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Abstract: The widely used Poisson count process in insurance claims modeling is no longer valid if
the claims occurrences exhibit dispersion. In this paper, we consider the aggregate discounted claims
of an insurance risk portfolio under Weibull counting process to allow for dispersed datasets. A
copula is used to define the dependence structure between the interwaiting time and its subsequent
claims amount. We use a Monte Carlo simulation to compute the higher-order moments of the risk
portfolio, the premiums and the value-at-risk based on the New Zealand catastrophe historical data.
The simulation outcomes under the negative dependence parameter θ, shows the highest value of
moments when claims experience exhibit overdispersion. Conversely, the underdispersed scenario
yields the highest value of moments when θ is positive. These results lead to higher premiums being
charged and more capital requirements to be set aside to cope with unfavorable events borne by
the insurers.

Keywords: aggregate discounted claims; overdispersed counting process; value-at-risk; solvency
capital requirement; premium principle

1. Introduction

The primary objective of an insurance company is to ensure that it can pay its promised
obligations and remain solvent in the business. This can be achieved by managing surplus
processes effectively and charging the appropriate premium amount, which will then
guarantee an adequate reserve and capital requirement to cope with any unfavorable
events. The ability to estimate accurately the aggregate discounted claims would help
insurers manage their future liabilities and estimate appropriate premiums to be charged
for an insurance contract under a particular line of business. The aggregate discounted
claims, or the present value of the total claims amount paid out by an insurance company,
are based on the number of claims occurrences up to time t, claims arrival time and claims
amount, as well as the discount factor. Past studies related to the first two moments of the
aggregate discounted claims were seen in Léveillé and Garrido (2001a) using renewal theory
argument while, per Jang (2004), obtaining the Laplace transformation of the distribution
using a different martingale approach. Léveillé and Garrido (2001b) applied the renewal
theory arguments and conditioning on the first claim arrival to derive the m-th recursive
aggregate moment, assuming independence of claim arrival time from its severity.

The independence assumption between claims size and inter-claim arrival time in
a classical risk model, as seen in Jang (2004), Waters (1983) and Yang and Zhang (2001)
may no longer be appropriate for insurance risk portfolio modeling. With the increased
frequency of catastrophic events (MunichRE 2018), the independence assumption will
underestimate the risks faced by insurers, especially the values related to pricing, reserv-
ing and ruin measures of a risk portfolio. Past literature has relaxed the independence
assumption used in the classical risk theory to include dependency elements between

Risks 2021, 9, 109. https://doi.org/10.3390/risks9060109 https://www.mdpi.com/journal/risks

https://www.mdpi.com/journal/risks
https://www.mdpi.com
https://orcid.org/0000-0002-3496-2916
https://orcid.org/0000-0001-5909-5284
https://orcid.org/0000-0001-5892-9013
https://doi.org/10.3390/risks9060109
https://doi.org/10.3390/risks9060109
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/risks9060109
https://www.mdpi.com/journal/risks
https://www.mdpi.com/article/10.3390/risks9060109?type=check_update&version=1


Risks 2021, 9, 109 2 of 21

claims amounts and claim occurrences that follows a Poisson process (Barges et al. 2011;
Mohd Ramli and Jang 2014; Sun et al. 2020; Woo and Cheung 2013). Barges et al. (2011)
and Woo and Cheung (2013) were among the first to derive the m-th moment of the ag-
gregate discounted claims using the Laplace transformation and relax the independence
assumptions through a copula. Mohd Ramli and Jang (2014) extended the works by ex-
plicitly finding the Neumann series expressions and numerically solving the first two
moments, where the dependence structure is captured by Farlie–Gumbel–Morgenstern
(FGM), Gumbel, and Gaussian copulae. Mohd Ramli et al. (2018), on the other hand solved
the recursive moments which take the form of a Volterra integral equation (VIE) using
the Laplace transform, assuming an exponential claims size under the FGM, Frank and
the HRT copulae. Recent study by Sun et al. (2020) derived the explicit expressions for
the first three moments using a Laplace transformation by adopting the Spearman copula
to cover a wide range of positive dependency, and developed the convex approximation
of the copula. The studies mentioned above illustrated the use of the Poisson counting
process to represent event occurrence.

Owing to the practical limitation in the Poisson process which requires an equidis-
persed set of data, researchers has also adopted the Poisson-gamma or also known as
negative binomial count process that only allows for an overdispersed dataset (Lora and
Singer 2011). The Weibull count process, on the other hand, is a good alternative to al-
low for both underdispersed and overdispersed datasets, as commonly seen in applied
data analysis with heterogeneous populations (Kreer et al. 2015; McShane et al. 2008;
Winkelmann 1995). McShane et al. (2008) derived a closed form of the renewal process
based on Weibull inter-arrival times using a Taylor series expansion. Additionally, as the
constant hazard rate assumption is not valid in real practice, the duration dependence
or time-varying function under a renewal process replaces the constant hazard function.
The non-constant hazard rates that vary according to the duration of the interwaiting
time (IWT) would be useful in modeling the unexpected random shocks that lead to the
breakdown of many engineering systems, as seen in the work of Liu (2019). Compared
with a simple Poisson count model with independent marginals, the Weibull count model
with a copula is found to be more useful for predicting the number of goals scored in a
football match (Boshnakov et al. 2017).

