
Naimoli, Antonio; Storti, Giuseppe

Article

Forecasting volatility and tail risk in electricity
markets

Journal of Risk and Financial Management

Provided in Cooperation with:
MDPI – Multidisciplinary Digital Publishing Institute, Basel

Suggested Citation: Naimoli, Antonio; Storti, Giuseppe (2021) : Forecasting volatility and tail
risk in electricity markets, Journal of Risk and Financial Management, ISSN 1911-8074, MDPI,
Basel, Vol. 14, Iss. 7, pp. 1-17,
https://doi.org/10.3390/jrfm14070294

This Version is available at:
https://hdl.handle.net/10419/258398

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3390/jrfm14070294%0A
https://hdl.handle.net/10419/258398
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Journal of

Risk and Financial
Management

Article

Forecasting Volatility and Tail Risk in Electricity Markets

Antonio Naimoli and Giuseppe Storti *

����������
�������

Citation: Naimoli Antonio, and

Giuseppe Storti. 2021. Forecasting

Volatility and Tail Risk in Electricity

Markets. Journal of Risk and Financial

Management 14: 294. https://

doi.org/10.3390/jrfm14070294

Academic Editor: Robert Brooks

Received: 10 June 2021

Accepted: 24 June 2021

Published: 26 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Dipartimento di Scienze Economiche e Statistiche (DISES), Università di Salerno, Via Giovannni Paolo II, 132,
84084 Fisciano, Italy; anaimoli@unisa.it
* Correspondence: storti@unisa.it

Abstract: This paper investigates the benefits of jointly using several realized measures in predicting
daily price volatility, Value-at-Risk, and Expected Shortfall in the Australian electricity markets of
New South Wales, Queensland, and Victoria. We propose using Realized GARCH-type models with
multiple measurement equations based on robust estimators to account for market microstructure
noise and jumps in electricity price series. The model specifications that combine information
from multiple realized measures improve the in-sample fit of the data. The out-of-sample analysis
shows that use of the jump-robust medRV estimator significantly increases the accuracy of volatility
forecasts, while in forecasting Value-at-Risk and Expected Shortfall at different risk levels, the
standard GARCH(1,1) also performs remarkably well.

Keywords: volatility forecasting; value-at-risk; expected shortfall; realized GARCH; electricity prices

1. Introduction

The analysis of volatility of electricity spot prices is crucial for traders, portfolio
managers, policy makers, and other market participants. The growing interest in modeling
the dynamics of electricity prices has revealed several distinctive features typically not
observed in financial assets due to the nonstorability of electricity. As electricity is not
storable, and because of the inelasticity of supply and demand, electricity prices are known
to be much more volatile than other commodity prices. In particular, the main stylized
facts show that daily and intradaily electricity spot prices are usually characterized by
seasonality, mean reversion, high volatility persistence, frequent price jumps and spikes of
short duration, inverse leverage effects (electricity price volatility reacts more to positive
shocks than to negative shocks), stationarity in both the price level and squared prices,
and negative prices that are mainly related to the inability to dispose of electricity freely
together with nontrivial start-up costs for generators (Bierbrauer et al. 2007; Byström 2005;
Chan et al. 2008; Escribano et al. 2011; Fanone et al. 2013; Frömmel et al. 2014; Higgs and
Worthington 2008; Knittel and Roberts 2005).

The popular GARCH-type framework is widely used to model and forecast the
volatility of electricity prices (e.g., Bowden and Payne (2008); Escribano et al. (2011);
Garcia et al. (2005); Hickey et al. (2012); Knittel and Roberts (2005); Liu and Shi (2013),
among others). Standard GARCH models usually rely on daily data to estimate the
latent conditional variance, using all current and past daily squared returns to provide
expectations on future volatility. However, the daily return offers only a “weak” signal
on the current level of volatility; therefore, this class of model is not able to capture rapid
changes in the volatility level.

Since electricity cannot be physically stored directly, production and consumption need
to be continuously balanced to smooth supply and demand shocks (Bierbrauer et al. 2007).
In this direction, the liquidity of the electricity market has grown rapidly. The increased
availability of high-frequency information has led to the development of new econometric
methods for modeling and forecasting volatility, revealing that high-frequency data are
much more informative about the price process not only at the intraday level, but also at
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the daily level. The daily Realized Volatility (RV), defined as the summation of the squared
intradaily price changes, provides an unbiased and highly efficient estimator of return
volatility (Andersen et al. 2001, 2003; Barndorff-Nielsen and Shephard 2002).

Volatility modeling using intradaily price frequencies has received considerable atten-
tion, not only in the financial market but also in the electricity market. In this framework,
most of the existing literature relies on HAR-type models to directly estimate time series
of realized measures. Chan et al. (2008) used the HAR model of Corsi (2009) and the
HAR-CJ model of Andersen et al. (2007) to estimate volatility and identify jumps in the
electricity price process on five regions of the Australian market. However, their results
show a modest improvement in volatility forecasts when total variation is separated into
continuous and jump components, with no strong evidence that the HAR-type specifica-
tions outperform the EGARCH model. Haugom et al. (2011) added exogenous effects on
the HAR model and the HAR-CJ model to assess the day-ahead predictions in the Nord
Pool forward market, finding forecast improvements from the inclusion of exogenous
effects. Haugom and Ullrich (2012) extended the HAR approach, including forward real-
ized volatility as a predictor to improve spot price volatility forecasts for some electricity
markets of the United States. Differently, focusing on the conditional variance of returns,
Frömmel et al. (2014) referred to the Realized GARCH models (Hansen and Huang 2016;
Hansen et al. 2012) with a single measurement equation to forecast the volatility on the
Electricity Power Exchange market using both the RV and the intraday range as realized
measures. The empirical results suggest that the RGARCH specifications outperform the
EGARCH model in terms of forecasting accuracy, especially when intraday range is used,
stating (among other potential determinants) that range-based measurements are more
robust to microstructure noise bias.

