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1 Introduction

In this paper, we study the division of a cake by majority decision with lotteries to

break ties. Each of three players proposes a division of the cake. Afterwards, they

choose one of the proposals by majority voting. If no proposal receives a majority, one

of the proposals is chosen by lottery. The essential features of this model are that there

is a definite end of the collective choice process and that no resources are discarded in

case of disagreement.

There is a number of real-world examples in which proposals are made sequentially and

voting takes place after all the proposals have been made. For instance, in legislative

bargaining with simple open rules, agents are appointed sequentially for agenda-setting

and they can make proposals, knowing the proposals made so far. If an agent brings a

set of proposals to vote and one proposal passes, the process ends [see Krehbiel (1991)

for a survey of such legislative organizations]. Moreover, many collective decisions by

committees of public or private organizations are governed by open sequential proposals

followed by a majority vote. The lottery rule for tie-breaking is somewhat less common,

although there is a number of real-world substitutes more or less resembling a lottery.

In some legislatures, for instance, the chairman of a committee does not participate in

the voting itself, but he has a casting vote allowing him to break ties. If his preferences

are not known to the committee members, to them, his tie-breaking move may be

similar to a lottery. One can experience such decision schemes personally in committee

meetings on budget allocations at German universities.

We show here that there is an infinite number of subgame perfect equilibria that all

yield the same two outcomes. In both outcomes, the first player making a proposal

offers the whole cake to the second proposal-maker, who in turn offers the whole cake

back to the first player. The difference between the two outcomes is as follows: The

third player offers half of the cake to himself in both outcomes, while he offers the

other half to the first player in one outcome and to the second player in the other. The

proposal will be chosen by a majority in the voting stage. Hence, in both outcomes,

the cake will merely be divided among 2 players. Player 3 is always one of the two

players receiving half of the cake.

Player 3 is in a dominant position because given any two former proposals, he can

decide which proposal should get a majority by making an adequate proposal himself.

Since Player 2 is aware of this, he will always try to design his proposal in such a
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way that Player 3 will choose him as a partner, thus getting more than Player 1.

Ultimately, this is the reason why Player 1 tries to disadvantage Player 2 as much as

possible by offering the whole cake to Player 2, because then, the only chance Player

2 has of countering this proposal is to offer the whole cake to Player 1 as well. This

competition results in symmetric disadvantages for Players 1 and 2 and it allows Player

3 to choose a partner at random. Player 3 is indifferent about whom to cooperate with

because he has to offer both players the same utility, compensating one of them for a tie

and drawing him into a coalition. Therefore, any mixed strategy by Player 3, to offer

half of the cake to Player 1 or 2, can be played in equilibrium with some probability.

2 Relation to the Literature

Majority rule and drawing lots are standard procedures for dividing resources in collec-

tive choice processes of the kind encountered in legislatures or committees [e.g. Baron

and Ferejohn (1989), Bernholz and Breyer (1994)]. Accordingly, we are interested in

the positive analysis of the division of resources we obtain in such cases. Our work is

related to two strands of literature. First, the division of resources has been studied

from the perspective of alternative collective choice processes. Mueller (1978) examined

the veto rule, under which the resources are thrown away in case in disagreement. In

such games, equilibria show a strong tendency towards equal shares for each individual.

Our analysis deals with majority decisions and takes the view that resources are not

thrown away in case of disagreement, but are subject to a tie-breaking procedure.

Second, Baron and Ferejohn (1989) have examined the division of resources by majority

rule. If no agreement is reached, players can make new proposals. The proposer receives

disproportionate benefits and the number of recipients of positive shares of the cake is

at least a bare majority, but may also exceed this figure. In our case, there is a definite

end to the collective choice process, which forces players to choose between agreement

and tie-breaking procedure.

3 The Game

We consider a game involving three players denoted by i, j, and k = 1, 2, 3 who wish

to divide a cake in the following way:

First, at the proposal stage, the players sequentially make open proposals about the
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division of the cake.

1. Player 1 proposes a division of the cake to Players 2 and 3, not knowing their

proposals.

2. Player 2 makes a second proposal, knowing Player 1’s proposal.

3. Player 3 suggests a division, knowing the proposals of the two former players.

Then, at the voting stage, the group selects one of these proposals1 by majority voting.

