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Abstract: We propose novel nonparametric estimators for stochastic volatility and the volatility of 
volatility. In doing so, we relax the assumption of a constant volatility of volatility and therefore, 
we allow the volatility of volatility to vary over time. Our methods are exceedingly simple and far 
simpler than the existing ones. Using intraday prices for the Standard & Poor’s 500 equity index, 
the estimates revealed strong evidence that both volatility and the volatility of volatility are 
stochastic. We also proceeded in a Monte Carlo simulation analysis and found that the estimates 
were reasonably accurate. Such evidence implies that the stochastic volatility models proposed in 
the literature with constant volatility of volatility may fail to approximate the discrete-time short 
rate dynamics. 
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1. Introduction 

Financial market volatility is a key factor for many issues in finance, ranging from asset 
management to risk management (Poon and Granger 2003). In light of this, market participants are 
preoccupied with both the nature of volatility and its level. Since volatility can be used in investment 
decisions, derivative pricing and financial market regulation, several approaches have been proposed 
in the existing literature with regard to its estimation. A key assumption is that that volatility can 
change over time, thus many changes in volatility can be modeled stochastically. In the existing 
literature, there is evidence that stochastic volatility models outperform constant volatility models 
(see Hull and White 1987; Ghysels et al. 1996; Andersen and Lund 1997; among many others). Indeed, 
there is strong evidence of non-stationarity in the variance (see e.g., Cohen et al. 1972). Stochastic 
volatility models resolve the shortcoming of the Black and Scholes model that the volatility is constant 
over time and is unaffected by the changes in the price level of the underlying asset. Although 
volatility can be estimated by parametric, semi-parametric and nonparametric estimators (see Asai et 
al. 2006; Maasoumi and McAleer 2008; Asai and McAleer 2011; Caporin and McAlear 2012 for a 
detailed discussion on this topic), statistical inferences for stochastic volatility models are mainly 
parametric. Cox et al. (1985) and Heston (1993) offered some indicative examples of parametric 
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estimation.1 However, Alghalith (2012) highlighted some important limitations of these procedures. 
Few studies have used nonparametric approaches employing integrated volatility. Examples include 
Vetter (2015), Comte et al. (2010) and Renò (2006). Stochastic volatility stands for one of the main 
concepts in financial literature used in finance, that is, the endemic time-varying behavior of volatility 
and the co-dependence observed in markets (see Mandelbrot 1963; Officer 1973; Shephard 2005; 
among others). 

The volatility of volatility is also a separate key risk factor which affects, for example, option 
returns, beyond volatility itself (Huang et al. 2019). Park (2015) showed that the volatility of volatility 
implied by 𝑉𝐼𝑋  options has predictability for tail risk hedging returns. However, the recent 
literature on the volatility of volatility has mainly used parametric methods. For example, Barndorff-
Nielsen and Veraart (2013) considered a non-Gaussian Ornstein–Uhlenbeck process, while Corsi et 
al. (2008) considered the realized volatility. More recently, Alghalith (2016) considered a stochastic 
volatility approach. In particular, Alghalith (2016) estimated the means of volatility and its volatility, 
not the volatility at each time. Furthermore, although the latest asset price models considered the 
stochastic volatility of the asset price to vary over time, the existing literature still considers the 
volatility of volatility as constant over time. Additionally, the existing literature does not provide 
statistical inferences for stochastic volatility models under the assumption of the stochastic volatility 
of volatility. 

In this paper, we propose novel nonparametric estimators for stochastic volatility and the 
volatility of volatility. The contribution to the existing literature is that, our approach is far simpler 
than the previous methods (e.g., GARCH type models, Corsi et al. 2008; Alghalith 2016). In addition, 
we relax the assumption of a constant volatility which allows the volatility of volatility to vary over 
time, giving a new insight in option pricing. Furthermore, we provided statistical inferences for the 
stochastic volatility models under the assumption of stochastic volatility of volatility testing if both 
volatility and the volatility of volatility are stochastic. To this end, we introduced a separate time-
varying volatility of volatility model which drives the conditional variance of the variance. 

In order to illustrate the usefulness of our approach, we presented an empirical application to 
the equity market. We focused on the Standard & Poor’s 500 (S&P 500) equity index using intraday 
(1-min, 5-min and 30-min data) and daily data. Our estimates revealed strong evidence that both 
volatility and the volatility of volatility are stochastic. Then, we proceeded in a Monte Carlo 
simulation analysis and found that our estimates are reasonably accurate. This suggests that the 
stochastic volatility models proposed in the literature with constant volatility of volatility may fail to 
approximate the discrete-time short rate dynamics. Using predictive regressions, we also showed 
that both volatility measures are significant predictors of the future market’s volatility expectations 
and sentiment. By including both measures at the same time, we indicated that the time-varying 
nature of the volatility of volatility stands as an additional source of risk and such evidence highlights 
the importance of there being be two different types of risk premia: one for the uncertainty induced 
by the volatility per se and one induced by the uncertainty of the volatility of volatility. The volatility 
of volatility is often ignored in most asset price models and can still be associated with deep 
uncertainty in the market. 

