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Abstract: How can risk of a company be allocated to its divisions and attributed to risk factors?
The Euler principle allows for an economically justified allocation of risk to different divisions.
We introduce a method that generalizes the Euler principle to attribute risk to its driving factors when
these factors affect losses in a nonlinear way. The method splits loss contributions over time and is
straightforward to implement. We show in an example how this risk decomposition can be applied
in the context of credit risk.

Keywords: risk attribution; risk allocation; credit risk; Euler principle; risk factors

1. Introduction

For any company, the decomposition of risk matters. Risk is decomposed to address questions
such as: how much do a company’s divisions contribute to the total risk? Or, what portion of the total
risk can be attributed to a specific type of risk, such as interest rate risk? Accordingly, we distinguish
two dimensions of how risk is decomposed. Risk allocation deals with how risk from some entity is
allocated to different sub-entities or divisions. Risk attribution is about identifying and quantifying risk
drivers, types of risk, or risk management features. Table 1 illustrates the decomposition of risk along
these two dimensions.

Table 1. Decomposition of risk along two dimensions: risk allocation and attribution.

risk allocation←−−−−−−−−−−−→

ri
sk

at
tr

ib
ut

io
n

←−
−−
−−
−−
−−
−−
−→

Division 1 Division 2 . . . Division K Total company

Risk driver 1
Risk driver 2
Risk driver 3

. . .
Cross effects

Total risk

Before giving more details on the distinction between risk allocation and risk attribution, let us
recall that risk is typically modelled by a risk measure applied to the company’s potential losses.
Examples of such risk measures include value-at-risk and expected shortfall. There are important
conceptual differences between risk allocation and risk attribution:

• For risk allocation, we note that the company’s profit/loss is the sum of the profits/losses of
its divisions so that there is linearity in the underlying loss variable. Risk allocation is about
achieving a similar relationship for risk, namely, risk allocated to the divisions sums up to the
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total risk. The goal is to find a fair split of the diversification benefits along with the specific risk
of each division.

• For risk attribution, risk drivers may contribute to a company’s profit/loss in a nonlinear way.
Not all diversification effects can or may need to be attributed to the risk drivers. The goal is to
identify risk drivers and attribute risk to them while cross effects between risk drivers may remain.

Risk allocation has been well studied in the literature. An often used approach is to allocate
to each division its marginal contribution to the total risk, in other words, the risk allocated to
a division equals the rate at which the company’s risk is changed when the division’s losses
increase. This approach is called Euler risk allocation or Euler principle because Euler’s theorem
on homogeneous functions assures that the risks allocated to the divisions under this approach
sum up to the total risk if the risk measure is homogenous, which is satisfied for value-at-risk and
expected shortfall. Moreover, the Euler risk allocation is well justified economically in that it is
compatible with return on risk adjusted capital (Tasche 2008). In fact, it is essentially the only such
risk allocation. Additionally, the Euler risk allocation satisfies a desired diversification property
in that it does not allocate more risk to any division than the risk that the division would have
stand-alone (Denault 2001; Kalkbrener 2005). Zhang and Rachev (2006) give an overview of how
different risk measures and distributions affect the risk allocation while Bauer and Zanjani (2016)
study the reverse problem of identifying risk measures that yield a risk allocation. A complementary
and — in some sense — converse question to risk allocation is risk aggregation, which is also
well studied and deals with how to deduce a total risk from individual risk components.
Risk aggregation is particularly relevant in the context of systemic and vector-valued risk measures
(Cousin and Di Bernardino 2013; Feinstein et al. 2017; Jouini et al. 2004; Landsman et al. 2016), where
individual parts and their dependence structure are modelled.

By contrast, there is only scarce literature on risk attribution when risk drivers contribute to
the losses in a nonlinear way. When the Euler principle is applied directly, its desirable properties
mentioned above are lost when loss contributions are no more additive. A possibility for risk attribution
is to use the Shapley value, which is based on a game-theoretic approach to solve the conflict on how
to share the diversification effects (Denault 2001; Powers 2007). However, it becomes computationally
very demanding when there is a large number of risk drivers. Moreover, in the special case of a linear
loss structure, it does not reconcile with the Euler risk allocation.