The Weibull process has also been widely used in insurance and financial studies.
Kreer et al. (2015) and Hasumi et al. (2009) mentioned that the probability distribution of
the inter-occurrence time of the earthquake events and the automotive claim sizes distri-
bution can be described by the Weibull distribution. It has also been applied in ruin the-
ory see (Albrecher et al. 2011) to establish explicit formulas for ruin probabilities under a
Sparre–Andersen risk process. Past researchers worked with explicit solutions of the mo-
ments derived from the Laplace transform (Barges et al. 2011; Li and Lu 2018; Mohd Ramli
et al. 2018) or Neumann series (Mohd Ramli and Jang 2014), which may require heavy
computational capacity resulting from lengthy expressions. The variance expression de-
rived from the Neumann series (Mohd Ramli and Jang 2014) has up to sextuple numerical
integration even with a simple Poisson counting process. Thus, Mohd Ramli et al. (2019)
work with numerical inversion of the Laplace transform via Gaver–Stehfest algorithm to
compute the first two moments of Weibull risk process. However, the slow convergence
of the numerical solutions under copulae other than FGM may be improved with better
computational techniques. This study seeks to overcome the mathematical complexity
under a Weibull risk process by using the Monte Carlo simulation to allow for faster com-
putation and more flexibility to compute the higher-order moments through a wider choice
of copula.

We organize the remainder of this article as follows: In Section 2, we introduce the
aggregate discounted claims model under Weibull counting process together with copulae
to represent the dependency between the IWT and the subsequent claim sizes. In Section 3,
we first show the comparison of the simulated moments under Monte Carlo simulation for
a special case when λ = 1, with results obtained in previous studies to ensure consistency.
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We then fit the distributions and estimate the associated parameters to the New Zealand
catastrophe occurrences and losses amount data to illustrate the dispersion in the dataset as
allowed by a Weibull process. We also find the best copula to accommodate the dependency
in the dataset. We then perform a scenario analysis to examine the characteristics of the
resulting risk portfolio through the moments, the VaR and the premium computation.
Section 4 concludes the article.

2. Materials and Methods
2.1. Aggregate Risk Model

We define the aggregate discounted claims as in Léveillé and Garrido (2001b), whereby
Z = {Z(t)}t≥0 with:

Z(t) =

{
∑

N(t)
i=1 e−δTi Xi if N(t) > 0

0 if N(t) = 0,
(1)

where Xi, i = 1, 2, . . . is a continuous, non-negative, independent and identically dis-
tributed (i.i.d.) random variable that represents claims sizes occurring at random times
Ti, i = 1, 2, . . . , N(t). The instantaneous rate of net interest δ is assumed to be deterministic.

2.1.1. Weibull Counting Process

In this study, we let the counting process N = {N(t)}t≥0 follow a basic Weibull
counting process as in Mohd Ramli et al. (2019), whereby the corresponding continuous
random variable of the inter-claim arrival time, Wi, is defined as:

Wi =

{
Ti for i = 1
Ti − Ti−1 for i = 2, 3, ...,

(2)

which follows a Weibull distribution. The time elapsed between two successive claims
arrival is called the interwaiting time (henceforth IWT) of the counting process N(t). Each
pair of the joint variables forms a sequence of i.i.d. random vectors {(Xi, Wi)}i∈N . The
mean and variance of a Weibull count model with shape parameter λ and scale parameter
β, derived by McShane et al. (2008) are given by:

E[N(t)] =
∞

∑
n=1

∞

∑
j=n

n(−1)j+n(tλ/β
)j

τn
j

Γ(λj + 1)
, (3)

Var[N(t)] = E
[

N2(t)
]
− E2[N(t)]

=
∞

∑
n=2

∞

∑
j=n

n2(−1)j+n(tλ/β
)j

τn
j

Γ(λj + 1)
−

 ∞

∑
n=1

∞

∑
j=n

n(−1)j+n(tλ/β
)j

τn
j

Γ(λj + 1)

2

, (4)

where

τn
j =


Γ(λj+1)
Γ(j+1) , for n = 0, j = 0, 1, 2, ...

j−1
∑

m=n−1
τn−1

j
Γ(λj−λm+1)

