
Leightner, Jonathan Edward; Inoue, Tomoo; de Micheaux, Pierre Lafaye

Article

Variable slope forecasting methods and COVID-19 risk

Journal of Risk and Financial Management

Provided in Cooperation with:
MDPI – Multidisciplinary Digital Publishing Institute, Basel

Suggested Citation: Leightner, Jonathan Edward; Inoue, Tomoo; de Micheaux, Pierre Lafaye (2021) :
Variable slope forecasting methods and COVID-19 risk, Journal of Risk and Financial Management,
ISSN 1911-8074, MDPI, Basel, Vol. 14, Iss. 10, pp. 1-22,
https://doi.org/10.3390/jrfm14100467

This Version is available at:
https://hdl.handle.net/10419/258571

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3390/jrfm14100467%0A
https://hdl.handle.net/10419/258571
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 
 

 

 
J. Risk Financial Manag. 2021, 14, 467. https://doi.org/10.3390/jrfm14100467 www.mdpi.com/journal/jrfm 

Article 

Variable Slope Forecasting Methods and COVID-19 Risk 
Jonathan Leightner 1,*, Tomoo Inoue 2 and Pierre Lafaye de Micheaux 3,4,5 

1 Hull College of Business, AllGood Hall, Summerville Campus, Augusta University, 1120 15th Street,  
Augusta, GA 30912, USA 

2 Faculty of Economics, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan; 
inoue@econ.seikei.ac.jp 

3 School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia; 
lafaye@unsw.edu.au 

4 Desbrest Institute of Epidemiology and Public Health, Univ. Montpellier, INSERM, 34060 Montpellier, 
France 

5 AMIS, Universite Paul Valery Montpellier, EPSYLON EA 4556, 34199 Montpellier, France 
* Correspondence: jleightn@augusta.edu; Tel.: +1-706-667-4545 

Abstract: There are many real-world situations in which complex interacting forces are best de-
scribed by a series of equations. Traditional regression approaches to these situations involve mod-
eling and estimating each individual equation (producing estimates of “partial derivatives”) and 
then solving the entire system for reduced form relationships (“total derivatives”). We examine 
three estimation methods that produce “total derivative estimates” without having to model and 
estimate each separate equation. These methods produce a unique total derivative estimate for 
every observation, where the differences in these estimates are produced by omitted variables. A 
plot of these estimates over time shows how the estimated relationship has evolved over time due 
to omitted variables. A moving 95% confidence interval (constructed like a moving average) means 
that there is only a five percent chance that the next total derivative would lie outside that confi-
dence interval if the recent variability of omitted variables does not increase. Simulations show that 
two of these methods produce much less error than ignoring the omitted variables problem does 
when the importance of omitted variables noticeably exceeds random error. In an example, the 
spread rate of COVID-19 is estimated for Brazil, Europe, South Africa, the UK, and the USA. 

Keywords: economic forecasting; omitted variable bias; regression analysis; COVID-19; spread rate 
 

1. Introduction 
There are many real-world situations in which complex systems of equations inter-

act. In many of these situations, constructing and estimating a valid structural model is 
impossible. In these cases, it would be helpful to be able to estimate a reduced form rela-
tionship between two key variables, Y and X, without having to construct and estimate 
coefficients for every single equation involved. The example provided in this paper will 
use one of the variable slope methods proposed here to estimate the spread rate of 
COVID-19 from 2020 to 2021. However, as an introduction, please briefly consider several 
other illustrative examples. 

In Northern Thailand, a company named Mae Moh burns high sulfur content coal to 
generate electricity. Mae Moh is surrounded on three sides by mountains. During summer 
months, rising hot air takes the sulfur dioxide and nitrous oxides that Mae Moh produces 
out of the Mae Moh valley and spreads them over a large area creating no acid rain. How-
ever, in winter months, temperature inversions suddenly appear, preventing the valley’s 
air from rising and trapping the sulfur dioxide and nitrous oxides inside the Mae Moh 
valley where, if it rains, they create sulfuric acid and nitric acid rains. Ideally, a large 
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structural model would be created and estimated that included (1) how temperature, hu-
midity, wind, and other atmospheric conditions cause temperature inversions, (2) how 
the temperature of Mae Moh’s furnaces affect the production of sulfur dioxide versus ni-
trous oxides, (3) how the concentration of acid rain affects people, plants, and animals, 
and (4) the effectiveness of Mae Moh’s abatement efforts. However, even the USA’s Envi-
ronmental Protection Agency has been unable to produce an accurate model that predicts 
temperature inversions in the Mae Moh valley. To mitigate the likelihood of acid rain, 
Mae Moh cut its production of electricity by 25 percent in winter months, despite which 
locally trapped sulfur dioxide increased threefold. In this case, a technique that can esti-
mate a reduced form relationship between Mae Moh’s production of electricity (X varia-
ble) and the amount of sulfur dioxide trapped in the Mae Moh valley (Y variable) would 
be helpful. Leightner and Inoue (2008) used a technique that will be explained in Section 
3 to do exactly that. This technique produced a separate estimate for the change in sulfur 
dioxide concentrations trapped in the Mao Moh valley due to a change in Mae Moh’s 
production of electricity (dY/dX) for each data observation. Variations between these esti-
mates are due to omitted variables such as humidity, temperature, wind, the temperature 
of Mae Moh’s furnaces, etc. 

The economic policies of major economies affect other economies. For example, in 
early 2017, the USA’s Federal Reserve System threatened to raise interest rates. This, along 
with many other forces, drove the value of the US dollar to a 14-year high (Dulaney 2017), 
affecting all exporting and importing countries around the globe. The exports and imports 
of these countries affect their gross domestic products (GDPs), employment, inflation, and 
investments. Domestic production, exports, and imports are affected by the changing re-
sources of each country, the relative prices in each country, and the cost of transportation, 
etc. Creating adequate structural models that capture all the ways that the world’s econ-
omies are interconnected is impossible. The use of a technique explained in Section 3 per-
mitted Leightner (2015) to estimate the effects on GDP of fiscal, monetary, trade, and ex-
change rate policies without having to create such a global structural model. In 2021, the 
Federal Reserve is again threatening to raise interest rates.  

The Phillips curve shows the negative relationship between unemployment and in-
flation, and it dominated the study and teaching of economics in the late 1960s. However, 
omitted variables shifted the Phillip’s curve starting in the 1970s and continue to shift it 
today. Subsequently, most economists have abandoned the Phillips curve. Nonetheless, 
the tradeoff between inflation and unemployment is extremely important in determining 
the best economic policies. In order to use traditional statistical techniques to estimate the 
Phillips curve, one would need to include all the forces that could shift the aggregate sup-
ply and the aggregate demand curves, including “changes in technology, cost of inputs, 
transportation costs, the environment (including weather, infrastructure, and institu-
tions), fiscal policy, monetary policy, trade policy, exchange rates, income distribution, 
attitudes toward debt, producer and consumer expectations on growth, inflation, employ-
ment, income, and profits, etc.”. (Leightner 2020). Building and estimating a model that 
includes all those forces is impossible. However, Leightner (2020) used one of the tech-
niques explained in this paper to estimate the tradeoff between inflation and unemploy-
ment for 34 countries between 2002 and 2017. The estimates he produced required data 
solely on inflation and unemployment. These estimates show some common patterns and 
trajectories that can be used in forecasting. 

There are many issues for which it would be helpful if statisticians could directly 
estimate a total derivative (dY/dX) instead of creating a complex model, gathering all the 
data required by that model, estimating every partial derivative (∂Y/∂X) in that model, 
and then solving that model for a reduced form total derivative. However, a direct method 
of estimating a total derivative would have to solve the omitted variables problem with 
regression analysis.  
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In this paper, we explain and test (via simulations) three statistical techniques that 
produce estimates of total derivatives, dY/dX, that capture the influence of omitted varia-
bles without having to develop complex structural models—one technique based on or-
dinary least squares (OLS), another based on generalized least squares (GLS), and a third 
based on data envelopment analysis (DEA). These techniques also can be used to solve 
the omitted variables problem, even if a single equation (in contrast to a structural model) 
is appropriate. In Section 2.1 of this paper, we explain how we model the omitted variables 
problem. In Section 2.2, we explain the three methods used to solve the omitted variables 
problem and how moving confidence intervals can be found for the estimates they pro-
duce. In Section 3, we present simulation evidence of the accuracy of the techniques we 
propose. In Section 4, we apply one of the variable slope methods proposed here to esti-
mate the spread rate of COVID-19 between 2020 and 2021 in five countries. In Section 5, 
we conclude the paper. 