This paper is organized as follows: Section 2 details the model specification proposed in this 
study. Section 3 deals with the estimation technique. Section 4 presents an application with financial 
data, alone with a Monte Carlo simulation study. Section 5 provides financial implications for 
volatility and its volatility risk premia. Section 6 concludes by emphasizing the importance of our 
estimators. 

2. Model Specification 

We begin by assuming that the asset at time 𝑡 follows the diffusion: 

 
1  Stochastic volatility is an essential component in an asset pricing model, in option pricing. See (Wong and 

Lo 2009; Mrázek et al. 2016; Cui et al. 2017; among others). 
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𝑑𝑆௧ = 𝑆௧ሾ𝜇𝑑𝑡 + 𝑣௧𝑑𝑊ଵ௧ሿ, (1) 

where 𝑆௧ is the price of the asset at time 𝑡, 𝜇 is the expected rate of return and 𝑣௧ is the volatility; 𝑊ଵ௧  is a Brownian motion defined in the probability space (Ω, 𝐹, 𝐹௧, 𝑃) , where {𝐹௧ }௦ஸ௧ஸ் is the 
augmentation of filtration which drives equity prices. Models such as the model in (1) are routinely 
adopted in finance to model equity prices, currency prices or interest rates (see e.g., Heston 1993; 
Alghalith 2016). 

The purpose of this paper is to propose an exact solution for stochastic volatility and its volatility 
and nonparametric suitable estimators. More specifically, we introduced a separate time-varying 
volatility of volatility model which drives the conditional variance of the variance. The idea is the 
following, using Ito’s differentiation rule in (1), we have: (𝑑𝑆𝑡)2 = (𝑆𝑡ሾ𝜇𝑑𝑡 + 𝑣𝑡𝑑𝑊1𝑡ሿ)2 = 𝑆𝑡2ሾ𝜇𝑑𝑡 + 𝑣𝑡𝑑𝑊1𝑡ሿ2= 𝑆𝑡2 ൥𝜇2 𝑑𝑡2⏟0 + 2𝜇𝑣𝑡 𝑑𝑡𝑑𝑊1𝑡ᇣᇤᇥ0 + 𝑣𝑡2 𝑑𝑊1𝑡2ᇣᇤᇥ𝑑𝑡 ൩ = 𝑣𝑡2𝑆𝑡2𝑑𝑡. (2) 

Thus, solving (2) for 𝑣௧, we have: 

𝑣௧ = ඨ(𝑑𝑆௧)ଶ𝑆௧ଶ𝑑𝑡 . (3) 

If the volatility is stochastic, it may be given by (see Heston 1993): 𝑑𝑣௧ଶ = (𝛼ଵ − 𝑏ଵ𝑣௧ଶ)𝑑𝑡 + 𝛾௧𝑣௧𝑑𝑊ଶ௧, (4) 

where 𝛼ଵ and 𝑏ଵ are constants, 𝛾௧ is the volatility of volatility (the volatility of the variance 𝑣௧ଶ) and 𝑊ଶ௧ is also a Brownian motion which now drives the variance. Note that the drift of 𝑣௧ only depends 
on itself and thus, not on the 𝑆௧ or 𝛾௧. Hence, using Ito’s differentiation rule in (4), we have: (𝑑𝑣𝑡2)2 = ൣ൫𝛼1 − 𝑏1𝑣𝑡2൯𝑑𝑡 + 𝛾𝑡𝑣𝑡𝑑𝑊2𝑡൧2

= ൥൫𝛼1 − 𝑏1𝑣𝑡2൯2 𝑑𝑡2⏟0 + 2൫𝛼1 − 𝑏1𝑣𝑡2൯ 𝑑𝑡𝑑𝑊2𝑡ᇣᇤᇥ0 + 𝛾𝑡2𝑣𝑡2 𝑑𝑊2𝑡2ᇣᇤᇥ𝑑𝑡 ൩= 𝛾𝑡2𝑣𝑡2𝑑𝑡. (5) 

Thus, solving (5) for 𝛾௧, we have: 

𝛾௧ = ඨ(𝑑𝑣௧ଶ)ଶ𝑣௧ଶ𝑑𝑡 . (6) 