Γ(j−m+1) , for n = 1, 2, 3, ..., j = n, n + 1, n + 2, ...,

in which the parameter n denotes the number of events that occur in the interval [0, t].
Although the memoryless property of the exponentially distributed IWT allows for

mathematical convenience, the Poisson counting process is only adequate if the data satisfy
the restrictive assumption of equidispersion in which the variance of the data is equal to
their mean. Hence, the Weibull count model is a better alternative for its ability to accom-
modate both overdispersed and underdispersed datasets. It also nests commonly used
count models, including the Poisson and the negative binomial distributions. Additionally,
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the Weibull count model also allows for non-constant hazard rates that vary according to
the duration of the IWT (McShane et al. 2008). The hazard function characterizes the IWT
distribution and relates them to the type of dispersion observed in the corresponding count
data. Past studies (Jose and Abraham 2011; McShane et al. 2008; Winkelmann 1995) have
verified that the underlying IWT displays negative (positive) duration dependence under
a decreasing (increasing) hazard for shape parameter of 0 < λ < 1 (λ > 1) which causes
overdispersion (underdispersion). The lack of duration dependence for λ = 1 leads to the
Poisson distribution with a constant hazard function, as shown in Figure 1.

We also note that there are two types of dependency applied when modeling the IWT
under the Weibull counting process. First dependency lying between the duration of the
IWT and the frequency of the claims arrival represented by non-constant hazard rates. As
mentioned in McShane et al. (2008) and Winkelmann (1995), the negative (positive) duration
dependence indicates a higher (lower) probability of claims occurring immediately after the
occurrence of previous claims and decreases (increases) steadily as the IWT increases. This
implies that the overdispersed (underdispersed) cases produce higher claims frequencies
under short (long) IWT and vice versa.

Figure 1. Weibull hazard function with different shape parameters to indicate different dispersions.

2.1.2. Copula

The second dependency is between the IWT and its subsequent claims amount, which
is captured by a copula. A copula provides a more convenient way to model any joint
distribution of two or more random variables. We can model the marginal distributions of
each variable by itself, and the copula can link these into a joint distribution. As we allow
dependency between the claims size Xi, and the inter-arrival time Wi, we have a dependent
Sparre–Andersen risk process with a dependence structure defined by a copula or other
joint probability functions. Please note that when the marginals are negatively (positively)
correlated, a large claim amount Xi will occur following a short (long) inter-arrival claim
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time Wi, and vice versa. In this study, the dependence structure between the two marginals
of X and W are described by a few copulae including the Clayton, Frank and FGM copulae.

Both the Clayton and Frank copulae belong to the same Archimedean family, in which
the cumulative distribution function (CDF) of each copula is given by:

CClayton
θ (FX(x), FW(w)) = max

{
FX(x)−θ + FW(w)−θ − 1, 0

}− 1
θ , (5)

where θ ∈ [−1, ∞),

CFrank
θ (FX(x), FW(w)) = −1

θ
ln

(
1 +

(e−θFX(x) − 1)(e−θFW (w) − 1)

(e−θ − 1)

)
, (6)

where θ ∈ R. The CDF of an FGM copula, which is from a different class of copula family
is given by:

CFGM
θ (FX(x), FW(w)) = FX(x)FW(w) + θ(1− FX(x))(1− FW(s)), (7)

where θ ∈ [−1, 1] represents the dependence parameter (Klugman and Parsa 1999; Ly et al.
2019). The copulae return to an independence copula when θ = 0. The FGM copula is
a popular choice in extreme value analysis and risk management (Mao and Yang 2015)
due to its simplicity and analytical tractability, despite its ability to capture only mod-
erate dependency. The moderate dependence structure for FGM copula can be seen in
Figure 2k–o, in which θ ∈ [−1, 1] is restricted to Kendall’s tau, τ ∈ [−2/9, 2/9]. In contrast,
the Clayton copula (Figure 2a,e) and Frank copula (Figure 2f,j) allow for a wider range of
dependency with τ ∈ [−1, 1], as shown by the almost linear scatter plots of strong negative
and positive dependency. However, the Frank copula could neither capture lower nor
upper tail dependence, whereas the Clayton copula allows for lower tail dependence, or
dependency on small values (Ly et al. 2019). The lower tail dependency can be seen clearly
in its ’ice cream cone’ shapes as in Figure 2b,d.

2.2. Recursive Moment Expressions

The general form of the m-th moment of aggregate discounted claims Z(t), as given here,

µ
(m)
z (T) = E[Zm(T)] =

∫ T

0
fw(s)e−mδsE(Xm|W = s)ds

+
∫ T

0
fw(s)e−mδsµ

(m)
z (T − s)ds

+
m−1

∑
j=1

(
m
j

) ∫ T

0
fw(s)e−mδsE

(
X j|W = s

)
µ
(m−j)
z (T − s)ds, (8)

has a recursive nature (Barges et al. 2011; Mohd Ramli and Jang 2014). Working with
explicit solutions of Equation (8) require heavy computational capacity due to lengthy
expressions as seen in Mohd Ramli and Jang (2014) and Mohd Ramli et al. (2018). We
therefore use the Monte Carlo simulation to compute the higher order of moments in a
much shorter period with a common computational capacity. Hence, the mathematical
properties of the insurance risk portfolio can be examined in a more efficient and viable
manner despite the complicated expressions, which would be welcomed by the industrial
community (Driels and Shin 2004).
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Figure 2. The simulated scatter plots of Clayton, Frank and FGM copulae under different dependence parameters.
(a) Clayton with θ = −1; (b) Clayton with θ = −0.7; (c) Clayton with θ = 0; (d) Clayton with θ = 2; (e) Clayton with
θ = 100; (f) Frank with θ = −100; (g) Frank with θ = −6; (h) Frank with θ = 0; (i) Frank with θ = 6; (j) Frank with θ = 100;
(k) FGM with θ = −1; (l) FGM with θ = −0.5; (m) FGM with θ = 0; (n) FGM with θ = 0.5; (o) FGM with θ = 1.

