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Abstract: Inventory management is becoming very challenging for the retailer over the years due to
the uncertainty in the demand and supply of products in financial risk and management systems. In
a competitive market, running a business smoothly in a highly suitable place is day by day becoming
tough due to the very high fare for those locations. Thus, limited storage is available in those elite
places with high fares, and a retailer takes a financial risk by stocking huge amounts of products in
those limited storage stores. Thus, the appropriate financial analysis is required to find out optimal
strategies (financial decisions) to sustain a business organization of electronic products in a global
competitive business environment. As a result, when bulk purchases of electronic products, for
example, T.V., Fridges, Oven, etc., have been made by the retailer, he faces two problems. The first one
is related to the limited storage; as a result, he has to pay a considerable amount to hold the products
for a long time. The second one is shortages of liquid money as he invested massive amounts. To
avoid these problems, he offers some price discounts on the market’s original selling price to sell the
products quickly for a limited time prior to recovering his capital investment. For that reason, a price,
time, and stock dependent realistic demand function have been considered in this proposed paper
with two modes of discount policy. The proposed model has been solved by a classical optimization
technique from calculus and provides some insights for the retailer. Some numerical examples and
graphs are provided to illustrate the model.

Keywords: price sensitive; inventory management; electronics products; stock; discount policy

1. Introduction and Literature Review

Inventory management is a technique that will provide benefits within the limited
resources. So, properly handling of products always make sense in supply chain manage-
ment. Although there are many players in the supply chain, this study is based on the end
deciding player, the retailer. Storage problems have been discussed over the decades in
inventory management. To solve this problem, some researchers suggested hiring ware-
houses and run a business with two warehouses with one is own and another one is rented
(Mashud et al. 2021; Rana et al. 2021; Manna et al. 2021). Sometimes renting a warehouse
becomes challenging such as in some elite cities and elite places. However, the benefits of
two warehouses also depend on the fare and transportation facility, transportation cost, and
suitable places for delivering products. Sometimes all these issues demand more expenses
than to sell the products at a marginal discount rate.

The discount facility is a marketing strategy used by the business owner in every
layer of the supply chain that has been practiced over the years. Many studies have
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already been conducted on the benefits and disadvantages of discount policy (Ahn et al.
2009; Bhaula et al. 2019; Zhou 2012). Despite some facilities, it has some drawbacks if the
business owner does not offer it with proper management. Discount on selling price is
the most common discount approach practiced by the retailer (Zhou 2012). Other than
these discounts, a quantity discount, discount on installments, discount on defective items
have been discussed parallel by the practitioners. Discounting is a process that will help
the retailer to sell the desired products in a quicker time. In other words, a discount
policy helps the retailer to accumulate revenue from the market. Moreover, it helps the
retailer to overcome any challenging situation for him. In this study, when the quantity of
goods is massive in amount, and the retailer has no capacity to store in the warehouse and
significantly needs liquid money, the retailer offers a marginal discount by adjusting the
market selling price.

Selling price is one of the critical factors that need equal attention to other logistics
activities on inventory management. A retailer always has to offer a realistic selling price
to its customers by adjusting the purchase cost of the respective products as the selling
price plays an integral part in the chain. It has been often observed that the business owner
chooses to discount the selling price (Md Mashud et al. 2020). However, this discount
sometimes depends on the stock of the products (Ahn et al. 2009).

The stock of products in the warehouse has some direct and indirect consequences in
the market, especially when a retailer is fixing the selling price of the products. A massive
study has been studied on stock-dependent demand (Chandra 2017; Shah and Naik 2018;
Shaikh et al. 2019). This stock-dependent demand sometimes depends on time because
as time progress in the chain, the stock is depleted to satisfy the customer’s demand, so
an indirect relationship between time and stock has been noticed. This paper will link all
these crucial issues, as time, price, and stock-dependent demand have been considered.
Some other contributions of the paper are:

i It critically evaluates when one needs to impose a discount and when to not, especially
when a bulk purchase has been made by a retailer with a huge investment in a limited
storage shop in a highly expensive location.

ii A synergy between stock, price, and time-dependent demand and implications of
discount policy has been meticulously explained.

iii A sensitivity analysis with some theoretical findings has been suggesting to achieve
the maximum profit in the chain for the managers of the industry and shown a
threshold point of discount offered time.

In the rest of the study, we have arranged the manuscript with the literature review
in Section 1.1 followed by Section 2 wherein a problem description with notations and
assumptions has been provided. In contrast, in Section 3, the mathematical form of the
study has been studied. In Section 4, the theoretical derivations, whereas in Section 4.1,
some numerical examples and graphs are presented. Finally, sensitivity and managerial
insights have been provided in Section 4.2, with a conclusion and future scope in Section 5.

1.1. Literature Review

This study mainly focused on four components of an electronic products supply chain.
The first one is stock availability, price sensitivity, the impact of time, and the influence of
discounts.