In this paper, we propose a new method for risk attribution. We employ that risk drivers are
typically given as a time series. At each time step, we analyze how much a change in one particular
risk driver contributes to the total risk at that time. We aggregate these changes over time to obtain the
contribution of each risk driver. This procedure results in a linear approximation of the loss variable
in terms of the contributions of the different risk drivers. Because we have a linear approximation of
the loss variable, we can apply the Euler principle to this approximation, which in turn gives us the
contributions for the risk attribution.

This method has the property that in the special case of a linear loss structure, it gives the same
result as the Euler risk allocation. For a general loss structure, the approximation becomes better the
larger the number of time steps is in the time series used for the risk drivers. We prove that, under
suitable assumptions, the approximation converges to the precise value as the number of time steps
goes to infinity. Moreover, the method is easy to apply, as we show in an example in the context of
credit risk. The example considers a structural credit risk model, where the obligors’ defaults are
driven by idiosyncratic risk and two common risk factors. The computation of the risk attribution for
these factors gives meaningful results.

The remainder of this paper is organized as follows. In Section 2, we recall the Euler risk allocation
and its economic justification. We also mention several alternative methods for risk allocation. For risk
attribution, we introduce in Section 3 a linear approximation of the loss variable, which then allows
us to apply the Euler risk allocation to the approximation. Additionally, Section 3 contains the
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above-mentioned convergence result. Section 4 presents the application of risk attribution in the
context of credit risk. Section 5 concludes.

2. Risk Allocation in Divisions

In this section, we recall the Euler principle for risk allocation, which is a well-known approach in
the literature; see for example Section 8.5 in McNeil et al. (2015) or Tasche (2008). It is also being used
in the context of the Fundamental Review of Trading Book (Li and Xing 2019).

We consider K divisions with loss variables L1, . . . , LK. As is customary, losses are denoted with
positive signs so that Lk > 0 means a loss in the amount of Lk in the kth division. We denote the
total loss variable by L = ∑K

k=1 Lk. For a given risk measure ρ, the overall required capital is ρ(−L).
We are seeking allocations xk to the kth division, corresponding to the portion of the total risk that
is allocated to the kth division. Mathematically, xk is the result of a mapping from the loss variables
L1, . . . , LK and the risk measure ρ to the real numbers. The goal of risk allocation is to determine such
a suitable mapping. Note that xk may depend on all loss variables L1, . . . , LK and not just Lk because
the dependence structure between Lk and the other loss variables affects the value of xk. The following
two properties are crucial for risk allocation:

• The first property is the full allocation property ρ(−L) = ∑K
k=1 xk, which means that exactly the

total risk is allocated to the divisions.
• The second property is related to the return on the risk adjusted capital (RORAC) given by

RORACk =
−E[Lk]

xk and RORAC(−L) =
−E[L]
ρ(−L)

,

which correspond to the expected returns adjusted for risk of the kth division and of the total
company, respectively, as explained in Tasche (2008). Risk allocations x1, . . . , xK are said to be
RORAC compatible if there exists ε > 0 such that

RORACk > RORAC(−L) =⇒ RORAC(−L− hLk) > RORAC(−L)

for all 0 < h < ε. In words, an allocation is RORAC compatible if increasing the weight of a
division that has superior risk-adjusted return will improve the total risk-adjusted return.

Definition 1. The Euler risk allocation (also called Euler principle) is defined as

xk
Euler =

d
dλ

ρ(−L− λLk)
∣∣∣
λ=0

.

The Euler principle has a sound economic justification. By Euler’s theorem on homogeneous
functions, it satisfies the full allocation property if ρ is homogeneous. For example, value-at-risk
(VaRα) and expected shortfall (ESα) are homogeneous. It can be checked that the Euler principle is also
RORAC compatible. Even more, under suitable technical conditions, the Euler principle is the only
allocation which is RORAC compatible; see Proposition 2.1 of Tasche (2008). Note that for this result,
the risk measure does not need to be sub-additive.1

If the risk measure is sub-additive and some technical conditions hold, the Euler principle is
the only risk allocation that satisfies a strengthened version of the diversification benefit inequality
xk ≤ ρ(−Lk) for all k (Denault 2001; Kalkbrener 2005).

1 Recall that a risk measure is sub-additive if it satisfied ρ(X + Y) ≤ ρ(X) + ρ(Y) for all X, Y in its domain. ESα is sub-additive,
but not VaRα.
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A potential drawback is that xk
Euler can be negative when there is negative correlation between Lk

and L. From a business perspective, however, it may be reasonable to allocate a negative risk value to
a division that reduces the overall risk.