2.3. Monte Carlo Simulation

Monte Carlo simulation is a popular and powerful quantitative tool often used in
risk analysis such as in evaluation of insurers’ capital requirements (Casarano et al. 2017),
estimation of claim size distribution (Bar-Lev and Ridder 2019), mortality projection
(Zamzuri and Hui 2020) and bootstrapping approach in Structural Equation Modeling
(Razak et al. 2019). We apply the Monte Carlo simulations to incorporate and understand
the impact of risk and uncertainty in our model by computing the probability of different
outcomes in a risk process (Zamzuri and Hui 2020).

In this study, we simulate the aggregate discounted claims process using the estimated
parameters and distributions from a real insurance dataset. In simulating the copula func-
tion, we adopt the same approach as Kelly (2007), whereby the first stage involves modeling
the unidimensional marginal distributions while the second stage involves modeling the
dependence structure. The steps taken in the simulation process are the following:
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1. Generate pairs of dependent random variates {(Xi, Wi)} from multivariate distribu-
tions constructed from the chosen copula. The multivariate distributions are based on
the best-fit distribution obtained from the insurance dataset.

2. Compute the random time Ti, from the accumulated Wi as in Equation (2).
3. Compute the aggregate discounted claims Z(T), by assuming deterministic δ.
4. Stop running the iterations once the Ti is above a pre-determined term of a pol-

icy contract.
5. Repeat the process from step 1 to 4 for n simulations.
6. Determine the moments, premium and VaR from the simulated risk process Z(T).

3. Results and Discussion

In this section, we organize the results and discussion by first showing the consistency
of results returned by the Monte Carlo simulation method with results obtained in previous
studies (Section 3.1). Next, we fit the aggregate discounted claims model to the New
Zealand catastrophe data in Section 3.2. Using the estimated parameters of the claims
size distribution, the IWT distribution and the dependency between these marginals, we
then examine the risk portfolio of the New Zealand catastrophe dataset. This includes
computing the value of moments, premium and VaR in Section 3.3. Finally, we perform
scenario analysis in Section 3.4 by varying the parameters of the Weibull process and the
copulae to examine the impact on the risk portfolio.

3.1. Results Verification

We first consider the special case of a Weibull IWT with the shape parameter λ = 1
to ensure consistency of the Monte Carlo simulations with the numerical values ob-
tained through Laplace transform as in Barges et al. (2011), Mohd Ramli and Jang (2014)
and Mohd Ramli et al. (2018). We simulate pairs of the joint variables of random vec-
tors (Xi, Wi)(i∈N) with an FGM copula defining the dependency between the variables.
The values were computed using the same parameters in which X ∼ Exp(α = 0.01),
W∼ Exp(β = 1), δ = 0.04 and T = 5 for different values of θ. The average number of
iterations for each simulation is 5, which is consistent with the average of the exponentially
distributed IWT. The process is then repeated for n = 100, 000 simulations.

The mean and variance of the aggregate discounted claims obtained via Monte Carlo
simulation are presented in Table 1 and we compare the results with the explicit solution
under the Laplace transform as in Mohd Ramli et al. (2018). The simulation results show
only slight deviation from the values computed using the Laplace transform, of less than
1% differences for the mean and 2% for the variance.

Table 1. Verification of the Monte Carlo Simulation.

Moments θ Monte Carlo Laplace Transform Relative Deviation

−0.999 479.23 477.66 0.330%
−0.9 474.83 475.23 0.084%
−0.5 469.16 465.43 0.803%

Mean 0 452.79 453.17 0.084%
0.5 440.59 440.92 0.074%
0.9 433.43 431.12 0.537%

0.999 430.23 428.69 0.359%

−0.999 106,554.00 106,351.84 0.190%
−0.9 105,554.20 103,929.50 1.563%
−0.5 94,099.89 94,253.78 0.163%

Variance 0 80,630.85 82,420.23 2.171%
0.5 69,601.11 70,874.44 1.797%
0.9 61,217.14 61,845.86 1.017%

0.999 59.182.13 59,638.74 0.766%



Risks 2021, 9, 109 8 of 21

3.2. Fitting Distribution and Parameter Estimation of Insurance Datasets

In this section, we fit the aggregate discounted claim models on the New Zealand
catastrophe occurrences and losses amount data from 1968 to 2014 which was retrieved
from the CASdatasets package in R Statistical Software (Dutang and Charpentier 2020). We
estimate the parameters of the fitted distributions of the claims size and the IWT, as well as
the dependency between the marginals, using the maximum likelihood estimation method.