2. Materials and Methods 
2.1. Modeling the Omitted Variables Problem 

J.B. Ramsey (1969) presents the classic omitted variables problem as Equation (1) 
where Z is an omitted variable, X is a known and included explanatory variable, Y is the 
response variable, w is random error, and β0, β1, and β2 are coefficients that capture the 
relationships between the dependent and independent variables.  

Y = β0 + β1X + β2Z + w (1)

However, if the X and Z in Equation (1) are completely independent of each other in 
both the population and the sample, then omitting Z does not result in ordinary least 
squares (OLS) producing a biased estimate of β1 because, in that case, Z does not affect the 
slope (β1), and thus Z would just add additional random variation (Nizalova and Murta-
zashvili 2016). Thus, we propose Equation (2) as a convenient way to model the correlation 
between Z and X that would produce an omitted variables “problem”.  

Z = ȣ0 + ȣ1X + ȣ2Xq + v (2)

In Equation (2), “ȣ1X + ȣ2Xq” represents a simple and convenient way of expressing 
the correlation between X and Z where “q” could represent the combined influence of 
many omitted variables. Substituting Equation (2) into Equation (1) and combining like 
terms produces Equation (3). 

Y = (β0 + β2ȣ0) + (β1 + β2ȣ1)X + β2ȣ2 Xq + (β2v + w) (3)

Notice that if ȣ2 Xq was deleted from Equations (2) and (3), then an OLS estimation 
of Equation (3) would produce an unbiased estimate of dY/dX = (β1 + β2ȣ1); thus, the key 
to showing the omitted variables “problem” is nicely illustrated by including a term like ȣ2 Xq in Equation (2).  

If (β0 + β2ȣ0) is set equal to α0, (β1 + β2ȣ1) to α1, β2ȣ2 to α2, and (β2v + w) to u, then 
Equation (3) becomes Equation (4). 

Y = α0 + α1X + α2 Xq + u (4)

An omitted variables “problem” is produced when Equation (5) is estimated instead 
of Equation (4), where Equation (4) represents the true specification. 

Y = α0 + β1 X + u (5)

When Equation (5) is estimated, a (dY/dX)^ = β1^, which is a constant, is found; when, 
in reality, dY/dX = α1 + α2q, which varies with “q”. In this case, the estimated coefficient 
(β1^) is hopelessly biased—because it is a constant, instead of varying with q—and all 
statistics are inaccurate. 

The easiest way to explain the key insight underlying variable slope estimation meth-
ods is to use a diagram like Figure 1. To construct Figure 1, we generated two series of 
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random numbers, X and q, which ranged from 0 to 100 (for increased clarity, in this ex-
ample, we set ut = 0). We then calculated the dependent variable Y = 200 + 10 X + 0.6 q X. 

 
Figure 1. The intuition underlying variable slope estimators. 
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The true value for dY/dX equals 10 + 0.6 q. Since q ranges from 0 to 100, the true slope 
will range from 10 (when q = 0) to 70 (when q = 100). Thus, q makes a 700 percent differ-
ence to the slope. In Figure 1, we identified each point with that observation’s value for q. 
Notice that the upper edge of the data corresponds to relatively large qs—94, 95, 95, 99, 
97, 96, and 88. The lower edge of the data corresponds to relatively small qs—1, 0, 1, 2, 2, 
2, and 2. This makes sense since Y increases as q increases for any given X. For example, 
when X approximately equals 27, reading the values of q from top to bottom of Figure 1 
produces 85, 64, 54, 45, 33, and 25. Thus, the relative vertical position of each observation 
is directly related to the values of q. If, instead of adding 0.6qX in Equation (4), we had 
subtracted 0.6qX, the smallest qs would be on the top and the largest qs on the bottom of 
Figure 1. Either way, the relative vertical position of observations captures the influence 
of q. In Figure 1, the true value for dY/dX equals 10 + 0.6 q; thus, the slope, dY/dX, will be 
at its greatest numerical value along the upper edge of the data where q is largest and the 
slope will be at its smallest numerical value along the bottom edge of the data where q is 
smallest. 

Now imagine that you do not know what q is and that you have to omit it from your 
analysis. In this case, OLS produces the following estimated equation: Y = 140.29 + 41.60X 
with an R-squared of 0.60 and a standard error of the slope of 3.44. On the surface, this 
OLS regression looks successful, but it is not. Remember that the true equation is Y = 100 
+ 10 X + 0.6 q X. Since q ranges from 0 to 100, the true slope (true derivative) ranges from 
10 to 70 and OLS produced a constant slope of 41.60. OLS did the best it could, given its 
assumption of a constant slope; OLS produced a slope estimate of approximately 10 + 0.6 
E(q) = 10 + 0.6(51.18) = 40.708 (where “E(q)” is the expected, or mean value, for q), which 
is close to the estimated 41.60. However, OLS is hopelessly biased by its assumption of a 
constant slope when, in truth, the slope is varying. 

Although OLS is hopelessly biased when there are omitted variables that interact 
with the included variables, Figure 1 provides an important insight—even when research-
ers do not know what the omitted variables are, even when they have no clue how to 
model the omitted variables or measure the omitted variables, and even when there are 
no proxies for the omitted variables, Figure 1 shows researchers that the relative vertical 
position of each observation contains information about the combined influence of all 
omitted variables on the true slope. For example, if there are 500 omitted variables that 
increase Y and 300 that decrease Y, the observations that are on the upper frontier will 
correspond to when the 500 omitted variables are at their highest levels and the 300 at 
their lowest. 

2.2. Solutions to the Omitted Variables Problem 
The omitted variables problem is a well-recognized problem in regression analysis. 

The standard approach to solving the omitted variables problem is to find instruments to 
replace Z in Equation (1) so that an unbiased and consistent estimate of β1, the partial 
derivative, can be estimated. However, to correctly use instrumental variables, the re-
searcher must be able to correctly model (1) the omitted variable’s relationship with the 
dependent variable and (2) the relationship between the omitted variables and the instru-
ments. Furthermore, instrumental variables must be ignorable (they do not add any ex-
planatory value independent of their correlation with the omitted variable) and they must 
be so highly correlated with the omitted variable that they capture the entire effect of the 
omitted variable on the dependent variable. These requirements are usually impossible to 
meet (Bound et al. 1995) since most researchers cannot even produce a comprehensive list 
of all the omitted variables that could affect the true slope. Michael Murray (2017) sur-
veyed possible strategies for dealing with cases that involve a large number of instruments 
and/or weakly correlated instruments. 

Some researchers have used characteristics of omitted variables in order to model 
their influence. For example, if the omitted variables are serially correlated, then a re-
searcher can (given some additional assumptions) use that serial correlation to account 
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for the omitted variables (Hu et al. 2017; Arcidiacono and Miller 2011; Blevins 2016; Imai 
et al. 2009; Norets 2009). In contrast to using serial correlation, in this paper, we use an 
effect of omitted variables to capture their influence. Specifically, in this paper, we argue 
that omitted variables will change the relative vertical (y axis) position of observations, 
ceteris paribus. Using the relative position of observations, we can use our techniques 
from this paper with cross-sectional, time series, or panel data. 

In contrast to trying to find an unbiased and consistent partial derivative, in this pa-
per, we examine methods to find an unbiased and consistent total derivative. Thus, in-
stead of trying to find the nonvarying β1 of Equation (1), in this paper, we try to find the 
total derivative, dY/dX, of Equation (4), which equals α1 + α2q. When OLS is used to esti-
mate Equation (5), instead of the true Equation (4), it produces an estimate of approxi-
mately dY/dX = α1+ α2E[q] which leaves an “error” for the ith observation of approximately 
α2Xi(qi − E[q]) + ui, as shown by Equation (7). 

Y = α0 + α1X + α2 X{E[q] + q − E[q]} + u  adding 0 to Equation (4) (6)

Y = α0 + (α1+ α2E[q])X + α2X(q − E[q]) + u  rearranging Equation (6) (7)

Because this error is related to X, heteroscedasticity is a problem. Note that α2Xi(qi − 
E[q]) is the part of the error due to omitted variables and ui is the part due to random error 
(measurement and round off error). We will make the typical assumption that ui has a 
mean of zero. The inaccuracy for observation “i” of this dY/dX estimate will be the true 
slope, α1 + α2qi, minus the estimated slope, α1+ α2E[q] as shown in Equation (8). Because 
this “inaccuracy” is systematic, it is a bias. 

α1 + α2qi − {α1 + α2E[q]}^ = α2{qi − E[q]}^ ≈ OLS inaccuracy (8)

In this paper, we contrast the inaccuracy shown in Equation (8) with the inaccuracy 
from calculating an estimate of the true slope that varies from observation to observation 
based on Equation (13) below. 