The aim of this paper is to assess the benefits of jointly using different realized mea-
sures in fitting and forecasting electricity price volatility. Differently to Frömmel et al. (2014),
we resort to the use of Realized GARCH models to combine information through multiple
measurement equations and multiple realized estimators. In particular, to deal with market
microstructure frictions and extreme jumps in electricity price series, in addition to the RV,
we also refer to the robust estimators Realized Kernel (RK) (Barndorff-Nielsen et al. 2008)
and medRV (MRV) (Andersen et al. 2012). Moreover, since accurate volatility modeling is
crucial for risk management (Byström 2005; Chan and Gray 2006), we also focus on the
ability of models to accurately predict Value-at-Risk (VaR) and Expected Shortfall (ES) at
different risk levels.

Our empirical analysis on time series of spot prices sampled at 30-min intervals in
the regional Australian power markets of New South Wales, Queensland, and Victoria
reveals some interesting findings. First, the Realized Exponential GARCH (REGARCH)
specifications, combining multiple realized measures, improve the in-sample fit over the
standard GARCH(1,1) and the simple Realized GARCH (RGARCH) models. Second,
the use of jump-robust MRV as a realized measure in the RGARCH model leads to a
significant improvement in volatility forecasting by minimizing the QLIKE (Patton 2011),
Mean Squared Error, and Mean Absolute Error loss functions. Finally, in evaluating the
performances in forecasting VaR and ES at the risk levels of 1%, 2.5%, and 5% via the
Quantile Loss function of (González-Rivera et al. 2004) and the class of strictly consistent
loss functions (Fissler and Ziegel 2016), respectively, the GARCH(1,1) and some REGARCH
specifications clearly outperform the simple RGARCH based on a single measurement
equation. The Model Confidence Set (MCS) of Hansen et al. (2011) is used to assess the
significance of differences in the predictive performances of the models under analysis.

The remainder of the paper is structured as follows: Section 2 reviews the Real-
ized GARCH (Hansen et al. 2012) and the Realized Exponential GARCH (Hansen and
Huang 2016). Section 3 presents the estimation procedure. Section 4 describes the data.
Sections 5 and 6 show the in-sample and the out-of-sample results, respectively. Finally,
Section 7 concludes with a summary of the results and some directions for future research.
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2. Model Specifications

The GARCH model is by far the most widely used specification for fitting and fore-
casting financial volatility. Let rt be the daily log-return at time t and It−1 the information
available up to time t− 1; then, the GARCH(1,1) model takes the following form:

rt =
√

htzt (1)

ht = ω + β ht−1 + γ r2
t−1, (2)

where ht = var(rt|It−1) and zt
iid∼ (0, 1). The positivity condition for the conditional

variance requires γ and β to be non-negative constants and ω to be a (strictly) positive
constant, while a necessary condition for the weak stationarity of GARCH(1,1) is γ + β < 1.

Many studies have documented that realized volatility measures based on intradaily
returns can greatly improve the accuracy of volatility forecasts. Differently from standard
GARCH approach, the Realized GARCH (RGARCH) of Hansen et al. (2012) employs both
low (daily returns) and high (realized volatility measures) frequency information to model
the dynamics of daily volatility. Following the log-linear specification, the RGARCH is
given by

rt =
√

ht zt (3)

log(ht) = ω + β log(ht−1) + γ log(xt−1) (4)

log(xt) = ξ + ϕ log(ht) + τ(zt) + ut, (5)

where xt is a realized volatility measure and τ(zt) = τ1 zt + τ2(z2
t − 1) is the leverage

function, with zt
iid∼ (0, 1) and ut

iid∼ (0, σ2
u) being mutually independent.

Therefore, the RGARCH provides a joint modeling framework of the return and
realized volatility, replacing squared returns with a more informative volatility estimator to
capture the conditional variance dynamics. The model is completed by the measurement
equation in (5), which allows us to define the link between the (ex-post) realized measure
and the (ex-ante) latent conditional variance. In addition, replacing the measurement
equation into the GARCH equation, the model implies an AR(1) representation for the
log-conditional variance, namely,

log(ht) = (ω + ξγ) + (β + ϕγ)log(ht−1) + γ wt−1, (6)

where wt = τ(zt) + ut and E(wt) = 0, with the restriction (β + ϕγ) < 1 to ensure the
stationarity of the process (Hansen et al. 2012; Li et al. 2019).

Hansen and Huang (2016) proposed the Realized Exponential GARCH (REGARCH)
model while allowing the inclusion of multiple realized measures of volatility and also
including an explicit leverage term in the GARCH equation, providing further flexibility in
modeling the dependence between returns and volatility.

In its general formulation, considering a vector of K realized measures xt = (x1,t, · · · , xK,t)
′,

the REGARCH is defined as

rt =
√

ht zt (7)

log(ht) = ω + β log(ht−1) + δ(zt−1) + γ′ ut−1 (8)

log
(
xj,t
)
= ξ j + ϕj log(ht) + τj(zt) + uj,t j = 1, ..., K, (9)

where ut = (u1,t, ..., uK,t)
′ and γ = (γ1, ..., γK)

′. In the empirical analysis, as usual, a
quadratic form for the leverage function δ(zt)—that is, δ(zt) = δ1 zt + δ2(z2

t − 1), is used.
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3. Estimation and Inference

The GARCH and R(E)GARCH models are estimated using a maximum likelihood (ML)
approach. In particular, we assume a standardized Student-t distribution for innovations

zt
iid∼ t(0, 1, ν) to model both fat-tail and excess kurtosis observed in return series.

For REGARCH specifications, due to the presence of K measurement equations,

following Hansen and Huang (2016), we assume that ut
iid∼ NK(0, Σ), where NK(0, Σ)

denotes a K-variate Normal distribution with mean 0 and variance-covariance matrix Σ.
Therefore, the log-likelihood function for this class of models is given by

L(r, u; θ) =− 1
2

T

∑
t=1
−A(ν) + log(ht) + (1 + ν) log

(
1 +

r2
t

ht(ν− 2)

)
(10)

− 1
2

T

∑
t=1

Klog(2π) + log(|Σ|) + u′t Σ−1 ut , (11)

where A(ν) = log
[
Γ
(

ν+1
2

)]
− log

[
Γ
(

ν
2
)]
− 1

2 log[π(ν− 2)]. The log-likelihood accounts
for the contribution of realized measures by (11) and the contribution of returns by (10).