Similarly, if the volatility of volatility 𝛾௧ is stochastic, it may be given by: 𝑑𝛾௧ଶ = (𝛼ଶ − 𝑏ଶ𝛾௧ଶ)𝑑𝑡 + 𝛼ଶ𝛾௧𝑑𝑊ଷ௧, (7) 

where 𝛼ଶ and 𝑏ଶ are constants, 𝛾௧ is the volatility of volatility (the volatility of the variance 𝛾௧ଶ) and 𝑊ଷ௧ is a Brownian motion which in turn drives the volatility of volatility. In the same way as in (4), 
the drift of the 𝛾௧ is a function of the 𝛾௧. Consequently, again using Ito’s differentiation rule in (7), 
we have: (𝑑𝛾௧ଶ)ଶ = ሾ(𝛼ଶ − 𝑏ଶ𝛾௧ଶ)𝑑𝑡 + 𝛼ଶ𝛾௧𝑑𝑊ଷ௧ሿଶ= ൥(𝛼ଶ − 𝑏ଶ𝛾௧ଶ)ଶ 𝑑௧ଶด଴ + 2(𝛼ଶ − 𝑏ଶ𝛾௧ଶ) 𝑑௧𝑑𝑊ଷ௧ᇣᇧᇤᇧᇥ଴ + 𝑎ଶଶ𝛾௧ଶ 𝑑𝑊ଷ௧ଶᇣᇤᇥௗ௧ ൩ = 𝑎ଶଶ𝛾௧ଶ𝑑𝑡. (8) 

Finally, it should be noted that the Brownian components 𝑊ଵ௧, 𝑊ଶ௧ and 𝑊ଷ௧ in (1), (4) and (7), 
respectively, can be correlated, that is 𝑑𝑊௜௧𝑑𝑊௝௧ = 𝜌௜,௝𝑑𝑡 for all 𝑖 ≠ 𝑗. 
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3. Estimation Technique 

Using (3), the volatility per unit of time is estimated nonparametrically as the ratio (square root) 
of the squared first difference of the prices and the squared prices, which is given as follows: 

𝑣௧ = ඨ(∆𝑆௧)ଶ𝑆௧ଶ , (9) 

where ∆ denotes the first difference of the data and 𝑆௧  is the observed data. Consequently, the 
annual volatility is given by 

𝑣௧ = ඨ𝑛(∆𝑆௧)ଶ𝑆௧ଶ , (10) 

where 𝑛 measures the data frequency. 
Building on Equation (2), we test whether the volatility is stochastic. In doing so, we estimate 

the following linear regression equation, while in the case where the true model is non-linear, Taylor 
expansion can be used to linearize the relationship: (∆𝑣௧ଶ)ଶ = 𝛿ଵ𝑣௧ଶ + 𝜀ଵ௧, (11) 

where 𝛿ଵ is the parameter to be estimated and 𝜀ଵ௧ is the error term. If 𝛿ଵ is statistically significantly 
different from zero, then we assume that the underlying volatility is stochastic and not constant over 
time affected by the changes of the underlying asset. In particular, considering the following 
equation, (𝑑𝑣௧ଶ)ଶ = 𝛾௧ଶ𝑣௧ଶ𝑑𝑡, if volatility is deterministic, then 𝑑𝑣௧ଶ is equal to zero requiring that 𝛾௧ଶ 
is also equal to zero. At a discrete time, we can test this hypothesis by (11). In the case when 𝛿ଵ is 
equal to zero,  𝛦ሾ(∆𝑣௧ଶ)ሿ  must be equal to zero too, which in turn suggests that the volatility is 
deterministic (i.e., cannot change over time).2 

Similarly, using (6), the volatility of volatility per unit of time is estimated nonparametrically as 
the ratio (square root) of the squared first difference of the variance and the variance: 

𝛾௧ = ඨ(∆𝑣௧ଶ)ଶ𝑣௧ଶ , (12) 

where ∆  denotes the first difference of the variance 𝑣௧ଶ . Furthermore, the annual volatility of 
volatility is given by 

𝛾௧ = ඨ𝑛(∆𝑣௧ଶ)ଶ𝑣௧ଶ . (13) 

where again 𝑛 measures the frequency of the data. 
Finally, we use (4) to test whether the volatility of volatility is stochastic. In doing so, we estimate 

the following regression equation: (∆𝛾௧ଶ)ଶ = 𝛿ଶ𝛾௧ଶ + 𝜀ଶ௧, (14) 

where 𝛿ଶ is the parameter to be estimated and 𝜀ଶ௧ is the error term. In the case where the true model 
is non-linear, Taylor expansion can be also used to linearize the relationship. In line with the concept 
of Heston (1993) for stochastic volatility, if 𝛿ଶ is statistically significantly different from zero, then 
we assume that the volatility of volatility is stochastic, thus it is not constant over time. More 
specifically, let us assume the following equation, (𝑑𝛾௧ଶ)ଶ = 𝑎ଶଶ𝛾௧ଶ𝑑𝑡, in order for the volatility of 
volatility to be deterministic, the 𝑑𝛾௧ଶ would have to be zero requiring that 𝑎ଶ is equal to zero, too. 

 
2  Heston (1993) assumed that the variance 𝑣௧ follows a square root process, 𝑑𝑣௧ = 𝜅∗ሾ𝜃∗ − 𝑣௧ሿ𝑑𝑡 + 𝜎ඥ𝑣௧𝑑𝑊௧, 

where 𝜎  controls the volatility of volatility. When 𝜎  is equal to zero, the volatility is deterministic. 
Following Heston (1993) and applying Ito’s rule (4), we are able to test whether volatility is stochastic via 
linear regression equations. We refer to the study implemented by Heston (1993) for more information 
regarding this issue. 
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At a discrete time, we can test this hypothesis by (14). In the case when 𝛿ଵ is equal to zero, 𝛦ሾ(∆𝛾௧ଶ)ሿ 
must be equal to zero too, which in turn suggests that the volatility of volatility is deterministic (i.e., 
cannot change over time). 