(dY/dX)True = α1 + α2q                      Derivative of (4) (9)

Y/X = α0/X + α1 + α2q + u/X                 (4) divided by X (10)

α1 + α2q = Y/X − α0/X − u/X                 (10) rearranged (11)

(dY/dX)True = Y/X − α0/X − u/X                From (9) and (11) (12)

(dY/dX)^ = Y/X − α0^/X  (13)

(dY/dX)True − (dY/dX)^ = (α0^ − α0)/X − u/X      From (12) and (13)  (14)

The methods used to calculate a total derivative in this paper involve estimating α0, 
the y-intercept for Equation (4). This y-intercept, Y/X, and X are plugged into the right 
hand side of Equation (13) to produce an estimate of dY/dX for each observation that will 
vary from the true value of dY/dX by an amount equal to (α0^ − α0)/Xi − ui/Xi for observation 
i (Equation (14)). Note that, since (α0^– α0)/Xi − ui/Xi is not a systematic inaccuracy (since 
α0^– α0 is equally likely to be positive or negative and since ui is random), it should not be 
confused with a systemic bias. When Equation (4) is the true equation, but Equation (5) is 
used instead, this paper’s methods will produce a more accurate dY/dX for observation i 
than using OLS to estimate Equation (5) if |(α0^ − α0)/Xi − ui/Xi| is less than |α2{qi − E[q]}| 
from Equation (8). 

Let “variable slope OLS” (VSOLS) and “variable slope generalized least squares” 
(VSGLS) be defined as using OLS and GLS respectively to estimate α0 from Equation (5), 
which is then plugged into Equation (13) along with Y and X in order to produce a sepa-
rate slope estimate for each observation. The Y/X part of Equation (13) incorporates into 
each specific estimate its relative vertical position, which is Y/X—remember Figure 1. A.C. 
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Aitken (1935) implies that the GLS estimate of α0 will be the best linear unbiased estimate 
(BLUE) if the qis are i.i.d. N(μq, σq2) because GLS is BLUE for heteroscedastic linear regres-
sion models. Set β0 = α0, β1 = α1+ α2E[q] and v = α2X(q − E[q]) + u, and substituting into 
Equation (7) produces3 

Y = β0 + β1X + v where v ~N(0,σv2) where σv2 = α22 X2 σq2 + σu2 conditionally on X. (15)

Thus, VSGLS produces a BLUE estimate of Equation (4)’s α0. Note that Equation (12) 
implies that if we can find an exact value for α0, then we can mathematically calculate an 
exact value for dY/dX if all error is due to omitted variables (thus random error, u, equals 
0). Therefore, if we can produce a BLUE estimate of α0, we can mathematically calculate a 
BLUE estimate of dY/dX by using Equation (12) if all the error is due to omitted variables. 
We will examine cases where u = 0 and cases in which u ≠ 0. OLS, VSOLS, and VSGLS will 
be compared to reiterative truncated projected least squares (RTPLS), a technique based 
on DEA. 

RTPLS is based on Equation (4), and the realization that the relative vertical position 
of each observation captures the combined influence of all omitted variables (remember 
Figure 1). In other words, the vertically highest observations (those at the top of a scatter 
plot) will be associated with values for the omitted variables that increase Y the most and 
the vertically lowest observations (those at the bottom) will be associated with omitted 
variable values that increase Y the least (Branson and Lovell 2000). RTPLS (step 1) draws 
an output oriented, variable returns to scale frontier around the upper left side of a scatter 
plot of the data in Y versus X space, (step 2) projects all the data under this frontier to that 
frontier (by multiplying each Y by the ratio of the distance from the x axis to the frontier 
that runs through a given Y divided by that Y), (step 3) truncates off any horizontal region, 
(step 4) runs an OLS regression through that projected data, and (step 5) associates the 
resulting slope estimate with the observations that determined the frontier. This slope es-
timate is for when q is at its most favorable level (where “favorable” means “increasing Y 
the most, for any given value of X”). The observations that determined the frontier are 
then eliminated (step 6), and the process repeated producing a slope estimate for when q 
is at its second most favorable level. This process is reiterated until an additional iteration 
would use fewer than 10 observations (step 7). Imagine this reiterative process as peeling 
an onion down, layer by layer, where each layer corresponds to a progressively less fa-
vorable level for q. This process contains similarities to quantile estimation except RTPLS 
uses the maximum number of layers possible instead of just four. Notice that Equation 
(13) can be rearranged as Equation (16). 

(dY/dX)^ − Y/X = − α0^/X                      (13) rearranged (16)

A final regression (step 8) is conducted based on Equation (16) where (dY/dX)^ are 
the slope estimates that result from the peeling down process, (dY/dX)^ − Y/X is the de-
pendent variable, and 1/X the sole independent variable (note: no constant is used). The 
α0 estimated in this final regression along with the original data for X and Y/X are plugged 
into Equation (13) to calculate a separate slope estimate for each observation (step 9). 

The first generation of RTPLS just peeled the data from the top; the second generation 
peeled the data from the top and then, restarting with the original data, peeled the data 
up from the bottom (using an input-oriented variable returns to scale DEA problem where 
the “input” is Y and the “output” is X). Peeling the data from both the top and the bottom 
results in approximately double the number of observations being used in the final re-
gression and tends to increase the accuracy of RTPLS. 

Leightner and Inoue (2012) compare and contrast the different generations of RTPLS 
and provide the math underlying the construction of (and the projection of the data to) 
the frontier. This open access article is available at http://www.hindawi.com/jour-
nals/ads/2012/728980/ (accessed on 1 October 2021). However, their final regression was 
based on Equation (13) where (dY/dX)^, the slope estimates that result from the peeling 
down process, is the dependent variable, and 1/X and Y/X are the independent variables 
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(again, no constant was used). Leightner (2015) provides the most complete explanation 
of RTPLS published to date. 

3. Results 
Statistical analysis of new methods should create criteria and then compare the new 

methods using those criteria (Li et al. 2021; Zhang and Hong 2021). The criteria used here 
is minimizing the sum of the absolute value of the errors and minimizing the standard 
error of the errors. We generated two independent series of numbers, one for Xi and the 
other for qi, both of which are uniformly distributed between 0 and 10. We then generated 
two sets of ui that were normally distributed random numbers whose standard deviations 
were 1/100th and 1/10th of the standard deviation of the Xs. We generate each Yi by plug-
ging qi, Xi, and ui into Equation (4). We then estimate dY/dX (which equals α1 + α2q) by the 
methods described above. Our estimation techniques do not use our knowledge of q—the 
omitted variable; however, we can compare the estimated slopes to the true slopes since 
we actually do know q for each observation in our simulation context. 

We ran 5000 simulations each for the 27 combinations of the omitted variable making 
a 10 percent, 100 percent, and 1000 percent difference to the true slope (α1 = 1 and α2 = 
0.01, 0.1, and 1 where q ranges from 0 to 10), with the standard deviation of u = 0 percent, 
1 percent, and 10 percent of the standard deviation of X, and with sample sizes of n = 100, 
250, and 500. 

In all the following equations, [] serves as a place holder for the different approaches 
analyzed: OLS, VSOLS, VSGLS, and RTPLS. “True” refers to the numerical value of the 
true total derivative, α1 + α2q, which will be different for different observations. Table 1, 
Panels A–D present the simulation results for the mean of the absolute value of the error 
as defined by Equation (18) where “n” is the number of observations in a simulation and 
“m” is the number of simulations. Table 1, Panels E–H present the standard deviation of 
these errors as defined by Equation (19) where E(Ei[]) = the mean of Ei[] = (∑ 𝐸[])/𝑛. 

Define Ei[] = (estimated slope from [] − Truei)/Truei (17)∑ [∑ |𝐸[[]] |/𝑛]/𝑚  (18)

𝐸[] − 𝐸(𝐸[]) /(𝑛 − 1) / /𝑚 (19)

Panel A shows the results of using OLS to estimate Equation (5), assuming that there 
are no omitted variables when in truth there are. Panels B and C show the results of using 
VSOLS and VSGLS, respectively, to estimate α0 and then plugging it with Y and X into 
Equation (13) to calculate a separate slope for each observation. Panel D shows the result 
of using RTPLS to estimate a separate slope for each observation. 