3.2.1. The Claim Sizes Distribution

The Cullen and Frey (Cullen et al. 1999) graph in Figure 3 illustrates the skewness-
kurtosis plot of the empirical distribution of the New Zealand catastrophe loss claims.
The values are computed on 1000 bootstrap samples to allow for the uncertainty of the
estimated values of kurtosis and skewness from data. This graph exhibits some common
distributions on the plot to help with the choice of distributions to fit to data. The normal,
uniform, and logistic distributions are not good fits for the data since the skewness-kurtosis
points of the distribution are far from the empirical value. The descriptive statistic in Table 2
shows a positive skewness and a heavy-tailed kurtosis. Thus, the fit of three common right-
skewed distributions could be considered, which are the Weibull, Gamma and Lognormal
distributions, together with other heavy-tailed distributions such as Pareto and Burr. The
results in Table 3 and Figure 4 show that the lognormal distribution, with a meanlog of
1.35969 and an sdlog of 1.52856, provides the best fit for the claims size distribution (values
in million USD). The fitted lognormal distribution has the lowest negative log likelihood,
Akaike information criterion (AIC) and Bayesian information criterion (BIC) values, with
significant p-values under the Kolmogorov–Smirnov (KS) and Anderson-Darling (AD) test.

Table 2. Descriptive statistics for New Zealand catastrophe claims sizes.

Min Max Median Mean Estimated Std Dev Estimated Skewness Estimated Kurtosis

0.01 112 3.6 10.67252 17.14509 2.997792 14.29496

Figure 3. Skewness-kurtosis plot for the New Zealand catastrophe claims sizes.
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Table 3. Goodness-of-fit (GOF) measures for fitted distributions on the claim sizes.

GOF Criterion GOF Test

Distribution
−2 Log

Likelihood AIC BIC
KS Test

(p-Value)
AD Test
(p-Value)

Exponential 828.447 830.447 833.260 0.0000 0.0000
Lognormal 787.928 791.928 797.552 0.9980 0.9775

Gamma 804.195 808.195 813.820 0.0912 0.0389
Weibull 796.037 800.037 805.662 0.4291 0.1797
Pareto 788.541 792.541 798.165 0.9096 0.8201
Burr 788.420 794.421 802.857 0.9339 0.8521

Figure 4. The theoretical and empirical plots for various distributions fitted to the New Zealand
catastrophe claim sizes.

3.2.2. The Interwaiting Time Distribution

The descriptive statistics of the IWT of the New Zealand catastrophe claims arrival
in Table 4 imply that the claims arrive on average every 138.29 days, with a maximum
IWT of 7.39 years. The IWT exhibits positive skewness with high kurtosis. Table 5 and
Figure 5 show that the Weibull distribution is the best fit for the IWT when compared with
exponential distribution. The Weibull shape parameter value of 0.700152 < 1 indicates an
overdispersed claims occurrences, implying that the claims arrive at times that vary more
than expected.

Table 4. Descriptive statistics for the IWT (in years) of claims arrival.

Min Max Median Mean Estimated
Std Dev

Estimated
Skewness

Estimated
Kurtosis

0.0027 7.3922 0.1478 0.3786 0.8125 6.0819 49.9694
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Table 5. Goodness-of-fit (GOF) measures for fitted distributions on the IWT.

GOF Criterion GOF Test

Distribution Estimated
Parameters AIC BIC KS Test

(p-Value)
AD Test
(p-Value)

Weibull λ = 0.700152
β = 0.282022

−27.4824 −21.8580 0.5383 0.2877

Exponential α = 2.641138 9.08241 11.8946 0.0001 0.0000

Figure 5. The theoretical and empirical plots for Weibull and exponential distributions fitted to the
New Zealand catastrophe IWT.

3.2.3. The Dependency between the Claim Sizes and the IWT

Table 6 exhibits that the Clayton copula is the best fit for the dependence structure
between the IWT and its subsequent claim amount embedded in the New Zealand catastro-
phe historical data. Since Clayton copula allows for lower tail dependence, this indicates
that the IWT and the subsequent claims amount show more dependency on small values.
The positive dependency between the marginals as shown by parameter θ = 0.32 or the
equivalent Kendall’s τ of 0.14, implies that the large (small) claim amount would occur
following the long (short) IWT.

Table 6. Goodness-of-fit criterion for fitted copula on the dependency between the claim sizes and
the IWT.