An offer receiving 2 or 3 votes will be implemented. If no majority can be reached, i.e.

if each proposal gets one vote,2 the winning proposal is selected by drawing lots and

each proposal is selected with a probability of 1
3
. Hence, the cake is either divided by

majority decision or by lot.

Note that without loss of generality, the labeling of the players and hence the sequence

of proposals by the players is given exogenously.3

A proposal by Player i is denoted by Di = (ai1, ai2, ai3). Accordingly, ai1, ai2, and ai3

denote the shares of the cake offered by Player i to Players 1, 2, and 3 respectively.

The resource constraint implies that
∑3

j=1 aij = 1, ∀i. Thus, after every player has

made his proposal, we obtain

D1 = (a11, a12, a13)

D2 = (a21, a22, a23)

D3 = (a31, a32, a33)

To simplify our presentation, we rewrite the complete set of three proposals as the

matrix

A =




a11 a12 a13

a21 a22 a23

a31 a32 a33


 (1)

Every player is risk-neutral and individual j derives utility4

U : [0, 1] → [0, 1] , U(aij) = aij (2)

1If two proposals coincide, they are treated as one proposal.
2The omission of abstentions will be explained in the characterization of equilibria.
3We might add a pre-stage at which the label of an agent is selected at random. Such an additional

stage would equalize expected utilities across players in case of identical utility functions. Since we
are focusing on actual resource divisions, we skip the pre-stage.

4Since all players are identical, we drop the index for the utility function.
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if the proposal Di is selected by majority voting. The expected utility uj for Player j

in the case of drawing lots is then given by

uj =
1

3

3∑
i=1

aij , j = 1, 2, 3 (3)

In many parts of the analysis, we need the relative quality of the offers made to the

specific players. Therefore, we introduce the rank matrix R. In this matrix, the best

offer (the biggest share of the cake) aij for Player j is labeled 3, the second best 2, and

the worst 1. If two or more offers are identical, they have the same rank. For example

the proposal matrices

A1 =




0.3 0.2 0.5
0.1 0.7 0.2
0.6 0.3 0.1


 A2 =




0.3 0.6 0.1
0.4 0.5 0.1
0.4 0.5 0.1


 (4)

then convert into the rank matrices

R1 =




2 1 3
1 3 2
3 2 1


 R2 =




1 3 3
3 2 3
3 2 3


 (5)

Additionally, we denote the biggest share aij of the cake offered to Player j by Xj, the

second biggest by Yj, and the worst by Zj.

If we label the entries of R as rij (i, j = 1, 2, 3), where rij is the rank of Player i’s

proposal made to Player j, then the conversion function Φ[A] = R is technically given

by

Φ : rij =
3∑

k=1

Θ(aij − akj) (6)

where Θ(p− q) (p, q ∈ IR) is the Heavyside function given by

Θ(p− q) =

{
1 p− q ≥ 0
0 otherwise

(7)

4 Voting Equilibria and Proposal-Making

In this section, we first derive the voting equilibria based on a given set of proposals.

The voting strategy of Player i is to select one proposal.5 We note that the concept

5Allowing abstention does not change the voting equilibria. Abstention is weakly dominated by
voting for the best proposal for Player i.
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of a Nash equilibrium is insufficient for voting games with non-unanimity voting rules,

as it can involve weakly dominated strategies. For that purpose, we use the following

refinements and tie-breaking rules (for cases of indifference between payoffs). These

hold throughout the paper.

4.1 Refinements

Refinement 1

A Nash equilibrium of the voting game has to be trembling hand perfect.6

Trembling hand perfection has two immediate consequences:

Lemma 1

Suppose that refinement 1 holds. Then

(i) A player never votes for the least favorable proposal made to him, i.e. a proposal

labeled 1 in the rank matrix.

(ii) In any Nash equilibrium where agents i and j (i 6= j) vote for the same proposal,

agent k (k 6= i, j) votes for his best proposal.

The elimination of weakly dominated strategies is standard. The second property also

follows directly from the definition of trembling hand perfection, as any error by Players

i or j leads either to a tie-break or to a majority win for the best proposal of voter i.