4. Application 

We used intraday prices for the S&P 500 equity index; the 1-min, 5-min and 30-min data cover 
the period from 11 August 2016 to 9 November 2016. This sample is strictly restricted by the 
availability of the intraday data available. We also used daily data for the same index ranging from 
31 March 2015 to 31 November 2020. Data was retrieved from the Thomson Reuters database. The 
S&P 500 is the most common benchmark for the broader US equity markets, while it is one of the 
most heavily traded and liquid equity indexes. We employed intraday data due to the fact that they 
reveal important information not easily seen at lower sampling frequencies (e.g., daily data), such as 
the intraday changes and the market microstructures. Hence, volatility is more accurately estimated 
by employing high frequency data (see Hansen and Huang 2016; among others). We constructed the 
corresponding returns of each frequency, as the differences between prices at consecutive time points. 
Even though each frequency may be just enough to use for our estimators, there is an adequate 
balance between high and low sampling frequencies. For example, Liu et al. (2015) found that 5 min 
is an adequate sampling frequency for liquid assets, while 1 min was more appropriate for the 
diversified set of asset classes. Consequently, our empirical results of volatility and the volatility of 
volatility were compatible among different intraday frequencies. For our datasets, we applied the 
data-adjustment (cleaning) procedure suggested by Barndorff-Nielsen et al. (2009).3 Furthermore, we 
ignored trading days with recorded prices for less than 60% of the operating time’s expected 
observations and short trading days around major holidays. 

We present the empirical results of volatility and the volatility of volatility for the S&P 500 equity 
index in Tables 1–3. An illustrated representation of our estimators is also given in Figures 1–4 for 
each frequency under consideration. We present these figures in an Appendix. As we can see from 
the figures, there is clear evidence that not only the volatility varies over time, but also its volatility 
varies over time (mainly when considering lower frequencies i.e., 30-min returns or daily frequency). 
This also suggests that the stochastic volatility models proposed in the literature with constant 
volatility of volatility may fail to approximate the discrete-time short rate dynamics. Furthermore, 
we also see that the volatility of volatility behaves rather differently to the volatility itself. Such results 
are consistent with the views of Huang et al. (2019). Consistent with a setup of our model which 
separated volatility from its volatility, the correlation between volatility and its volatility was almost 
zero for the 1-min data, −0.0228 for the 5-min data and for the 30-min data was equal to −0.0671, while 
for the daily frequency it was equal to −0.0081. Although both measures have some common peaks, 
the overall picture is that large increases in volatility are relatively independent of the increases in 
the volatility of volatility. 

In Table 1, we report the descriptive statistics for the following series: 𝑢௧ (volatility per unit), 𝛾௧ 
(volatility of volatility per unit), 𝑢௧  (annual volatility), 𝛾௧  (annual volatility of volatility). 
Furthermore, we consider three panels: Panel A corresponds to the empirical results using the 1-min 
returns, Panel B to the empirical results using the 5-min returns, Panel C to the empirical results using 
the 30-min returns and Panel D to the empirical results using the daily returns. It is worth mentioning 
that the results are consistent with the Jarque–Bera test, in which the null hypothesis of normality is 
rejected for both volatility and the volatility of volatility series. 

In Table 2, we test if volatility is stochastic via (11) for the null hypothesis 𝐻଴: 𝛿ଵ = 0. For our 
study, we applied linear least squares regression and we considered two cases. The first case was 
based on our real data. The second case was based on a Monte Carlo analysis using 1000 replications 
with a sample size equal to the number of observations in each sample (24,224, 5042, 841, 1259). We 

 
3  Following Barndorff-Nielsen et al. (2009), (1) we deleted the entries with a timestamp outside the 9:30 a.m.–

4 p.m. window when the market is open and (2) we deleted the entries with a bid, ask or a transaction price 
equal to zero. 
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proceeded to a Monte Carlo analysis to check the reliability of the proposed estimators. To this end, 
we tested them on simulated time series of a diffusion model.4 As for the former case, as expected 
we rejected the null hypothesis 𝐻଴: 𝛿ଵ = 0 in each sample, which in fact means that volatility is 
stochastic. As for the latter case, we observed that the standard deviations are very small related to 
the means and therefore, our regression estimates are reasonably accurate. 

In Table 3, we test if the volatility of volatility is stochastic via (14) for the null hypothesis 𝐻଴: 𝛿ଶ = 0. For our study, we applied linear least squares regression and we considered two cases. 
The first case was based on our real data. The second case was based on a Monte Carlo analysis using 
1000 replications with a sample size equal to the number of observations in each sample (24,224, 5042, 
841, 1259). As for the former case, we rejected the null hypothesis 𝐻଴: 𝛿ଶ = 0 in each sample, which 
in fact means that the volatility of volatility is also stochastic. As for the Monte Carlo simulation 
analysis, we can see that the standard deviations are very small related to the means and therefore, 
our regression estimates are reasonably accurate. From a financial point of view, such evidence in the 
results is consistent with a no-arbitrage asset pricing model which features that volatility and its 
volatility vary over time. Below we further evaluate this concept using predictive regressions. 