We believe that the cases most relevant to modern day applied statistics are shown 
in columns 4, 5, and 6 of Table 1 where measurement and round off error (u) is one percent 
of the standard deviation of X. In contrast, columns 1, 2, and 3 show what happens when 
all the error is due to omitted variables (u = 0) and columns 7, 8, and 9 show what happens 
when measurement and round off error is ten percent of the standard deviation of X. Alt-
hough zero and ten percent measurement and round off error are not usually reasonable 
in today’s world, we wanted to explore what happens at both extremes. Our analysis will 
start with the reasonable assumption of one percent measurement and round off error (u 
= 1% as shown in columns 4–6). 
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When u = 1%, a comparison of Panels A, C, and D reveals that VSGLS and RTPLS 
always had a noticeably lower mean value for |e| than OLS does no matter what the sam-
ple size and no matter what the importance of the omitted variables. Furthermore, VSGLS 
and RTPLS had a smaller standard error of |e| for all cases where u = 1% and the omitted 
variables make at least a 100% difference to the true slope (Panels E, G, and H). However, 
VSOLS (Panels B and F) did not perform as well as VSGLS and RTPLS. 

Table 1. The empirical results, 5000 simulations each. 

 Column 1 2 3 4 5 6 7 8 9 
 q’s affect 1000% 100% 10% 1000% 100% 10% 1000% 100% 10% 
 size of u 0% 0% 0% 1% 1% 1% 10% 10% 10% 

Panel A  mean |e| 
%OLS e n = 100 0.70887 0.17753 0.02399 0.70887 0.17753 0.02400 0.70886 0.17759 0.02499 

 n = 250 0.71172 0.17706 0.02389 0.71172 0.17706 0.02389 0.71170 0.17707 0.02428 
 n = 500 0.71129 0.17682 0.02386 0.71130 0.17682 0.02386 0.71131 0.17685 0.02405 

Panel B           
%VSOLS e n = 100 0.57849 0.18976 0.02738 0.57733 0.18552 0.03312 0.57076 0.23972 0.32891 

 n = 250 0.42280 0.11473 0.01564 0.42276 0.11507 0.03476 0.42899 0.25026 0.32705 
 n = 500 0.31742 0.08605 0.01141 0.32090 0.09775 0.04337 0.36785 0.33497 0.40862 

Panel C           
%VSGLS e n = 100 0.02311 0.00651 0.00089 0.02394 0.01364 0.01499 0.04773 0.10913 0.14922 

 n = 250 0.01017 0.00287 0.00039 0.01179 0.01329 0.01746 0.04600 0.12690 0.17446 
 n = 500 0.00544 0.00154 0.00021 0.00790 0.01410 0.01914 0.04884 0.13923 0.19137 

Panel D           
%RTPLS e n = 100 0.04071 0.00795 0.00101 0.04150 0.01476 0.01489 0.06231 0.10851 0.14787 

 n = 250 0.01871 0.00335 0.00043 0.02015 0.01349 0.01736 0.05073 0.12618 0.17339 
 n = 500 0.01911 0.00290 0.00023 0.02076 0.01450 0.01907 0.05463 0.13874 0.19060 

Panel E standard e of |e| 
%OLS error n = 100 1.0836 0.2092 0.0275 1.0836 0.2092 0.0275 1.0836 0.2092 0.0275 

 n = 250 1.0941 0.2096 0.0275 1.0941 0.2096 0.0275 1.0941 0.2096 0.0275 
 n = 500 1.0947 0.2096 0.0275 1.0947 0.2096 0.0275 1.0947 0.2096 0.0275 

Panel F           
%VSOLS er-

ror 
n = 100 3.9096 1.3301 0.1954 3.8981 1.2862 0.2085 3.8267 1.5087 2.3137 

 n = 250 4.4421 1.1361 0.1535 4.4417 1.1332 0.3429 4.5118 2.4587 3.2971 
 n = 500 4.6436 1.1903 0.1540 4.7211 1.4233 0.6534 5.6769 5.1948 6.1352 

Panel G           
%VSGLS er-

ror 
n = 100 0.0714 0.0170 0.0023 0.0747 0.0378 0.0413 0.1530 0.3052 0.4118 

 n = 250 0.0439 0.0107 0.0014 0.0517 0.0508 0.0657 0.1988 0.4833 0.6567 
 n = 500 0.0310 0.0075 0.0010 0.0455 0.0694 0.0930 0.2709 0.6847 0.9298 

Panel H           
%RTPLS er-

ror n = 100 0.1193 0.0203 0.0025 0.1224 0.0404 0.0414 0.1932 0.3065 0.4126 

 n = 250 0.0749 0.0121 0.0015 0.0818 0.0516 0.0657 0.2178 0.4838 0.6571 
 n = 500 0.0922 0.0127 0.0011 0.1030 0.0715 0.0930 0.3012 0.6853 0.9300 

Panel I mean |e| ratio 
OLS/RTPLS n = 100 2138.12 840.87 1062.57 117.43 31.28 3.87 28.50 3.87 0.40 

 n = 250 1696.36 2496.56 4470.49 178.66 35.83 3.79 33.67 3.80 0.38 
 n = 500 2729.59 3042.64 9531.99 174.76 36.27 3.79 33.80 3.79 0.38 
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Panel J           
VSOLS/RTPL

S 
n = 100 660.69 236.98 247.60 29.90 7.55 1.14 7.09 1.14 0.88 

 n = 250 256.71 426.66 560.03 28.55 5.49 0.96 5.17 0.96 0.86 
 n = 500 316.74 319.14 862.57 19.22 3.77 0.90 3.51 0.90 0.86 

Panel K           
VSGLS/RTPL

S n = 100 34.11 2.76 2.63 1.57 1.00 1.02 0.95 1.02 1.02 

 n = 250 2.82 3.04 2.11 1.15 1.00 1.01 0.95 1.01 1.01 
 n = 500 1.63 3.18 2.15 0.68 0.98 1.01 0.92 1.01 1.01 

Panel L standard e of |e| ratio 
OLS/RTPLS n = 100 1.4025 1.4025 1.4025 1.5070 1.6937 1.7326 1.6721 1.7344 1.7446 

 n = 250 1.4092 1.4092 1.4092 1.5833 1.7506 1.7563 1.7366 1.7564 1.7613 
 n = 500 1.4115 1.4115 1.4115 1.5802 1.7638 1.7671 1.7484 1.7673 1.7699 

Panel M           
VSOLS/RTPL

S 
n = 100 1.3 × 10−12 1.5 × 10−12 1.5 × 10−11 0.4467 1.0568 1.2409 1.0201 1.2446 1.1031 

 n = 250 9.5× 10−13 4.1× 10−12 6.3 × 10−11 0.6565 1.1906 1.2066 1.1681 1.2065 1.1056 
 n = 500 1.6 × 10−12 5.0 × 10−12 1.3 × 10−10 0.6585 1.2508 1.1745 1.2307 1.1743 1.1181 

Panel N           
VSGLS/RTPL

S n = 100 1.5 × 10−12 1.9 × 10−12 1.8 × 10−11 0.5163 0.6732 0.3243 0.8881 0.3648 0.2952 

 n = 250 2.4 × 10−12 8.1 × 10−12 9.0 × 10−11 0.7402 0.4993 0.2268 0.7798 0.2504 0.2189 
 n = 500 4.3 × 10−12 1.3 × 10−11 1.8 × 10−10 0.9451 0.6504 0.1783 0.8432 0.2486 0.1758 

Panels I–N explore the relative performance of different techniques in a way that in-
corporates an observation by observation comparison. When comparing the relative ab-
solute value of the mean error and standard deviation of the error by observation for tech-
niques i and j, “Ln(|Ei[i]|/| Ei[j]|)” was substituted for |Ei[]| in Equation (18) and for Ei[] 
in Equation (19) and then the antilog of the result was found. The natural log of the ratio 
of technique i’s error to technique j’s error had to be used in order to center this ratio 
symmetrically on the number one. Consider a two observation example where the 
VSGLS/RTPLS ratio is 4/1 for one observation and 1/4 for the other observation. In this 
example, the mean VSGLS/RTPLS ratio is 2.12 making VSGLS appear to have 2.12 times 
as much error as RTPLS, when (in this example) VSGLS and RTPLS are performing the 
same on average. Taking the natural log solves this problem. Ln(4) = 1.386 and Ln(1/4) = 
−1.386 and their average would be zero and the antilog of zero is 1, correctly showing that 
VSGLS and RTPLS are performing equally well in this example. 

