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Abstract: We propose a hybrid classical-quantum approach for modeling transition probabilities
in health and disability insurance. The modeling of logistic disability inception probabilities is
formulated as a support vector regression problem. Using a quantum feature map, the data are
mapped to quantum states belonging to a quantum feature space, where the associated kernel
is determined by the inner product between the quantum states. This quantum kernel can be
efficiently estimated on a quantum computer. We conduct experiments on the IBM Yorktown
quantum computer, fitting the model to disability inception data from a Swedish insurance company.

Keywords: disability insurance; machine learning; support vector machines; quantum computing

1. Introduction

Support vector machines (SVM) were first introduced as part of Vapnik’s Statistical
Learning Framework (Vapnik 2013). Support vector classification aims to classify data, e.g.,
to determine if a picture contains a cat or a dog, whereas support vector regression (SVR) is
used to model real-valued quantities, such as mortality rates or financial asset returns. All
SVMs exploit the so-called kernel trick, where an optimization problem with data that have
been mapped into a high- or even infinite-dimensional feature space may be efficiently
solved by considering its Wolfe-dual (Schölkopf et al. 2000), for which the necessary input
is reduced to a so-called kernel matrix consisting of inner products in the feature space
between all data pairs. For cases where the kernel matrix can be readily determined, the
corresponding optimization problem can be efficiently solved.

Rebentrost et al. (2014) showed that an SVM can be implemented on a quantum
computer. This work was recently expanded on by Schuld and Killoran (2019) and
Havlíček et al. (2019). In essence, two related methods have been proposed. The first
method consists of encoding data in a high-dimensional quantum feature space, calculating
a quantum kernel, and subsequently using a variational quantum circuit to find a sepa-
rating hyperplane. A second approach proposes to use a quantum computer to estimate
the kernel, and to implement the resulting SVM optimization on a classical computer, a
so-called hybrid classical-quantum implementation. Quantum kernel methods can be
efficiently used to solve some optimization problems where the kernel cannot efficiently be
determined on a classical computer. This was recently demonstrated by Liu et al. (2021).

In the insurance literature, SVMs have been used as a mortality graduation technique
(Kostaki et al. 2011). They could equally well be used to model other transition probabili-
ties, such as disability inception or termination rates. These quantities are often estimated
using classical techniques such as maximum likelihood or splines, see e.g., Aro et al. (2015);
Djehiche and Löfdahl (2018); Christiansen et al. (2012); Renshaw and Haberman (1995, 2000).
In this paper, we propose a hybrid classical-quantum SVR model for logistic disability incep-
tion probabilities, using a quantum kernel that can be estimated on a quantum computer.
We conduct experiments on the IBM Yorktown quantum computer using disability inception
data from a Swedish insurance company. The kernel that we use in this paper is simple
enough that it can also be evaluated using classical methods. This allows us to readily com-
pare the analytically derived kernel to the one estimated on a quantum computer. However,
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the proposed approach is general and is in theory capable of estimating complex kernels
based on high-dimensional data, where classical methods are intractable.

This paper is organised as follows. In Sections 2 and 3, we review kernel theory,
support vector regression, and quantum kernel estimation. In Section 4, we propose a
support vector regression model with a quantum kernel for disability inception rates. In
Section 5, we estimate the kernel matrix associated with disability inception data from a
Swedish insurance company on a quantum computer. This kernel is then used in a support
vector regression to estimate disability inception rates. The results are compared to those
from classical support vector regression.

2. Kernels and Support Vector Regression

In this section, we review kernel theory and support vector regression. Closely follow-
ing Schuld and Killoran (2019), we let xi ∈ Rd, i = 1, . . . , n, denote observations in a data
set and let the mapping Φ : Rd 7→ F be a feature map that maps a sample data point x to a
feature vector Φ(x) in a (usually higher-dimensional) feature space F , usually taken as a
Hilbert space. The mapping Φ naturally gives rise to a so-called kernel through the relation

K(x, z) = 〈Φ(x), Φ(z)〉, (1)

where 〈·, ·〉 denotes the inner product on F . Note that, since K(x, z) is determined by the
inner product of Φ(x) and Φ(z), it can be seen as a similarity measure between x and z
in the feature space. The reproducing kernel Hilbert space (RKHS) associated with Φ is
defined by

R = { f : Rd 7→ C; f (x) = 〈w, Φ(x)〉 ∀ x ∈ Rd, w ∈ F}. (2)