The next refinement eliminates voting equilibria that are payoff-dominated.

Refinement 2

If only one proposal includes 2 maxima, then it is the unique equilibrium.

This property follows from payoff dominance (see Fudenberg and Tirole 1992). A

proposal with 2 maxima for, say, individuals i and j, is a Nash equilibrium supported

by the votes of i and j. Any other possible Nash equilibrium is worse for i and j and

hence payoff-dominated for the coalition {i, j}.
Even if both refinements are applied, we will still have multiple equilibria. For that pur-

pose, we use the notion of correlated equilibria with public randomization introduced

by Aumann (1974) (see e.g. Myerson 1991 for discussion). This concept assumes that

voters engage in pre-play communication and use a coordination device to settle for

6See Selten (1975) for the original formalization and Fudenberg and Tirole (1992) for a survey.
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a particular equilibrium. Such a device is a publicly observable random variable that

agents use to determine which equilibrium should be played. For instance, agents may

flip a coin, or a mediator may announce the outcome of the randomization process.

This is illustrated in the following example:

A =




0.6 0.0 0.4
0.4 0.1 0.5
0.2 0.8 0.0


 −→ R =




3 1 2
2 2 3
1 3 1


 (8)

In this case, D1 and D2 are equilibria and Player 1 and Player 3 prefer their second-best

offer to a tie-break. Furthermore, these proposals contain the first- and second-best

offer by Player 1 and Player 3. Therefore, we assume that Player 1 and Player 3 are

playing a correlated strategy. With probability p1 = 1
2
, both play D1, and with p2 = 1

2

they play D2.

Accordingly, we use the concept of correlated equilibria as follows:

Refinement 3

A correlated equilibrium arises if two proposals Di, Dj (i 6= j, i, j = 1, 2, 3) are

equilibria7 and they contain the best and second-best offer by the same two players. In

the correlated equilibrium, both players under consideration will vote with probability
1
2

for Di or Dj. The expected payoffs for all players are then given by Cij = 1
2
(Di +Dj).

Note that correlated equilibria cannot be used in particular cases, e.g. when two

equilibria occur:

A =




0.0 0.5 0.4
0.4 0.1 0.5
0.1 0.3 0.6


 −→ R =




1 3 1
3 1 2
2 2 3


 (9)

Here, D2 and D3 are equilibria, but Player 2, who is needed for the majority of D3,

has no incentive to establish a coordination for D2 and D3 because D3 contains his

second-best and D2 his worst offer. These cases are discussed in subsection 4.3 and

ruled out by Refinement 4.

4.2 Tie-breaking Rules

In this subsection, we introduce some tie-breaking rules to simplify the exposition.

Since agents try to receive a share as big as possible, there is only one possible motive

7We can neglect correlated equilibria with public randomization over all three proposals, as they
are equivalent to selecting proposals by lot.
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for an agent to deviate from voting for the best proposal and to vote for the second-

best offer instead: If he cannot establish a majority of votes for his best proposal, the

player will prefer his second-best offer to a tie-break. To illustrate this case, consider

the following example involving the proposal matrix:

A =




0.7 0.0 0.3
0.5 0.5 0.0
0.0 0.1 0.9


 −→ R =




3 1 2
2 3 1
1 2 3


 (10)

Because of Refinement 1, Player 2 votes for D2 and Player 3 for D3. D1, favored

by Player 1, thus has no chance of becoming selected, but Y1 = 1
2

is greater than

u1 = 1
3
( 7

10
+ 1

2
+ 0) = 2

5
, his expected share in the case of drawing lots. Therefore,

Player 1 votes for D2 together with Player 2 to avoid a tie-break decision. The case

where the payoffs of the second-best offer and of drawing lots coincide is resolved in

the following tie-breaking rule:

Tie-Break Rule 1

If Yj = uj, all players will prefer their second-best bid to drawing lots.

Note that “prefer” in tie-breaking rule 1 means that Player i will avoid drawing lots if he

is indifferent between his second-best proposal and drawing lots. The tie-breaking rule

means that Player i will vote for his best proposal if it receives a majority. Otherwise,

he will vote for the second-best proposal. The tie-breaking rule immediately implies

Lemma 2

Suppose that there exists at least one voting equilibrium where a majority is formed.

