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Abstract: In this paper, we propose a general mathematical model for analyzing yield data. The data
analyzed in this paper come from a characteristic corn field in the upper midwestern United States.
We derive expressions for statistical moments from the underlying stochastic model. Consequently,
we illustrate how a particular feature variable contributes to the statistical moments (and in effect,
the characteristic function) of the target variable (i.e., yield). We also analyze the data with neural
network techniques and provide two methods of data analysis. This mathematical model and neural
network-based data analysis allow for better understanding of the variability within the data set,
which is useful to farm managers attempting to make current and future decisions using the yield
data. Lenders and risk management consultants may benefit from the insights of this mathematical
model and neural network-based data analysis regarding yield expectations.

Keywords: neural networks; precision agriculture; statistical moments; yield; categorical data

1. Introduction

The International Society of Precision Agriculture adopted the following definition of
precision agriculture in 2019 (see The International Society of Precision Agriculture (n.d.)):
“Precision Agriculture is a management strategy that gathers, processes, and analyzes
temporal, spatial, and individual data and combines it with other information to support
management decisions according to estimated variability for improved resource using
efficiency, productivity, quality, profitability, and sustainability of agricultural production”.
Precision agriculture has emerged as a central tool to address current challenges in agri-
cultural sustainability and profitability. Various methodologies of data-science, such as
machine learning, have been implemented with this cutting edge technology. With the use
of artificial intelligence and data-science, farmer managers can get the precise data that
convey all the information related to the optimum health and productivity of the crops,
thereby enabling informed decision-making.

There is an emerging literature on applications of data-science to agriculture. In Lem-
ley et al. (2017), machine learning and deep learning techniques are implemented to solve
both precision agriculture related problems and build better, smarter consumer devices
and services. In Sharma et al. (2021), a systematic review of various machine learning
applications in the field of agriculture is provided. The prediction of soil parameters such
as organic carbon and moisture content, crop yield prediction, disease and weed detection
in crops and species detection is presented. In addition, this paper demonstrates how
knowledge-based agriculture can improve the sustainable productivity and quality of the
product. In Bauer et al. (2019), the authors present an automated and open-source analytic
platform that combines computer vision, and modular software engineering in order to
measure yield-related phenotypes from ultra-large aerial imagery. An analysis is devel-
oped to map lettuce size distribution across the field, based on which associated global
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positioning system (GPS) tagged harvest regions have been identified to enable growers
and farmers to conduct precision agricultural practices. In Chlingaryan et al. (2018), the
authors analyze research developments performed within the last 15 years on machine
learning based techniques for accurate crop yield prediction and nitrogen status estimation.
In Treboux and Genoud (2020) the authors present the performances of machine learning
algorithms on aerial images object detection for high-precision agriculture. The proposed
approach in this paper improves the object detection and obtain an accuracy of 94.27%. In
Horng et al. (2020) the authors propose a study of harvesting system based on the Internet
of Things technology and smart image recognition. The proposed model is implemented
for crop detection by collecting and tagging images. It is shown that the proposed model
training has a mean average precision of 84%, which is better than the other existing
models. In Bauer et al. (2019) a common problem for apple orchards, namely, the attack
of the codling moth, is studied. It is shown that a data-science based near sensor neural
network algorithms can be implemented to automatically detect the codling moth. The
performance of this system is evaluated, and power consumption ideas are discussed for
achieving the zero energy balance of the system. Finally, in Addey et al. (2021) the authors
examine the implications of risks, uncertainties and random events on the prediction of
crop yields.

Motivated by all these studies, we propose a general mathematical model for analyzing
yield data. It is shown that a special case of such a model can be a generalized version
of the well-known Barndorff–Nielsen and Shephard model. If the statistical moments of
the yield data can be obtained from the stochastic model, then it can play a crucial role in
understanding the empirical data set. In fact, this will illustrate how a particular feature
variable contributes to the statistical moments (and in effect, the characteristic function) of
the target variable (i.e., yield). Consequently, we derive expressions for statistical moments
from the underlying stochastic model. This model allows for better understanding of
the variability within the data set, which is useful to farm managers attempting to make
current and future decisions using the yield data. In addition, this model may help to
identify errors in yield data collection and recording. Finally, lenders and risk management
consultants may benefit from this model’s insights regarding yield expectations.