Note that the functions 〈w, Φ(x)〉 can be interpreted as linear models in the feature
space F . Now, assume that we are given a cost function C that measures the goodness
of fit of a model by comparing predicted values { f (xi)}i with observed values {yi}i and
that has a regularization term g(‖ f ‖), where g is a strictly increasing function. Then, any
function f ∈ R that minimizes the cost function C can be written as

f (x) =
n

∑
i=1

αiK(x, xi), (3)

for some parameters αi ∈ R, i = 1, . . . , n.
Perhaps the most famous application of the kernel approach is support vector regres-

sion (Vapnik 2013). SVR can be formulated as a convex optimization problem of the form

P: min
w,b,ξ,ξ ′

1
2
‖w‖2 + C

n

∑
i=1

(ξi + ξ ′i)

s.t. (wTΦ(xi) + b)− yi ≤ ε− ξi, i = 1, . . . , n,

yi − (wTΦ(xi) + b) ≤ ε− ξ ′i , i = 1, . . . , n,

ξi, ξ ′i ≥ 0, i = 1, . . . , n,

where ε determines the error tolerance of the solution, C is a regularization parameter, and
ξi ∈ R and ξ ′i ∈ R, i = 1, . . . , n, are slack variables. It can be shown (Schölkopf et al. 2000)
that the dual formulation of P is given by

D: max
λ,λ′
− 1

2

n

∑
i,j=1

(λi − λ′i)(λj − λ′j)K(xi, xj)− ε
n

∑
i=1

(λi − λ′i) +
n

∑
i=1

yi(λi − λ′i)

s.t.
n

∑
i=1

(λi − λ′i) = 0,

0 ≤ λi ≤ C, i = 1, . . . , n,

0 ≤ λ′i ≤ C, i = 1, . . . , n,
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and that the solutions of P and D coincide and are given by

f (x) =
n

∑
i=1

αiK(x, xi) + β, (4)

where αi = λi − λ′i. In order to fit the model (4) to data, we must first determine the kernel
matrix K = {Kij}, i, j = 1, . . . , n, where Kij = K(xi, xj). In the classical paradigm, we would
choose a tractable kernel such as the kernel corresponding to radial basis functions (the
so-called Gaussian kernel), evaluate the kernel matrix, and finally, fit the model to data by
solving the optimization problem D. An alternative to classical kernels is provided by the
so-called quantum kernels, which we will briefly review in the following section.

3. Quantum Kernel Estimation

In quantum kernel estimation, the kernel is determined by a quantum feature map.
Following Rebentrost et al. (2014); Schuld and Killoran (2019) and Havlíček et al. (2019),
we let Φ : x 7→ Φ(x) (or |Φ(x)〉 using Dirac’s notation) denote a quantum feature map that
maps a data point to a quantum state which is an element Φ(x) of a Hilbert spaceH. Any
quantum state ψ ∈ H naturally satisfies the famous Schrödinger equation

i} ∂

∂t
ψ(t, x) = Hψ(t, x), ψ(0, ·) ∈ H is given, (5)

where H is the Hamiltonian operator associated with the quantum system. If H is time-
independent, the solution to (5) is given by

ψ(t, x) = U(t)ψ(0, x), (6)

where the operator U defined by

U(t) = e−iHt/}, (7)

which is the unitary time evolution operator associated with H. Thus, in analogy with (6),
using the characterization of reproducing kernel Hilbert spaces (RKHS), it can be shown
(see Schölkopf et al. (2001); Schuld and Killoran (2019), and the references therein) that, for
every pair (Φ, x), there is an operator UΦ(x), known in the field of quantum computing as
a feature embedding circuit, that is implicitly determined by the relation

Φ(x) = UΦ(x)Ω0, (8)

where Ω0 (also denoted |0 . . . 0〉 using Dirac’s notation) denotes the ground state, i.e., the
quantum state with the lowest energy level (associated with the smallest eigenvalue of the
generator of the operator UΦ(x)). Further, let the kernel K corresponding to Φ be given by

K(x, z) = |〈Φ(x), Φ(z)〉|2. (9)

As mentioned above, K(x, z) it is essentially a similarity measure between x and z
in the quantum feature space H. It should be noted that the definition of the kernel (9)
deviates from the form (1) that is common in the classical literature, in that it involves
taking the absolute value squared of the inner product. This is due to the following: Using
(8), the kernel can be written as

K(x, z) = |〈Φ(x), Φ(z)〉|2 = |Ω†
0 U†

Φ(z)UΦ(x)Ω0|2, (10)

that is, K(x, z) is given by the probability of obtaining the measurement outcome Ω0 when
measuring the quantum state Ψ(x, z) defined by

Ψ(x, z) = U†
Φ(z)UΦ(x)Ω0, (11)
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where U† denotes the adjoint operator of U. The probability (10) can be estimated on
a quantum computer by loading the state Ψ(x, z) into a quantum circuit. This circuit
is then run multiple times, and (10) is estimated by the frequency of Ω0-measurements.
We note that the form of the kernel (9) is what allows us to readily estimate it using a
quantum computer.

