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Abstract: We employed linear and nonlinear error correction models (ECMs) to predict the log
returns of Bitcoin (BTC). The linear ECM is the best model for predicting BTC compared to the neural
network and autoregressive models in terms of RMSE, MAE, and MAPE. Using a linear ECM, we are
able to understand how BTC is affected by other coins. In addition, we performed Granger-causality
tests on fourteen cryptocurrencies.
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1. Introduction
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Forecasting the Price of the

The Coronavirus Disease 2019 (COVID-19) pandemic made the investment environ-
ment more uncertain. Since then, it has been very difficult for investors to forecast financial
markets because of the uncertainty of this pandemic. Bitcoin, a decentralized currency in
the cryptocurrency market, has emerged a popular investment asset and is often referred
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to as the currency of the future. Recently, various error correction models have been ap-
plied to the cryptocurrency market. Using an ECM, Liang (2021) found the result that the
relationship between Bitcoin rate of return and the relevant indicators to measure mone-
tary function was not significant, which rejects the original assumption that Bitcoin can
assume monetary function, indicating that Bitcoin does not have the ability and potential

to assume monetary function. Haffar and Fur (2021) analyzed the impact of shocks in
the financial markets of emerging and developed countries on the price of Bitcoin using
a structural vector error correction model. Keilbar and Zhang (2021) analyzed the role
of cointegration relationships within a large system of cryptocurrencies using a vector
error correction model (VECM) framework. Szetela et al. (2021) verified the existence of
short-term and long-term relationships between the strength of a trend and the volume in
bullish and bearish cryptocurrency markets through the application of a VECM to Bitcoin
daily data. Giudici and Pagnottoni (2020) investigated return connectedness across eight of
the major exchanges of Bitcoin, both from a static and a dynamic viewpoint by employing
an extension of the order-invariant forecast error variance decomposition proposed by
Diebold and Yilmaz (2012) to a generalized vector error correction framework. Using a
time-varying VEC model, Chang and Shi (2020) examined the dynamic information shares
of the top four cryptocurrencies: Bitcoin, Ethereum, Ripple, and Litecoin. Kapar and
Olmo (2020) proposed an empirical model for analyzing the dynamics of Bitcoin prices by
considering a VEC model over two overlapping periods: 2010-2017 and 2010-2019. These
findings provided empirical evidence on the presence of a correction in the price of Bitcoin
during the period 2018-2019 uncorrelated to market fundamentals. Ibrahim et al. (2020)
forecasted the Bitcoin closing price using vector autoregression (VAR) and Bayesian vector
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autoregression (BVAR) prediction models. Experimental results showed that the VAR
models achieved better performance compared to the traditional autoregression models
and the BVAR models. Hakim das Neves (2020) studied the relationship between the price
of virtual currency, the price of Bitcoin, and the number of Google searches that used the
terms bitcoin, bitcoin crash, and crisis between December 2012 and February 2018 by using
an error correction model. Goczek and Skliarov (2019) aimed to determine what drives
the price of Bitcoin and analyzed a large set of data by using VEC models augmented
by factors representing unobservable economic forces. Goczek and Skliarov (2019) also
found that the main factor driving the price of Bitcoin is its popularity. Wang et al. (2016)
performed a cointegration analysis and used a VEC model to demonstrate that there is
a relationship between price of Bitcoin and some variables, including stock price index,
the price of oil, and the daily trading volume of Bitcoin. The short-run analysis of Wang
et al. (2016) revealed that price of oil and Bitcoin trading volume had little influence on the
price of Bitcoin, whereas the stock price index had a relatively larger influence on the price
of Bitcoin. Georgoula et al. (2015) used a VECM to investigate the existence of long-term
relationships between cointegrated variables. Georgoula et al. (2015) revealed that the price
of Bitcoin was positively associated with the number of Bitcoins and negatively associated
with the S&P 500 stock market index.