If VaRα is used as the risk measure, then

xk
Euler = E[Lk|L = VaRα(L)]; (1)

see Section 3.2 of Tasche (2008). This means to compute the average of Lk over the scenarios where
L realizes VaRα(L). In this case, issues are that the computation leads to instability and that the
conditional expectation may not even be directly computed, as there may not be any scenario or very
few scenarios where L takes the value VaRα(L). In practice, one uses a kernel estimation approach
for (1) as explained in Tasche (2008) or replaces (1) by the expected range loss approximation

xk
Euler ≈ E

[
Lk
∣∣∣L ∈ [VaRα(L)− x/2, VaRα(L) + x/2]

]
for some range x > 0. The question then becomes how big the range x should be. A bigger range gives
a more stable, but less accurate allocation. If ESα is used as the risk measure, then

xk
Euler = E[Lk|L ≥ VaRα(L)].

For completeness, we mention several alternative approaches, along with their major drawbacks.

• Pro-rata contribution. The simplest allocation approach is the pro-rate contribution

xk
pr =

ρ(−Lk)

∑K
`=1 ρ(−L`)

ρ(−L).

Because the diversification effects are allocated proportionally to each division’s contribution, this
approach does not penalize divisions that are highly correlated and does not reward divisions
that increase the diversification. This is a major drawback of this approach.

• Marginal risk contribution. The marginal risk contribution (or with-without principle) is given by

xk
mr = ρ(−L)− ρ(−(L− Lk)).

It does not satisfy the full allocation property because one can show that ∑K
k=1 xk

mr < ρ(−L)
in general.

• Shapley value. This is a game-theoretic approach to solve the conflict on how to share the
diversification effects. It also works in nonlinear structures and will be discussed at the end of the
next section. A drawback of this approach is that it becomes computationally very demanding
when there is a large number of divisions.

3. Risk Attribution in Risk Drivers

We now consider d random variables R1, . . . , Rd, interpreted as risk factors, and assume that the
total loss variable L = f (R1, . . . , Rd) is some function of these risk factors. There is again a given
risk measure ρ so that the overall required capital is ρ(− f (R1, . . . , Rd)). We are seeking attributions
yj to the jth risk factor. The problem from Section 2 corresponds to the special case of linear losses
f (R1, . . . , Rd) = ∑d

j=1 Rj.

The main idea is to approximate f (R1, . . . , Rd) by a sum ∑d
j=1 Aj, where Aj isolates the

contribution of the jth risk factor, and then apply the Euler principle to this sum. In other words,
the goal is to find isolated contributions to the company’s potential losses.

In reality, the risk factors evolve over time. To illustrate, we start by considering two risk factors
taking values R1

0, R1
1, . . . , R1

T and R2
0, R2

1, . . . , R2
T over time. The losses depend on the terminal values of
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the risk factors: L = f (R1
T , R2

T). We aim to linearize the losses f (R1
T , R2

T) ≈ A1 + A2, where A1 and
A2 are the loss contributions of the first and second risk factors, respectively. Once we have such
a linearization, we can apply risk allocation as in the previous section to A1 + A2, which results in
attributions y1 and y2 to the two risk factors. We now discuss how we can determine A1 and A2.

A possibility would be to define A1 as the losses resulting from changes in R1 while R2 is fixed.
Assuming f (R1

0, R2
0) = 0 for simplicity and applying the same idea to define A2, this will lead to

an approximation
f (R1

T , R2
T) ≈ f (R1

T , R2
0)︸ ︷︷ ︸

A1

+ f (R1
0, R2

T)︸ ︷︷ ︸
A2

.

The approximation is exact if the risk factors decouple in an additive way. However, as Figure 1
illustrates, the resulting approximation error can be large when f depends on R1

T and R2
T in a nonlinear

way. This is relevant in practice, as factors often affect risk in a nonlinear way.

Figure 1. Computing the linear contributions f (R1
T , R2

0) and f (R1
0, R2

T) from the initial time to time T
can lead to a large estimation error.