1.1.1. Influence of Stock Dependent Demand on Traditional Inventory Model

The first execution of the economic order quantity model by (Harris 1990) opens the
border for the inventory researcher. It capitalizes later by inventory researchers employing
some realistic assumptions, for example, stock of products, discount policy, effects of
time, and many other widely used attributes in the field of supply chain management.
Sometimes a large inventory of products in any store can entice customers and produce
higher demand than usual (Macías-López et al. 2021; Chang et al. 2010). In this direction,
(Gupta and Vrat 1986) was the pioneer to explore the first inventory model with a stock-
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dependent demand rate. (Datta et al. 1998) updated the existing system of inventory model
by introducing demand promotion under its stock-dependency behavior. They conducted
a study on how demand changed with the upgrades, and based on this survey, they had to
decide how many upgrades would be successful at maximizing profits. Later, (Cárdenas-
Barrón et al. 2020) developed two inventory models according to the retailer’s perspective
considering demand to be nonlinearly stock dependent, including trade credit period offer
for the supplier. (Halim et al. 2021) adopted nonlinear price and stock-related market
demand for deteriorating items in their production model. (Pando et al. 2021) analyzed a
deterministic inventory model with stock-dependent demand, focusing on maximizing
returns on investments rather than maximizing profits.

1.1.2. Influence of Price Sensitive Demand on Tradition Inventory Model

The price of the products can drive the uneven nature of the demand of the cus-
tomers. Higher price always has some disadvantages to reduce the number of demands
while a lower price can significantly entice new demands. For retailing businesses, it
is imperative to plug inappropriate price tags for appropriate products to run business
smoothly; otherwise, the retailer may face some loss in business. (Liu et al. 2021) con-
templated price-sensitive demand for perishable products in a two-echelon supply chain
model and explained its importance by showing the effects of price sensitivity on the
collection, production, and sales. Considering the retailer’s profit growth, (Paul et al. 2021)
developed an EOQ model for deteriorating items under selling price-sensitive demand
with default risk and then discussed their impact during the optimal cycle time and credit
period. (De-la-Cruz-Márquez et al. 2021) focused on sustainability issues by introducing
the concept of carbon emissions, including price-sensitive demand rates for imperfect
quality items.

1.1.3. Influence of Sensitiveness of Time on Traditional Inventory Mode

Over the years in inventory research, time-varying demand has had a significant role
in decision making and got the attention of the respective field scholars. The first model
introduced the concept of time-varying demand to inventory management and projected
an economic order quantity model without considering shortages but deteriorating items
(Donaldson 1977). However, the solution procedure of that model was too perplexing and
later led to meta-heuristics techniques. Modifying Donaldson’s model, an inventory model
for shortage items for deteriorating items with the same demand has been anticipated
(Chang and Dye 1999). Later, this shortages concept was changed to an exponential type
backlogged with time-varying demand for deteriorating items (Papachristos and Skouri
2000). (Adak and Mahapatra 2020) presented a cost-effective multi-item EOQ model where
demand rate was considered dependent on advertising, time, and reliability. As consumers
are now more health-conscious than ever before, the demand for fresh items has increased
sharply. Based on this concept, (Macías-López et al. 2021) developed a model for perishable
items that emphasizes customer demand with product quality over time. The demand
here is considered with selling price and available stock dependent. Next, (San-José et al.
2021) included time-related demand functions in the power pattern in his proposed model
where shortages were partially backlogged.

1.1.4. Impacts of Discount Policy on Electronic Products

Discount is a vital marketing policy being used in smoothing the business or for
quick recovery. The discount on price is widely used in extant literature. (Ahn et al. 2009)
provided a discount in inventory models and the effect of time on it. (Hasan et al. 2020)
anticipated an inventory model for pre-order discounts in an online payment system.
(Latha et al. 2021) developed a model for a two-echelon system for backorder price dis-
counts to entice the customers when shortages occur in the chain while (Limansyah et al.
2020) provided an economic order quantity model for all unit discount policy. Prior studies
show numerous types of discount policies in present inventory management and supply
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chain management. Still, to our best of knowledge, no one considers price discounts for
such situations as presented in the model. We have presented the discount policy so that it
will reduce the risk of investment and help the manager recover the capital quickly, which
is rare in prior studies. The fundamental contribution is that a retailer thus completes a
bulk purchase and strives for quick capital recovery. Suppose he has to pay considerable
expenses to hold the products because of the store’s location, in that case, he can run his
business smoothly and earn his expected profit based on the pricing strategies and discount
policy given in this proposed study.

2. Assumption and Notations

For a clear demonstration of the mathematical model in this paper, some assumptions
and notations were considered which are listed below in Sections 2.1 and 2.2.

2.1. Assumptions

The mathematical model proposed in this paper is based on the following assump-
tions.

I The replenishment rate is infinite and Lead-time is negligible.
II This model is for a single type of item.
III The planning horizon is considered infinite.
IV In this paper, the demand function comprises price, time, and stock-dependence in

the form of

D =

{
(a− bp(1− δ)) + αt + βt2 + sI1(t), when 0 ≤ t ≤ t1 (discount is given on price)
(a− bp) + αt + βt2 + sI2(t), when t1 < t ≤ T (without discount)

where, a is the initial rate of demand b is the rate decrease demand on prices p is the
product price δ is the discount rate on price of product α is the rate with which the
demand rate increases on time β is the rate of changes of rate on time in the demand
rate itself s is the rate depending on stock, 0 < s ≤ 1

V There are no shortages considered in this model.

2.2. Notations

The notations that we need to construct the model is given in Table 1.

Table 1. Notations description.