Even though Bitcoin is the most dominant cryptocurrency, and it was found to influ-
ence other cryptocurrencies by Kwapien et al. (2021), our goal in this research was to build
a model to predict Bitcoin (BTC) log-return prices based on other cryptocurrencies’ prices,
because BTC has strong correlations with other major cryptocurrencies, such as Ethereum
(ETH) and Binance Coin (BNB). Currently, Miller and Kim (2021) have applied several
deep learning time-series models to predict BTC log-return prices, but there is no standard
guideline for selecting the correct deep learning tools, which requires knowledge of the
topology, training method, and other parameters. Therefore, we still need a prediction
model from which researchers can make statistical inferences on cryptocurrency price
data. We propose linear and nonlinear ECM prediction models compared with the current
available univariate time-series models, including the neural network time-series model.

This paper is organized as follows. Section 2 presents the summary and graphical
data analysis for the top fourteen cryptocurrencies. Section 3 gives an overview of the
econometrical models used in this study. The illustrated comparison study for the proposed
methods is performed in terms of the measures of errors is in Section 4, with the conclusion
presented Section 5.

2. Description of Data

The cryptocurrency data used in this study were obtained from crypto2 R package.
The variables for each of the cryptocurrency datasets before manipulation were low, open,
time, high, volume from, volume to, conversion type, conversion symbol, and close. The
data period studied for each of the fourteen cryptocurrencies was from 1 January 2019 to 27

August 2021. Each variable is calculated as log ( %) . Table 1 shows the 14 cryptocurrencies

that are used in this paper.

Table 2 shows the summary statistics for each of the cryptocurrency datasets. In terms
of the median for log returns, Bitcoin (BTC), Ethereum (ETH), Cardano (ADA), Binance
Coin (BNB), XRP, Tether (USDC), Bitcoin Cash (BCH), Litecoin (LTC), Chainlink (LINK),
Ethereum Classic (ETC), and Stellar (XLM) have positive values. ADA has the highest
median log returns, but DOGE has the highest mean log returns among 14 cryptocurrencies.
The values of kurtosis in the log returns of all cryptocurrencies in Table 2 are greater than 3,
meaning heavy tails compared to normal distribution. BTC, ETH, ADA, BNB, XRP, BCH,
LTC, LINK, and ETC are left skewed while USDT, DOGE, USDC, LUNA, and XLM are
right skewed.
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Table 1. Variable definitions.

Variable Name of Cryptocurrency
BTC Bitcoin
ETH Ethereum
ADA Cardano
BNB Binance Coin

UsDT Tether
XRP XRP (Ripple)
DOGE Dogecoin
UusDC USD Coin
LUNA Terra
BCH Bitcoin Cash
LTC Litecoin
LINK Chainlink
ETC Ethereum Classic
XLM Stellar

Table 2. Summary Statistics.

This Table Reports Summary Statistics of the Major Variables Used in Our Analysis.

Variables N Mean Q1 Median Q3 Max Skewness Kurtosis
BTC 968 0.260 —1.388 0.174 1.911 17.182 —1.525 24.157
ETH 968 0.315 —1.856 0.279 2.861 23.070 —1.553 19.843
ADA 968 0.431 —2.531 0.333 3.074 27.944 —0.350 10.430
BNB 968 0.453 —1.943 0.197 3.135 52.922 —0.193 21.296

USDT 968 —0.002 —0.118 —0.006 0.112 5.339 0.300 57.251
XRP 968 0.119 —-1.912 0.019 1.984 44476 —0.099 19.238
DOGE 968 0.497 —1.980 —0.035 1.730 151.638 6.138 101.913
usDC 968 —0.002 —0.094 0.001 0.098 4.244 0.876 28.523
LUNA 968 0.159 —5.947 —0.254 5.168 236.929 0.245 18.264
BCH 968 0.135 —2.261 0.026 2.787 42.081 —0.557 18.252
LTC 968 0.172 —2.455 0.131 2.668 26.873 —0.990 13.818
LINK 968 0.456 —3.185 0.216 3.863 48.062 —0.404 13.746
ETC 968 0.255 —2.003 0.211 2.337 35.247 —0.075 14.694
XLM 968 0.113 —2.510 0.061 2.353 55.918 0.884 18.391