The data analyzed in this paper come from a characteristic corn field in the upper
midwestern United States. The data were collected in 2010. Each observation in the data
set represents two seconds of harvesting as a combine harvester traveling through the field.
Each observation is associated with a precise latitude and longitude where it was recorded
in the field. Yld Vol(Dry)(bu/ac) is the quantity of corn harvested during the 2-seconds
interval. It is the variable predicted by the model. The mean Yld Vol(Dry)(bu/ac) for the
field is 161.06 and the median Yld Vol(Dry)(bu/ac) is 172.07. Yld Mass(Wet)(lb/ac), Yld
Mass(Dry)(lb/ac), and Crop Flw(M)(lb/s) are also measures of corn yield during each
2-seconds interval, but these measures have not been converted to bushels. Furthermore,
Yld Mass(Wet)(lb/ac) has not been corrected for moisture, which is represented by the
crop’s relative moisture, Moisture(%), and Crop Flw(M)(lb/s) measures corn harvested
per second rather than per acre. During each 2-seconds interval, the combine harvested
travels a variable distance, Distance(ft), which is determined by the Speed(mph) that
the combine is traveling during the interval. The combine’s speed and the width of the
combine’s header during the 2-seconds interval, Swth Wdth(ft), determine how many acres
could be harvested in one hour at those rates (Prod(ac/h). We implement neural network
algorithms to analyze the dry yield volume based on the other observed and significant
feature variables.

The organization of the paper is as follows. In Section 2, we propose a general
statistical model, and analyze a special case of it—a generalized Barndorff–Nielsen and
Shephard model. Theoretical results related to the statistical moments of the target variable
are discussed in detail. In Section 3, we provide the description of the data. We analyze the
data with neural network techniques and provide two methods of data analysis. Finally, a
brief conclusion is provided in Section 4.
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2. Mathematical Model and Analysis
2.1. General Framework

For the empirical data, we assume that there is one target variable and n feature variables.
We model the target variable St by

St = S0eXt , where dXt = bt dt +
n

∑
i=1

θ
(i)
t

(
σt dW(i)

t + dJ(i)t

)
, (1)

where bt is a deterministic function of t, W(i)
t , i = 1, . . . , n, are independent Brownian

motions, and J(i)t is the jump process with intensity λi, i = 1, . . . , n. We assume that

W(i)
t and J(i)t , for i = 1, . . . , n, are independent. The coefficients θ

(i)
t , at every t satisfy

∑n
i=1(θ

(i)
t )2 = 1. In addition to that, σt is assumed to be stochastic, and its dynamics are

governed by
dσ2

t = F(σ2
t , β

(1)
t H(1)

t , β
(2)
t H(2)

t , . . . , β
(n)
t H(n)

t ), (2)

for an appropriate function F, where H(j)
t , for j = 1, . . . , n, are jump processes with

intensities µj, j = 1, . . . , n. The coefficients β
(j)
t , at every t satisfy ∑n

j=1(β
(j)
t )2 = 1. For

simplicity, for the rest of the proposal, we assume θ(i) = β(i), for i = 1, . . . , n.
For a special case of (1), we assume that the individual dynamics of a feature variable

is given by eY(i)
t , where dY(i)

t = σt dW(i)
t + dJ(i)t , i = 1, . . . , n. From (1), we obtain dXt =

bt dt + ∑n
i=0 θ

(i)
t dY(i)

t . Hence, θ
(i)
t represents the “importance factor” for the i-th feature

variables, for i = 1, . . . , n. We observe, that if ∑n
i=1(θ

(i)
t )2 = 1, then ∑n

i=1 θ
(i)
t dW(i)

t can be
represented by dBt, where Bt is a Brownian motion. Consequently, (1) can be written as

St = S0eXt , where dXt = bt dt + σtdBt +
n

∑
i=1

θ
(i)
t dJ(i)t . (3)

The expression (3) provides an alternative explanation for the coefficients θ
(i)
t , i =

1, . . . , n, and those will be computed in the numerical section. Those represent the signifi-
cance in terms of big fluctuations (or “jumps”) of the i-th ingredient feature process Y(i)

t .

We write J(i)t in terms of integrals with respect to Poisson random measures N(i)(dt, dx),
for i = 1, . . . , n. Consequently,

J(i)t =
∫ t

0

∫
R

xN(i)(dt, dx).