Notations Units Description

C $/Cycle Ordering cost per cycle
Cp $/Unit Purchasing cost per unit
Ch $/Unit Holding cost per unit per unit time
w Units/Cycle Ordering quantity per cycle
Tf c $/Cycle Fixed transportation cost
Tvc $/unit Variable transportation cost
t1 Months Discount time from the beginning of cycle
D Units Demand function

Ii(t) Units inventory level at any time t where 0 ≤ t ≤ t1 when i = 1,
t1 ≤ t ≤ T when i = 2

δ Constant Discount rate on price of product
ω(p, T) $/Month Total profit per unit time

Decision variables
p $/Unit Selling price per unit of product
T Months replenishment time.
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3. Mathematical Formulation for Proposed Electronics Product Inventory Model

Based on the above-mentioned assumptions, we built an inventory model. Initially, an
enterprise purchased w units of goods. Considering the above assumptions, the inventory
level tracks the pattern depicted in the following Figure 1.
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Figure 1. The electronics product inventory system with time.

To meet up the customer’s demands, this stock depleted. The enterprise gives a
discount on price at 0 to t1 times after the time the discount is closed. As a result, at time
t = T the stock will become zero. Thus, the inventory system is described by the ensuing a
differential equation in view of demand D = a− b p (1− δ) + α t + β t2 + s I1(t):

dI1(t)
dt

= −D 0 ≤ t ≤ t1. (1)

with the condition I1(t) = w at t = 0.
After closing the discount, the demand D = a− b p + α t + β t2 + s I2(t), the differen-

tial equation is
dI2(t)

dt
= −D t1 ≤ t ≤ T (2)

with I2(t) = 0 at t = T, I1(t) , I2(t) is continuous at t = t1.

3.1. Solution of Differential Equations from (1) and (2)

With the help of boundary conditions I1(t) = w at t = 0 after solving Equation (1)
we get:

I1(t) =
bp− a− bδp− αt− βt2

s
+

α + 2βt
s2 − 2β

s3 +

(
w +

bδp− bp + a
s

− α

s2 +
2β

s3

)
e−st (3)

where 0 ≤ t ≤ t1.
With the help of boundary conditions I2(t) = 0 at t = T after solving Equation (2)

we get:

I2(t) =
bp− a− αt− βt2

s
+

α + 2βt
s2 − 2β

s3 −
(

bp− a− αT − βT2

s
+

α + 2βT
s2 − 2β

s3

)
es(T−t) (4)

where t1 ≤ t ≤ T.
Applying continuity at t = t1 we can write I1(t1) = I2(t1) which implies that,

w =


bδp

s est1 −
(

bp−a−αT−βT2

s + α+2βT
s2 − 2β

s3

)
esT

−
(

bδp−bp+a
s − α

s2 +
2β

s3

)
 (5)
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The total cost per unit time for the inventory system contains of the subsequent
constituents.

3.2. The Total Cost per Unit Time per Cycle

(a) Ordering cost per cycle = C

(b) Holding cost (HC) = Ch

[
t1∫
0

I1(t) dt +
T∫

t1

I2(t) dt

]
i.e.,

Ch

 (
bp−a

s + α
s2 −

2β

s3

)
T +

(
2β

s2 − α
s

)
T2

2 +
(

w
s + bδp−bp+a

s2 − α
s3 +

2β

s4

)(
1− est1

)
+(

bp−a−αT−βT2

s2 + α+2βT
s3 − 2β

s4

)(
1− es(T−t1)

)
− bδpt1

s − βT3

3s

 (6)

(c) Purchase cost (PC) = Cp
∗w

Cp

[
bδp

s
est1 −

(
bp− a− αT − βT2

s
+

α + 2βT
s2 − 2β

s3

)
esT −

(
bδp− bp + a

s
− α

s2 +
2β

s3

)]
(7)

(d) Transportation cost (TC) = Tf c + Tvc
∗w

Tf c + Tvc

 bδp
s est1 −

(
bp−a−αT−βT2

s + α+2βT
s2 − 2β

s3

)
esT

−
(

bδp−bp+a
s − α

s2 +
2β

s3

)  (8)

(e) Sales revenue (SR) = p∗
[∫ t1

0 D dt +
T∫

t1

D dt

]

= p∗
[∫ t1

0

(
a− b p (1− δ) + α t + β t2 + s I1(t)

)
dt +

T∫
t1

(
a− b p + α t + β t2 + s I2(t)

)
dt

]

= (a− bp)pT + αpT2

2 + βpT3

3 + bp2δt1+

sp

 (
bp−a

s + α
s2 −

2β

s3

)
T +

(
2β

s2 − α
s

)
T2

2 +
(

w
s + bδp−bp+a

s2 − α
s3 +

2β

s4

)(
1− est1

)
+(

bp−a−αT−βT2

s2 + α+2βT
s3 − 2β

s4

)(
1− es(T−t1)

)
− bδpt1

s − βT3

3s

 (9)

Now, the total profit per unit time one can write as

ω(p, T) =
1
T
(SR− C− HC− PC− TC)

ω(p, T) =
1
T



(sp− Ch)


(

bp−a
s + α

s2 −
2β

s3

)
T +

(
2β

s2 − α
s

)
T2

2 −
bδpt1

s − βT3

3s

+
(

w
s + bδp−bp+a

s2 − α
s3 +

2β

s4

)(
1− est1

)
+
(

bp−a−αT−βT2

s2 + α+2βT
s3 − 2β

s4

)(
1− es(T−t1)