Copula Estimated Parameter, θ Log Likelihood AIC BIC

Independence 0 0 0 0
Gaussian 0.19 2.02 −2.04 0.77

T 0.19 2.12 −0.25 5.38
Clayton 0.32 3.57 −5.13 −2.32
Gumbel 1.09 0.92 0.17 2.98
Frank 1.1 1.91 −1.81 1

Joe 1.06 0.17 1.65 4.47
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3.3. Risk Characteristic of the Risk Process with Overdispersed Claim Arrival

We will examine the effect of overdispersion in the claims arrival of the New Zealand
catastrophe historical data on the moments, premium and VaR in comparison to the
equidispersed counting process through the Monte Carlo simulation. We are setting
δ = 0.025, Xi ∼lognormal (1.3597,1.5286), with Wi following the Weibull and exponential
distributions from the estimated parameters as in Table 5. The dependency of Xi and Wi is
captured through a Clayton copula with θ = 0.32.

The simulation results as illustrated in Table 7 show that both risk processes of Z(t)
are a right-skewed distribution based on the positive skewness. The high value of kurtosis
from the results indicates a heavy-tailed distribution. However, the exponential IWT
underestimates the value of the mean and variance, which results in a lower value of
premium and VaR compared with the overdispersed Weibull IWT as seen in Table 8.

Table 7. Simulated moments of the New Zealand catastrophe risk process for T = 5.

IWT Distribution Mean Variance Skewness Kurtosis

Weibull 169.343 21313.540 6.296 145.444
Exponential 154.034 18239.790 7.242 150.931

Table 8. Simulated VaR and premium of the New Zealand catastrophic risk process for T = 5.

IWT VaR ($m) Premium Amount ($m)
Distribution 95% 99.50% Mean Principle Std Dev Principle

Weibull 406.757 846.901 186.278 183.942
Exponential 363.706 809.141 169.438 167.540

3.4. Scenario Analysis on Risk Characteristic of the Risk Process under Various Dispersion Effect
on Claims Arrival

In this section, we perform a scenario analysis on the moments, premium and VaR by
varying the shape λ and the scale β parameters under the Weibull IWT distribution. This is
done to allow for various dispersion effect of claims occurrences, across different depen-
dence parameter θ. The parameters of the Weibull count process are chosen so that they
have an equal mean of claim frequencies but with different variances, obtained through
Equation (4). Table 9 illustrates the chosen parameter in which the equidispersed case has
an equal mean and variance of 4.243, whereas the variance under the overdispersed (un-
derdispersed) case is higher (lower) than the mean. This is then reflected in the probability
distribution of the claims frequencies as seen in Figure 6. There is an increased chance of
more claims occurring under the overdispersed case, while the claim frequencies are more
concentrated around the mean for the underdispersed case in a fixed time interval.

Table 9. Marginal mean and variance of overdispersed, equidispersed and underdispersed Weibull
count models, WeibullC when T = 5.

Overdispersed Equidispersed Underdispersed
WeibullC

(λ = 0.5, β = 0.945)
WeibullC

(λ = 1, β = 1.17835)
WeibullC

(λ = 2, β = 1.5)

Mean 4.243 4.243 4.243
Variance 9.903 4.243 1.375
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Figure 6. Probability distribution of claims frequencies under three dispersion cases.

Please note that the simulation of the aggregate discounted claims under Weibull
process adopt two types of dependency. The first type is the duration dependence between
the duration of the IWT, Wi, and the frequency of claims arrivals, which causes dispersed
dataset. The second type is the dependency between the Wi and its subsequent claims
amount Xi, which is captured by a dependence parameter θ of a copula.

Table 10 shows that the highest mean and variance are obtained when the Xi and Wi
exhibit strong negative correlation as seen when θ = −1. This is intuitively reasonable;
short IWT (or frequent claim occurrence) followed by large claims amount Xi, will produce
higher value of moments. However, as θ changes from negative to positive dependency,
the mean and variance are decreasing under all dispersion scenarios.

In comparison to an equidispersed process, the case of overdispersed claims oc-
currences produces the highest first two moments when θ is negative. Conversely, the
underdispersed case shows the highest values of moments when θ is positive. These
outcomes could be related to both aforementioned types of dependencies under Weibull
process. Higher claim frequencies under short (long) IWT will result in many large claims
when θ is negative (positive).

Additionally, the positive skewness and the high value of kurtosis imply that the
risk process exhibits a right-skewed with a heavy-tailed risk distribution. However, as θ
changes to a strong positive dependency, the tail of the risk process under the overdispersed
(underdispersed) case is less (more) skewed with less (more) extreme values on the tail
distribution as shown in the value for skewness and kurtosis. This is then reflected
in Table 11, whereby the risk process with heavier-tailed distribution leads to a greater
difference between the value of 95% and the 99.5% VaR. The 99.5% VaR has more than
tripled in value than the 95% VaR under the most heavy-tailed risk process shown by the
underdispersed case with a strong positive θ.
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Table 10. Simulated moments under various dispersion of claims occurrences across different θ

under a Clayton copula when T = 5.