On the other hand, as the RGARCH is characterized by a single realized measure,
Equation (11) reduces to

− 1
2

T

∑
t=1

log(2π) + log(σ2
u) +

u2
t

σ2
u

, (12)

with ut
iid∼ N (0, σ2

u).
Finally, as standard GARCH models do not allow for measurement equations, estima-

tion of model parameters is performed by focusing only on the partial log-likelihood of
returns in Equation (10).

It is worth noting that the GARCH and R(E)GARCH specifications are not directly
comparable in terms of the maximized global log-likelihood. However, since the contri-
bution to the log-likelihood value of returns is the same for both classes of models, the
partial log-likelihood of the returns in (10) enables us to compare the empirical fit of the
conventional GARCH with that of R(E)GARCH-type models.

4. The Data

The dataset used in this study consists of half-hourly spot prices from the Australian
electricity market. In Australia, the Australian Energy Market Operator (AEMO) manages
the National Energy Market (NEM), which interconnects Queensland (QLD), New South
Wales (NSW), the Australian Capital Territory (ACT), South Australia (SA), Victoria (VIC),
and Tasmania (TAS), as well as the Wholesale Electricity Market (WEM) in Western Aus-
tralia. In particular, the empirical analysis focuses on 30-min spot prices of the NSW, QLD,
and VIC for the period between 1 January 2012 and 31 December 2019, where the prices are
in Australian dollars per megawatt hour. Continuously recorded half-hourly spot prices
are publicly available at https://www.aemo.com.au (accessed on 12 May 2021).

The summary statistics reported in Table 1 highlight some stylized facts of price and
return dynamics. Differently to financial assets, electricity prices can be negative when
the supply of electricity temporarily exceeds demand, resulting in a minimum half-hourly
intradaily price lower than zero for the three observed markets. A further characteristic
of the electricity prices is that the maximum price is more than 200 times larger than the
average price, implying high variability and a high degree of skewness and kurtosis. These
features can easily be seen in Figure 1, which shows the time series of 30-min spot prices in
the considered Australian electricity markets. Each market exhibits negative prices and
several spikes with a magnitude much higher than their average price. This emphasizes a
further characteristic of electricity prices: the existence of extreme jumps.

https://www.aemo.com.au
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As negative prices are a rare occurrence, to compute log-returns, we excluded days
with nonpositive prices (Haugom and Ullrich 2012; Qu et al. 2018). Further, to account
for intraday seasonal patterns in the raw data, following Haugom and Ullrich (2012),
returns are demeaned using half-hourly median returns µ∗t,j = r̄mn,dy,hr, where r̄mn,dy,hr
denotes the median return for day t in month mn, on day of the week dy, and in half-hour
periods j = hr. Therefore, in our empirical study, we used demeaned intraday returns
r∗t,j = rt,j − µ∗t,j for computing realized volatility measures.

On the other hand, we refer to daily close-to-close log-returns as daily price changes.
Although the mean and median are close to zero, electricity returns are highly volatile, as
evident from the standard deviation, which varies between 0.216 and 0.314. In addition,
the negative skewness and excess kurtosis clearly reveal the non-Gaussian nature of the
rt distribution.

Finally, descriptive statistics point out that the 30-min RV is, as expected, characterized
by positive skewness and a strong excess kurtosis because of the many peaks and troughs
in the series. This can easily be seen in Figure 2, which shows the RV behavior for the
three electricity markets, where each plot has the same y-axis scale to facilitate comparison
across markets. The QLD market reveals several periods of high volatility and the most
extreme levels of RV compared to NSW and VIC, which instead show more moderate and
less recurrent spikes.

As price volatility is characterized by different dynamics under different market
conditions, in addition to the Realized Volatility (RV) (Andersen et al. 2003), to account for
market microstructure noise and jumps in our empirical analysis, we also referred to the
robust estimators Realized Kernel (RK) (Barndorff-Nielsen et al. 2008) and medRV (MRV)
(Andersen et al. 2012), computed at a frequency of 30 min.

Table 1. Summary statistics.

NSW

n mean sd min Q0.25 median Q0.75 max skew kurt

Raw 30-min intradaily prices 140,256 62.557 107.055 −89.210 39.368 52.870 72.850 14,000 88.971 10,006.338
Positive 30-min intradaily prices 139,824 62.559 107.099 1.530 39.390 52.870 72.850 14,000 89.107 10,020.409
Daily close-to-close log-returns 2913 0.000 0.216 −1.695 −0.074 0.000 0.073 1.251 −0.181 8.363
30-min Realized Volatility 2913 1.187 2.688 0.017 0.156 0.440 1.276 53.502 9.544 133.944

QLD

n mean sd min Q0.25 median Q0.75 max skew kurt

Raw 30-min intradaily prices 140,256 66.314 190.754 −859.850 37.950 53.010 69.140 13,882.77 39.978 2179.302
Positive 30-min intradaily prices 135,024 66.698 192.134 0.170 38.310 53.030 69.020 13,882.77 40.298 2192.214
Daily close-to-close log-returns 2813 0.000 0.258 −2.000 −0.081 −0.002 0.089 2.002 -0.227 12.238
30-min Realized Volatility 2813 3.558 10.313 0.021 0.245 0.718 2.102 151.031 6.389 55.106

