedure can easily handle stiff differential equations as well as dynamic

systems giving rise to saddle-point stable center manifolds. It has been

demonstrated that these type of systems result from basic workhorse mod-

els in growth theory. Finally, it is important to note that the relaxation

algorithm can easily deal with highly dimensional dynamic systems, which

enables a wide range of potential applications, including computable general

equilibrium models as well as dynamic models with heterogeneous agents.

6 Appendix

In this section we go through some details of the algorithm. Consider a

system of Ñ differential equations on an open set in R
N , with Ñ ≤ N . Let

x̃ be the vector of those components of the full vector xεRN affected by f .

dx̃

dt
= f(t, x) , f : R+ × R

N → R
Ñ

If Ñ is strictly smaller than N the differential equations are to be supple-

mented by N−Ñ equations x has to satisfy at any time.

0 = g(t, x) , g : R+ × R
N → R

N−Ñ

Boundary conditions are supposed to be given in form of n1 initial conditions

and n2 final conditions. For the solution to be well determined we need

n1 + n2 to equal Ñ . Finally, it is convenient to denote the codimension

N − Ñ of the manifold given by g(t, x) = 0 by n3. Summing up we have
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n1 initial conditions
n2 final conditions
n3 running equations

with n1 + n2 + n3 = Ñ + n3 = N

For convenience, we rescale the time range R+ by introducing a new time

parameter τ running from 0 to 1

τ = νt/(1 + νt)

In terms of τ we get an equivalent differential-algebraic system

dx̃

dτ
= ξ(τ, x) = f( τ

ν(1−τ) , x) / ν(1− τ)2

0 = φ(τ, x) = g( τ
ν(1−τ) , x)

(12)

Define a mesh of M points in (transformed) time τ by T = {τ1, . . . , τM}.
Along the mesh, the dependent variable x falls into a list of vectors. To

avoid confusion we denote it by y = {y1, . . . , yM} where yk is the value of x

at τk. We use the midpoint of each interval (τk, τk+1) for the discretization

of the differential equation

ỹk+1 − ỹk = (τk+1 − τk) ξ(τ̄k, ȳk) for k = 1, . . . ,M − 1 (13)

where τ̄k = (τk + τk+1)/2 and ȳk = (yk + yk+1)/2. An element of this

sequence of difference equations yields an Ñ -dimensional error function H :

([0, . . . , 1]× R
N )2 → R

Ñ

H(τk, yk, τk+1, yk+1) = ỹk+1 − ỹk − (τk+1 − τk)ξ(τ̄k, ȳk)

Note that the matrix of partial derivatives of H with respect to yk and yk+1

differ only in their derivatives of ỹk+1 and ỹk, respectively, and this is plus

or minus the identity matrix of dimension Ñ .

Let B denote the initial conditions

B : R
N → R

n1 ,

F denote the final conditions

F : R
N → R

n2

21



and let C denote the running conditions

C : [0, . . . , 1]× R
N → R

n3

All together this defines a system of equations in y = (y1, . . . , yM )εRN ·M

given a mesh τ = (τ1, . . . , τM )εRM , and we are looking for a root of this

system.

For the description of the algorithm it is convenient to list the equations

according to the unknown vectors yk involved. We start with the initial

conditions which only involve y1 and end with the equations which only

involve yM . Ordered this way the system can be seen as a system of M + 1

vector equations E0(y), . . . , EM (y). The first subsystem E0(y) depends only

on y1 and consists of n1 initial conditions. The intermediate subsystems

Ek(y) for k = 1, . . . ,M − 1 depend on yk and yk+1 and are of dimension N .

Each of these subsystems begins with n3 running conditions and is completed

by n1 + n2 difference equations. The last subsystem EM (y) depends on yM

and consists of n3 interior conditions together with n2 final conditions. It

has dimension n2 + n3.

E(y) ≡




E0(y)
...

Ek(y)
...

EM (y)




=




(
B(y1)

)
...(

C(yk)
H(yk, yk+1)

)

...(
C(yM )
F (yM )

)




(14)

Each step of the Newton algorithm applied to E(y) = 0 computes a

change ∆y by solving the linear equation

DyE(y) ·∆y = −E(y)
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Due to the ordering of subsystems E this equation is of following form:



S0,R

S1,L S1,R 0
S2,L S2,R

. . .
0 SM−1,L SM−1,R

SM,L







∆y1
...

∆yM


 =




−E0(y)
...

−EM (y)




(15)

All Sk,L and Sk,R are Jacobian matrices defined by

Sk,L =
∂Ek(y)
∂yk

, and Sk,R =
∂Ek(y)
∂yk+1

The upper left matrix S0,R has n1 rows and the lower right matrix SM,L

only n3 + n2, whereas all other matrices Sk,L and Sk,R, resp, are N × N .

Hence, the system is not overdetermined. The solution ∆y can be computed

by a specialized Gaussian algorithm. This algorithm starts in the upper left

corner of the matrix and works downward block by block to the lower right

corner. The result is a system in upper triangular form with a sequence of

N × (n2 + n3) non-zero blocks above the diagonal. Finally the vector ∆y

can computed from bottom to top. To be more precise:

step 0: Diagonalize the first n1 columns of S0,R.
step k, k=1, . . . ,M−1: Eliminate the first N − n1 columns of Sk,L;

diagonalize the remainder of Sk,L together
with the first N − n1 columns of Sk,R.

step M : Eliminate the first N − n1 columns of SM,L;
Diagonalize the remainder of SM,L

step M+k, k=1, . . . ,M : Solve for ∆yM+1−k.

The Newton algorithm refines the current guess of y by adding ∆y or a

fraction of this vector to y. The algorithm stops if the error E is sufficiently

small according to an appropriate norm.
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