Then drawing lots will not occur as an equilibrium.

To formulate the next tie-breaking rule, we denote an equilibrium as a single-proposal

equilibrium if that single proposal is selected without the use of random selection

devices. A single-proposal equilibrium necessarily requires that pure voting strategies

are played and that a majority supports one proposal.

Tie-Break Rule 2

If the payoffs coincide, a player will prefer a single-proposal equilibrium to a correlated

equilibrium and a correlated equilibrium to drawing lots.

4.3 Proposal-Making

Having characterized the structure of the voting equilibria, we turn now to proposal-

making. In formulating the proposal-making stage, we face two problems.
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First, multiple voting equilibria may still exist (see e.g. the proposal matrix in equa-

tion 9). Second, players may be indifferent between several proposals (e.g. Player

3 is always indifferent between at least two proposals if D1 = (a11, 1 − a11, 0) and

D2 = (1− a11, a11, 0)).

Addressing the first point, we now introduce another refinement.

Refinement 4

Given the proposals D1 and D2, Player 3 makes his proposal in such a way that the pro-

posal matrix A exhibits either a single-proposal equilibrium, a correlated equilibrium,

or an equilibrium with drawing lots.

This refinement ensures that payoffs are well-defined at the voting stage. This can be

justified by the aversion against strategic uncertainty. A priori, it is unclear whether

Player 3 can always choose among the three options in the refinement. In the proof of

the overall equilibrium, we will show that this is always possible for Player 3.

The second point is handled by an additional tie-breaking rule.

Tie-Break Rule 3

If Player i is indifferent between making several proposals, every proposal is submitted

with the same probability.

4.4 The Structure of Voting Equilibria

After these preparations, we can now provide an overview of the structure of voting

equilibria. We start by calculating equilibria in two examples. For this purpose, we

extend the conversion of proposal matrix A to rank matrix R, since it is often necessary

to distinguish whether it is possible for a player to deviate to his second-best proposal

or not. This is done by introducing rank 2∗ if any Yj ≥ uj (j = 1, 2, 3). If we consider

the example given in (10), we get

A =




0.7 0.0 0.3
0.5 0.5 0.0
0.0 0.1 0.9


 −→ R =




3 1 2
2∗ 3 1
1 2 3


 (11)

To calculate the equilibria, we ask whether Player i deviates, given the votes of Players

j and k (i 6= j 6= k and the players are labeled P1, P2 and P3). If Player i does deviate,

his payoff is underlined.
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P1 −→ D1 P1 −→ D2 P1 −→ D3

P2
P3cc D1 D2 D3

D1

0.7
0.0

0.3

0.7
0.0

0.3

0.7
0.0

0.3

D2

0.7
0.0

0.3

0.5
0.5

0.0

0.4
0.2

0.4

D3

0.7
0.0

0.3

0.4
0.2

0.4

0.0
0.1

0.9

P2
P3cc D1 D2 D3

D1

0.7
0.0

0.3

0.5
0.5

0.0

0.4
0.2

0.4

D2

0.5
0.5

0.0

0.5
0.5

0.0

0.5
0.5

0.0

D3

0.4
0.2

0.4

0.5
0.5

0.0

0.0
0.1

0.9

P2
P3cc D1 D2 D3

D1

0.7
0.0

0.3

0.4
0.2

0.4

0.0
0.1

0.9

D2

0.4
0.2

0.4

0.5
0.5

0.0

0.0
0.1

0.9

D3

0.0
0.1

0.9

0.0
0.1

0.9

0.0
0.1

0.9

In this case, the only equilibrium voting scheme is

P1 −→ D2

P2 −→ D2

P3 −→ D3



 =⇒ D2 is chosen (12)