Table 1. Descriptive statistics for volatility and the volatility of volatility of the S&P 500. 

Panel A: 1-Min Sample 
 𝒗𝒕  𝜸𝒕  𝒗𝒕 (annual) 𝜸𝒕 (annual) 

Mean 1.59E-04 1.05E-03 2.4883E-02 1.65E-01 
Median 1.03E-04 1.73E-04 1.6142E-02 2.71E-02 

Maximum 1.15E-02 2.66E+00 1.8062E+00 4.16E+02 
Minimum 0.00E+00 4.16E-11 0.0000E+00 6.52E-09 
Std. Dev. 2.32E-04 1.91E-02 3.6384E-02 3.00E+00 
Skewness 1.37E+01 1.16E+02 1.3678E+01 1.16E+02 
Kurtosis 4.21E+02 1.55E+04 4.2115E+02 1.55E+04 

Jarque–Bera 1.80E+08 2.43E+11 1.8000E+08 2.43E+11 
p-value [0.00E+00] [0.00E+00] [0.00E+00] [0.00E+00] 

No. of obs. 24,224 24,224 24,224 24,224 
Panel B: 5-Min Sample 

 𝒗𝒕  𝜸𝒕  𝒗𝒕 (annual) 𝜸𝒕 (annual) 
Mean 4.16E-04 2.96E-03 2.96E-02 2.11E-01 

Median 2.66E-04 4.43E-04 1.89E-02 3.15E-02 
Maximum 1.37E-02 1.33E+00 9.79E-01 9.48E+01 
Minimum 4.56E-06 1.06E-09 3.25E-04 7.52E-08 
Std. Dev. 5.67E-04 2.47E-02 4.04E-02 1.76E+00 
Skewness 6.98E+00 3.69E+01 6.98E+00 3.69E+01 
Kurtosis 1.02E+02 1.78E+03 1.02E+02 1.78E+03 

Jarque–Bera 2.08E+06 6.63E+08 2.08E+06 6.63E+08 
Probability [0.00E+00] [0.00E+00] [0.00E+00] [0.00E+00] 

p-value 5042 5042 5042 5042 
Panel C: 30-Min Sample 

 𝒗𝒕  𝜸𝒕  𝒗𝒕 (annual) 𝜸𝒕 (annual) 
Mean 1.14E-03 3.31E-02 9.56E-03 2.78E-01 

Median 7.18E-04 2.09E-02 1.32E-03 3.83E-02 
Maximum 1.53E-02 4.46E-01 5.91E-01 1.72E+01 

 
4  For the simulation analysis, we considered a stochastic process of a single random variable based on the 

S&P 500 index assuming that the variance varies over time (i.e., exhibits serial correlated properties). To 

this end, we used a stochastic differential equation of the Ito type. The drift and the diffusion parameters 

are estimated from the original series by the method of maximum pseudo-likelihood (see Boukhetala 1996). 
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Minimum 4.66E-06 1.35E-04 2.49E-07 7.25E-06 
Std. Dev. 1.38E-03 4.02E-02 3.90E-02 1.13E+00 
Skewness 3.63E+00 3.63E+00 9.34E+00 9.34E+00 
Kurtosis 2.48E+01 2.48E+01 1.13E+02 1.13E+02 

Jarque–Bera 1.84E+04 1.84E+04 4.38E+05 4.38E+05 
p-value [0.00E+00] [0.00E+00] [0.00E+00] [0.00E+00] 

No. of obs. 841 841 841 841 
Panel D: Daily Sample 

 𝒗𝒕  𝜸𝒕  𝒗𝒕 (annual) 𝜸𝒕 (annual) 
Mean 6.60E-03 4.84E-02 2.34E-01 1.71E+00 

Median 3.77E-03 7.28E-03 1.33E-01 2.58E-01 
Maximum 1.36E-01 7.49E+00 4.83E+00 2.66E+02 
Minimum 6.87E-06 3.20E-05 2.43E-04 1.13E-03 
Std. Dev. 9.54E-03 2.87E-01 3.38E-01 1.02E+01 
Skewness 5.45E+00 1.93E+01 5.45E+00 1.93E+01 
Kurtosis 5.18E+01 4.48E+02 5.18E+01 4.48E+02 

Jarque-Bera 1.31E+05 1.04E+07 1.31E+05 1.04E+07 
p-value [0.00E+00] [0.00E+00] [0.00E+00] [0.00E+00] 

No. of obs. 1256 1256 1256 1256 
Note: This table reports the descriptive statistics for the following series: 𝑣௧ (volatility per unit), 𝛾௧ 
(volatility of volatility per unit), 𝑣௧ (annual volatility), 𝛾௧ (annual volatility of volatility) estimated 
by using 1-min returns, 5-min returns, 30-min returns and daily returns. The hypothesis of normality 
is studied by a Jarque–Bera test. The p-value of the test is given below in brackets. 