Rather than computing just one step, we define

A1 =
T−1

∑
t=0

(
f (R1

t+1, R2
t )− f (R1

t , R2
t )
)

︸ ︷︷ ︸
change in losses due to R1 at time t

and A2 =
T−1

∑
t=0

(
f (R1

t , R2
t+1)− f (R1

t , R2
t )
)

︸ ︷︷ ︸
change in losses due to R2 at time t

(2)

which means to consider the marginal changes at the different time steps and sum them up. As Figure 2
on the next page shows, the resulting approximation error will typically be much smaller because we
approximate locally the function change at each time step. This approximation is exact when there is a
stepwise linear dependence structure. The larger the curvature of f is, the bigger the approximation
error will be. However, by making the size of the time steps smaller, the approximation error can
be reduced.
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Figure 2. Rather than computing the linear contribution for the two factors from zero, our method
uses a step-wise procedure: we consider the contributions for each of the two factors along a trajectory
to the value f (R1

T , R2
T). We approximate f (R1

T , R2
T) by A1 + A2, where the contributions A1 and A2

consist of the sums of the increases in the red and orange arrows, respectively. This procedure leads to
a much more accurate linear approximation of f (R1

T , R2
T) than using the linear contribution f (R1

T , R2
0)

and f (R1
0, R2

T) from the initial time to time T.

We now discuss the general case with d risk factors. Each risk factor corresponds to a time series
Rj

0, Rj
1, . . . , Rj

T . We denote by Rj
t the jth risk factor at time t, which is a random variable observable at

time t. We define Aj by

Aj =
T−1

∑
t=0

(
f (Rj

t+1, (Ri
t)i 6=j)− f ((Ri

t)i)
)

, (3)

This means that, for each period, we consider the one-dimensional slides

f (Rj
t+1, (Ri

t)i 6=j)− f ((Ri
t)i) = change in losses due to Rj at time t while Ri for i 6= j remains constant

and then sum up over time t = 0, 1, . . . , T − 1 to obtain Aj.

This method has the following properties:

• In the linear case f ((Ri
t)i) = ∑d

j=1 Rj
t, we have Aj = Rj

T − Rj
0 so that ∑d

j=1 Aj = f ((Ri
T)i) −

∑d
j=1 Rj

0. One could adjust the procedure to achieve ∑d
j=1 Aj = f ((Ri

T)i) in this linear case, but

∑d
j=1 Rj

0 is a constant at time 0, hence affects little the tails of the losses and the risk measure.

• For each period, Aj captures the risk that comes from the jth risk driver while considering the
current values of the other risk factors. Therefore, the overall residual consists of the diversification
benefit in each period, summed up over the periods:

f ((Ri
T)i)− f ((Ri

0)i)−
d

∑
j=1

Aj =
T−1

∑
t=0

(
f ((Ri

t+1)i)− f ((Ri
t)i)−

d

∑
j=1

(
f (Rj

t+1, (Ri
t)i 6=j)− f ((Ri

t)i)
))

︸ ︷︷ ︸
change in loss from joint movement of several risk drivers in period t
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• An alternative specification for Aj would be to use an approximation with partial derivatives of
the form

T−1

∑
t=0

∂ f
∂xj ((Ri

t)i)(Rj
t+1 − Rj

t).

This corresponds to first-order sensitivities while (3) is based on one-dimensional slides.

When we fix the time horizon and make the time grid more and more granular, the approximation
∑d

j=1 Aj converges to the total losses L under suitable conditions. This result is formalized as follows.

Proposition 1. Let L = f (R1
T , . . . , Rd

T) for a twice continuously differentiable f and let (R1
t , . . . , Rd

t )t∈[0,T] be
a continuous semimartingale on [0, T] with zero quadratic covariation 〈Ri, Rj〉t = 0 for all t ∈ [0, T] and i 6= j.
We set

Aj
N =

N−1

∑
n=0

(
f (Rj

tn+1
, (Ri

tn)i 6=j)− f ((Ri
tn)i)

)
for 0 = t0 ≤ t1 ≤ · · · ≤ tN = T. Then ∑d

j=1 Aj
N + f (R1

0, . . . , Rd
0) converges to L almost surely as N → ∞.