)


+(a− bp)pT + αpT2

2 + βpT3

3 + bp2δt1 − C− Tf c−(
Tvc + Cp

) bδp
s est1 −

(
bp−a−αT−βT2

s + α+2βT
s2 − 2β

s3

)
esT

−
(

bδp−bp+a
s − α

s2 +
2β

s3

) 


(10)

with
D = a− b p (1− δ) + α t + β t2 + s I1(t) > 0;
p < a

b ;
T > 0;
p > Cp;

 (11)
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4. Theoretical Derivations

The concavity of the profit function is validating through some propositions with the
help of the (Cambini and Martein 2009) theorem on fractional programming.

Lemma 1. Let ω(x) = ϕ(x)
ψ(x) . If ϕ is non-negative and concave, and ψ is positive and convex, then

ω is semi-strictly quasiconcave.

Proof. See (Cambini and Martein 2009) for details. �

Put w value from Equation (5) into Equation (10), one can get the objective function as
follows

ω(p, T) =
1
T



(sp− Ch)


(

bp−a
s + α

s2 −
2β

s3

)
T +

(
2β

s2 − α
s

)
T2

2 −
bδpt1

s − βT3

3s

+
(

bδp−bp+a
s2 − α

s3 +
2β

s4

)(
1− est1

)
+
(

bp−a−αT−βT2

s2 + α+2βT
s3 − 2β

s4

)(
1− es(T−t1)

)


+(a− bp)pT + αpT2

2 + βpT3

3 + bp2δt1 − C− Tf c−(
Tvc + Cp+(
1− est1

)(
p− Ch

s

) ) bδp
s est1 −

(
bδp−bp+a

s − α
s2 +

2β
s3

)
−
(

bp−a−αT−βT2

s + α+2βT
s2 − 2β

s3

)
esT




(12)

Proposition 1. The objective function ω(p, T) presented in Equation (12) demonstrates the
concavity in terms of the product selling price p when cycle time T is considered as constants,
es(T−t1) > 2est1 + δe2st1 and the optimal p∗ is characterized by the following equation:

p∗ =


(αs− 2β)sT + s2βT2 − s3(Tvc + Cp

)(
bδest1 − besT − bδ + b

)
−
((

a + αT + βT2)s2 − (α + 2βT)s + 2β
)(

1− es(T−t1)
)

−Ch

[
(bT − bδt1)s2 + sb

(
δ
(
1− est1

)
+ est1 − es(T−t1)

)]
−(

1− est1
)[ ((a + αT + βT2)s2 − (α + 2βT − bCh)s + 2β

)
esT

+(2α− Chb(1− δ))s− bδChsest1 − 2as2 − 4β

]


2bs2

(
es(T+t1) − δe2st1 + 3δest1 − esT − 2est1 + es(T−t1) − 2δ + 1

) (13)

Proof. Differentiate Equation (12) regarding p, one can get

∂ω
∂p = 1

Ts3



(αs− 2β)sT + s2(βT2 − sbpT + sbpδt1
)
− s3(Tvc + Cp

)( bδest1 − besT

−bδ + b

)
+
((

bp− a− αT − βT2)s2 + (α + 2βT)s− 2β
)(

1− es(T−t1)
)

+(sp− Ch)
[
(bT − bδt1)s2 + sb

(
δ
(
1− est1

)
+ est1 − es(T−t1)

)]
−

(
1− est1

) (
2bδps2 − bδChs

)
est1 −

( (
2bp− a− αT − βT2)s2

+(α + 2βT − bCh)s− 2β

)
esT

+(3bp(1− δ)− 2a)s2 + (2α− Chb(1− δ))s− 4β




(14)

�
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Now ∂ω
∂p = 0 and solve for p, one can find critical point as follows

p =


(αs− 2β)sT + s2βT2 − s3(Tvc + Cp

)(
bδest1 − besT − bδ + b

)
−
((

a + αT + βT2)s2 − (α + 2βT)s + 2β
)(

1− es(T−t1)
)

−Ch

[
(bT − bδt1)s2 + sb

(
δ
(
1− est1

)
+ est1 − es(T−t1)

)]
−(

1− est1
)[ ((a + αT + βT2)s2 − (α + 2βT − bCh)s + 2β

)
esT

+(2α− Chb(1− δ))s− bδChsest1 − 2as2 − 4β

]


2bs2

(
es(T+t1) − δe2st1 + 3δest1 − esT − 2est1 + es(T−t1) − 2δ + 1

) (15)

Again, differentiate Equation (14) with respect to p

∂2ω

∂p2 = − 2b
sT

(
esT(est1 − 1

)
+
(

esT−st1 − 2est1 − δe2st1
)
+ δ
(
3est1 − 2

)
+ 1
)

(16)

Since es(T−t1) > 2est1 + δe2st1 , easy to say that, ∂2ω
∂p2 < 0 for any value of p. That implies

the objective function is a concave function. The critical point p becomes the optimal
point p∗.

Proposition 2. The objective function ω(p, T) presented in Equation (12) demonstrates the
concavity in terms of cycle time T when the product selling price p is considered as constants.