Hence, (3) can be written as

St = S0eXt , where dXt = bt dt + σtdBt +
n

∑
i=1

θ
(i)
t

∫
R

xN(i)(dt, dx). (4)

2.2. Special Case: A Generalized Barndorff–Nielsen & Shephard Model

There are some special cases of the proposed model that are studied in the literature in
connection to the financial market; for example, the Barndorff–Nielsen and Shephard model
(BN-S model). For such a model, the target variable is the stock, see, Barndorff-Nielsen and
Shephard (2001a, 2001b); Habtemicael and SenGupta (2016); Issaka and SenGupta (2017)
or the commodity price (see, Roberts and SenGupta (2020); SenGupta et al. (2019); Shoshi
and SenGupta (2021); Wilson et al. (2019), S = (St)t≥0. On some filtered probability space
(Ω,G, (Gt)0≤t≤T ,P) it is modeled by

St = S0 exp(Xt), (5)

dXt = (µ + βσ2
t ) dt + σt dWt + ρ dZλt, (6)
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dσ2
t = −λσ2

t dt + dZλt, σ2
0 > 0, (7)

where the parameters µ, β, ρ, λ ∈ R with λ > 0 and ρ ≤ 0 and r is the risk-free interest
rate where a stock or commodity (the target variable) is traded up to a fixed horizon date
T. In the above model, Wt is a Brownian motion, and the process Zλt is a subordinator.
Additionally, W and Z are assumed to be independent, and (Gt) is assumed to be the
usual augmentation of the filtration generated by the pair (W, Z). We consider a special
case of (4), where dZ(i)

s = 1
ρ

∫ ∞
0 xN(i)(ds, dx), i = 1, . . . , n are subordinators. Making

a scaling in the time variable, we define s = λt, for λ > 0. Then, we obtain dZ(i)
λt =

1
ρ

∫ ∞
0 xN(i)(λ dt, dx), i = 1, . . . , n, as subordinators. Consequently, we consider S = (St)t≥0

on some risk-neutral probability space (Ω,F , (Ft)0≤t≤T ,Q), given by (4). We consider the
case that is more aligned with Nicolato and Venardos (2003). In this case, we assume that
the generalized version of (6) takes the form

dXt = (B− 1
2

σ2
t ) dt + σt dWt + ρ

n

∑
i=1

θ
(i)
t dZ(i)

λt , (8)

where Z(i), i = 1, . . . , n are independent subordinators. For the drift term, comparing with
(6), we thus have µ = B and β = − 1

2 . Additionally, we assume that (Ft) is assumed to be
the usual augmentation of the filtration generated by (W, Z(i)), i = 1, . . . , n. In this case, (7)
will be given by

dσ2
t = −λσ2

t dt +
n

∑
i=1

θ
(i)
t dZ(i)

λt , σ2
0 > 0. (9)

The solution of (9) can be explicitly written as

σ2
t = e−λtσ2

0 +
∫ t

0
e−λ(t−s)

n

∑
i=1

θ
(i)
s dZ(i)

λs . (10)

The integrated variance over the time period [t, T] is given by σ2
I =

∫ T
t σ2

s ds, and a
straight-forward calculation shows

σ2
I = ε(t, T)σ2

t +
∫ T

t
ε(s, T)

n

∑
i=1

θ
(i)
s dZ(i)

λs , (11)

where
ε(s, T) = (1− exp(−λ(T − s)))/λ, t ≤ s ≤ T. (12)

We derive a general expression for the characteristic function of the conditional
distribution of the log-asset price process appearing in the stochastic model given by
Equations (5), (8) and (9).

We quote the following result from Nicolato and Venardos (2003), which is known as
the “key formula”. This result will play a significant role in the next section.

Lemma 1. Let Z be a subordinator with cumulant transform κ, and let f : R+ → C be a
complex-valued, left-continuous function such that Re( f ) ≤ 0. Then

E
[

exp
(∫ t

0
f (s) dZλs

)]
= exp

(
λ
∫ t

0
κ( f (s)) ds

)
.
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We also note that∫ t

0
σ2

s ds =
σ2

0
λ
(1− e−λt) +

1
λ

n

∑
i=1

∫ t

0

(
1− e−λ(t−s)

)
θ
(i)
s dZ(i)

λs

d
=

σ2
0

λ
(1− e−λt) +

1
λ

n

∑
i=1

∫ λt

0

(
θ
(i)
s − θ

(i)
t− s

λ
e−s
)

dZ(i)
s , (13)

where “ d
= ” represents equality in distribution.

Statistical moments are useful quantities, which when computable, can give significant
insight into the underlying empirical data. Consequently, it is useful to obtain analytical
expressions for statistical moments for the underlying model. In connection to the BN-S
model, statistical moments for St are derived in Ihsan and SenGupta (2018). With this
motivation, we derive a couple of results related to certain moments of the target variable,
St. The first result is simple but restrictive. This result is subsequently generalized. For the
rest of the paper, we take N ∈ N, where N is the set of natural numbers.