VIC

n mean sd min Q0.25 median Q0.75 max skew kurt

Raw 30-min intradaily prices 140,256 64.012 175.75 −554.62 34.860 49.830 79.730 14,500 63.019 4603.573
Positive 30-min intradaily prices 133,824 65.056 179.333 0.150 35.760 50.310 80.610 14,500 62.123 4448.796
Daily close-to-close log-returns 2788 0.000 0.314 −2.118 −0.130 0.001 0.127 1.837 −0.140 4.774
30-min Realized Volatility 2788 1.858 3.921 0.022 0.248 0.746 1.865 62.105 6.632 60.529

Summary statistics of raw 30-min intradaily prices, positive 30-min intradaily prices (excluding days with negative prices), daily close-to-
close log-returns and 30-min Realized Volatility for NSW (top), QLD (middle), and VIC (bottom). n—number of observations; sd—standard
deviation; min—minimum; Q0.25—first quartile; Q0.75—third quartile; max—maximum; skew—skewness; kurt—excess kurtosis. The
sample period is from 1 January 2012 to 31 December 2019.
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Figure 1. 30-min intradaily prices. Time series of 30-min electricity spot prices for NSW (top), QLD (middle), and VIC
(bottom). The sample period is from 1 January 2012 to 31 December 2019.
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Figure 2. 30-min Realized Volatility. Time series of 30-min Realized Volatility for NSW (top), QLD (middle), and VIC (bottom). The
sample period is from 1 January 2012 to 31 December 2019.

5. In-Sample Analysis

In this section, we present the in-sample results for NSW in Table 2, QLD in Table 3,
and VIC in Table 4. For each electricity market, we report the in-sample fit of the
GARCH(1,1); three RGARCH and REGARCH models based on the single realized es-
timators RV, RK, and MRV; three REGARCH models with two measurement equations for
the pairs (RV,RK), (RV,MRV), and (RK,MRV); and the REGARCH(RV,RK,MRV) combining
all three realized estimators considered. Note that to simplify the presentation of the results,
the RGARCH models are estimated using the autoregressive representation in order to
make the estimated coefficients comparable with those of the REGARCH models.
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Table 2. NSW in-sample parameter estimates.

GARCH(1,1) RG(RV) RG(RK) RG(MRV) REG(RV) REG(RK) REG(MRV) REG(RV,RK) REG(RV,MRV) REG(RK,MRV) REG(RV,RK,MRV)

ω 0.000 −0.069 −0.069 −0.058 −0.061 −0.061 −0.054 −0.060 −0.063 −0.063 −0.062
β 0.863 0.981 0.981 0.984 0.987 0.986 0.988 0.987 0.986 0.986 0.986

γ1 0.137 0.320 0.321 0.283 0.234 0.235 0.205 0.688 0.220 0.198 0.669
γ2 – – – – – – – −0.457 0.018 0.039 −0.449
γ3 – – – – – – – – – – 0.014
τ1 – 0.142 0.144 0.148 0.200 0.202 0.205 0.202 0.197 0.199 0.199
τ2 – 0.057 0.058 0.058 0.049 0.049 0.046 0.047 0.050 0.050 0.048
ξ1 – 2.362 2.355 2.277 2.476 2.471 2.403 2.477 2.486 2.480 2.486
ϕ1 – 0.864 0.864 0.862 0.873 0.874 0.873 0.872 0.876 0.876 0.875
δ1,1 – – – – 0.210 0.213 0.218 0.211 0.209 0.212 0.210
δ2,1 – – – – 0.026 0.025 0.024 0.025 0.026 0.025 0.025
ξ2 – – – – – – – 2.472 2.426 2.424 2.482
ϕ2 – – – – – – – 0.872 0.877 0.878 0.874
δ1,2 – – – – – – – 0.213 0.217 0.218 0.212
δ2,2 – – – – – – – 0.024 0.023 0.023 0.024
ξ3 – – – – – – – – – – 2.427
ϕ3 – – – – – – – – – – 0.876
δ1,3 – – – – – – – – – – 0.218
δ2,3 – – – – – – – – – – 0.022
σ2

u,1 – 0.740 0.740 0.812 0.724 0.723 0.794 0.724 0.724 0.723 0.723
σ2

u,2 – – – – – – – 0.722 0.792 0.793 0.722
σ2

u,3 – – – – – – – – – – 0.792
ρ1,2 – – – – – – – 0.998 0.963 0.962 0.998
ρ1,3 – – – – – – – – – – 0.963
ρ2,3 – – – – – – – – – – 0.962

ν 5.370 3.766 3.731 3.686 4.289 4.258 4.225 4.330 4.302 4.269 4.341

`(r) 1643.532 1591.066 1588.091 1584.072 1657.235 1655.619 1655.049 1659.573 1656.897 1655.252 1659.227

Parameter estimates for the sample period 1 January 2012 to 31 December 2019. Coefficients that are not significant at the 5% level are shown in bold. Key to table: RG—Realized GARCH; REG—Realized
Exponential GARCH.
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Table 3. QLD in-sample parameter estimates.

GARCH(1,1) RG(RV) RG(RK) RG(MRV) REG(RV) REG(RK) REG(MRV) REG(RV,RK) REG(RV,MRV) REG(RK,MRV) REG(RV,RK,MRV)

ω 0.002 −0.276 −0.273 −0.277 −0.319 −0.313 −0.336 −0.318 −0.301 −0.299 −0.297
β 0.669 0.910 0.911 0.906 0.904 0.906 0.897 0.904 0.910 0.910 0.912