Proof. Similar to Proposition 1. To avoid redundancy, proof has been omitted. �

Proposition 3. The objective function ω(p, T) presented in Equation (12) demonstrates the
concavity in terms of the product selling price p as well as cycle time T with the condition[

2bΩ1 + Ω4
−2besT

][(
Ω3 + psesT

−(sp− Ch)Ω1

)(
Ω2 + bps
+2βT + α

)
− Ch(2βT + α)

]
>

[
Ω1Ω2 + bCh(Ω1 − 1)
+Ω3b−Ω2esT

]2

Proof. The profit function per unit time can be written as by using Lemma 1,

ω(p, T) =
ϕ(p, T)
ψ(p, T)

(17)

where,

ϕ(p, T) =



(sp− Ch)


(

bp−a
s + α

s2 −
2β

s3

)
T +

(
2β

s2 − α
s

)
T2

2 −
bδpt1

s − βT3

3s

+
(

bδp−bp+a
s2 − α

s3 +
2β

s4

)(
1− est1

)
+
(

bp−a−αT−βT2

s2 + α+2βT
s3 − 2β

s4

)(
1− es(T−t1)

)


+(a− bp)pT + αpT2

2 + βpT3

3 + bp2δt1 − C− Tf c−(
Tvc + Cp+(
1− est1

)(
p− Ch

s

) ) bδp
s est1 −

(
bδp−bp+a

s − α
s2 +

2β

s3

)
−
(

bp−a−αT−βT2

s + α+2βT
s2 − 2β

s3

)
esT




ψ(p, T) = T

�

Since ψ(p, T) > 0 is a linear function of p, T. For showing ω(p, T) is a concave
function, it is enough to show ϕ(p, T) is a concave function.
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The first order partial derivatives of ϕ(p, T) with respect to p and T are as follows:

∂ω
∂p = 1

s3



(αs− 2β)sT + s2(βT2 − sbpT + sbpδt1
)
− s3(Tvc + Cp

)( bδest1 − besT

−bδ + b

)
+
((

bp− a− αT − βT2)s2 + (α + 2βT)s− 2β
)(

1− es(T−t1)
)

+(sp− Ch)
[
(bT − bδt1)s2 + sb

(
δ
(
1− est1

)
+ est1 − es(T−t1)

)]
−

(
1− est1

) (
2bδps2 − bδChs

)
est1 −

( (
2bp− a− αT − βT2)s2

+(α + 2βT − bCh)s− 2β

)
esT

+(3bp(1− δ)− 2a)s2 + (2α− Chb(1− δ))s− 4β




(18)

∂ϕ

∂T
=

1
s

[
(sp− Ch)es(T−t1) + (sp− Ch)es(T+t1)

−
((

Cp + Tvc + p
)
s− Ch

)
esT + Ch

](
βT2 + αT − bp + a

)
(19)

The second order partial derivatives of ϕ(p, T) with respect to p and T are as follows:

∂2ω

∂p2 = −2b
s

(
esT(est1 − 1

)
+
(

esT−st1 − 2est1 − δe2st1
)
+ δ
(
3est1 − 2

)
+ 1
)

(20)

∂2 ϕ

∂T2 = −1
s


( ((

Cp + Tvc + p
)
s− Ch

)
esT

−(sp− Ch)es(T−t1) − (sp− Ch)es(T+t1)

)(
βT2 + αT − bp + a

)
s

+

( ((
Cp + Tvc + p

)
s− Ch

)
esT − Ch−

(sp− Ch)es(T−t1) − (sp− Ch)es(T+t1)

)
(2βT + α)

 (21)

∂2 ϕ

∂p∂T
=

1
s

[ ((
T2β + Tα− 2bp + a

)
s + bCh

)(
es(T−t1) + es(T+t1)

)
− bCh

+
(((

Tvc + 2p + Cp
)
b− T2β− Tα− a

)
s− bCh

)
esT

]
(22)

The Hessian matrix for ϕ(p, T) is as follows:

H =

∣∣∣∣∣∣
∂2 ϕ

∂p2
∂2 ϕ

∂T∂p
∂2 ϕ

∂p∂T
∂2 ϕ

∂T2

∣∣∣∣∣∣ (23)

The first principal diagonal minor

D1 = ∂2 ϕ

∂p2

= − 2b
s
(
esT(est1 − 1

)
+
(
esT−st1 − 2est1 − δe2st1

)
+ δ
(
3est1 − 2

)
+ 1
)

From Proposition 1, D1 is always negative.
The second principal diagonal minor

D2 =
(

∂2 ϕ
∂p2

)(
∂2 ϕ

∂T2

)
−
(

∂2 ϕ
∂p∂T

)
= 2b

s2

 esT(est1 − 1
)
+ δ
(
3est1 − 2

)
+
(
esT−st1 − 2est1 − δe2st1

)
+1



( ((

Cp + Tvc + p
)
s− Ch

)
esT−

(sp− Ch)
(

es(T−t1) + es(T+t1)
) )( sβT2 + sαT − sbp

+as + 2βT + α

)
−Ch(2βT + α)


− 1

s2

[ ((
T2β + Tα− 2bp + a

)
s + bCh

)(
es(T−t1) + es(T+t1)