Theorem 1. For a given λ > 0 and ρ < 0, if N satisfies

N ≤ 1− 2λρ, (14)

then the N-th moment of St with respect to the measure Q is given by

EQ[eNXt ] = a(t, N)
n

∏
i=1

exp
[

λ
∫ t

0
κ(i)
(

θ
(i)
s

(
Nρ +

N(N − 1)
2λ

(1− e−λ(t−s))

))
ds
]

, (15)

where
a(t, N) = eNBt+ N(N−1)

2λ (1−e−λt)σ2
0 , (16)

and κ(i)(·) is the cumulant transform of Z(i)
1 , i = 1, . . . , n, with respect to Q.

Proof. Let G denote the σ-algebra generated by the Background Driving Lévy Process,
BDLP, Z up to time t. We observe

EQ[eNXt ] = EQ[eN(Bt− 1
2
∫ t

0 σ2
udu+

∫ t
0 σudWu+ρ ∑n

i=1
∫ t

0 θ
(i)
u dZ(i)

λu)]

= eNBtEQ
[

e
N2−N

2
∫ t

0 σ2
udu+Nρ ∑n

i=1
∫ t

0 θ
(i)
u dZ(i)

λu

]
.

Using the first equality in (13) for the integrated variance process, we obtain

EQ[eNXt ] = eNBt+ N(N−1)
2λ (1−e−λt)σ2

0 EQ
[

e∑n
i=1
∫ t

0 θ
(i)
s

(
Nρ+ N(N−1)

2λ (1−e−λ(t−s)
)

dZ(i)
λs

]
= eNBt+ N(N−1)

2λ (1−e−λt)σ2
0

n

∏
i=1

EQ
[

e
∫ t

0 θ
(i)
s

(
Nρ+ N(N−1)

2λ (1−e−λ(t−s)
)

dZ(i)
λs

]
, (17)

where in the last step, we use the independence of Z(i), i = 1, . . . , n. If N satisfies(
Nρ + N(N−1)

2λ

)
≤ 0, that is, N satisfies (14), then for 0 ≤ s ≤ t,(

Nρ +
N(N − 1)

2λ
(1− e−λ(t−s))

)
≤ 0.

Consequently, by using Lemma 1, we obtain (15).

Next, we derive a result without any restriction on N. For this paper, we denote the
random measure associated with the jumps of a process At, and the Lévy density of At, by
JA(·, ·) and νA(·), respectively. The compensator for JA(dt, dx) is νA(dx) dt, and we define
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J̃A(dt, dx) = JA(dt, dx) − νA(dx) dt. For the proof of Theorem 3, we use the following
version of the Girsanov theorem. The proof may be found in Øksendal and Sulem (2007).

Theorem 2. Let u(t) and θ(t, z) ≤ 1 be predictable processes such that the process

Z(t) := exp
(
−
∫ t

0
u(s)dWs −

1
2

∫ t

0
u2(s) ds +

∫ t

0

∫
R

ln(1− θ(s, z)) J̃Z(ds, dz)

+
∫ t

0

∫
R
[ln(1− θ(s, z)) + θ(s, z)]νZ(dz) ds

)
,

exists for 0 ≤ t ≤ T and satisfies EP1 [Z(T)] = 1. Define the probability measure P2 by
dP2 = Z(T)dP1. Then u(t)dt + dWt is a Brownian motion, and θ(t, z)ν(dz)dt + Ñ(dt, dz)
is a compensated Poisson random process with respect to P2.

We now proceed to prove a more general result related to the moments of St, with
respect to the BN-S model. This result does not assume any restriction on N ∈ N.

For the short-term, we assume θ
(i)
s to be a positive constant and θ

(i)
s = θ(i) > 0,

i = 1, . . . , n.

Theorem 3.

EQ(St
N) = τ2(t, N)

n

∏
i=1

exp
(∫ λt

0
κ(i)
(
−θ(i)

N(N − 1)
2λ

e−s
)

ds
)

, (18)

where τ2(t, N) is a deterministic function of t, and κ(i)(·) is the cumulant generating function for
Z(i)

1 , with respect to Q, where i = 1, . . . , n.

We remark that an explicit form of a particular case of the function τ2(t, N) in (18) will
be found in the Corollary 4.