γ1 0.331 0.364 0.362 0.338 0.314 0.310 0.297 0.955 0.628 0.581 1.255
γ2 – – – – – – – −0.642 −0.316 −0.271 −0.628
γ3 – – – – – – – – – – −0.316
τ1 – 0.184 0.185 0.191 0.196 0.196 0.194 0.196 0.199 0.200 0.199
τ2 – 0.070 0.070 0.066 0.080 0.080 0.088 0.078 0.073 0.074 0.071
ξ1 – 2.886 2.878 2.817 3.103 3.090 3.041 3.096 3.104 3.100 3.094
ϕ1 – 1.011 1.012 1.035 1.024 1.021 1.028 1.021 1.019 1.020 1.015
δ1,1 – – – – 0.245 0.245 0.256 0.245 0.245 0.245 0.246
δ2,1 – – – – 0.031 0.032 0.019 0.031 0.029 0.030 0.029
ξ2 – – – – – – – 3.086 3.054 3.059 3.085
ϕ2 – – – – – – – 1.018 1.019 1.022 1.013
δ1,2 – – – – – – – 0.246 0.256 0.255 0.246
δ2,2 – – – – – – – 0.031 0.014 0.015 0.029
ξ3 – – – – – – – – – – 3.044
ϕ3 – – – – – – – – – – 1.015
δ1,3 – – – – – – – – – – 0.256
δ2,3 – – – – – – – – – – 0.014
σ2

u,1 – 1.499 1.497 1.689 1.488 1.488 1.675 1.489 1.486 1.485 1.486
σ2

u,2 – – – – – – – 1.488 1.656 1.657 1.484
σ2

u,3 – – – – – – – – – – 1.657
ρ1,2 – – – – – – – 0.999 0.982 0.981 0.999
ρ1,3 – – – – – – – – – – 0.982
ρ2,3 – – – – – – – – – – 0.981

ν 4.041 3.015 3.001 2.850 3.497 3.487 3.405 3.509 3.555 3.533 3.567

`(r) 995.431 922.376 920.371 899.299 996.507 995.206 987.042 998.823 1004.208 1000.576 1006.403

Parameter estimates for the sample period 1 January 2012 to 31 December 2019. Coefficients that are not significant at the 5% level are shown in bold. Key to table: RG—Realized GARCH; REG—Realized
Exponential GARCH.
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Table 4. VIC in-sample parameter estimates.

GARCH(1,1) RG(RV) RG(RK) RG(MRV) REG(RV) REG(RK) REG(MRV) REG(RV,RK) REG(RV,MRV) REG(RK,MRV) REG(RV,RK,MRV)

ω 0.000 −0.035 −0.034 −0.026 −0.038 −0.039 −0.028 −0.039 −0.040 −0.040 −0.041
β 0.874 0.987 0.987 0.990 0.987 0.987 0.990 0.987 0.986 0.986 0.986

γ1 0.126 0.208 0.207 0.173 0.201 0.202 0.165 0.404 0.311 0.289 0.538
γ2 – – – – – – – −0.201 −0.106 −0.085 −0.222
γ3 – – – – – – – – – – −0.110
τ1 – 0.095 0.097 0.097 0.106 0.105 0.107 0.106 0.107 0.106 0.107
τ2 – 0.082 0.082 0.079 0.029 0.031 0.024 0.030 0.030 0.031 0.030
ξ1 – 2.325 2.319 2.203 2.359 2.356 2.239 2.355 2.358 2.357 2.353
ϕ1 – 1.011 1.009 1.008 1.011 1.010 1.008 1.009 1.009 1.009 1.006
δ1,1 – – – – 0.126 0.128 0.129 0.126 0.127 0.129 0.127
δ2,1 – – – – 0.076 0.076 0.073 0.075 0.075 0.075 0.075
ξ2 – – – – – – – 2.349 2.224 2.229 2.347
ϕ2 – – – – – – – 1.006 0.994 0.996 1.004
δ1,2 – – – – – – – 0.128 0.131 0.131 0.129
δ2,2 – – – – – – – 0.075 0.072 0.072 0.074
ξ3 – – – – – – – – – – 2.220
ϕ3 – – – – – – – – – – 0.991
δ1,3 – – – – – – – – – – 0.131
δ2,3 – – – – – – – – – – 0.071
σ2

u,1 – 0.885 0.887 0.976 0.885 0.887 0.976 0.885 0.886 0.888 0.886
σ2

u,2 – – – – – – – 0.887 0.979 0.980 0.887
σ2

u,3 – – – – – – – – – – 0.979
ρ1,2 – – – – – – – 0.998 0.965 0.964 0.998
ρ1,3 – – – – – – – – – – 0.965
ρ2,3 – – – – – – – – – – 0.964

ν 5.098 4.176 4.157 4.058 4.448 4.441 4.312 4.473 4.464 4.448 4.488

`(r) 23.397 36.249 34.943 21.483 54.123 53.602 40.085 55.446 57.727 56.104 59.150

Parameter estimates for the sample period 1 January 2012 to 31 December 2019. Coefficients that are not significant at the 5% level are shown in bold. Key to table: RG—Realized GARCH; REG—Realized
Exponential GARCH.
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The empirical results show that the β estimates of the GARCH(1,1) for NSW, QLD,
and VIC are 0.863, 0.669, and 0.874, respectively, confirming the fact that QLD is the most-
nervous electricity market. This aspect is also highlighted by the estimate of γ1 taking the
highest value for QLD. Focusing on the volatility persistence, for the GARCH(1,1), we
observe (β + γ1) ≈ 1; whereas, for the R(E)GARCH-type models, β (the parameter which
summarizes the persistence of volatility for this class of models) is, on average, about
0.96. Thus, volatility decay is faster for models including high-frequency information.
Moreover, a larger γ1 for individual realized measures in R(E)GARCHs with respect to the
standard GARCH(1,1) is a sign that intraday information provides a stronger signal on
future volatility than squared returns.

Analyzing the estimated parameters of the measurement equations, it turns out that
although the realized measures xt are an upward biased measure of the conditional variance
(ξ > 0), they are approximately proportional to ht, as suggested by estimates of ϕ close
to 1.

Furthermore, differently to what is usually observed for financial stock returns show-
ing τ1 < 0 and τ2 > 0 as well as δ1 < 0 and δ2 > 0, here, we find that all parameters of the
leverage functions are positive with τ1 > τ2 and δ1 > δ2. This implies an inverse leverage
effect, as positive shocks in electricity prices lead to a larger increase in volatility than
negative shocks, confirming the finding in Knittel and Roberts (2005); Frömmel et al. (2014);
Qu et al. (2018), among others.