When u = 1%, and 250 observations are used, Panel I shows that using OLS while 
ignoring omitted variables produces 179 times, 36 times, and 3.8 times the mean error of 
RTPLS when the importance of the omitted variables are 1000%, 100%, and 10% respec-
tively. Furthermore, Panel L shows that the standard error of |e| from using OLS while 
ignoring omitted variables is 1.58 times, 1.75 times, and 1.76 times the standard error of 
|e| when using RTPLS when 250 observations are used and the importance of the omitted 
variables are 1000%, 100%, and 10% respectively. Panel K shows that, when u = 1%, and 
the omitted variable made 100% or 10% difference to the true slope, RTPLS and VSGLS 
produce approximately the same mean |e|; however, Panel N shows that the standard 
error of |e| was less for VSGLS for these cases. When u = 1% and the omitted variable 
makes a 1000% difference to the true slope, then VSGLS produced 1.57 times, 1.15 times, 
and 0.68 times the mean error of RTPLS when 100 observations, 250 observations, and 500 
observations are used respectively (Panel K, column 4). 

Our primary conclusions from the cases where measurement and round off error is 
one percent of the standard deviation of X include the following: (1) both RTPLS and 
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VSGLS noticeably outperform using OLS while ignoring omitted variables, (2) when the 
criteria is to minimize the mean |e|, RTPLS and VSGLS perform equally well except for 
the case when omitted variables make 1000% difference to the true slope (in this case 
RTPLS noticeably out-performs VSGLS with 100 observations, but VSGLS outperforms 
RTPLS with 500 observations), and (3) VSGLS produces a smaller standard error of the 
|e| for all cases. 

We will now consider the extreme case when all error is due to omitted variables (u 
= 0). Panels A and E show that the mean of the absolute value of the error and the standard 
error of these errors stayed relatively constant for OLS as the sample size increases. In 
contrast, Panels C and G show that as the sample size increases the mean of the absolute 
value of the error and the standard error of these errors fell for VSGLS in columns 1 
through 4 but rose in columns 5 through 9. This provides evidence that, if all “error” is 
due to omitted variables (or as long as random error is 1/1000th of the importance of the 
omitted variable), VSGLS appears to have the statistical property of consistency. How-
ever, the consistency of VSGLS is lost as random error increases. 

A comparison of the numbers in Panels A-D reveals that VSGLS and RTPLS always 
have a noticeably lower value for the mean of the absolute value of the error than OLS 
and VSOLS when all “error” is due to omitted variables (columns 1–3). Columns 1–3, of 
Panels I, J, and K, show that VSOLS, VSGLS, and RTPLS noticeably outperform using OLS 
and incorrectly assuming that there are no omitted variables when all error is due to omit-
ted variables. Column 1, Row 1 of Panel I implies that OLS produces a mean error that is 
2138 times the mean error of RTPLS when 100 observations are used and all error is due 
to omitted variables. A comparison of the numbers in Panels I, J, and K reveals that RTPLS 
outperforms all other techniques when the criteria is a reduction of the mean absolute 
value of the error and when there is no random error (columns 1–3). For example, RTPLS 
produces between a half and a third of the error of VSGLS when 250 observations are used 
and all the error is due to omitted variables (Panel K, line 2, columns 1–3).4 When the 
results of columns 1–3 are considered with the results from columns 4–6, we conclude that 
there must be a threshold amount of measurement error and round off error between 0% 
and 1% where (as that error falls) RTPLS will start producing a smaller amount of mean 
|e| than VSGLS produces. 

We will now consider the opposite extreme assumption about the size of measure-
ment and round off error—when u = 10% of the standard deviation of X. Panel I, columns 
7 and 8, reveals that as long as the importance of the omitted variable is at least ten times 
the size of measurement and round off error, RTPLS noticeably outperforms using OLS 
while ignoring omitted variables. Furthermore, Panel K, columns 7–9, reveals that VSGLS 
and RTPLS produce approximately the same amount of mean |e| when u = 10%. How-
ever, column 9 of Panels I and K implies that when random error is as important as the 
omitted variable, then using OLS while assuming that there are no omitted variables out-
performs RTPLS and VSGLS. Column 9 corresponds to the case where |(α0^– α0)/Xi − 
ui/Xi| from Equation (12) is more than |α2{qi − E[q]}| from Equation (8). 

It is interesting to note that when q’s effect on the slope is 10 times the size of random 
error (columns 6 and 8) then OLS produces approximately 3.8 times the error of RTPLS; 
when q’s effect on the slope is 100 times the size of random error (columns 5 and 7) then 
OLS produces approximately 34 times the error of RTPLS. 

If a researcher wants to estimate a total derivative, dY/dX, for Equation (5), which 
technique he or she should use depends upon the criteria and the amount of random error. 
If random error is 1/1000th of the importance of omitted variables or less and the re-
searcher wants to produce the smallest mean error, then RTPLS works best. However, if 
the researcher wants to use the technique that produces the smallest standard error of the 
error, then VSGLS is best. Theoretically, VSGLS is BLUE when all error is due to omitted 
variables. The fact that RTPLS produces a much smaller mean error than VSGLS in this 
case (Panel K, columns 1–3) is probably due to RTPLS better capturing nonlinear aspects 
of the data. This result and reasoning are consistent with what Shaw et al. (2016) found. 
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It should be noted that this entire paper’s analysis was based on one known inde-
pendent variable, X. However, it is easy to expand the analysis to include more than one 
independent variable by either adjusting Equations (12) and (13) or by purging the data 
of the influence of additional independent variables before conducting the analysis. For 
example, if α3X2 was added to Equation (4), then Equation (13) becomes dY/dX = Y/X − 
α0/X − α3X2/X. In this case, the VSOLS or VSGLS estimates for α0 and α3 along with Y, X, 
and X2 would have to be plugged into this expanded Equation (13) to calculate a separate 
slope estimate for each observation. Alternatively, an initial regression could be run for Y 
versus X and X2, Y^ calculated as Y − α3^X2, and then the analysis conducted between just 
Y^ and X as described in this paper. This purging approach is the approach that must be 
taken when using RTPLS (Leightner and Inoue 2007).5 

One of the major purposes of statistics is to be able to predict what will happen for 
the next observations. Traditional regression analysis produces dY/dX estimates that are 
constants for the entire population and then assumes that the next observation would 
have the same dY/dX. Clearly that type of reasoning does not fit VSGLS and RTPLS esti-
mates because VSGLS and RTPLS produce a separate dY/dX estimate for every observa-
tion. However, this does not mean that VSGLS and RTPLS cannot be used to predict the 
value for dY/dX for the next several observations. Leightner (2015) explains how the Cen-
tral limit Theorem can be used to create confidence intervals for RTPLS estimates as 
shown in Equation (20) (Note: Equation (20) can also be used to create confidence intervals 
for VSGLS estimates): 

confidence interval = mean ± (s/√n)tn−1,α/2 (20)

In Equation (20), “s” is the standard deviation, “n” is the number of observations, 
and tn−1,α/2 is taken off the Student’s t table for the desired level of confidence. Here, we use 
the estimate for a given observation and the four estimates prior to it along with a 95% 
confidence level in order to create a moving confidence interval for all estimates except 
for the first four. The corresponding tn−1,α/2 value is 2.776, indicating that with only four 
degrees of freedom (n − 1), we can be 95 percent confident that the actual mean lies within 
2.776 standard deviations of the estimated mean. This 95% confidence interval also can be 
interpreted as meaning that there is only a five percent chance that the next RTPLS esti-
mate will lie outside of this range if the recent variability of omitted variables does not 
increase (Leightner 2015).  

4. An Example—The Spread Rate of COVID-19 
For the past two years (2020 and 2021), COVID-19 has been the greatest medical and 

economic challenge facing the entire world. Those who make economic policy have faced 
and continue to face difficult decisions such as (1) to what extent should the economy be 
locked down to save lives while devastating the economy, (2) now that vaccinations are 
available, who should get them and should they be mandated, and (3) how much stimulus 
is needed while considering the cost of increased public debt and likely inflation? It is 
important that policy makers know the spread rate of COVID-19 when making these life- 
and economy-affecting decisions, yet the spread rate is affected by many variables which 
are hard to measure and, thus, are often omitted from the analysis such the degree of 
compliance with social distancing, wearing of masks, and quarantine regulations. Fur-
thermore, there are countless considerations that affect the spread rate such as the density 
of the population, the age and general health of those exposed to the virus, and ambient 
air conditions. Moreover, different mutations of the virus spread at different rates and 
vary in terms of who they affect the most. 