Proof. By Itô’s formula, we can write

f (R1
T , . . . , Rd

T)− f (R1
0, . . . , Rd

0) =
d

∑
j=1

∫ T

0
fxj (R1

t , . . . , Rd
t )dRj

t +
1
2

d

∑
i,j=1

∫ T

0
fxi xj (R1

t , . . . , Rd
t )d〈Ri, Rj〉t

=
d

∑
j=1

∫ T

0
fxj (R1

t , . . . , Rd
t )dRj

t +
1
2

d

∑
j=1

∫ T

0
fxj xj (R1

t , . . . , Rd
t )d〈Rj, Rj〉t, (4)

using that 〈Ri, Rj〉t = 0 for all i 6= j by assumption. As in the proof of Theorem 3.3 in
Karatzas and Shreve (1998), we also have that Aj

N converges almost surely to

∫ T

0
fxj(R1

t , . . . , Rd
t )dRj

t +
1
2

∫ T

0
fxjxj(R1

t , . . . , Rd
t )d〈Rj, Rj〉t

so that

lim
N→∞

d

∑
j=1

Aj
N + f (R1

0, . . . , Rd
0) =

d

∑
j=1

∫ T

0
fxj(R1

t , . . . , Rd
t )dRj

t +
1
2

d

∑
j=1

∫ T

0
fxjxj(R1

t , . . . , Rd
t )d〈Rj, Rj〉t

+ f (R1
0, . . . , Rd

0)

= f (R1
T , . . . , Rd

T)

= L

almost surely, where we used (4) for the penultimate equality.

We next discuss how risk attribution can be applied within a company’s divisions. Because the
total loss variable L = ∑K

k=1 Lk is linear in the loss variables Lk = f k((Ri
T)i) of the divisions, we can

define an approximation of Lk by ∑d
j=1 Ajk with

Ajk =
T−1

∑
t=0

(
f k(Rj

t+1, (Ri
t)i 6=j)− f k((Ri

t)i)
)

, (5)

analogously to (3). Since we have linear approximations ∑d
j=1 Aj and ∑d

j=1 Ajk for L and Lk, respectively,
we can apply the Euler principle to these sums to determine an attribution for the different risk drivers.

For ρ = VaRα (value-at-risk as risk measure), an overview of the formulas for this method of the
risk allocation and attribution is given in Table 2. Note that the procedure in Table 2 is commutative in
the sense that the order of risk allocation and risk attribution can be interchanged: if risk is allocated
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first to the different divisions and then attributed to the sources of risk, it leads to the same values as
when attribution is done before allocation.

Table 2. Risk decomposition along two dimensions: risk allocation and risk attribution. In the table, we
used the notations Aj from (3), Ajk from (5), Lk = f k((Ri

T)i), and B = { f ((Ri
T)i) ≥ VaRα( f ((Ri

T)i))}.

risk allocation←−−−−−−−−−−−→

ri
sk

at
tr

ib
ut

io
n

←−
−−
−−
−−
−−
−−
−→

Division 1 Division 2 . . . Division K Total company

Risk driver 1 E[A11|B] E[A12|B] E[A1K |B] E[A1|B]
Risk driver 2 E[A21|B] E[A22|B] E[A2K |B] E[A2|B]
Risk driver 3 E[A31|B] E[A32|B] E[A3K |B] E[A3|B]

. . . . . . . . . . . . . . .

Cross effects residual residual residual residual

Total risk E[L1|B] E[L2|B] E[LK |B] VaRα(L)

We mention next several other approaches:

• Shapley value. The Shapley value for a risk factor is computed as the average of the contribution of
this risk factor when it enters at different stages (Denault 2001; Powers 2007). In the first round,
the impact of only a single risk factor is considered. In the second round, the impact is computed
that a risk factor has when there are two factors present. Then the stand-alone contribution of
the other factor is subtracted from the result. In the third round, the impact of the risk factor
is computed when there are three factors present. Then the joint contribution of the other two
factors is subtracted. The procedure continues until all factors are considered.

For linear loss structures, the Shapley value distributes the diversification benefits in a fair way.
Moreover, it can be defined axiomatically (Denault 2001).

A drawback of this method is that it is computationally intense for large d (d ≥ 7). A possibility is
to group the R1, . . . , Rd, compute the allocation first for each group and then allocate it within
each group. However, this may not lead to the same outcome as when the allocation is done
directly for each Rj.

• Hájek projection. Assume that R1, . . . , Rd are independent. The Hájek projection is the projection
of the total loss variable L onto the set of sums ∑d

j=1 gj(Rj) of measurable functions gj

(Rosen and Saunders 2010). The Hájek projection is given by gj(Rj) = E[L|Rj] − d−1
d E[L].

One could then apply to ∑d
j=1 gj(Rj) the Euler principle using the ideas of Section 2.