Table 3 shows Pearson and Kendall correlations between the price log returns of
cryptocurrencies. We can notice that (BTC, ETH), (BTC, XRP), (BTC, BCH), (BTC, LTC),
(ETH, ADA), (ETH, BNB), (ETH, XRP), (ETH, BCH), (ETH, LTC), (ETH, ETC), (ETH, XLM),
(ADA, XRP), (ADA, BCH), (ADA, LTC), (ADA, XLM), (XRP, BCH), (XRP, LTC), (XRP, ETC),
(XRP, XLM), (BCH, LTC), (BCH, ETC), (BCH, XLM), (LTC, ETC), and (LTC, XLM) have high
Pearson and Kendall correlations, greater than or equal to 0.50.

Table 4 shows the augmented Dickey—-Fuller (ADF) unit root tests for the log returns
of 14 cryptocurrencies. The p-values in Table 4 are smaller than the significance level 0.05.
This means that the log returns of the 14 cryptocurrencies are stationary time-series data.
With the tsm and vars R packages, we performed an alternative unit root test when the
data include a structural break in Table 4 and we also rejected the null of unit root with
constant and trend at the 5% significance level. We also performed principal component
analysis by using “prcomp” command in stats R package. Figure 1 shows the 2D and
3D graphical presentations by using the leading two and three principal components in
principal component analysis. From Figure 1, LUNA, USDT, and USDC have different
locations compared to other cryptocurrencies, including BTC and ETH.
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Table 3. Correlation Tables. Data range is from 1/1/2019 to 8/27/2021. Each variable is calculated as

log(Py/P;_1) and expressed as a percentage.

Panel A: Pearson Correlation Matrix

BTC ETH ADA BNB USDT XRP DOGE USDC LUNA BCH LTC LINK ETC
ETH 0.82
ADA 0.67 0.76
BNB 0.66 0.70 0.62
usbT  -0.07 -0.11 —-0.08 —-0.10
XRP 0.57 0.63 0.60 0.54 —0.06
DOGE 0.40 0.38 0.37 0.28 —0.04 0.32
uspCc -0.10 -0.10 —0.08 —0.09 0.66 —-0.05 —0.03
LUNA 0.13 0.09 0.08 0.09 —0.05 0.05 0.04 —0.04
BCH 0.77 0.81 0.70 0.63 —0.09 0.65 0.43 —0.10 0.11
LTC 0.79 0.84 0.73 0.68 —-0.07 0.66 0.42 -0.07 0.10 0.85
LINK 0.57 0.68 0.60 0.56 —0.06 0.53 0.34 —0.08 0.05 0.60 0.63
ETC 0.63 0.72 0.64 0.57 —0.10 0.58 0.45 —0.07 0.04 0.78 0.75 0.55
XLM 0.62 0.69 0.74 0.57 —0.08 0.73 0.39 —0.09 0.06 0.68 0.68 0.58 0.64
Panel B: Kendall Correlation Matrix
BTC ETH ADA BNB USDT XRP DOGE USDC LUNA BCH LTC LINK ETC
ETH 0.61
ADA 0.48 0.57
BNB 0.46 0.51 0.46
USDT 0.06 0.05 0.05 0.02
XRP 0.50 0.57 0.54 0.44 0.05
DOGE 0.47 0.46 0.42 0.38 0.07 0.45
UspC —-0.02 -0.01 0.00 —0.03 0.42 0.00 0.04
LUNA 0.22 0.17 0.12 0.17 —0.04 0.15 0.10 —0.03
BCH 0.58 0.62 0.53 0.47 0.05 0.55 0.46 —0.01 0.17
LTC 0.58 0.63 0.55 0.49 0.05 0.56 0.46 0.00 0.17 0.66
LINK 0.38 0.48 0.44 0.38 0.04 0.41 0.35 0.00 0.10 0.44 0.44
ETC 0.48 0.55 0.49 0.43 0.04 0.50 0.45 0.01 0.14 0.59 0.56 0.40
XLM 0.45 0.53 0.57 0.43 0.04 0.58 0.41 —0.02 0.15 0.51 0.51 0.43 0.49
L
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Figure 1. Graphical display by principal component analysis.