Overall, the estimated measurement error variance confirms that the QLD electricity
market is the most volatile, showing the highest values of σ2

u . Additionally, the parameter
estimates for σ2

u are approximately the same for RV and RK, but are larger for MRV,
highlighting that a frequency of 30 min is not sufficient to cancel out the effects of price
jumps. In addition, focusing on the individual realized measures, an inverse relationship
emerges between the coefficient γ and the variance σ2

u of the residual measurement error.
This is because γ reflects the “amount” of information about volatility variation; so, the
larger the coefficient, the more accurate the realized measure.

Regarding the ρ parameters, as expected, their estimates are very close to 1, indicating
that RV, RK, and MVR are highly positively correlated, implying that some γ are negative
or not significant for REGARCH models using two or three realized measures.

The estimated ν parameter ranges between 2.85 and 5.37, with the upper bound
always provided by the GARCH(1,1), confirming the existence of leptokurtosis in the
conditional distribution of returns.

Finally, as it makes no sense to compare the full log-likelihood for different realized
measures, we only report the partial log-likelihood of the return component `(r). Not
surprisingly, there is a clear improvement from RGARCH to REGARCH specifications,
which provide the highest maximized values. The lowest values for `(r) always occur in
the RGARCH(MRV), while, overall, the standard GARCH(1,1) performs quite well.

6. Out-of-Sample Analysis

In this section, one-day-ahead forecasts of volatility, Value-at-Risk (VaR), and Expected
Shortfall (ES) are generated with the rolling window method with daily re-estimation. In
particular, the first estimation window is of 2000 observations, leading to different out-of-
sample periods for the electricity markets: 26/06/2017–31/12/2019 (913 days) for NSW;
01/08/2017–31/12/2019 (813 days) for QLD; 06/09/2017–31/12/2019 (788 days) for VIC.

The out-of-sample forecasting performance of the models is evaluated by considering
different loss functions. First, the ability to accurately forecast volatility is assessed by the
QLIKE (Patton 2011), Mean Squared Error (MSE), and Mean Absolute Error (MAE):
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QLIKE =
1
T

T

∑
t=1

(
log(ĥt) +

xt

ĥt

)
,

MSE =
1
T

T

∑
t=1

(
xt − ĥt

)2
,

MAE =
1
T

T

∑
t=1

∣∣∣xt − ĥt

∣∣∣,
where ĥt is the 1-step-ahead conditional variance forecast and xt is the volatility proxy at
time t. Since the magnitude of bias due to microstructure noise and jumps tend to vanish
at low frequencies, to consider different market scenarios in our forecasting study, we refer
to the RV computed at the frequencies of 30 min, 2 h, and 6 h as volatility proxies.

Next, we evaluate the out-of-sample forecasting ability of the models considering
one-step-ahead VaR and ES forecasts generated for three different risk levels: 1%, 2.5%, and
5%. The adequacy of VaR forecasts is assessed through the Quantile Loss (QL) function
(González-Rivera et al. 2004; Koenker 2005)

QLt(α) = (α− lt)(rt −VaRt(α)), (13)

where lt = I(rt<VaRt(α)). The QL is a strictly consistent scoring rule for VaR prediction.
Further, being an asymmetric loss function, it is particularly suited to assess quantile risk
measures as it imposes a higher penalty, with weight (1− α), for observations below the
α-quantile level, namely, when we observe returns exceeding the VaR.

Regarding the ES, as there is no loss function for which the ES is the solution for
minimizing the expected loss, it lacks the mathematical property called elicitability (see e.g.,
Fissler and Ziegel (2016); Fissler et al. (2016); Gneiting (2011); Weber (2006) among others).

However, as ES turns out to be jointly elicitable with VaR, we rely on the class of
(strictly) consistent scoring function (Fissler and Ziegel 2016) to evaluate the ability of the
proposed models to jointly forecast VaR and ES

FZt(rt, vt, et, α, G1, G2) =(lt − α)

(
G1(vt)− G1(rt) +

1
α

G2(et)vt

)
(14)

− G2(et)

(
1
α

ltrt − et

)
− G2(et),

with vt and et, the VaR and ES, respectively, while G1(·) is weakly increasing, G2(·) is
strictly increasing and strictly positive, and G ′2(·) = G2(·).

Although several strictly consistent scoring rules for the pair (VaR, ES) can be obtained
as special cases of the family of functions in (14), following Patton et al. (2019), we assume
VaR and ES to be strictly negative and ESt(α) ≤ VaRt(α) < 0, with G1(x) = 0 and
G2(x) = −1/x, resulting in the zero-degree homogeneous loss function

FZ0
t =

1
αESt(α)

lt(rt −VaRt(α)) +
VaRt(α)

ESt(α)
+ log(−ESt(α))− 1. (15)

Finally, the Model Confidence Set (MCS) of Hansen et al. (2011) is used to assess the
significance of differences in the predictive performances of the models under analysis
considering the confidence levels of 75% and 90%. In particular, in the MCS implementation,
we have considered a Range statistic and 5000 bootstrap resamples generated by means of
a block-bootstrap procedure, where the optimal block length has been estimated using the
method described in Patton et al. (2009).

Table 5 shows the out-of-sample model comparison based on average losses for QLIKE,
MSE, and MAE using different volatility proxies. Values in boldface indicate the models
that return the minimum average loss, while those shaded in gray and light-gray are
associated with models that are included in the 75% and 90% MCS, respectively.



J. Risk Financial Manag. 2021, 14, 294 13 of 17

Table 5. Out-of-sample loss functions comparison: QLIKE, MSE, and MAE.