Proof. Let U be a subordinator with Poisson measure JU(·, ·). We will characterize the
process later in this proof. Consider the stochastic differential equation

dMt

Mt
= αdt + βdWt +

∫
R+

γ(y) J̃U(λdt, dy), M0 = 1,

where α, β are constants and γ(y) > −1. Consequently, (see Øksendal and Sulem (2007))
we obtain

Mt = exp
[(

α− 1
2

β2
)

t + βWt +
∫ λt

0

∫
0<y<1

(ln(1 + γ(y))− γ(y))νU(dy) ds

+
∫ λt

0

∫
R+

ln(1 + γ(y)) J̃U(ds, dy)
]
. (19)

Set β = 0 in (19) to obtain

Mt = exp
[

α′t +
∫ λt

0

∫
R+

(ln(1 + γ(y))− γ(y))νU(dy) ds +
∫ λt

0

∫
R+

ln(1 + γ(y)) J̃U(ds, dy)
]

,

where α′ = α− λ
∫

y≥1(ln(1 + γ(y))− γ(y))νU(dy). We choose α in such a way that

α′ = 0.

Then by Cont and Tankov (2004) (Proposition 8.23), we obtain Mt as a martingale.
Consider a new measure dT(t) = MtdQ(t). Note that with respect to T, the Brownian
motion Wt still remains the same.
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Then

EQ(St
N) = ET

[
1

Mt
St

N
]

= ET[exp(−
∫ λt

0

∫
R+

(ln(1 + γ(y))− γ(y))νU(dy) ds−
∫ λt

0

∫
R+

ln(1 + γ(y)) J̃U(ds, dy)

+ NBt− N
2

∫ t

0
σ2

s ds + N
∫ t

0
σsdWs + ρN

n

∑
i=1

θ(i)
∫ λt

0

∫
R+

yJ(i)Z (ds, dy))]

= τ̃(t, N)ET
[

exp(−
∫ λt

0

∫
R+

ln(1 + γ(y)) J̃U(ds, dy)− N
2

∫ t

0
σ2

s ds + N
∫ t

0
σsdWs

+ ρN
n

∑
i=1

θ(i)
∫ λt

0

∫
R+

yJ(i)Z (ds, dy))
]
,

where τ̃(t, N) = exp
(

NBt− λt
∫
R+(ln(1 + γ(y))− γ(y))νU(dy)

)
, is a deterministic func-

tion of t. Using J̃U(ds, dy) = JU(ds, dy)− νU(dy) ds, we obtain

EQ(St
N) = ET

[
1

Mt
St

N
]

= τ(t, N)ET
[

exp(−
∫ λt

0

∫
R+

ln(1 + γ(y))JU(ds, dy)− N
2

∫ t

0
σ2

s ds + N
∫ t

0
σsdWs

ρN
n

∑
i=1

θ(i)
∫ λt

0

∫
R+

yJ(i)Z (ds, dy))
]
,

where

τ(t, N) = exp
(

NBt− λt
∫
R+

(ln(1 + γ(y))− γ(y))νU(dy) + λt
∫
R+

ln(1 + γ(y))νU(dy)
)

= exp
(

NBt + λt
∫
R+

γ(y)νU(dy)
)

,

is a deterministic function of t. We choose −1 < γ(y), such that the following holds:

−
∫
R+

ln(1 + γ(y))JU(ds, dy) +
(

ρN +
N(N − 1)

2λ

) n

∑
i=1

θ(i)
∫ λt

0

∫
R+

yJ(i)Z (ds, dy) = 0. (20)

Consequently,

EQ(St
N)

= τ(t, N)ET
[

exp

(
−N

2

∫ t

0
σ2

s ds + N
∫ t

0
σsdWs −

N(N − 1)
2λ

n

∑
i=1

θ(i)
∫ λt

0

∫
R+

yJ(i)Z (ds, dy)

)]
.

As before, let G denote the σ-algebra generated by the BDLP Z(i), i = 1, . . . , n, up to
time t. Then we obtain
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EQ(St
N) = τ(t, N)ET

[
e−

N
2
∫ t

0 σ2
s ds− N(N−1)

2λ ∑n
i=1 θ(i)

∫ λt
0
∫
R+ yJ(i)Z (ds,dy)ET

[
eN
∫ t

0 σsdWs |G
]]

= τ(t, N)ET
[

e−
N
2
∫ t

0 σ2
s ds− N(N−1)

2λ ∑n
i=1 θ(i)

∫ λt
0
∫
R+ yJ(i)Z (ds,dy)e

N2
2
∫ t

0 σ2
s ds
]

= τ(t, N)ET
[

exp

(
N(N − 1)