Table 4. Augmented ADF and alternative unit root tests. Data range is from 1/1,/2019 to 8/27/2021.
Each variable is calculated as log(P;/P;_1) and expressed as a percentage.

Cryptocurrency Augmented ADF p-Value Alternative Unit Root Testing under Structural Breaks
BTC —9.5408 0.01 Reject null of unit root at 5%—with constant & trend
ETH —9.2633 0.01 Reject null of unit root at 5%—with constant & trend
ADA —8.8816 0.01 Reject null of unit root at 5%—with constant & trend
BNB —8.0394 0.01 Reject null of unit root at 5%—with constant & trend

USDT —14.345 0.01 Reject null of unit root at 5%—with constant & trend
XRP —9.1692 0.01 Reject null of unit root at 5%—with constant & trend
DOGE —9.4223 0.01 Reject null of unit root at 5%—with constant & trend
UsDC —12.381 0.01 Reject null of unit root at 5%—with constant & trend
LUNA —12.579 0.01 Reject null of unit root at 5%—with constant & trend
BCH —9.5168 0.01 Reject null of unit root at 5%—with constant & trend
LTC —9.7936 0.01 Reject null of unit root at 5%—with constant & trend
LINK —9.5374 0.01 Reject null of unit root at 5%—with constant & trend
ETC —9.0545 0.01 Reject null of unit root at 5%—with constant & trend
XLM —9.6799 0.01 Reject null of unit root at 5%—with constant & trend

3. Econometrical Methods

In this section, we briefly define the econometric methods that we used in this pa-
per. We first want to look at the causality in mean by using the linear Granger causality
(Granger 1969) in a vector autoregressive (VAR) system to explore informational linkages
between pairs of markets. Given any pair of stationary data (X; and Y};), variable X;
Granger-causes Y; linearly, provided that lags of X; offer a significant information for
explaining the current values of Y;. The bivariate Granger causality is specified in a VAR
system as follows:

k k
Xp= @1+ ) a;Xe i+ ) byYi_j + oy 1
i=1 i-1
and

k k
Yi=@a+ ) aX_i+ Y byYi j+ 0 2)
i=1 i=1
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where @1 and ¢, are the constant terms of the system of equations; 2 and b denote estimated
coefficients; k is the optimal lag length based on the Akaike information criterion (AIC);
and vy; and vy; represent residuals from the VAR model. The general format of an error
correction model (ECM) is:

Ayt = Bo+ B1Axj ¢+ -+ Bidxj ¢+ y(Yi—1 — (@1x1, -1+ F XX 1))

The ECM function of the R Package ‘ecm’ in Bansal (2021) modifies the equation to
the following:

Ay = Bo + P1AX; ¢ + - -+ BidX ¢+ YY1+ Y1X1, -1+ -+ ViXG 1

where y; = —a;, so it can be modeled as a simpler ordinary least squares (OLS) function
using R’s Im function.

By default, R’s base ‘Im’ is used to fit the model. However, researchers can opt to use
‘earth’, which uses Jerome Friedman’s multivariate adaptive regression splines (MARS)
to build a nonlinear regression model, which transforms each continuous variable into
piecewise linear hinge functions. This allows for non-linear features in both the transient
and equilibrium terms. ECM models are used for time-series data.

To forecast the log-returns of BTC, we used the Hyndman et al. (2021) “forecast” R
package for employing univariate time-series models, such as autoregressive integrated
moving average (ARIMA) model, exponential smoothing state space (ETS) model, autore-
gressive fractional integrated moving average (ARFIMA) model, BATS model (exponential
smoothing state space model with Box-Cox transformation, ARMA errors, trend and
seasonal components), TBATS, which is a modification of BATS that allows for multiple
non-integer seasonality cycles, and neural network autoregressive (NNAR) model, which is
a feed-forward neural network with a single hidden layer and lagged inputs for forecasting
univariate time series. We also used a hybrid univariate time-series model through the
hybridModel function in “forecastHybrid” R package from Shaub and Ellis (2020). The hy-
bridModel function fits multiple individual model specifications to allow the easy creation
of ensemble forecasts. With our data, the automated selected model from hybridModel
function is (ETS, NNAR, THETAM, TBATS). THETAM fits an exponential smoothing state
space model with an artificial neural network to the target variable, having first performed
classic multiplicative seasonal adjustment. These two “forecast” and “forecastHybrid” R
packages automatically select the best model in each time-series model based on the AIC
model selection method.