Table 2. Estimation results for the stochastic volatility. 

Panel A: 1-Min Sample 
Case 1: Returns Case 2: Simulation 

 𝜹𝟏 𝑹𝟐  𝜹𝟏 𝑹ഥ𝟐 𝛨଴: 𝛿ଵ = 0 8.82E-05 *** 0.3892 𝛨଴: 𝛿ଵ = 0 8.49E-05 0.3789 
 (7.05E-07)   (7.15E-07)  

Panel B: 5-Min Sample 
Case 1: Returns Case 2: Simulation 

 𝜹𝟏 𝑹𝟐  𝜹𝟏 𝑹ഥ𝟐 𝛨଴: 𝛿ଵ = 0 1.23E-04 *** 0.3779 𝛨଴: 𝛿ଵ = 0 1.16E-04 0.3688 
 (2.22E-06)   (2.28E-06)  

Panel C: 30-Min Sample 
Case 1: Returns Case 2: Simulation 

 𝜹𝟏 𝑹𝟐  𝜹𝟏 𝑹ഥ𝟐 𝛨଴: 𝛿ଵ = 0 1.36E-04 *** 0.341 𝛨଴: 𝛿ଵ = 0 1.76E-05 0.3184 
 (6.40E-06)   (5.46E-06)  

Panel D: Daily Sample 
Case 1: Returns Case 1: Returns 

 𝜹𝟐 𝑹𝟐  𝜹𝟐 𝑹𝟐 𝛨଴: 𝛿ଵ = 0 6.54E-03 *** 0.3677 𝛨଴: 𝛿ଵ = 0 3.21-E04 0.3810 
 (2.40E-04)   (1.37E-05)  

Note: This table reports the estimates of the tests for the null hypothesis 𝛨଴: 𝛿ଵ = 0, that is, if volatility 
is stochastic, applying linear least squares regression. Two cases are considered. Case 1 is based on 
real data estimated by using 1-min returns, 5-min returns, 30-min returns and daily returns for the 
Standard & Poor’s 500 (S&P 500) equity index. Case 2 is based on a Monte Carlo analysis using 1000 
replications with a sample size equal to the number of observations 24,224, 5042, 841 and 1259 for 
each panel, respectively. *, **, *** refer to significant levels of 10%, 5% and 1%, respectively. 
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Table 3. Estimation results for the stochastic volatility of volatility. 

Panel A: 1-Min Sample 
Case 1: Returns Case 2: Simulation 

 𝜹𝟐 𝑹𝟐  𝜹𝟐 𝑹ഥ𝟐 𝛨଴: 𝛿ଶ = 0 6.95E+00 *** 0.4937 𝛨଴: 𝛿ଶ = 0 6.25E+00 0.4889 
 (4.56E-02)   (6.01E-02)  

Panel B: 5-Min Sample 
Case 1: Returns Case 2: Simulation 

 𝛿ଶ 𝑅ଶ  𝛿ଶ 𝑅തଶ 𝛨଴: 𝛿ଶ = 0 1.68Ε+00 *** 0.4770 𝛨଴: 𝛿ଶ = 0 1.22E+00 0.4462 
 (2.48E-02)   (1.85E-02)  

Panel C: 30-Min Sample 
Case 1: Returns Case 2: Simulation 

 𝜹𝟐 𝑹𝟐  𝜹𝟐 𝑹ഥ𝟐 𝛨଴: 𝛿ଶ = 0 2.87E-01 *** 0.4491 𝛨଴: 𝛿ଶ = 0 3.16E-01 0.4214 
 (1.09E-02)   (2.40E-02)  

Panel D: Daily Sample 
Case 1: Returns Case 2: Simulation 

 𝜹𝟐 𝑹𝟐  𝜹𝟐 𝑹𝟐 𝛨଴: 𝛿ଶ = 0 5.02E+01 *** 0.4710 𝛨଴: 𝛿ଶ = 0 7.99E+01 0.3914 
 (1.50E+00)   (1.20E-01)  

Note: This table reports the estimates of the tests for the null hypothesis 𝐻଴: 𝛿ଶ = 0, that is, if the 
volatility of volatility is stochastic, applying linear least squares regression. Two cases are considered. 
Case 1 is based on our real data estimated by using 1-min returns, 5-min returns, 30-min returns and 
daily returns for the S&P 500 equity index. Case 2 is based on a Monte Carlo analysis using 1000 
replications with a sample size equal to the number of observations 24,224, 5042, 841 and 1259 for 
each panel, respectively. *, **, *** refer to significant levels of 10%, 5% and 1%, respectively. 
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Figure 1. Plot of the S&P 500 1-min sample. 
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Figure 2. Plot of the S&P 500 5-min sample. 
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Figure 3. Plot of the S&P 500 30-min sample. 
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Figure 4. Plot of the S&P 500 daily sample. 