2

∫ t

0
σ2

s ds− N(N − 1)
2λ

n

∑
i=1

θ(i)
∫ λt

0

∫
R+

yJ(i)Z (ds, dy)

)]

= τ(t, N)ET
[

exp

(
N(N − 1)

2λ
(1− e−λt)σ2

0 +
N(N − 1)

2λ

n

∑
i=1

∫ t

0
(−θ(i)e−λ(t−s))dZ(i)

λs

)]

= τ1(t, N)ET
[

exp

(
N(N − 1)

2λ

n

∑
i=1

∫ t

0

∫
R+

(−θ(i)e−λ(t−s))yJ̃(i)Z (λds, dy)

)]
,

where

τ1(t, N) = τ(t, N) exp

(
N(N − 1)

2λ
(1− e−λt)σ2

0 +
N(N − 1)

2

n

∑
i=1

θ(i)
∫ t

0

∫
R+

(−e−λ(t−s))y ν
(i)
Z (dy) ds

)
.

With respect to T, using Girsanov’s theorem, we find that the compensated subordina-
tor is (see Øksendal and Sulem (2007) (Theorem 1.35)) given by

J̃(i)T (λds, dy) = −λγ(y)ν(i)Z (dy)ds + J̃(i)Z (λds, dy), i = 1, . . . , n. (21)

Consequently,

EQ(St
N) = τ2(t, N)ET

[
exp

(
N(N − 1)

2λ

n

∑
i=1

∫ t

0

∫
R+

(
−θ(i)e−λ(t−s)

)
yJ(i)T (λds, dy)

)]

= τ2(t, N)ET
[

exp

(
N(N − 1)

2λ

n

∑
i=1

∫ t

0
(−θ(i)e−λ(t−s))dZ(i)

λs

)]

= τ2(t, N)ET
[

exp

(
N(N − 1)

2λ

n

∑
i=1

θ(i)
∫ λt

0
(−e−s)dZ(i)

s

)]
,

where Zt, in the final steps, is a subordinator with respect to T (consequently, (13) is
used), and

τ2(t, N) = τ1(t, N) exp

(
N(N − 1)

2λ

n

∑
i=1

θ(i)
(∫ t

0

∫
R+

(−e−λ(t−s))λy(γ(y)ν(i)Z (dy)− ν
(i)
T (dy)) ds

))
.

Thus, with the application of Lemma 1, we obtain

EQ(St
N) = τ2(t, N)

n

∏
i=1

exp
(∫ λt

0
κ(i)
(
−θ(i)

N(N − 1)
2λ

e−s
)

ds
)

.

Next, we present an immediate corollary that follows from Theorems 1 and 3, by
setting N = 1. Note that when N = 1, since ρ < 0, the condition (14) is satisfied.

Corollary 4.

τ2(t, 1) = exp

[
Bt + λ

n

∑
i=1

κ(i)
(

θ(i)ρ
)

t

]
,

where κ(i)(·) is the cumulant generating function for Z(i)
1 , with respect to Q, where i = 1, . . . , n.
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3. Data Description and Analysis

The data analyzed in this paper come from a North Dakota corn field in 2010. For
the cleaned-up data set, we have six significant feature variables and one target variable. The
feature variables are:

1. Swth Wdth(ft): The width of the header in ft;
2. Distance(ft): The distance (in ft) travelled between two data points;
3. Crop Flw(M)(lb/s): The crop flow harvested per second between data points;
4. Moisture(%): Crop moisture in %;
5. Speed(mph): The speed of the combine;
6. Prod(ac/h): Combine productivity per hour.

The target variable is:

• Yld Vol(Dry)(bu/ac): Yield volume dry.

In other words, for the above feature variables, in (4), for simplicity we assign θ
(i)
t as inde-

pendent of time, and θ
(i)
t = 1, for i = 1, . . . , 6, and St represents the “Yld Vol(Dry)(bu/ac)”.

Figures 1–5 provide various exploratory data analyses.

(a) (b)

Figure 1. (a) Histogram for Yield Vol (Dry). (b) Distribution plot for Yield Vol (Dry).

Figure 2. Box plot for Moisture (%) vs. Yld Vol (Dry).