Here, we will use RTPLS to estimate the spread rate of COVID-19 because our simu-
lation results imply that RTPLS is better than VSGLS (which is BLUE) when (1) there is 
almost no random variation and the spread of COVID-19 is due to scientific forces, not 
random luck, and (2) RTPLS is better at handling nonlinear relationships and the spread 
of a virus is not linear. Weekly data on the number of new confirmed COVID-19 cases 
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were downloaded from the Internet (European Centre for Disease Prevention and Control 
2021). We used only a week lag because the Center for Disease Control (Nishiura et al. 
2020) reports that the medium incubation period for COVID-19 is four to five days (alt-
hough there are cases where it lasts 14 days). Our data starts as soon as COVID-19 cases 
stayed above one per week. This resulted in our data starting with the week of March 30 
for Brazil, March 9 for Europe and the UK, March 16 for the USA, and April 27 for South 
Africa. The data is presented in the left half of Table 2, and the empirical estimates of the 
change in new cases of COVID-19 in time t + 1 due to a one unit increase in new cases of 
COVID-19 in time t [d(cases t + 1)/d(cases t)] are given in the right half of Table 2. Table 3 
presents the moving 95% confidence intervals for the estimates. 

In Figure 2, the new cases of COVID-19 in time period t + 1 are plotted on the y axis 
versus the number of new cases of COVID-19 in time period t on the x-axis. The points on 
Figure 2 are identified by a letter for each country: B = Brazil, E = Europe, A = South Africa, 
K = The United Kingdom, and S = the USA. The shape of the range that the observations 
created in Figure 2 looks similar to the shape of the range of observations in Figure 1. We 
ran the analysis using the data shown in Table 2 and also using the natural log of the data 
in Table 2 (for which the slopes would then be spread elasticities). We chose to focus the 
analysis on the data that were not logged specifically because the non-logged data look 
like Figure 1, and the logged data do not. 

Figure 2 shows that the UK and the USA suffered from the highest levels of new cases 
of COVID-19 (the upper right hand quadrant of Figure 2 contains only K and S markers 
indicating the UK and the USA respectfully). It is interesting that the lower right frontier 
of the data contains observations from South Africa (A), the United Kingdom (K), and the 
USA (S) and these same countries are also on the upper left hand frontier. Brazil and Eu-
rope observations (B and E) are concentrated in the middle of the data through the upper 
left frontier. This spread of a given country’s observations between the upper left and 
lower right frontiers implies that omitted variables within a given country are affecting 
where observations lie, instead of differences in the situation between countries. A fixed 
effects regression model would be inappropriate in this situation. The equation underly-
ing the RTPLS process used in this paper was Equation (4) where Y = the number of new 
cases in t + 1, X = the number of new cases in t, and q is the combined effect of all omitted 
variables. The omitted variables within a country would include the spread of mutant 
variants of the virus and where it was spreading, the percent of the population vaccinated 
and who was vaccinated, changes in climate, changes in the enforcement and adherence 
to social distancing rules, etc. 

Table 2. The COVID-19 data and empirical results. 

Year Week 
New Cases in t dcases in t + 1/dcases in t 

Brazil Europe S. Africa UK USA Brazil Europe S. Africa UK USA 
2020 11  20.6  3.8   2.42  5.45  
2020 12  41.8  12.5 10.5  1.55  3.48 4.78 
2020 13  56.8  35.6 42.1  1.18  2.22 2.36 
2020 14 4.5 58.9  70.9 91.4 3.64 1.07  1.41 1.46 
2020 15 8.4 54.9  91.9 125.2 2.48 1.05  1.11 1.08 
2020 16 12.9 49.7  94.4 127.5 2.06 1.04  1.09 1.03 
2020 17 18.7 44.0  95.3 123.4 2.00 1.11  1.07 1.04 
2020 18 29.4 40.9 6.1 94.2 120.3 1.88 1.14 2.81 0.93 0.98 
2020 19 47.4 38.6 9.2 79.6 109.9 1.56 1.07 2.46 0.89 0.98 
2020 20 65.8 33.2 14.7 62.8 99.3 1.55 1.15 1.98 0.97 1.03 
2020 21 94.3 30.1 21.2 53.2 94.7 1.45 1.22 1.74 0.90 1.05 
2020 22 128.8 28.9 28.9 40.1 91.7 1.26 1.27 1.77 0.91 1.07 
2020 23 154.6 28.7 43.3 28.5 90.4 1.13 1.29 1.64 1.09 1.10 
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2020 24 166.0 29.0 63.0 23.0 91.8 1.16 1.25 1.44 1.23 1.20 
2020 25 185.0 28.2 82.6 20.3 102.3 1.25 1.23 1.49 1.26 1.42 
2020 26 224.2 26.8 114.8 17.5 137.4 1.12 1.26 1.53 1.23 1.39 
2020 27 243.7 25.7 167.7 13.6 183.6 1.04 1.32 1.44 1.48 1.29 
2020 28 244.9 26.0 232.9 12.2 228.4 0.98 1.38 1.25 1.69 1.21 
2020 29 233.0 27.8 282.6 12.6 267.3 1.15 1.55 1.04 1.66 1.08 
2020 30 260.8 35.1 285.3 13.0 280.7 1.18 1.48 0.90 1.63 0.99 
2020 31 298.9 43.9 248.1 13.2 270.3 1.00 1.32 0.81 1.78 0.94 
2020 32 290.0 49.9 192.9 15.5 245.0 1.01 1.27 0.70 1.82 0.94 
2020 33 285.3 55.3 127.9 20.3 222.1 0.97 1.25 0.72 1.47 0.93 
2020 34 268.3 60.9 84.2 21.8 198.7 0.95 1.25 0.85 1.44 0.94 
2020 35 245.6 68.0 63.6 23.5 179.4 1.05 1.26 0.89 1.69 1.01 
2020 36 250.2 77.5 48.5 31.6 173.4 0.91 1.27 1.02 1.83 0.96 
2020 37 220.2 90.8 41.7 50.0 157.9 0.91 1.25 1.11 1.54 1.06 
2020 38 191.5 105.2 38.3 69.2 159.6 1.03 1.21 1.13 1.53 1.18 
2020 39 189.1 119.5 35.4 97.7 179.8 0.96 1.36 1.18 1.72 1.07 
2020 40 174.4 154.6 33.9 159.7 185.2 1.02 1.45 1.32 1.60 1.10 
2020 41 170.6 216.0 36.6 247.9 195.6 0.93 1.43 1.25 1.33 1.18 
2020 42 150.6 300.7 37.9 322.4 222.6 0.99 1.33 1.25 1.26 1.22 
2020 43 140.7 392.4 39.4 396.8 263.9 1.09 1.20 1.19 1.18 1.24 
2020 44 146.0 462.6 38.8 459.2 318.1 0.92 1.04 1.13 1.04 1.29 
2020 45 127.0 471.0 36.1 467.5 403.5 1.24 0.94 1.35 1.07 1.39 
2020 46 149.3 437.1 40.8 491.3 552.8 1.34 0.96 1.45 0.97 1.26 
2020 47 191.6 411.6 51.3 470.2 687.4 1.15 0.98 1.36 0.79 1.04 
2020 48 212.5 393.4 61.8 364.4 708.8 1.22 1.02 1.41 0.87 1.08 
2020 49 250.3 392.6 79.1 310.3 758.3 1.14 1.02 1.66 1.12 1.16 
2020 50 276.3 393.6 123.5 341.0 868.1 1.15 1.03 1.53 1.39 1.08 
2020 51 310.5 395.9 181.0 465.6 932.9 0.91 0.99 1.45 1.53 0.95 
2020 52 274.0 385.4 254.4 705.7 874.6 0.84 1.07 1.22 1.29 0.97 
2020 53 221.2 405.6 301.5 903.1 844.5 1.41 1.04 1.26 1.22 1.18 
2021 1 304.5 413.7 370.5 1091.1 988.3 1.23 0.90 1.10 1.01 1.02 
2021 2 366.0 366.3 399.9 1089.0 996.4 0.97 0.92 0.78 0.78 0.88 
2021 3 348.0 328.2 305.8 845.0 868.3 0.99 0.90 0.68 0.74 0.84 
2021 4 337.6 289.0 199.6 618.9 719.9 0.97 0.88 0.57 0.75 0.73 
2021 5 318.4 246.5 106.5 458.9 517.1 0.97 0.95 0.64 0.72 0.82 
2021 6 299.9 226.2 59.9 324.6 414.8 1.04 1.06 0.91 0.73 0.88 
2021 7 304.4 232.8 46.6 228.8 357.0 1.14 1.12 0.91 0.92 0.79 
2021 8 338.9 252.2 34.4 203.5 275.4 1.21 1.15 1.04 0.78 0.91 
2021 9 402.9 282.5 27.7 151.4 241.3 1.11 1.17 1.34 0.85 1.15 
2021 10 438.8 323.1 29.0 120.3 268.8 1.09 1.18 1.30 1.02 0.96 
2021 11 468.5 372.2 29.8 114.7 250.9 1.08 1.09 1.18 1.03 1.04 
2021 12 495.9 396.6 27.0 109.6 252.7      

Table 3. 95% confidence intervals for the empirical results. 