4. Data Analysis

In this Section, we look at Granger-causality test and perform a comparison of fore-
casting methods. Firstly, Table 5 shows the Granger-causality test result, which shows
that the Granger cause variables with lag 1 order to BTC are ADA, DOGE, ETC, and XLM,
the Granger cause variables with lag 1 order to ETH are BTC, ADA, DOGE, ETC, and
XLM, and the Granger cause variables with lag 1 order to XRP are BTC and XLM at the 5%
significance level.

To forecast the log returns of BTC, we divide the data into 80% of the total observations
(968), which are the training data (774 observations), and 20% of the total observations
(968), which are the test data (194 observations). To compare the accuracy of the univariate
time series models, we employ three measures.

Root mean square (prediction) error (RMSE):

n YA
RMSE — M (3)
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Mean absolute error deviation (MAE):
n _ A
MAE = Zt:1|zlt yt' (4)
Weighted Mean absolute percentage error ((WMAPE):

Yioalye — 9
WMAPE = ==12_ 70 @)
i1y

The metric errors such as the RMSE, MAE, and WMAPE are used to analyze the
performance of the methods. MAE is not sensitive to outliers as they are weighted less
than the other observations when comparing actual and predicted values. RMSE takes bias
and variance into account, but normalizes the units. Model 1 is a linear ECM model of
BTC with 13 other cryptocurrencies; the summary of estimates is shown in Table 6. The
R-squared of model 1 was 0.883. Model 2 is a nonlinear MARS-based ECM model of BTC
with 13 other cryptocurrencies; the summary of estimates is shown in Table 7. The R-
squared of nonlinear ECM (model 2) was 0.888. Table 8 shows the measures of accuracy of
forecasting BTC. Among the eight different univariate time series models, model 1 has the
smallest values of accuracy in terms of RMSE, MAE, and WMAPE. Thus, our proposed
ECM prediction to BTC price log returns performed better than other univariate time-series
models, including the neural network time-series model. Therefore, our ECM prediction
model can help cryptocurrency market investors to identify threats to capital and earnings
well from an uncertain and unexpected financial volatility. Financial policy committees in
each country can reduce the difficulty of making future financial decisions with predictable
cryptocurrency price log-returns information from our prediction model.

Table 5. Granger Causality Test.

This Table Presents the Correlation Matrix of the Granger Causality. * Indicates Significance
at the 5% Levels. Rows Are Granger-Cause with Lag 1 Order and Columns are Granger Effect.

BTC ETH ADA XRP
BTC 0.006 ** 0.701 0.040 *
ETH 0.768 0.755 0.121
ADA 0.003 ** 0.006 ** 0.068
BNB 0.370 0.351 0.792 0.378
USDT 0.407 0.475 0.520 0.871
XRP 0.085 0.052 0.627
DOGE 0.003 ** 0.001 ** 0.069 0.278
usDC 0.229 0.482 0.455 0.827
LUNA 0.113 0.138 0.156 0.216
BCH 0.655 0.633 0.526 0.666
LTC 0.466 0.037 * 0.199 0.155
LINK 0.220 0.079 0.086 0.110
ETC 0.001 *** 0.001 ** 0.116 0.128
XLM 0.000 *** 0.008 ** 0.910 0.003 **

Note: * 0.10, ** 0.05, and *** 0.01 significance levels.

Table 6. Summary for model 1 with training data.

Estimate Std. Error t Value p-Value
(Intercept) 0.128 0.073 1.756 0.080
deltaLETH 0.379 0.035 10.960 0.000
deltaLADA —0.048 0.025 —1.937 0.053
deltaLBNB 0.081 0.022 3.585 0.000
deltaLUSDT 0.577 0.220 2.622 0.009

deltaLXRP —0.016 0.019 —0.811 0.418
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Table 6. Cont.