Naturally, the procedure outlined above introduces a sampling error. Assuming that
the measurements are independent, we have that p̂n, the frequency of Ω0-measurements

after n trials (or shots), has standard error
√

p̂n(1− p̂n)
n . Today’s noisy and rather primitive

quantum computers are unfortunately quite error prone, which means that, in addition
to the sampling error, there is a large and often systematic error arising from imperfect
hardware. Given a large enough number of trials, these hardware errors tend to dominate
the sampling error. The hardware-related errors can be partially mitigated using error
correction techniques (see, e.g., Temme et al. (2017)).

4. Model Description

We consider a population of insured individuals, divided into subgroups based on
some common characteristics. Let Ei be the number of healthy individuals from the
population subgroup i, i = 1, . . . , n, in a given disability insurance scheme. We denote by
Di the number of individuals falling ill amongst the Ei insured healthy individuals. For
each population subgroup i, there is some associated data xi ∈ Rd, which may, e.g., contain
information about age, gender, and other characteristics of the population subgroup at
hand. We assume that the conditional distribution of Di given Ei is binomial:

Di ∼ Bin(Ei, p(xi)), (12)

where p(xi) is the probability that an individual randomly selected from Ei falls ill. We pro-
pose to model the logistic disability inception probabilities using support vector regression:

logit p(x) = log
p(x)

1− p(x)
=

n

∑
i=1

αiK(x, xi) + β, (13)

where K ∈ Rn×n is a kernel matrix associated with the data {xi}i, , and β ∈ R and
αi ∈ R, i = 1, . . . , n, are parameters to be estimated from historical data. We propose
to fit the model using a weighted support vector regression, with the weight for each
sample proportional to the population subgroup size Ei, placing higher importance on
large subgroups where the sampling errors of the observed inception probabilities are
lower. The logistic transform guarantees that the probabilities estimated from the model
lie in their natural interval (0, 1).

In the classical paradigm we would choose a tractable kernel such as the kernel corre-
sponding to radial basis functions or the linear kernel. We propose instead that this kernel
be calculated using a quantum feature map, to be evaluated on a quantum computer. In
order to fit the model (13) on a quantum computer, we must first choose a specific quantum
feature map. This, in turn, determines the layout of our quantum circuit through (8). There
are many ways to choose a suitable feature map (see, e.g., Schuld and Killoran (2019)). We
suggest to choose Φ, such that it captures the richness of the data x while still being simple
enough to be run on today’s limited and noisy quantum computers. For simplicity, we will
now assume that our data are two-dimensional, i.e., xi ∈ R2. Then, it is enough to use a
two-qubit unitary operator to obtain estimates of K. To this end, we choose the unitary
operator given by

UΦ(xi) =
(

I ⊗ RY(πxi,2)
)

CRZ(πxi,2)
(

RY(πxi,2)⊗ RY(πxi,1)
)

, (14)

where RY and RZ denote rotations around the Y and Z axes of the Bloch sphere (a.k.a. the
Riemann sphere), respectively, and CRZ denotes a controlled RZ operation on the second
qubit, using the first qubit as a control. A graphical representation of the quantum circuit
that implements this unitary is presented as follows:
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q0 : RY (πxi,1) • RY (πxi,2)

q1 : RY (πxi,2) RZ (πxi,2)

To facilitate interpretation, we let xi,1 be a dummy variable taking the value 1 if
the population subgroup is male, and 0 otherwise, and xi,2 be the associated age of the
population subgroup, measured in centuries. First, we apply a RY (πxi,1)-gate to q0. This
flips q0 from |0〉 to |1〉 for male subgroups. Then, we perform a RY (πxi,2) rotation on
q1. This operation rotates the state of q1 from |0〉 towards |1〉, with the angle of rotation
increasing as the age of the subgroup increases. The CRZ(πxi,2) performs an additional
rotation around the Z-axis of the Bloch sphere, with the angle of rotation increasing as the
age of the subgroup increases. Note that this rotation is only performed if q0 is in the state
|1〉, i.e., if the subgroup is male. Finally, we perform a RY (πxi,2) rotation on q0.