Overdispersed WeibullC(λ = 0.5, β = 0.945)
θ Mean Variance Skewness Kurtosis

−1 66.359 10202.750 9.423 276.883
−0.5 58.933 7595.139 7.010 128.587

0 53.764 7168.824 10.130 294.856
0.32 51.266 7538.556 22.392 1599.203
10 26.722 1205.303 16.188 714.862
50 19.757 109.521 2.620 105.380
100 19.454 90.367 −0.336 −0.839

Equidispersed WeibullC(λ = 1, β = 1.17835)
θ Mean Variance Skewness Kurtosis

−1 60.663 8240.178 7.779 162.108
−0.5 54.657 6749.611 8.895 190.364

0 50.751 5835.950 10.186 315.298
0.32 48.389 5557.512 13.696 576.241
10 34.768 2378.918 13. 372.840
50 28.978 855.983 21.968 1236.261
100 27.540 533.322 25.754 1589.694

Underdispersed WeibullC(λ = 2, β = 1.5)
θ Mean Variance Skewness Kurtosis

−1 47.414 6147.893 8.180 148.807
−0.5 42.014 4487.100 11.205 347.476

0 39.587 3991.358 9.331 190.339
0.32 38.672 4477.052 13.927 431.441
10 32.096 2714.674 14.606 497.202
50 30.036 2288.304 22.567 1324.124
100 29.623 2289.057 25.280 1591.957

Table 11. Simulated VaR and premium (κ = 0.1) under various dispersion of claims occurrences
across different θ under a Clayton copula when T = 5.

Overdispersed WeibullC(λ = 0.5, β = 0.945)
θ VaR ($m) Premium Amount ($m)

95% 99.50% Mean Principle Std Dev Principle

−1 225.744 573.577 72.994 76.459
−0.5 197.729 498.658 64.827 67.649

0 180.155 473.747 59.140 62.231
0.32 167.568 454.264 56.392 59.948
10 63.731 199.876 29.394 30.194
50 34.147 41.335 21.733 20.804
100 32.855 37.793 21.399 20.405

Equidispersed WeibullC(λ = 1, β = 1.17835)
θ VaR ($m) Premium Amount ($m)

95% 99.50% Mean Principle Std Dev Principle

−1 202.152 514.118 66.729 69.741
−0.5 176.053 466.067 60.122 62.872

0 161.369 443.094 55.827 58.391
0.32 151.449 424.326 53.228 55.844
10 88.749 288.379 38.245 39.646
50 58.319 170.823 31.876 31.904
100 52.508 120.991 30.293 29.849
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Table 11. Cont.

Underdispersed WeibullC(λ = 2, β = 1.5)
θ VaR ($m) Premium Amount ($m)

95% 99.50% Mean Principle Std Dev Principle

−1 163.186 463.176 52.155 55.254
−0.5 138.329 380.708 46.215 48.712

0 128.152 374.841 43.546 45.905
0.32 121.294 364.802 42.540 45.363
10 91.612 298.824 35.306 37.307
50 80.044 269.078 33.039 34.819
100 77.195 256.812 32.585 34.407

Premium Computation and VaR of the Risk Portfolio

The solvency capital requirement (SCR), which is the additional amount of funds
an insurer is required to hold, should correspond to the 99.5% VaR as outlined under
the Solvency II regime (Christiansen and Niemeyer 2014). In doing so, the premium
should be charged appropriately, taking into account risks related to the claims experience.
The computation of loaded premium, Π according to the mean and standard deviation
premium principle are given by the following:

Π(T) = E[Z(T)] + κE[Z(T)] (9)

Π(T) = E[Z(T)] + κ
√

Var[Z(T)]. (10)

with κ ∈ [0, 1] as the loading factor.
The results presented in Table 11 and Figure 7 show that an insurer needs to charge

higher premiums and set aside more capital requirement if the claims experience exhibits
overdispersion (underdispersion) with negative (positive) θ, in comparison to equidis-
persed claims experience. These results are consistent with a Frank copula which is seen
in Table 12 and Figure 8. However, the claims modeling based on FGM copula as repre-
sented in Table 13 and Figure 9, do not produce the same pattern because of that copula’s
weak dependence structure as compared with the other two Archimedean copulae with
greater dependency.

We plotted again the simulated premium and VaR across different Kendall’s τ to
standardize the value on x-axis for comparison. The VaR and premium for each dispersion
case exhibit the same value, respectively when τ = 0 as seen in Figures 10 and 11. As
τ changes from −1 to 1, the overdispersed (underdispersed) case illustrates the widest
(narrowest) spread of values among all. On average, Frank (Clayton) copula illustrates
higher value of premiums and VaR than the Clayton (Frank) copula when τ is negative
(positive), while the values under FGM copula are illustrated between the two copulae.

In comparison to Mohd Ramli et al. (2019) which only illustrated the computations
of the first two moments of a Weibull risk process with λ = 2 under an FGM copula, we
used the Monte Carlo simulation technique and obtained the higher-order moments of the
Weibull risk process with wider choice of copulae. With the additional information on the
asymmetry and the tail distribution of the aggregate discounted claims, insurance providers
can allow for the dispersion in the claims occurrences and dependency between variables
when estimating the premium and capital requirement for an insurance risk portfolio.
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Figure 7. Premium amount and VaR under a Clayton copula across different values for θ.