NSW

RV 30 min RV 2 h RV 6 h

QLIKE MSE MAE QLIKE MSE MAE QLIKE MSE MAE

GARCH(1,1) 37.436 9.780 1.349 28.219 2.153 0.936 18.741 1.902 0.673
RG(RV) 21.209 9.706 1.338 15.163 2.113 0.926 9.718 1.880 0.665
RG(RK) 21.089 9.704 1.337 15.039 2.112 0.925 9.627 1.879 0.665
RG(MRV) 19.637 9.675 1.333 14.087 2.103 0.921 8.936 1.872 0.661
REG(RV) 24.369 9.747 1.345 17.995 2.134 0.933 11.668 1.893 0.670
REG(RK) 24.319 9.746 1.345 17.936 2.134 0.933 11.623 1.892 0.670
REG(MRV) 23.237 9.731 1.343 17.219 2.130 0.931 11.098 1.889 0.668
REG(RV,RK) 24.445 9.749 1.345 18.112 2.136 0.933 11.761 1.894 0.671
REG(RV,MRV) 24.573 9.749 1.346 18.129 2.135 0.933 11.768 1.894 0.671
REG(RK,MRV) 24.417 9.747 1.345 17.996 2.134 0.933 11.665 1.893 0.670
REG(RV,RK,MRV) 24.661 9.751 1.346 18.243 2.136 0.934 11.854 1.894 0.671

QLD

RV 30 min RV 2 h RV 6 h

QLIKE MSE MAE QLIKE MSE MAE QLIKE MSE MAE

GARCH(1,1) 49.133 11.313 1.556 32.334 4.062 0.998 24.867 4.524 0.834
RG(RV) 22.080 11.168 1.532 13.859 3.978 0.974 9.934 4.442 0.813
RG(RK) 21.985 11.167 1.532 13.767 3.977 0.973 9.881 4.441 0.813
RG(MRV) 19.534 11.135 1.523 11.887 3.958 0.965 8.586 4.427 0.807
REG(RV) 28.145 11.238 1.546 18.101 4.020 0.987 13.192 4.481 0.825
REG(RK) 28.155 11.238 1.545 18.093 4.020 0.987 13.179 4.481 0.825
REG(MRV) 27.310 11.233 1.543 17.183 4.015 0.985 12.670 4.479 0.823
REG(RV,RK) 28.059 11.238 1.545 18.095 4.020 0.987 13.153 4.481 0.824
REG(RV,MRV) 29.172 11.243 1.547 19.262 4.024 0.989 13.653 4.483 0.825
REG(RK,MRV) 28.966 11.241 1.547 19.033 4.023 0.988 13.584 4.482 0.825
REG(RV,RK,MRV) 29.160 11.243 1.547 19.304 4.024 0.989 13.628 4.483 0.825

VIC

RV 30 min RV 2 h RV 6 h

QLIKE MSE MAE QLIKE MSE MAE QLIKE MSE MAE

GARCH(1,1) 28.051 28.570 2.532 20.956 13.423 1.789 11.038 6.806 0.951
RG(RV) 15.714 28.238 2.481 11.087 13.176 1.739 5.457 6.686 0.911
RG(RK) 15.818 28.236 2.481 11.129 13.173 1.739 5.506 6.684 0.911
RG(MRV) 14.946 28.206 2.471 10.404 13.164 1.730 5.066 6.675 0.904
REG(RV) 16.962 28.300 2.491 12.103 13.220 1.749 6.086 6.711 0.918
REG(RK) 17.074 28.301 2.491 12.162 13.219 1.749 6.139 6.710 0.918
REG(MRV) 16.099 28.276 2.483 11.359 13.214 1.741 5.620 6.703 0.913
REG(RV,RK) 16.930 28.301 2.491 12.097 13.222 1.749 6.076 6.713 0.918
REG(RV,MRV) 17.454 28.308 2.494 12.520 13.218 1.752 6.385 6.714 0.921
REG(RK,MRV) 17.550 28.307 2.493 12.550 13.215 1.752 6.418 6.712 0.921
REG(RV,RK,MRV) 17.424 28.311 2.494 12.528 13.222 1.752 6.372 6.716 0.921

The table shows the average loss of QLIKE, mean squared error (MSE), and mean absolute error (MAE) using different volatility proxies,
for NSW (top), QLD (middle), and VIC (bottom). The best model is reported in bold while models ∈ 75% and ∈ 90% MCS are shaded in
gray and light-gray, respectively. Key to table: RG—Realized GARCH; REG—Realized Exponential GARCH.
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The results in Table 5 clearly indicate that the RGARCH relying on the jump-robust
estimator medRV provides more accurate volatility forecasts than other models, always
minimizing the loss functions considered for all proxies and each electricity market. Fur-
thermore, it is the only model entering MCS at any confidence level. No other models enter
MCS, with the exception of the RGARCH(RV) and RGARCH(RK) using the 30-min RV
and the RGARCH(RK) using the 2-hour RV, which are included in the 90% MCS for the
MSE loss function and the VIC electricity market. On the other hand, the GARCH(1,1)
appears to be the worst competitor as it produces the highest loss in every possible sce-
nario. The largest discrepancies between the GARCH(1,1) and R(E)GARCH models occur
for the QLIKE loss function, confirming that the QLIKE is more powerful in rejecting
poorly performing predictors (Liu et al. 2015; Patton 2011). Overall, the simple RGARCH
structure leads to substantial improvements in the accuracy of volatility forecasts over the
REGARCH models based on one or more realized measures.

The scenario is completely reversed when forecasting VaR and ES. The results in
Table 6 point out that REGARCH specifications provide lower average loss values for QL
and FZ0 than RGARCH models, which are always excluded from the MCS at any risk
level. At the same time, the GARCH(1,1) model also turns out to be a good competitor,
minimizing the loss functions in most cases. In particular, it is the only model that always
enters the MCS at the most extreme 1% risk level both for VaR and ES, and for NSW and
QLD, no other model belongs to the MCS. Although the REGARCH(RV,RK,MRV) model
minimizes QL and FZ0 for different risk scenarios, models based on a single or combination
of two variables almost always enter the MCS, especially when RV and RK are considered
to explain volatility dynamics. Furthermore, the MCS shows that the differences between
the models are more pronounced in forecasting ES. Finally, moving towards less extreme
risk levels, such as 5%, there is less discrimination between models.