)
− bCh

+
(((

Tvc + 2p + Cp
)
b− T2β− Tα− a

)
s− bCh

)
esT

]2

For any value of p and T the second principal diagonal minor D2 is positive if[
2bΩ1 + Ω4
−2besT

][(
Ω3 + psesT

−(sp− Ch)Ω1

)(
Ω2 + bps
+2βT + α

)
− Ch(2βT + α)

]
>

[
Ω1Ω2 + bCh(Ω1 − 1)
+Ω3b−Ω2esT

]2



J. Risk Financial Manag. 2021, 14, 398 10 of 16

where,
Ω1 = es(T+t1) + es(T−t1)

Ω2 =
(
T2β + Tα− 2bp + a

)
s

Ω3 =
((

Cp + Tvc
)
s− Ch

)
esT

Ω4 = 2b
(
3δest1 + 2est1 − δe2st1 + 1− 2δ

)
In the above consideration, Ω1, Ω4 > 0 for any value of T, Ω2 > 0 if the demand end

of cycle time DT > pb and Ω3 > 0 if Cp + Tvc >
Ch
s .

This implies that ϕ(p, T) is concave function. This proves the concavity of the objective
function ω(p, T).

4.1. Algorithms

For numerically solving one can use the following algorithm.

4.1.1. Algorithm for Single Decision Variable

Step 1. Input all the parameters value (C, a, α, b, β, δ, s, Ch, Cp, Tf c, t1, T).
Step 2. Evaluate the value of p∗ from Equation (13).
Step 3. Evaluate the value of ω from Equation (12) using all the parameters and the value

of p*.
Step 4. Output the value of p* and ω.
Step 5. End.

4.1.2. Algorithm for Double Decision Variable

Step 1. Declare F(p, T) = ∂ω
∂p and G(p, T) = ∂ϕ

∂p from Equations (18) and (19).

Step 2. Input all the parameters value (C, a, α, b, β, δ, s, Ch, Cp, Tf c, t1).
Step 3. Take p0, T0 where (p0 > 0, T0 > 0) and iterative variable i = 0.

Step 4. Find D =

∣∣∣∣∣∣∣
[

∂F
∂p

]
(p=p0,T=T0)

[
∂F
∂T

]
(p=p0,T=T0)[

∂G
∂p

]
(p=p0,T=T0)

[
∂G
∂T

]
(p=p0,T=T0)

∣∣∣∣∣∣∣
Step 5. IF D = 0 and i = 0, Go to Setp 3. And IF D = 0 and i 6= 0 Go to Step 10.

Step 6. Find h = 1
D

∣∣∣∣∣∣∣
[F](p=p0,T=T0)

[
∂F
∂T

]
(p=p0,T=T0)

[G](p=p0,T=T0)

[
∂G
∂T

]
(p=p0,T=T0)

∣∣∣∣∣∣∣ and

k = 1
D

∣∣∣∣∣∣∣
[

∂F
∂p

]
(p=p0,T=T0)

[F](p=p0,T=T0)[
∂G
∂p

]
(p=p0,T=T0)

[G](p=p0,T=T0)

∣∣∣∣∣∣∣
Step 7. Set p1 = p0 − h and T1 = T0 − k.
Step 8. If |p1 − p0| < ε and |T1 − T0| < ε, Go to Step 10 (ε is small value).
Step 9. Update p0 = p1, T0 = T1 and i = i + 1. Go to Step 4.
Step 10. Evaluate ω(p1, T1) from Equation (12).
Step 11. Output the value of p1, T1 and ω.
Step 12. End.

4.2. Case Study

This study gives an overview of the benefits of an attractive sales term “discount
policy” for an electronics business as almost all electronic products are a little more ex-
pensive. So, an inventory model was presented based on how electronic retailers increase
business profits with discounts for a certain period to increase buyer attraction towards
the product. In addition, a significant necessity for the electronic merchandise business
is secured transportation, which is also considered in our model. Since some electronics
products are made with excellent materials, if these components break down for any reason,
the whole product can become useless. Therefore, the retailer has to incur considerable
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costs for transporting these electronics very carefully throughout the business. Here we
have attempted to outline this actual circumstance with the assistance of Figure 2 as a
representative of the proposed model.

J. Risk Financial Manag. 2021, 14, x FOR PEER REVIEW 13 of 18 
 

 

 
Figure 2. An electronics shop. (Source: 
https://lh3.ggpht.com/p/AF1QipMf1FVqbSnGOjLJswWWY_TNg_rlQlbQ4OIXt4mb=s0). (accessed 
on 15 July 2021). 

4.3. Numerical Illustration: 
Example 1. We consider some parameters for an electronics enterprise to run its business 
incorporate with our inventory management technique. Order placement cost = $700 / cycle,C  
ordering quantity = 2800 unit/year,W  purchased cost of the items = $200 / unit,pC  holding 

cost of the items per unit time = $0.3 / unit,hC  initial demand rate = 300,a  decreasing 
demand rate on price = 0.8,b  discount rate δ = 0.4,  increasing demand rate on time 
α = 0.1,  the rate of changes of rate on time in the demand rate itself β = 0.05,  increasing 
demand rate on stock = 0.2,s  time after the discount closes =1 0.5 ,t months  fixed cost for 
transportation = $ 80/Cycle,fcT  variable cost for transportation = $0.2/unitvcT . 