Year Week 
Brazil Europe S. Africa UK USA 

Min Max Min Max Min Max Min Max Min Max 
2020 15   0.02 2.88   −1.67 7.14   
2020 16   0.64 1.71   −0.65 4.37 −1.75 6.04 
2020 17   0.95 1.23   0.17 2.59 −0.02 2.81 
2020 18 0.62 4.20 0.98 1.18   0.69 1.56 0.64 1.60 
2020 19 1.17 2.83 0.98 1.18   0.76 1.27 0.91 1.13 
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2020 20 1.21 2.41 0.99 1.21   0.77 1.21 0.93 1.09 
2020 21 1.10 2.28 1.00 1.28   0.77 1.14 0.93 1.11 
2020 22 0.98 2.10 0.97 1.36 0.99 3.31 0.84 1.00 0.92 1.13 
2020 23 0.92 1.86 0.97 1.43 1.11 2.73 0.75 1.15 0.93 1.17 
2020 24 0.85 1.77 1.10 1.37 1.22 2.21 0.68 1.36 0.93 1.26 
2020 25 0.94 1.56 1.18 1.32 1.24 1.99 0.66 1.49 0.79 1.55 
2020 26 1.02 1.36 1.20 1.32 1.24 1.90 0.78 1.50 0.84 1.64 
2020 27 0.95 1.34 1.18 1.36 1.30 1.71 0.90 1.61 0.95 1.61 
2020 28 0.85 1.38 1.13 1.44 1.16 1.70 0.87 1.88 1.05 1.56 
2020 29 0.85 1.37 1.03 1.66 0.84 1.85 0.93 2.00 0.93 1.63 
2020 30 0.89 1.30 1.10 1.69 0.57 1.89 1.07 2.01 0.79 1.59 
2020 31 0.85 1.29 1.16 1.66 0.45 1.72 1.38 1.92 0.74 1.46 
2020 32 0.83 1.29 1.11 1.68 0.41 1.46 1.52 1.91 0.75 1.31 
2020 33 0.82 1.30 1.04 1.71 0.49 1.18 1.33 2.01 0.82 1.13 
2020 34 0.79 1.25 1.07 1.56 0.59 1.00 1.20 2.05 0.89 1.01 
2020 35 0.89 1.10 1.19 1.34 0.60 0.99 1.21 2.07 0.87 1.03 
2020 36 0.84 1.11 1.23 1.29 0.51 1.16 1.19 2.11 0.88 1.04 
2020 37 0.81 1.10 1.22 1.28 0.54 1.30 1.19 2.00 0.85 1.12 
2020 38 0.80 1.14 1.19 1.30 0.68 1.32 1.22 1.99 0.80 1.26 
2020 39 0.81 1.14 1.13 1.41 0.78 1.35 1.34 1.98 0.85 1.26 
2020 40 0.82 1.11 1.07 1.55 0.89 1.42 1.32 1.97 0.88 1.27 
2020 41 0.83 1.11 1.07 1.60 0.98 1.41 1.20 1.89 0.98 1.26 
2020 42 0.88 1.09 1.12 1.59 1.05 1.40 1.01 1.96 1.00 1.30 
2020 43 0.84 1.16 1.11 1.60 1.10 1.38 0.84 1.99 0.98 1.34 
2020 44 0.82 1.17 0.86 1.72 1.06 1.40 0.76 1.80 1.03 1.39 
2020 45 0.71 1.36 0.69 1.69 1.03 1.44 0.86 1.48 1.06 1.47 
2020 46 0.69 1.54 0.68 1.51 0.96 1.59 0.82 1.38 1.11 1.45 
2020 47 0.76 1.53 0.76 1.28 0.97 1.62 0.66 1.36 0.93 1.56 
2020 48 0.79 1.56 0.89 1.08 1.04 1.64 0.66 1.23 0.85 1.58 
2020 49 1.02 1.41 0.90 1.07 1.13 1.76 0.63 1.30 0.84 1.53 
2020 50 0.99 1.40 0.92 1.08 1.19 1.78 0.45 1.62 0.91 1.34 
2020 51 0.82 1.41 0.95 1.06 1.19 1.78 0.35 1.94 0.87 1.25 
2020 52 0.64 1.46 0.95 1.10 1.04 1.86 0.61 1.87 0.83 1.26 
2020 53 0.52 1.65 0.96 1.10 0.96 1.89 0.92 1.70 0.81 1.33 
2021 1 0.52 1.69 0.85 1.17 0.87 1.75 0.80 1.78 0.81 1.27 
2021 2 0.47 1.67 0.80 1.17 0.55 1.77 0.46 1.87 0.72 1.28 
2021 3 0.52 1.66 0.77 1.17 0.36 1.65 0.39 1.62 0.65 1.31 
2021 4 0.62 1.61 0.77 1.09 0.16 1.60 0.39 1.41 0.50 1.36 
2021 5 0.74 1.31 0.85 0.97 0.24 1.27 0.51 1.09 0.60 1.12 
2021 6 0.91 1.07 0.76 1.12 0.39 1.05 0.69 0.80 0.68 0.98 
2021 7 0.84 1.20 0.73 1.24 0.35 1.14 0.57 0.98 0.67 0.95 
2021 8 0.80 1.34 0.75 1.32 0.32 1.31 0.58 0.99 0.65 1.00 
2021 9 0.86 1.33 0.87 1.31 0.34 1.59 0.59 1.01 0.56 1.26 
2021 10 0.96 1.28 1.02 1.25 0.58 1.61 0.58 1.15 0.61 1.27 
2021 11 0.99 1.26 1.05 1.24 0.70 1.60 0.66 1.18 0.64 1.30 
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Figure 2. New cases of COVID-19 in t + 1 (y axis) versus new cases in t (x axis). A = South Africa, B = Brazil, E = Europe, K 
= United Kingdom, S = USA. 
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In Figure 3, we plot the spread of COVID-19 over time for each country starting with 
the week of April 27 (week 18). The large surges of new COVID-19 cases that occur in the 
middle of Figure 3 correspond to weeks soon after new COVID-19 variants are discovered. 
COVID-19 variant B.1.1.7 originated in the United Kingdom by September 2020, and Fig-
ure 3 shows that the largest upsurge of COVID-19 cases in the UK began in the middle of 
September 2020 (weeks 38 and 39). COVID-19 variant B.1.351 emerged in South Africa by 
the beginning of October 2020 (week 41), and South Africa’s biggest upsurge in new cases 
occurred approximately six weeks later (week 47). It is not known when COVID-19 vari-
ant P.1 started in Brazil, but the variant was well established by late December 2020 (week 
53); Brazil’s largest upsurge of new cases of COVID-19 occurred between 2 November 
(week 45 of 2020) and 11 January 2021 (week 2 of 2021) (Center for Disease Control and 
Prevention 2021). The delta variant emerged after this paper’s data were collected. 

Figure 3 also shows that the number of new cases of COVID-19 fell for all the ana-
lyzed countries between 10 January (week 2) and 14 February 2021 (week 6). During these 
five weeks, Brazil went from zero percent vaccinated to 2.46, Europe went from 0.6 per-
cent vaccinated to 5.02, the UK went from 3.94 percent vaccinated to 23.33, and the USA 
went from 2.69 percent vaccinated to 15.81. To the extent that countries vaccinated their 
most vulnerable populations first, the first vaccinations would have the greatest effect. 

However, more factors than just vaccinations are probably involved in the fall of new 
cases in early 2021 as evidenced by South Africa. New cases fell in South Africa between 
10 January and 28 February 2021 despite South Africa not yet vaccinating at that time. 
January and February are in South Africa’s summer, and COVID-19 spreads best in low 
temperatures and low humidities. Anne Soy (2020) argues that Africa in general had lower 
COVID-19 deaths due to quicker action, stricter restrictions, greater public support, 
younger populations with few old age homes, favorable climates, and good community 
health centers. She cites South Africa in particular as having “one of the most stringent 
lockdowns in the world”, which resulted in the loss of 2.2 million jobs in the first half of 
2020. 

The fall in new cases of COVID-19 continued through 30 March for South Africa, the 
United Kingdom, and the USA. New cases in the UK, which had a higher peak of new 
cases of COVID-19 in the first week of January 2021 (1091 new cases) than the USA had 
(988 new cases), fell noticeably lower than the USA new cases by 30 March 2021 (UK = 110 
new cases, the USA = 253 new cases). This difference could be cited as evidence that the 
UK’s policy of giving each citizen one shot prior to giving anyone two shots was more 
effective than the US policy of fully vaccinating people (requiring two shots) as soon as 
possible. 