5. Financial Implications 

To evaluate the implications of the model for volatility and its volatility risks, we studied their 
predictability of the future market’s volatility expectations. To this end, we used the daily sample 
used in this study for the S&P 500 index (again from 31 March 2015 to 31 November 2020), along with 
the Volatility Index (𝑉𝐼𝑋) and the Volatility of the 𝑉𝐼𝑋 Index (𝑉𝐼𝑋 of 𝑉𝐼𝑋 or 𝑉𝑉𝐼𝑋) for the same 
time period. We focused on daily data frequency due to the lack of availability of intraday data for 
the 𝑉𝐼𝑋 and 𝑉𝑉𝐼𝑋 indices. These indices were created by the Chicago Board Options Exchange 
(CBOE). The 𝑉𝐼𝑋 index (also called “Fear Gauge” or “Fear Index”) acts as a real-time market index 
capturing the market’s expectation of 30-day-forward-looking volatility. It is derived from the price 
inputs of the S&P 500 index options and provides a measure of market risk. As for the 𝑉𝑉𝐼𝑋 index, 
it can be considered as a measure of the volatility of the 𝑉𝐼𝑋 capturing the short-term volatility of 
the S&P 500 indices. It indicates how quickly market sentiment can change. 

In particular, we estimate the following regression equations for 𝑉𝐼𝑋 and 𝑉𝑉𝐼𝑋 indices: 𝑉𝐼𝑋௧ାଵ = 𝛽଴௏ூ௑ + 𝛽ଵ௏ூ௑𝑣௧ + 𝛽ଶ௏ூ௑𝛾௧ + 𝑢ଵ௧ାଵ, (15) 𝑉𝑉𝐼𝑋௧ାଵ = 𝛽଴௏௏ூ௑ + 𝛽ଵ௏௏ூ௑𝑣௧ + 𝛽ଶ௏௏ூ௑𝛾௧ + 𝑢ଶ௧ାଵ, (16) 
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where 𝑣௧ is the annualized volatility estimated by (10), 𝛾௧ is the annualized volatility of volatility 
estimated by (13) and 𝑢௧ାଵ is the error-term (𝑢ଵ௧ for the 𝑉𝐼𝑋 index and 𝑢ଶ௧ for the 𝑉𝑉𝐼𝑋 index). 

Table 4 refers to the estimates of (15) and (16) for the 𝑉𝐼𝑋 and 𝑉𝑉𝐼𝑋 indices, respectively. For 
this analysis, we applied robust linear least squares and we considered two specifications. The first 
specification refers to the case when the 𝑉𝐼𝑋 and 𝑉𝑉𝐼𝑋 indices are expressed in units (Panel A), 
while in the second specification these indices are expected in logarithmic units (Panel B). We also 
tested the issue of equality between the coefficients 𝛽ଵ  and 𝛽ଶ , i.e., 𝐻଴: 𝛽ଵ௏ூ௑ − 𝛽ଶ௏ூ௑ = 0  and 𝐻଴: 𝛽ଵ௏௏ூ௑ − 𝛽ଶ௏௏ூ௑ = 0 by Wald tests. The p-values of the tests are given below in brackets. 

Using predictive regressions, we showed that the 𝑣௧ and 𝛾௧ are significant predictors of future 
market’s volatility expectations and sentiment. Both past volatility and its volatility significantly 
forecast the future 𝑉𝐼𝑋 and 𝑉𝑉𝐼𝑋 indices. By including both measures at the same time, we found 
that the predictive power is positive and shared between volatility and its volatility. However, the 
impact of the volatility is always higher. Although this result for the volatility per se was expected, 
the difference in the coefficient estimates between 𝛽ଵ  and 𝛽ଶ —as indicated by the Wald tests 
implemented—can provide new insights in pricing volatility risk premia.5 In particular, the null 
hypothesis of equality was rejected in all cases. Such evidence shows that the volatility of volatility is 
a significant additional source of risk which indeed separately can increase financial stress in equity 
markets. In other words, the time-varying nature of the volatility of volatility stands for an additional 
source of stress, which in turn implies that there are two different types of risk premia, one for the 
uncertainty induced by the volatility itself and one induced by the uncertainty of the volatility of 
volatility. The latter risk factor is often ignored in stochastic volatility models and can still be 
associated with deep uncertainty in the market. 

Table 4. Estimation results for the stochastic volatility of volatility. 