Table 6. One-step ahead Value-at-Risk and Expected Shortfall loss functions comparison: QL and FZ0.

NSW

α = 0.05 α = 0.025 α = 0.01

QL FZ0 QL FZ0 QL FZ0

GARCH(1,1) 20.366 −0.912 11.260 −0.797 5.286 −0.630
RG(RV) 22.130 −0.786 12.954 −0.605 6.380 −0.362
RG(RK) 22.185 −0.781 13.037 −0.597 6.454 −0.350
RG(MRV) 22.338 −0.777 13.206 −0.588 6.727 −0.329
REG(RV) 18.725 −0.965 10.871 −0.783 5.596 −0.522
REG(RK) 18.735 −0.964 10.911 −0.780 5.613 −0.519
REG(MRV) 18.862 −0.958 11.062 −0.771 5.663 −0.511
REG(RV,RK) 18.627 −0.971 10.774 −0.790 5.575 −0.525
REG(RV,MRV) 18.706 −0.966 10.853 −0.785 5.586 −0.524
REG(RK,MRV) 18.733 −0.964 10.910 −0.781 5.607 −0.521
REG(RV,RK,MRV) 18.620 −0.971 10.777 −0.791 5.569 −0.527

QLD

α = 0.05 α = 0.025 α = 0.01

QL FZ0 QL FZ0 QL FZ0

GARCH 15.427 −1.015 8.793 −0.860 4.552 −0.597
RG(RV) 17.524 −0.853 10.866 −0.628 5.584 −0.350
RG(RK) 17.552 −0.851 10.909 −0.624 5.605 −0.347
RG(MRV) 17.670 −0.836 11.146 −0.595 5.918 −0.298
REG(RV) 15.400 −0.987 9.410 −0.763 5.011 −0.461
REG(RK) 15.408 −0.987 9.424 −0.762 5.009 −0.462
REG(MRV) 15.358 −0.986 9.523 −0.754 5.053 −0.454
REG(RV,RK) 15.388 −0.987 9.410 −0.762 5.027 −0.457
REG(RV,MRV) 15.415 −0.986 9.301 −0.769 4.993 −0.461
REG(RK,MRV) 15.424 −0.985 9.301 −0.767 4.991 −0.463
REG(RV,RK,MRV) 15.405 −0.985 9.301 −0.767 5.009 −0.456
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Table 6. Cont.

VIC

α = 0.05 α = 0.025 α = 0.01

QL FZ0 QL FZ0 QL FZ0

GARCH 28.343 −0.299 16.870 −0.118 8.699 0.163
RG(RV) 28.262 −0.342 17.208 −0.150 8.856 0.089
RG(RK) 28.315 −0.340 17.227 −0.149 8.867 0.090
RG(MRV) 28.477 −0.324 17.523 −0.123 9.287 0.144
REG(RV) 27.462 −0.380 16.643 −0.192 8.651 0.057
REG(RK) 27.506 −0.378 16.650 −0.192 8.661 0.058
REG(MRV) 27.653 −0.363 16.890 −0.168 8.964 0.102
REG(RV,RK) 27.436 −0.380 16.637 −0.193 8.641 0.056
REG(RV,MRV) 27.322 −0.389 16.409 −0.208 8.375 0.030
REG(RK,MRV) 27.438 −0.385 16.460 −0.205 8.437 0.035
REG(RV,RK,MRV) 27.280 −0.391 16.391 −0.209 8.347 0.028
The table shows the loss values of QL and FZ0 at the risk levels of α = {0.05; 0.025; 0.01}, for NSW (top), QLD (middle), and VIC (bottom).
The best model is reported in bold while models ∈ 75% and ∈ 90% MCS are shaded in gray and light-gray, respectively. Key to table:
RG—Realized GARCH; REG—Realized Exponential GARCH.

7. Conclusions

This paper uses half-hourly spot prices from the Australian electricity markets of New
South Wales, Queensland, and Victoria to predict volatility and manage risk in energy
markets. In this framework, we extend the literature on modeling the conditional variance
of returns using the Realized GARCH approach by combining information from multiple
realized robust and nonrobust measures to capture the key features of electricity prices
such as extreme jumps and the inverse leverage effect. Our empirical analysis underlines
the following points. First, specifications with multiple realized measures outperform
those based on a single realized measure as well as the standard GARCH(1,1), resulting
in a remarkably better fit of the data in-sample. Second, the medRV jump-robust measure
significantly increases the accuracy of out-of-sample volatility forecasts. In particular, the
simple Realized GARCH based on a single measurement equation for the jump-robust
medRV estimator always minimizes the set of loss functions considered—i.e., QLIKE, MSE,
and MAE—and is the only model that enters the MCS under all circumstances addressed.
Finally, in contrast to volatility forecasting, when assessing the predictive ability of the
models in terms of VaR and ES, it emerges that the standard GARCH is highly competitive
especially for the extreme risk level of 1%. Similarly, REGARCH models based on one or
more realized measures outperform the simple RGARCH, which shows—in this case—the
worst results in minimizing the loss functions at any risk level. Further, the MCS highlights
greater discrimination between models in predicting ES. Electricity market participants aim
to constantly pursue optimal trading limits in order to adequately allocate capital and to
cover potential losses if trading limits are violated. This is also because overcapitalization
implies idle capital that could undermine the profitability of energy industries; at the same
time, undercapitalization could cause financial difficulties when they are unable to honor
trading contracts. Therefore, accurately predicting VaR and ES is essential for effective
energy risk management, as they are the most commonly used measures for establishing
optimal trading limits. One aspect that has not been considered here, and that is worth
examining in future research, is how the inclusion of exogenous factors, such as weather
conditions, would affect electricity price volatility. In addition, volatility inter-relationships
between various regions and energy markets are interesting future research areas, as is
extending the results to energy markets other than Australia. Finally, as this study has
mainly focused on modeling one-day-ahead volatility, exploiting the properties of the
Realized GARCH-type models, a natural extension would be to predict price volatility at a
longer horizon.
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