Figure 8. Premium amount and VaR under a Frank copula across different values for θ.
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Table 12. Simulated VaR and premium (κ = 0.1) under various dispersion of claims occurrences
across different θ under a Frank copula when T = 5.

Overdispersed WeibullC(λ = 0.5, β = 0.945)
θ VaR ($m) Premium Amount ($m)

95% 99.50% Mean Principle Std Dev Principle

−100 225.816 566.751 73.363 76.605
−50 227.023 554.466 73.356 76.737
−10 222.041 544.253 72.451 75.522

0 179.770 475.843 59.577 62.559
10 74.381 223.736 31.722 32.858
50 34.979 45.038 21.940 21.018

100 33.045 38.072 21.427 20.435

Equidispersed WeibullC(λ = 1, β = 1.17835)
θ VaR ($m) Premium Amount ($m)

95% 99.50% Mean Principle Std Dev Principle

−100 203.215 536.925 67.420 71.469
−50 204.435 532.854 67.100 70.079
−10 200.478 504.214 66.215 69.807

0 161.197 429.608 55.876 58.620
10 94.393 300.319 39.512 41.085
50 58.900 177.422 31.990 32.082

100 52.942 124.696 30.383 29.798

Underdispersed WeibullC(λ = 2, β = 1.5)
θ VaR ($m) Premium Amount ($m)

95% 99.50% Mean Principle Std Dev Principle

−100 162.916 459.141 52.387 55.664
−50 161.985 445.691 52.355 55.655
−10 153.385 432.808 50.560 53.662

0 128.944 368.501 44.232 47.049
10 92.540 297.590 35.405 37.388
50 81.145 275.849 33.254 35.059

100 77.572 252.967 32.445 33.838

Figure 9. Premium amount and VaR under a FGM copula across different values for θ.
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Table 13. Simulated VaR and premium (κ = 0.1) under various dispersion of claims occurrences
across different θ under a FGM copula when T = 5.

Overdispersed WeibullC(λ = 0.5, β = 0.945)
θ VaR ($m) Premium Amount ($m)

95% 99.50% Mean Principle Std Dev Principle

−0.999 204.390 515.814 66.564 69.693
−0.5 190.822 509.914 62.891 66.048

0 178.699 480.092 59.106 62.356
0.5 165.488 448.837 55.451 58.282

0.999 154.182 426.935 51.789 54.361

Equidispersed WeibullC(λ = 1, β = 1.17835)
θ VaR ($m) Premium Amount ($m)

95% 99.50% Mean Principle Std Dev Principle

−0.999 178.922 492.664 60.988 64.017
−0.5 172.109 458.163 58.608 61.381

0 161.823 436.838 56.028 58.640
0.5 151.357 423.809 53.247 56.144

0.999 140.298 411.168 50.556 53.115

Underdispersed WeibullC(λ = 2, β = 1.5)
θ VaR ($m) Premium Amount ($m)

95% 99.50% Mean Principle Std Dev Principle

−0.999 140.496 403.169 46.940 49.749
−0.5 133.912 392.826 45.231 47.897

0 126.499 372.115 43.538 46.174
0.5 120.662 367.651 42.261 44.904

0.999 115.166 349.602 40.982 43.725

Figure 10. Cont.
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Figure 10. Premium amount under all copulae across different values for τ.

Figure 11. VaR under all copulae across different values for τ.
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4. Conclusions

The ability of an insurance firm to manage surplus effectively is important to ensure
capital adequacy, as required by the Solvency II standard. To allow for dispersed datasets,
we propose the Weibull counting process to represent the claims arrival process of an
insurance risk portfolio and an arbitrary continuous claims size. Under this model, two
types of dependency were accommodated which were captured by the hazard function
and the copula. We then fit the model to the historical data of New Zealand catastrophe
events occurrences and losses, which was best represented by an overdispersed Weibull
process with claim amounts following a lognormal distribution and a Clayton copula with
a weak dependency. The moments estimation via Monte Carlo simulations shows the
highest mean and variance of the aggregate discounted claims were obtained under an
overdispersed claim arrivals with a strong negative correlation. The positive skewness
and the high value of kurtosis of the aggregate discounted claims with Weibull IWT
also implied an asymmetric and a heavy-tailed risk distribution. The scenario analysis
conducted indicated that insurers will need to charge higher premiums and set aside more
capital requirements as the claims experience exhibits overdispersed (underdispersed)
IWT with negative (positive) dependency captured by copulae, in comparison to claims
experience with equidispersed IWT. Other than computing the respective ruin probability
under the Weibull risk process and applying commonly used copulae in finance and
insurance, we may also examine the applicability of the model on a random annuity plan
with random payments being paid at random times.
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