For each data pair (xi, xj), we run this quantum circuit inserting the values of xi and
then run the adjoint circuit inserting the values of xj. Finally, we perform a measurement
on the two qubits. This circuit is run multiple times, and K(xi, xj) is estimated by the
frequency of obtaining the measurement Ω0 := |00〉. The resulting quantum circuit can be
graphically represented as

|0〉 RY (πxi,1) • RY (πxi,2)

|0〉 RY (πxi,2) RZ (πxi,2)

/2

RY (−πxj,2) • RY (−πxj,1)

RZ (−πxj,2) RY (−πxj,2)

0 1

This circuit is designed to clearly separate male and female subgroups and to gradually
increase the dissimilarity between different age groups as the difference in ages increases.
Note that, for i = j, all rotations cancel out, and the circuit will measure the state |00〉 with
probability 1, i.e., K(xi, xi) = 1 as expected.

5. Numerical Results

In this section, we estimate the kernel matrix associated with disability inception data
from a Swedish insurance company. This kernel is then used in a support vector regression
to estimate the logistic disability inception rates. The data consist of inception counts for 81
groups of individuals as well as the associated age and gender for each group.

5.1. Estimating the Kernel Matrix

We estimate the kernel matrix using the circuit from the previous section with two
different techniques. Using (10) and (14), we classically compute K(xi, xj) for each pair
(xi, xj) by matrix multiplication. Here, classically computing the kernel is possible due to
the simple structure and low dimension of the unitary operator (14). This procedure is
hereafter referred to as a state vector simulation. Figure 1 displays the estimated kernel
matrix. This matrix has an interesting structure: it is block-diagonal. This is due to the
fact that the second quadrant of the matrix correspond to the inner products of the female
population groups. These share the common characteristic ’female’, and each row is
similar to its neighbours due to the encoding: similar ages are also similar in the quantum
feature space. Analogously, the fourth quadrant of the matrix contains the male population
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groups. The first and third quadrants contain the inner products between male and female
population groups and so are dissimilar in the quantum feature space.

Figure 1. Kernel matrix determined by state vector simulation.

Next, we run multiple experiments on the IBM Yorktown five-qubit quantum com-
puter (of which we use two qubits) to obtain an estimate of (10). For each data pair
(xi, xj), we run the circuit 8192 times, measure the outcomes, and estimate K(xi, xj) with
the observed frequency of the ground state. Note, especially, that, for an ideal quantum
computer without hardware related errors, this frequency converges to the probability of
measuring the ground state when the number of shots goes to infinity. This means that any
difference between the kernel from the state vector simulation and the kernel estimated on
the quantum computer is related to sampling error and hardware-related errors. Indeed,
for an ideal quantum computer using an infinite number of shots, the estimated kernels
would be identical.

Figure 2 displays the estimated kernel matrix. We note that, as expected, this matrix
deviates somewhat from the kernel matrix obtained by state vector simulation, but it
has the same characteristics of the block-diagonal structure and an increasing dissimi-
larity with increasing age difference. We also note that, using 8192 shots, the maximum
standard error under the assumption of ideal hardware (obtained at p̂ = 0.5) is given by√

0.5(1−0.5)
8192 ≈ 0.0055. Noting that this error is small compared to the errors resulting from

imperfect hardware, we will focus on the systematic error from now on.
On a five-qubit quantum computer, the natural ground state is the |00000〉 state. When

running a circuit that only performs operations on, say, the first two qubits, we would
expect that qubits three through five are always measured to be in their respective |0〉 state.
However, due to measurement error, this is not the case. Hence, we propose to mitigate
this problem through the following simple approach: Instead of measuring the frequency
of the natural ground state, we measure the sum of the frequencies of all |00m1m2m3〉 states
for mk ∈ {0, 1}, k = 1, 2, 3.

Figure 3 displays the first row of the kernel matrix, estimated from state vector
simulation and from the Yorktown quantum computer, as well as the corresponding error-
mitigated kernel. The error mitigation procedure vastly improves the kernel estimate for
the first half of the columns and only slightly worsens it for the second half of the columns.
The estimation error, measured as the distance from the state vector simulation kernel in the
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Frobenius norm, is reduced from 15.18 to 8.07, indicating that the approach is functioning
as intended.

Figure 2. Kernel matrix estimated on the IBM Yorktown quantum computer.

Column index of first row of the kernel matrix

Es
ti

m
at

ed
ke

rn
el

Figure 3. First row of the kernel matrix, estimated from state vector simulation and from the Yorktown
quantum computer, as well as the corresponding error-mitigated kernel.