For Figure 1, from the histogram and the distribution plot for Yield Vol (Dry), respec-
tively, we observe that the distribution of the sample data points of feature Yld Vol (Dry) is
left-skewed. It can also be noted that the maximum count of observation falls within the
range of 150–200 of Yld Vol (Dry) (bu/ac) for both these plots. In Figures 2 and 3, for our
exploratory data analysis, we implement box plots to visualize the measures of dispersion
of our data set for the variable Yld Vol (Dry) with respect to two variables—Moisture (%)
and Distance(ft), respectively. We observe from both plots that for a certain fixed interval,
there is a cluster of outliers underneath the lower whisker of the plots. The inter-quartile
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range tends to show an increasing pattern either right before or right after the big cluster
of outliers. To help us visualize the distribution of a single variable and relationships
between two variables, in Figure 4 we use the pairs plot. For our data set, the pairs plot
in the diagonal gives us the univariate distribution via a histogram, and the scatter plots
shows the bivariate relationship among variables. For Figure 5, the correlation matrix
heatmap for our data set provides an overview on the relation among different variables
(features). From the matrix heatmap color codes or annotated values, we can observe that
the correlation coefficient between most features is low.

Figure 3. Box plot for Distance (ft) vs. Yld Vol (Dry).

The goal of the analysis is to predict the target variable (Yld Vol(Dry)(bu/ac)) based on
the feature variables. We conduct the analysis in two different approaches.

Method 1: For this case, at first, we observe that for the “Yld Vol(Dry)(bu/ac)” variable,
the maximum and minimum are 399.55 and 10.28, respectively. Consequently, we divide
the target into eight equally spaced intervals, as [10, 60, 110, 160, 210, 260, 310, 360, 410].

Corresponding to each target variable, we create a list of three categorical data [a, b, c],
where a, b, c ∈ {0, 1} by the following rule: if the target variable x is such that 10 ≤ x < 60,
then [a, b, c] = [0, 0, 0], if 60 ≤ x < 110, then [a, b, c] = [0, 0, 1], if 110 ≤ x < 160, then
[a, b, c] = [0, 1, 0], if 160 ≤ x < 210, then [a, b, c] = [0, 1, 1], if 210 ≤ x < 260, then
[a, b, c] = [1, 0, 0], if 260 ≤ x < 310, then [a, b, c] = [1, 0, 1], if 310 ≤ x < 360, then
[a, b, c] = [1, 1, 0], and if 360 ≤ x < 410, then [a, b, c] = [1, 1, 1].

After this, we train the neural network model with 80% data and test it on the remain-
ing 20% data. We create a four-layered deep model with 42 nodes in the first layer, 30 nodes
in the second layer, and 20 and 10 nodes in the last two layers, respectively. We use the
activation function Rectified Linear Unit (ReLU) for the first input layer followed by the
tanh activation function for the three hidden layers. For the output, we use the softmax
activation function. To determine which hyper-parameter combination is most efficient for
our model, we first conduct exploratory data analysis (EDA) to visualize the validation
loss and accuracy of our model and then choose to train the model on 120 epochs, with a
batch size of 32.

For the testing data, true positive, true negative, false positive, and false negative are
denoted as TP, TN, FP, and FN, respectively. The following measurements are standard:

precision =
TP

TP + FP
,

recall =
TP

TP + FN
.

The f1-score gives the harmonic mean of precision and recall. The scores corresponding
to every class gives the accuracy of the classifier in classifying the data points in that
particular class compared to all other classes. The support is the number of samples of the
true response that lie in that class. Table 1 provides the classification report for Method 1.
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Table 1. Classification report.

Label Precision Recall f1-Score Support

a 0.53 0.99 0.69 99
b 0.99 1.00 0.99 5115
c 0.98 0.75 0.85 438

Figure 4. Pair plot with respect to all features.
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Figure 5. Correlation matrix heatmap for the data set.

Here we used the keras.callback “EarlyStopping” and monitored the validation loss.
We use “EarlyStopping” as it terminates training when the chosen performance measure
stops improving. As a result, if we look into the model accuracy plot (Figure 6) we observe
that learning stops once the epoch number is 2. We also see that our model performs well
enough with such a smaller epoch number and does not crudely over-fit or under-fit the
training and testing data. Accuracy at that time is above 97%.

The line plot for the “model loss” (Figure 7) shows that the model is good at minimiz-
ing the loss function with fewer epochs.

Figure 6. Model accuracy.

Figure 7. Model loss.