Panel A: Units 𝑽𝑰𝑿 Index 𝑣௧ିଵ 𝛾௧ିଵ 𝐴𝑑𝑗. 𝑅ଶ Wald test 𝐻଴: 𝛽ଵ௏ூ௑ − 𝛽ଶ௏ூ௑ = 0 
4.23E+02 *** 1.33E+01 *** 0.2381 46.2936 
(8.86E+00) (2.94E-01)  [0.00E+00] 𝑽𝑽𝑰𝑿 Index 𝑣௧ିଵ 𝛾௧ିଵ 𝐴𝑑𝑗. 𝑅ଶ Wald test 𝐻଴: 𝛽ଵ௏ூ௑ − 𝛽ଶ௏ூ௑ = 0 

7.60E+02 *** 7.63E+00 *** 0.1175 25.6088 
2.94E+01 9.76E-01  [0.00E+00] 

Panel B: Logarithm Units 𝑽𝑰𝑿 Index 𝑣௧ିଵ 𝛾௧ିଵ 𝐴𝑑𝑗. 𝑅ଶ Wald test 𝐻଴: 𝛽ଵ௏௏ூ௑ − 𝛽ଶ௏௏ூ௑ = 0 
2.50E+01 *** 6.19E-01 *** 0.2953 39.8077 
(6.47E-01) (2.05E-02)  [0.00E+00] 𝑽𝑽𝑰𝑿 Index 𝑣௧ିଵ 𝛾௧ିଵ 𝐴𝑑𝑗. 𝑅ଶ Wald test 𝐻଴: 𝛽ଵ௏ூ௏௑ − 𝛽ଶ௏௏ூ௑ = 0 

7.73E+00 *** 8.16E-02 *** 0.1414 23.9296 
 

5  Following Bekaert and Hoerova (2014), the squared 𝑉𝐼𝑋 index can be decomposed into the variance of 
equity returns and the variance risk premium. For robustness purposes, in order to isolate the predictive 
power of past volatility and the volatility on volatility risk premium, we estimated (15) and (16) using the 
difference between the 𝑉𝐼𝑋 indices and daily realized variance (estimated as the sum of 5-min intraday 
returns of the S&P 500) as dependent variables. In this regard, we also used in (15) and (16) the residuals 
obtained from 𝑉𝐼𝑋௧ = 𝛽଴௏ூ௑ + 𝛽ଵ௏ூ௑𝑣௧ + 𝑢ଷ௧ and their squared specifications as dependent variables. In all 
cases, the results remain qualitative and quantitatively similar. 
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(8.16E-02) (1.06E-02)  [0.00E+00] 
Note: This table reports estimates of the predictive regressions in (15) and (16) for 𝑉𝐼𝑋 and 𝑉𝑉𝐼𝑋 
indices, respectively. For the analysis, robust linear least squares are employed. Two specifications 
are considered. The first specification refers to the case when the 𝑉𝐼𝑋  and 𝑉𝑉𝐼𝑋  indices are 
expressed in units (Panel A), while in the second specification these indices are expected in 
logarithmic units (Panel B).*, **, *** refer to significant levels of 10%, 5% and 1%, respectively. The 
issue of equality, i.e., 𝐻଴: 𝛽ଵ௏ூ௑ − 𝛽ଶ௏ூ௑ = 0 and 𝐻଴: 𝛽ଵ௏௏ூ௑ − 𝛽ଶ௏௏ூ௑ = 0 is tested by a Wald test. The p-
value of the test is given below in brackets. 

6. Conclusions 

In this paper, we devised new nonparametric estimators for the stochastic volatility and the 
volatility of volatility. Our method has two main advantages compared to the previous methods in 
the existing literature. Firstly, they are exceedingly simple, far simpler than the existing methods. 
Secondly, we relax the assumption of a constant volatility of volatility and thus, we allow the 
volatility of volatility to vary over time. We also provide statistical inferences for stochastic volatility 
models under the assumption of stochastic volatility of volatility testing, via simple statistical tests, 
whether both volatility measures vary over time. 

We illustrated the usefulness of our approach giving an empirical example using intraday and 
daily data for the S&P 500 equity index. Our findings revealed strong evidence that both volatility 
and the volatility of volatility are stochastic. Then, we proceeded in a Monte Carlo simulation analysis 
and found that our estimates are reasonably accurate. We also evaluated our estimators by studying 
their predictability for the future values of the 𝑉𝐼𝑋 and 𝑉𝑉𝐼𝑋 indices. As we expected, the volatility 
is a significant predictor of the future market’s volatility expectations, yet surprisingly, we find that 
the time-varying nature of the volatility of volatility is an additional source of risk. In other words, 
the volatility of volatility separately increases financial stress in the market. From a financial point of 
view, both past volatility and its volatility significantly forecast the future 𝑉𝐼𝑋 and 𝑉𝑉𝐼𝑋 indices, in 
a no-arbitrage model which features both time-varying volatility factors—as the model employed in 
this study—are priced by the investors. 

Finally, our approach has important implications in identifying volatility risk premia. According 
to the findings, there are two different types of risk premia, one for the uncertainty induced by the 
volatility per se and one induced by the uncertainty of the volatility of volatility. The latter is often 
ignored in most asset price models but can still definitely be associated with deep uncertainty in the 
market. Future research may compare our estimators with other relevant estimators, either 
parametric or nonparametric, for stochastic volatility. Finally, another idea for future research would 
be to expand our estimators in a multivariate framework (see Amendola et al. 2020) or extend them 
to allow for jumps in the equation driving the observable variable. 
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