Figure 3 also shows that Europe and Brazil suffered from a resurgence of new 
COVID-19 cases starting the week of 7 February 2021, which could reflect their slower 
vaccination rates. By 30 March 2021, Europe had vaccinated only 16.43 percent of its pop-
ulation and Brazil had only vaccinated 8.57 percent of its population in contrast to the 
UK’s 50.85 percent and the USA’s 44.13. As of 30 March 2021, it appears that mutant virus 
strains are spreading faster than the relative slow vaccination programs of Brazil and Eu-
rope can contain them; however, the more rapid vaccination programs in the UK and the 
USA are reducing the spread of COVID-19 and its mutant variants. New cases in South 
Africa continue to fall despite South Africa having the lowest vaccination rates of the 
countries examined. 

The right half of Table 2 gives the RTPLS estimates for d(new cases of COVID-19 in 
time t + 1)/d(new cases of COVID-19 in time t), or “dcases t + 1/dcases t” and Figure 4 plots 
those estimates over time. When COVID-19 first entered a country in 2020, the numerical 
values of dcases t + 1/dcases t were relatively high: 3.64 for Brazil (in week 14), 2.42 for 
Europe (week 11), 2.81 for South Africa (week 18), 5.45 for the UK (week 11), and 4.78 for 
the USA (week 12). The dcases t + 1/dcases t of 3.64 for Brazil in week 14 of 2020 means 
that an additional new case of COVID-19 in that week would have been correlated with 
an additional 3.64 new cases a week later (week 15). The 3.64 new cases in week 15 would 
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then be correlated with 9.03 new cases in week 16 (3.64 times week 15′s dcases t + 1/dcases 
t of 2.48). This multiplicative effect causes new viruses to spread at an exponential rate 
(Sharma et al. 2021). 

 
Figure 3. New cases of COVID-19 over time. 
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Figure 4. The change in d(new cases t + 1)d(new cases t) over time. 
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in t + 1 are related to new COVID-19 cases in t. For example, these values would include 
the effects of new mutations of the virus, of changes in weather, of changes in social dis-
tancing measures, and of changes due to vaccinations, etc. Some of these included forces 
would increase the spread rate (such as mutations) and others would decrease the spread 
rate (such as vaccinations). A partial derivative obtained from traditional regression anal-
ysis would hold all of these other forces constant; however, health officials need to know 
the spread rate holding nothing constant, which is what we report in this paper. 

The dcases t + 1/dcases t estimates apply to both increases and decreases of new cases 
of COVID-19. For example, consider the first weeks of 2021 for Brazil. New cases went 
from 304.5 (week 1) to 366.0 (week 2) to 348.0 (week 3); meanwhile, the corresponding 
values for dcases t + 1/dcases t were 1.23 (week 1) and 0.97 (week 2). This means not only 
that an additional case of COVID-19 in week 1 was correlated with an increase of 1.23 new 
cases in week 2 but also that if there was one fewer new case in week 2, then the number 
of new cases in week 3 would decline by only 0.97 cases. What would be best for humanity 
is for the dcases t + 1/dcases t values to always be less than one for increases in new cases 
and greater than one for decreases in new cases. Unfortunately, that is not the case. In-
stead, every single instance in Table 2 where dcases t + 1/dcases t was less than one corre-
sponds to falls in new cases. Likewise increases in new cases are always associated with 
dcases t + 1/dcases t values that are greater than one (however, there are a few cases where 
declines in new cases correspond to dcases t + 1/dcases t being greater than one—for ex-
ample, South Africa in week 36 of 2020). This means that if new cases increase in one week, 
perhaps due to people not wearing their masks, then to undo the damage caused, cases in 
the next week would have to fall by more than they rose in the previous week. 

Figure 4 reveals several interesting patterns in the dcases t + 1/dcases t estimates. First, 
these estimates are not random over time; in other words, although the estimates do flu-
cuate between time t and t + 1, they do not fluctuate from the top of the graph to the 
bottom of the graph from time t to time t + 1 (in contrast to what our randomly generated 
simulation data would have shown). Second, there is a general downward trend in the 
estimates, which is good news for humanity. Third, the UK and Europe wander around a 
similar path while the USA, Brazil, and South Africa wander around a noticeably different 
path. The two paths converging and falling together in early 2021 can be explained by the 
advent of vaccines, which tended to be given to the most vulnerable people first (except 
for South Africa’s fall, as discussed above). 

The confidence intervals reported in Table 3 vary noticeably in width; during times 
of relatively stable spread rates, these confidence intervals shrink and then expand when 
variability increases. These confidence intervals were wide when COVID-19 first hit a 
country and when new variants of the virus first emerged. All of the estimates reported 
in Table 2 fall within the 95% confidence intervals reported in Table 3. The estimates pre-
sented in this paper, the trajectory of these estimates, and their confidence intervals can 
help governments and their health officials predict the future course of COVID-19, mak-
ing it possible for them to make better informed choices concerning lockdowns, vaccine 
mandates, and economic stimulus. 

5. Conclusions 
There are many times when decision makers need to understand the effects of their 

policies, but using traditional regression methods is not viable because (1) an adequate 
model would be too complex and would require data that is not available, (2) the time 
period for which there is data would be too short, and (3) an assumption that there are no 
omitted variables is not reasonable. In this paper, we propose several methods of produc-
ing a separate total derivative for each observation where the differences in these total 
derivatives are due to omitted variables. The data requirements for using these methods 
are minimal, and simulations show that using these methods is much better than just as-
suming that there are no omitted variables when there really are. We conclude that these 
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methods, especially variable slope generalized least squares (VSGLS) and reiterative trun-
cated projected least squares (RTPLS), are worthy of additional study. 

Although we focused on cases where there are systems of equations that interact, the 
techniques explained here also work when omitted variables are a problem for the esti-
mation of single equations. Since the vast majority of studies that use regression analysis 
can be criticized for omitted variables that could affect the slope, the techniques explained 
in this paper have almost unlimited applicability. 

The contributions of this paper to the literature include the following: (1) this is the 
first paper to compare and contrast the performance of VSOLS, VSGLS, and RTPLS using 
simulations; (2) this is the first paper to show how our way of modeling the omitted vari-
ables problem fits with the classic way of modeling this problem and improves upon the 
classic approach; and (3) this is the first paper to apply a variable slopes estimation process 
to the spread of an infectious disease. One of the most disturbing policy implications of 
our COVID-19 example is that a one-person increase in new COVID-19 cases this week 
will cause new cases of COVID-19 to increase by more than one person next week; in 
contrast, a one-person decrease in new COVID-19 cases this week will reduce new cases 
next week by less than a whole person. Ceteris paribus, this result provides additional 
support for those who want stronger economic lockdowns, mandated vaccinations, and 
quarantines. 

Author Contributions: P.L.d.M. developed the equations used in Section 2. T.I. ran the simulations. 
J.L. wrote the paper and did all the work for the example. All authors have read and agreed to the 
published version of the manuscript. 
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which other researchers can also do. The COVID-19 data is reported in Table 1. 
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slope GLS can be conducted by any standard regression program. RTPLS can be conducted by in-
terfacing a DEA program (a free one is available on the Internet) with a spreadsheet that does re-
gression analysis (such as Excel or Lotus). 

Notes 
1 Some researchers might see a dY/dX = (β1 + β2ȣ1) as a problem since the coefficient on X in Equation (1) is just β1. However, we 

disagree because a one-unit increase in X would cause Y to increase by exactly β1 + β2ȣ1 even if ȣ2 Xq is not included in Equation 
(2). In contrast, if ȣ2 Xq is included in Equation (2), then a one-unit increase in X will not cause Y to increase by an amount equal 
to just β1, as shown by Equation (7) below. 

2 If this assumption does not hold, our conclusions are not changed; however, the math is more complex. 
3 Assuming that u is independent of q and u ~ N(0,σu2). 
4 However, Panel N reveals that the standard error of |e| is always much less for VSGLS than it is for RTPLS no matter what the 

sample size, the importance of the omitted variable, or the amount of measurement and round off error. 
5 However, Leightner (2015) shows that if X2 is related to the qs that affect dY/dX, it is best to not include it in the analysis when 

using RTPLS; instead, let X2 be another one of the omitted variables whose influence RTPLS is designed to capture. 
6 If (as is the case when running simulations where all qs are randomly generated) the actual qs fluctuate randomly from obser-

vation to observation, then the resulting confidence interval will be huge indicating that predictions based on the RTPLS esti-
mates are not reliable. However, we have only seen this happen once when using real-world time series data. 
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