We obtain the optimal solutions: selling price =* $372.9512p , cycle time 
=* 18.56568T months, profit per unit time ψ =* $12115.16  using Lingo 18.0 software 

with the aid of an exact optimization approach. 
The graphical view of the profit margin under various investments and timeframes 

is displayed through the following 3D graphs. Figure 3 delineates the concavity of the 
profit function subject to the decision variables p and T. 

Figure 2. An electronics shop. (Source: https://lh3.ggpht.com/p/AF1QipMf1FVqbSnGOjLJswWW
Y_TNg_rlQlbQ4OIXt4mb=s0). (accessed on 15 July 2021).

4.3. Numerical Illustration:

Example 1. We consider some parameters for an electronics enterprise to run its business incorpo-
rate with our inventory management technique. Order placement cost C = $700/cycle, ordering
quantity W = 2800 unit/year, purchased cost of the items Cp = $200/unit, holding cost of the
items per unit time Ch = $0.3/unit, initial demand rate a = 300, decreasing demand rate on price
b = 0.8, discount rate δ = 0.4, increasing demand rate on time α = 0.1, the rate of changes of rate
on time in the demand rate itself β = 0.05, increasing demand rate on stock s = 0.2, time after the
discount closes t1 = 0.5 months, fixed cost for transportation Tf c = $80/Cycle, variable cost for
transportation Tvc = $0.2/unit.

We obtain the optimal solutions: selling price p∗ = $372.9512, cycle time T∗ =
18.56568 months, profit per unit time ψ∗ = $ 12115.16 using Lingo 18.0 software with the
aid of an exact optimization approach.

The graphical view of the profit margin under various investments and timeframes is
displayed through the following 3D graphs. Figure 3 delineates the concavity of the profit
function subject to the decision variables p and T.

Example 2. We intend to omit the discount consideration. Only the discount rate is modified
as δ = 0 in Example 1 and rest of the parameters remain unchanged. We obtain the optimal
solutions: selling price p∗ = $369.559, cycle time T∗ = 18.027 months, profit per unit time
ψ∗ = $14462.310.

Example 3. When the case of different discount rate. We tale the same parametric values mentioned
in Example 1 except the discount rate δ. Table 2 shows the optimal solutions for altered values of δ.

https://lh3.ggpht.com/p/AF1QipMf1FVqbSnGOjLJswWWY_TNg_rlQlbQ4OIXt4mb=s0
https://lh3.ggpht.com/p/AF1QipMf1FVqbSnGOjLJswWWY_TNg_rlQlbQ4OIXt4mb=s0
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Figure 3. Concave graph of ψ∗ regarding decision variables selling price (p) and cycle length (T).

Table 2. Results for each inventory model.

δ
Optimal Solutions

p* T* ψ*

0 369.559 18.027 14,462.310

0.5 373.951 18.737 11,531.170
1 380.394 19.984 8643.954

1.5 392.878 23.020 5872.356
2 847.031 90.767 5190.119

2.5 648.980 70.028 2489.949
3 575.141 60.376 217.017

3.5 . . . . . . . . .

N.B. ( . . . ) means infeasible solution

The optimal decision variables p∗ and T∗ increase as we increase the discount up to
δ = 2 and after that the optimal solution declines up to δ = 3 while the solution converted
to infeasible for δ ≥ 3.5 values. This is true in the real case also because if a retailer started
to provide discounts to the customers that are less than the market selling price, he needs
to lose some sales revenue. To manage the warehouse and for the recovery of liquid money,
he can do it for a certain time period and for a certain discount rate but after that time
passes, he will face extreme loss in profit. As the stock depletes rapidly during the discount
process, he needs to sell his products at high selling prices at a high discount rate δ = 2.
Moreover, this situation will not last for a long time and soon the losses will be extreme
due to the high discount rate and the solution system provides no-optimal solution after
δ ≥ 3.5.

4.4. Sensitivity Analysis

The sensitivity of the proposed model was performed by fluctuating the value of the
factors from −20% to +20% in the following Table 3. This analysis will show the flexibility
of the model and shows the effect of with and without discount policy.
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Table 3. Sensitivity analysis relating to altered factors.

Parameter % Change
With Discount Without Discount

(ψ*−ψ**)%
p* T* ψ* ψ**

C

−20 372.922 18.560 12,122.700 14,470.070 −16.22%

−10 372.937 18.563 12,118.930 14,466.190 −16.23%

10 372.966 18.568 12,111.390 14,458.430 −16.23%

20 372.980 18.571 12,107.620 14,454.540 −16.24%

W

−20 370.786 17.408 9576.597 12,056.410 −20.57%

−10 371.828 18.004 10,858.480 13,266.230 −18.15%

10 374.111 19.095 13,351.800 15,647.190 −14.67%

20 372.951 18.566 12,115.160 16,822.770 −27.98%

Cp

−20 352.280 15.439 18,783.750 21,230.690 −11.53%

−10 362.195 16.765 15,297.790 17,712.490 −13.63%

10 386.700 21.553 9294.282 11,516.450 −19.30%

20 . . . . . . . . . . . . . . .

Ch

−20 372.902 18.556 12,145.900 14,496.270 −16.21%

−10 372.927 18.561 12,130.530 14,479.290 −16.22%

10 372.976 18.570 12,099.800 14,445.330 −16.24%

20 373.000 18.575 12,084.430 14,428.360 −16.25%

a

−20 . . . . . . . . . . . . . . .