5.2. Fitting Swedish Disability Inception Rates

We now fit the disability inception model (13) to data with support vector regression,
using four classical kernel methods, i.e., the linear kernel, a polynomial kernel of rank
3, the radial basis functions kernel, and a sigmoid kernel. In addition, we fit the model
to data using the quantum kernels based on a state vector simulation as well as from
the IBM Yorktown 5-qubit quantum computer. The models are fit using leave-one-out
cross-validation, so that, for each train–test split, a single out-of-sample logistic disability
inception rate is estimated. After applying the inverse logistic function to obtain a disability
inception rate, we then calculate the weighted R2 statistic for the out-of-sample rates, again
using the population counts as weights. The results are presented in Table 1. The state
vector quantum kernel performs better than three out of the four classical kernels, the
exception being the polynomial kernel. The Yorktown quantum kernel is only slightly
worse compared to the state vector simulation.
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Table 1. Weighted out-of-sample R2 for the classical and quantum kernels.

Kernel R2

linear 0.426
polynomial 0.550

radial basis functions 0.529
sigmoid 0.494

state vector quantum kernel 0.541
Yorktown quantum kernel 0.518

The out-of-sample estimates are displayed in Figure 4. Note that, due to confidentiality,
the actual values of the estimates are not reported. The support vector regression approach
manages to capture the difference between the genders, as well as finding a pattern in the
age dimension. The middle-aged population groups are larger than the others, meaning
that the highest weights will be placed on these ages for the purposes of calibrating the
model. The observations with very high or very low ages are considered as outliers by the
model and so are virtually ignored.

Age of population subgroup

In
ce

pt
io

n
pr

ob
ab

ili
ty

Figure 4. Out-of-sample disability inception rates estimated by state vector simulation and from the
IBM Yorktown quantum computer.

We note, especially, that the estimated inception rates from the Yorktown quantum
kernel are comparable to the ones obtained from the state vector simulation, even though
the estimated quantum kernels were themselves quite different. We believe that this is due
to the fact that the characteristics of the kernel, namely the block-diagonal structure and
the increasing dissimilarity with increasing age difference, were preserved, even though
the actual kernel estimates differed significantly from each other. This fact proposes some
degree of robustness to the model: even though the quantum kernel is estimated with
significant error, the resulting disability inception estimates are only marginally impacted.

6. Conclusions

We have proposed a hybrid classical-quantum approach for modeling transition
probabilities in health and disability insurance. We formulated the modeling of logistic
disability inception probabilities as a support vector regression problem. The associated
kernel is determined by the inner product between the quantum states from a quantum
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feature space. This procedure is made possible due to the ability to construct a ‘quantum’
feature map between the data points and the quantum states.

The kernel used in this paper is simple enough that it can also be evaluated using
classical methods. This is what allows us to compare the analytically derived kernel to the
one estimated on a quantum computer. However, the proposed approach is general and is,
in theory, capable of estimating complex kernels based on high-dimensional data, where
classical methods are intractable.

Since our proposed model fits the data well and produces errors that are comparable to
today’s classical methods, we conclude that estimating disability inception rates with quan-
tum support vector regression is a viable statistical method, even on today’s noisy quantum
computers. This bodes well for the future where complex and high-dimensional data might
well be modeled and fitted accurately to data in a timely fashion using quantum computers.

Author Contributions: Software, B.L.; data curation, B.L.; writing—original draft preparation, B.L.;
writing—review and editing, B.D. and B.L. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Due to non-disclosure agreements, the data is not publicly available.

Acknowledgments: We are indebted to two anonymous referees for their insightful comments and
remarks, which have helped us to improve the paper. We acknowledge the use of IBM Quantum
services for this work. The views expressed are those of the authors and do not reflect the official
policy or position of IBM or the IBM Quantum team.

Conflicts of Interest: The authors declare no conflict of interest.

References
Aro, Helena, Boualem Djehiche, and Björn Löfdahl. 2015. Stochastic modelling of disability insurance in a multi-period framework.

Scandinavian Actuarial Journal 2015: 88–106. [CrossRef]
Christiansen, Marcus, Michel Denuit, and Dorina Lazar. 2012. The Solvency II square-root formula for systematic biometric risk.

Insurance: Mathematics and Economics 50: 257–65. [CrossRef]
Djehiche, Boualem, and Björn Löfdahl. 2018. A hidden markov approach to disability insurance. North American Actuarial Journal 22:

119–36. [CrossRef]
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