Estimate Std. Error t Value p-Value
deltaLDOGE 0.043 0.010 4.405 0.000
deltaLUSDC —0.458 0.215 —2.135 0.033
deltaLLUNA 0.005 0.002 2.316 0.021
deltaLBCH 0.156 0.027 5.736 0.000
deltaLLTC 0.145 0.031 4.701 0.000
deltaLLINK —0.013 0.014 —0.932 0.352
deltaLETC —0.024 0.025 —0.975 0.330
deltaLXLM 0.005 0.022 0.216 0.829
LETHLagl 0.311 0.049 6.395 0.000
LADALagl —0.019 0.036 —0.525 0.600
LBNBLag1 0.079 0.030 2.586 0.010
LUSDTLagl 0.879 0.360 2.442 0.015
LXRPLagl —0.034 0.026 —1.285 0.199
LDOGELag1 0.034 0.014 2.484 0.013
LUSDCLagl —0.639 0.347 —1.841 0.066
LLUNALagl 0.006 0.003 1.781 0.075
LBCHLag1 0.157 0.038 4124 0.000
LLTCLagl 0.139 0.042 3.344 0.001
LLINKLag1 —0.034 0.020 -1.714 0.087
LETCLagl —0.010 0.034 —0.293 0.770
LXLMLagl 0.043 0.030 1.426 0.154
LBTCLagl —0.964 0.037 —26.056 0.000

Note: delta in the table is integrated to the first order, I(1). Residual standard error: 1.988 on 745 degrees of
freedom. Multiple R-squared: 0.883; adjusted R-squared: 0.879; F-statistic: 209 on 27 and 745 DF; p-value: < 0.000.

Table 7. Summary for model 2 with training data.

Estimate of Coefficient

(Intercept) —1.871
yLagl —-0.951
h(—15.1888 — deltaLETH) —0.776
h(deltaLETH — 15.1888) 0.313
h(—6.33698 — deltaLDOGE) —0.032
h(deltaLDOGE — 6.33698) 0.039
h(—4.69091 — deltaLBCH) —0.159
h(deltaLBCH — 4.69091) 0.133
h(2.99004 — deltaLLTC) —0.146
h(deltaLLTC — 2.99004) 0.221
h(—11.788 — deltaLETC) 0.131
h(2.75879 — LETHLag1) —-0.211
h(LETHLagl — 2.75879) 0.299
h(LADALagl — 14.5369) 0.434
h(16.1265 — LDOGELag1) —0.079
h(12.7908 — LBCHLag1) —0.150
h(—3.63013 — LLTCLag1) —0.268
h(LLTCLagl — 3.63013) 0.146

Note: Selected 18 of 22 terms, and 11 of 27 predictors. Termination conditions: RSq changed by less than 0.001 at
22 terms. Number of terms at each degree of interaction: 1 17 (additive model). GCV = 3.999; RSS = 2817.814;
GR-Squared = 0.878; R-Squared = 0.888.
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Table 8. Measures of accuracy of forecasting BTC.

Model 1 Model 2 ARIMA ETS ARFIMA BATS NNAR Hybrid
RMSE 2.531 2.728 4.295 4.294 4.296 4.372 4.292 4.316
MAE 1.845 1.926 3.220 3.220 3.222 3.309 3.218 3.245
WMAPE 0.574 0.600 1.002 1.002 1.003 1.030 1.002 1.010

5. Conclusions

By using linear ECMs and nonlinear ECMs, comprising six different univariate time
series models such as neural network and autoregressive models to predict the price log
returns of cryptocurrencies based on their previous values and relationships with each
other, a better understanding can be achieved on whether they can be used to predict the
log returns of BTC. We found that the linear ECM was the best model compared to other
machine learning univariate time-series models. We can use linear ECM for predicting
future log-return prices of each cryptocurrency with highly correlated cryptocurrencies.
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supervision, C.C. and ].-M.K,; project administration, J.-M.K. All authors have read and agreed to the
published version of the manuscript.
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