However, to make use of this approach, one would need to compute E[L|Rj], which requires
knowing the dependence structure between the total losses and the risk factor Rj.

• Sensitivity-based approach. As in the Euler risk allocation, we could compute

Aj
Euler =

d
dλ

ρ
(
− L(R1, . . . , (1 + λ)Rj, . . . , Rd)

)∣∣∣
λ=0

,

but they will not sum up and would need to be scaled. Moreover, the economic justification given
in Section 2 is lost for nonlinear L.

• Taylor expansion. For a fixed expansion point (z1, . . . , zd), the first-order Taylor expansion

L(R1, . . . , Rd) ≈ L(z1, . . . , zd) +
d

∑
j=1

∂L
∂zj (z

1, . . . , zd)(Rj − zj)
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can be used to interpret ∂L
∂zj (z1, . . . , zd)(Rj − zj) as approximate risk factors, which can be used

similarly to the Hájek projection. There is again an approximation error so that a scaling is needed.
Moreover, the approximation will strongly depend on the choice of the expansion point.

• Freezing the margins. The idea of this approach is to “switch off” the randomness of all but one
of the sources of risk. The approximate risk factors are of the form L(z1, . . . , zj−1, Rj, zj+1, . . . , zd)

for a fixed point (z1, . . . , zd). Again, there is an approximation error, the business meaning of the
terms is unclear, and the approximation will strongly depend on the choice of (z1, . . . , zd).

4. Application to Credit Risk

We start by briefly recalling the classical structural approach to credit risk generalizing
Merton (1974) to multiple firms, which is widely used in academia and practice, see for example
Berg (2010); Frei and Wunsch (2018); Hull et al. (2005), and Vasicek (2002). We consider one rating
bucket consisting of homogeneous obligors. We group obligors in the portfolio into homogeneous
buckets. We assume that the number of obligors is big enough so that the idiosyncratic risk of obligors
is negligible at the bucket level. The normalized asset return of an obligor is given by

A =
√

$ R +
√

1− $ ε,

where $ ∈ [0, 1) is the correlation coefficient, R is a standard normally distributed random variable
(the systematic factor of the bucket) common to all obligors in the bucket and ε is a standard normally
distributed random variable (the obligor’s idiosyncratic component) specific to each obligor and
independent of R and of the ε of other obligors. The systematic factor R captures macroeconomic
developments that affect all obligors. An obligor defaults if their return is below a threshold b, which
is the same for all obligors in the bucket. Hence, the unconditional default probability of obligors in
the bucket is given by

p = P[A ≤ b] = Φ(b),

where Φ denotes the standard normal cumulative distribution function, using that A is standard
normally distributed. This implies c = Φ−1(p). The loss rate in the bucket conditional on the
systematic factor R is given by

L = P[A ≤ b|R] = P
[

ε ≤
Φ−1(p)−√$R√

1− $

∣∣∣∣R] = Φ

(
Φ−1(p)−√$R√

1− $

)
,

using the independence of ε from R. We assume that the systematic return component R is driven by
two factors, namely,

R =
√

wR1 +
√

1− wR2,

where R1 and R2 are independent and standard normally distributed. We can think of R1 and R2 as
the drivers behind two different macroeconomic components. In practice, they can be obtained from a
principal component analysis of data used to model asset returns (such as macroeconomic data or data
from stock price returns). It follows that

L = Φ

(
Φ−1(p)−√$(

√
wR1 +

√
1− wR2)√

1− $

)
,

where L depends in a nonlinear way on R1 and R2. We are interested in the following questions: What
is the risk attributed to the first factor R1? What is the difference between the total risk and the sum of
the risk attributions to the two factors R1 and R2? It is natural to expect that the risk attributed to R1

should be close to w, and the sum of the risk attributions to R1 and R2 should be close to the total risk,
but it will not be equal because of the nonlinear dependence of L on R1 and R2.
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To compute a risk attribution of the first factor, we apply the procedure presented in Section 3.
We assume that there are 26 time steps, corresponding to biweekly observations over one year. For the
approximate contribution of the first factor to L, we apply (2) by considering what happens to L when
R1 changes from time t to t + 1 while R2 remains at the value of time t, namely

A1 =
25

∑
t=0

(
Φ

(
Φ−1(p)−√$(

√
wR1

t+1 +
√

1− wR2
t )√

1− $

)
−Φ

(
Φ−1(p)−√$(

√
wR1

t +
√

1− wR2
t )√

1− $

))
.