−10 356.797 23.530 8425.492 10,169.700 −17.15%

10 396.470 16.294 16,417.390 19,396.440 −15.36%

20 421.316 14.743 21,174.930 24,849.270 −14.79%

b

−20 440.256 15.430 23,542.580 26,605.330 −11.51%

−10 402.391 16.758 17,024.210 19,709.090 −13.62%

10 351.622 21.574 8430.589 10,448.790 −19.32%

20 . . . . . . . . . . . . . . .

α

−20 372.562 18.559 12,069.910 14,412.980 −16.26%

−10 372.757 18.562 12,092.530 14,437.640 −16.24%

10 373.146 18.569 12,137.790 14,486.980 −16.22%

20 373.341 18.573 12,160.430 14,511.660 −16.20%

β

−20 368.712 18.256 11,801.260 14,129.450 −16.48%

−10 370.784 18.405 11,957.220 14,294.920 −16.35%

10 375.226 18.739 12,275.230 14,631.730 −16.11%

20 377.627 18.928 12,437.600 14,803.340 −15.98%

s

−20 372.370 20.753 12,731.030 14,804.060 −14.00%

−10 372.435 19.538 12,496.160 14,709.430 −15.05%

10 373.801 17.786 11,596.440 14,070.370 −17.58%

20 374.922 17.169 10,948.390 13,540.900 −19.15%

t1

−20 365.411 17.276 14,929.950 16,843.630 −11.36%

−10 368.994 17.861 13,503.730 15,639.110 −13.65%

10 377.446 19.446 10,770.670 13,315.880 −19.11%

20 382.828 20.617 9479.562 12,203.190 −22.32%
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Table 3. Cont.

Parameter % Change
With Discount Without Discount

(ψ*−ψ**)%
p* T* ψ* ψ**

Tf c

−20 372.948 18.565 12,116.020 14,463.200 −16.23%

−10 372.950 18.565 12,115.590 14,462.750 −16.23%

10 372.953 18.566 12,114.730 14,461.860 −16.23%

20 372.955 18.566 12,114.300 14,461.420 −16.23%

Tvc

−20 372.928 18.561 12,121.190 14,468.520 −16.22%

−10 372.940 18.564 12,118.180 14,465.410 −16.23%

10 372.963 18.568 12,112.150 14,459.200 −16.23%

20 372.974 18.570 12,109.130 14,456.100 −16.24%

N.B. ( . . . ) means infeasible solution

Some observations can possible to make from the Table 2 sensitivity

• When the ordering cost (C) of the system increased, the selling price (p) and as well as
the cycle length (T) of the chain were raised. This happens because a higher ordering
cost brings a more considerable lot and intensifies the total cost of the business. As a
result, the retailer will need to sell his products at a comparatively higher selling price,
and as the lot is massive so it is challenging to sell the products quickly. However, the
profits without discount and with discount were increased.

• With the intensification of purchase costs, the profit was decreasing. However, the
selling price and total cycle length also increased. If a retailer purchased any item at a
high price to maintain the profit margin, he needs to sell it at a high price. Moreover,
an increase in stock provides fluctuations in the profit and selling price of the system.

• The profit becomes lower with the upsurge of the per-unit holding cost of the item.
Moreover, it increases the selling price (p) and cycle length (T) of the system. Further-
more, the increase in initial demand parameter (a) provides a more significant profit
than usual. In contrast, an increase in another parameter (b) will give a decrease in
profit.

• The increase of the rate of change of demand rate (α) provides a lower profit for
the system while it is vice versa for the increasing rate of demand parameter (β).
The profit of the chain decreased with the increase of the period (t1). However, the
rate depending on stock (s) when increased the system’s profit has been reduced. A
significant change in profit has been noticed with variable transportation (Tvc) and
fixed transportation (Tf c). However, for both costs, the retailer’s profit margin slightly
drops due to the excessive expenses in the transportation system.

5. Conclusions

This study illustrated an inventory model for a special type of electronics product
whose purchase cost is high. It considered a price, stock, and time-varying demand
rate. When the storage problem occurs, and at the same time the shortage of liquidity
in the business, the retailer offers a discount on the market selling price of the products
to overcome or initially handle the business. A valid range of discount periods has been
explored through numerical study that will help the managers to offer a discount at
the right time. Besides, some important pricing strategies had been discovered by the
retailer with the optimal replenishment period of the business. The importance of stocks in
business is meticulously investigated with consideration of business run time and price of
the products.

This study showed that if the discount rate is greater than a certain threshold value
(δ ≥ 3.5) for the given data set it will provide a non-optimal solution to the model. The
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impact of variable and fixed transportation costs on profit is also significant. Any changes
in transportation cost produce noteworthy ebb and flow to the profit. However, another
interesting finding is, with the intensifications of discount time the retailer gets lower profit
than usual.

This study has some limitations in terms of demand choices. It is possible to include an
advertisement policy in the demand. However, to generalize the demand one can consider
a stochastic type demand. The product lifetime has been overlooked in the current study.
This feature may be considered in future research. A possible extension of the proposed
model could integrate a trade-credit policy with some environmental emissions and the
mode of transportation.
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