J. Risk Financial Manag. 2021, 14, 397 13 of 17

Method 2: The first part of this method is the same as in Method 1. However, instead
of considering a, b, and c separately (as done in Method 1), for this method, we consider
those simultaneously. In this case, with the same neural network as described in Method 1,
we find that for the test data, the model correctly predicts 97.06% of the time. We create
learning curves for different learning rates (lr) in Figures 8–13. When lr = 1, 0.01, we can
observe from the loss curve and accuracy curve that the model performs poorly when
fitting the training and testing dataset. The test data are over-fitted, and rather than
showing any decay, the loss curve shows an increase as the epoch number increases. When
10−5 ≤ lr < 10−6, the model performance is much more improved. This can be justified, as
in this case, both model loss and model accuracy have a nicely fitted training and testing
data set. When lr > 10−6, the model performs much poorly, suggesting that there is
probably no learning happening at all. The classification report for Method 1 and the
model’s ability to correctly predict the test data set in Method 2 tells us that the model is
not perfect and there is room for improvement. In our future work, we plan to improve
our procedure and further polish this model to enhance the predictive ability for both
these methods.

(a) (b)

Figure 8. lr = 1. (a) Train accuracy: 0.911. (b) Test accuracy: 0.908.

(a) (b)

Figure 9. lr = 10−2. (a) Train accuracy: 0.958. (b) Test accuracy: 0.956.
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(a) (b)

Figure 10. lr = 10−4. (a) Train accuracy: 0.310. (b) Test accuracy: 0.305.

(a) (b)

Figure 11. lr = 1× 10−5. (a) Train accuracy: 0.961. (b) Test accuracy: 0.962.

(a) (b)

Figure 12. lr = 1× 10−6. (a) Train accuracy: 0.907. (b) Test accuracy: 0.899.
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(a) (b)

Figure 13. lr = 1× 10−8. (a) Train accuracy: 0.410. (b) Test accuracy: 0.403.

From the analysis, it is clear that (4) can be an appropriate model for the target variable.
It is also clear that for both the methods, the neural network model provides a very
appropriate prediction of the target variable, with the help of feature variables.

4. Discussion

This paper analyzed yield data from a representative corn field in the upper midwest-
ern United States. Yield data and data on other variables were collected every two seconds
as the corn was harvested. These data are modeled to better understand corn yield in this
field. In our data analysis, we wanted to answer the question: “Given intervals of fixed
length, can a machine-learning-driven neural network model help us predict the interval on
which sample points of feature Yld Vol (Dry)(bu/ac) belong to? And if so, how accurately
does the model predict that correct interval?” In order to answer these questions, our first
task was to create intervals (of fixed size) using the feature Yld Vol (Dry) (bu/ac)) where
the left end-points were kept as part of the interval. Once these intervals were constructed,
we assigned the sample points of this feature Yld Vol (Dry) (bu/ac) into the correct interval.
We labeled them with either 000 or 001 or 010 and so on (eight combination/labels) and
created separate columns for these labels in our data set.

After this preparation stage was complete, we trained the data set with six features
(Swth Wdth, Distance, Crop Flw, Moisture, Speed and Prod) where the label columns were
treated as our test data. To avoid a highly complex deep neural network, we kept the
number of hidden layers of our neural network to three. We compiled the model using the
Adam optimizer and monitored loss using ‘categorical cross entropy’. When fitting our
model, we used callback ‘EarlyStopping’ that monitored the validation loss. ‘EarlyStopping’
was implemented to speed up model training and to stop model fitting when the training
data points is no longer learning efficiently; this also helps avoid overfitting. To observe that
the learning does not become inefficient and to avoid overfitting, we computed validation
loss and accuracy with different learning rates and analyzed them visually. In the last
phase of our analysis, we obtained a classification report for our prediction. The final step
of our analysis involved investigating how well our model correctly predicted the intervals.
When compared to the test data points, the model correctly predicted almost 97% of the
sample test points.

In Stelzer and Barndorff-Nielsen (2013), the authors introduce and analyze a multivari-
ate supOU stochastic volatility (SV) model where they present an example of long memory
in log returns in the SV supOU model, and in Willinger et al. (1999), the authors investigate
whether stock price returns exhibit long-range dependence. Their work motivates us to
investigate further with our pricing model to observe if our model exhibits long-range de-
pendence as a stylized factor in our future project. At the same time, an in-depth analysis to
determine whether our time series data exhibits any long-range dependence is something
we wish to incorporate in a future sequel of our current work. Even though we have a
model that could efficiently predict the interval on which sample data points of Yld Vol
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(Dry) (bu/ac) belong to, there is still room for improvements and adjustments. Before
training our data set, we can apply feature selection along with a random forest classifier
to help us decide which features are more important than others. We can later replace them
with the six features that we manually selected for our training purpose. Once we have
allowed the machine to select the important features for us, in our modeling phase we can
focus more on hyperparameter tuning by investigating with different epochs, batch sizes,
and increasing the weights in the hidden layers.
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