We do the same procedure for the second factor so that

A2 =
25

∑
t=0

(
Φ

(
Φ−1(p)−√$(

√
wR1

t +
√

1− wR2
t+1)√

1− $

)
−Φ

(
Φ−1(p)−√$(

√
wR1

t +
√

1− wR2
t )√

1− $

))
,

and apply the Euler principle to compute the contribution of each factor. For this example, we assume
that all obligors in the bucket have the same exposure at default, where the total exposure is normalized
to 1. The probability of default is set to p = 1% per year, $ = 0.2 for this example, and the loss given
default is set to 100%. Of course, these are simplifications because our focus is on analyzing the
contributions of the risk drivers in a simple example. There is an extensive literature on the modelling
of the probability of default, the loss given default, and their dependence structure (Cheng and Cirillo
2019; Frye and Jacobs 2012; Metzler and Scott 2020; Miu and Ozdemir 2006; Pykhtin 2003). We use
expected shortfall at the 99.5% level as the risk measure.

The results presented in the upper panel of Figure 3 show a good fit of both the risk attribution
of the first factor compared to its weight w and the sum of the risk attributions of the two factors
compared to the total risk. By contrast, if only one step instead of 26 steps is performed, the lower
panel of Figure 3 shows big deviations between the sum of the risk attributions and the total risk.
We also observe in Table 3 that the approximation becomes more precise when the number of steps is
increased. This improvement is consistent with Proposition 1, which gives a convergence result when
the number of steps goes to infinity. The conditions of Proposition 1 are met in this application because
Φ is infinitely differentiable, and R1 and R2 can be modelled in continuous time as two independent
Brownian motions, thus as a continuous semimartingale with zero quadratic covariation, as required
by Proposition 1.

Finally, we extend the example by including idiosyncratic risk. So far, we have assumed that
all idiosyncratic risk is diversified away. If there is a smaller number of obligors, their idiosyncratic
risk will also be present at bucket level. Idiosyncratic risk then constitutes a third risk component, in
addition to the risk originating from the two factors. We now apply the Euler principle to all three
risk components, resulting in Figure 4 for an example with 20 obligors. We still see a fairly good
correspondence of the sum of the risk attributions to the total risk, where we again chose 26 time steps
in the procedure.
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Figure 3. Risk attribution to two risk factors. In the upper panel with 26 time steps, the sum of the risk
attribution matches much better the total risk than in the lower panel with only one time step.

Table 3. Risk attribution to two risk factors. The approximation error is averaged over the weight of
the first factor, and expected shortfall at 99.5% level is used as the risk measure.

1 Step 4 Steps 12 Steps 26 Steps 52 Steps 253 Steps
Annual Quarterly Monthly Biweekly Weekly Daily *

factor 1 0.047 0.052 0.058 0.060 0.061 0.061

factor 2 0.047 0.052 0.058 0.060 0.061 0.061

approximation 0.094 0.104 0.116 0.120 0.121 0.122

total 0.127

absolute error 0.033 0.023 0.011 0.007 0.006 0.005

percentage error 25.6% 17.6% 7.9% 5.5% 4.6% 3.9%

* 253 = approximate number of trading days per year.
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Figure 4. Risk attribution including idiosyncratic risk from 20 obligors. The average approximation
error is 7.1%, with the aggregated risk contributions of 0.160 compared to the total risk of 0.172.

5. Conclusions

Extending the Euler principle to nonlinear loss dependence structures, we introduced a method
for risk attribution, which assigns risk contributions to underlying drivers. To allow for nonlinear
loss dependence structure, we use a linearization based on one-dimensional slides, before applying
the Euler principle to this linearization. We showed that under suitable conditions the linearization
becomes exact for an infinitely granular time grid. The method is straightforward to implement
and yields the desired risk split, as we exemplified in the context of credit risk. Compared to other
approaches, this method has the following main advantages:

• in practice, it is easy to compute, even for a high number of risk factors, unlike the Hájek projection
or the method of the Shapley value;

• being based on the Euler principle, it has a solid economic justification, unlike the approach to
freeze the margins.

Interesting questions for future work include the application of this method to different risk
types, and the comparison of its results with those of other methods, such as the Shapley value.
Another possible future research direction is the analysis of dynamic (over time) properties of the
risk attribution.
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