We see that these calculations can be done simply by regarding the extended rank

matrix. For this purpose, we look at the example given in (8). We obtain the extended

rank matrix

A =




0.6 0.0 0.4
0.4 0.1 0.5
0.2 0.8 0.0


 −→ R =




3 1 2∗

2∗ 2 3
1 3 1


 (13)

and end up with

P1 −→ D1 P1 −→ D2 P1 −→ D3

P2
P3cc D1 D2 D3

D1

3
1

2∗
3

1
2∗

3
1

2∗

D2

3
1

2∗
2∗

2
3

T
T

T

D3

3
1

2∗
T

T
T

1
3

1

P2
P3cc D1 D2 D3

D1

3
1

2∗
2∗

2
3

T
T

T

D2

2∗
2

3

2∗
2

3

2∗
2

3

D3

T
T

T

2∗
2

3

1
3

1

P2
P3cc D1 D2 D3

D1

3
1

2∗
T

T
T

1
3

1

D2

T
T

T

2∗
2

3

1
3

1

D3

1
3

1

1
3

1

1
3

1

Now, two voting schemes are equilibria.

P1 −→ D1

P2 −→ D3

P3 −→ D1



 =⇒ D1 is chosen

P1 −→ D2

P2 −→ D3

P3 −→ D2



 =⇒ D2 is chosen (14)

Since players 1 and 3 form the majority in both voting schemes, these equilibria are

correlated.

In the following, we discuss the possibility of extending rank matrices and their equi-

libria. We denote a single-proposal equilibrium as D∗
i , an equilibrium with drawing

lots as T ∗ and a correlated equilibrium as C∗
ij (i 6= j). In the discussion, the matrices
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described are representatives of a whole class of matrices that can be derived from the

given matrix by interchanging columns and rows, or two entries.

For example 


1 3 2
2 1 3
3 2 1




is, among other things, a representative of



2 1 3
1 3 2
3 2 1


 and




2 3 2
1 1 3
3 2 1




Where convenient, we omit cases with Xi 6= Yi = Zi, because they are qualitatively

equal to cases with Xi 6= Yi 6= Zi ∧ Yi < ui, and we use rij = 2(∗) if the conversion of

aij in 2 or 2∗ does not change the equilibrium outcome.

1. D1 = D2 = D3 −→ R shrinks to a (3× 1) matrix and we have

(
3 3 3

) −→ D∗
1 (15)

2. D1 6= D2 = D3 −→ R shrinks to a (3× 2) matrix and we have
(

3 3 2
3 2 3

)
−→

{
D∗

1

D∗
2

(
3 3 2
2 2 3

)
−→ D∗

1 (16)

3. D1 6= D2 6= D3

(a) X1 = Y1 = Z1 ∧ X2 6= Y2 6= Z2 ∧ X3 6= Y3 6= Z3




3 3 1
3 2(∗) 2(∗)

3 1 3


 −→

{
D∗

1

D∗
3

(17)

(b) X1 = Y1 6= Z1 ∧ X2 = Y2 6= Z2 ∧ X3 = Y3 6= Z3




3 1 3
3 3 1
1 3 3


 −→





D∗
1

D∗
2

D∗
3

(18)

(c) X1 = Y1 6= Z1 ∧ X2 = Y2 6= Z2 ∧ X3 6= Y3 6= Z3




3 1 3
3 3 1
1 3 2(∗)


 −→

{
D∗

1

D∗
2

(19)
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(d) X1 = Y1 6= Z1 ∧ X2 6= Y2 6= Z2 ∧ X3 6= Y3 6= Z3




3 1 3
3 3 1
1 2(∗) 2(∗)


 −→

{
D∗

1

D∗
2




3 1 2(∗)

3 3 1
1 2(∗) 3


 −→ D∗

2




3 1 2(∗)

3 2(∗) 1
1 3 3


 −→ D∗

3

(20)

(e) X1 6= Y1 6= Z1 ∧ X2 6= Y2 6= Z2 ∧ X3 6= Y3 6= Z3

i. Doublemax:=
(∃ rij = rik = 3 j 6= k i, j, k ∈ {1, 2, 3})




3 3 2
1 2(∗) 3
2(∗) 2 1


 −→ D∗

1 (21)

ii. Y1 < u1 ∧ Y2 < u2 ∧ Y3 < u3 ∧ no Doublemax




1 3 2
2 1 3
3 2 1


 −→ L∗ (22)

iii. Y1 ≥ u1 ∧ Y2 < u2 ∧ Y3 < u3 ∧ no Doublemax




1 3 2
2∗ 1 3
3 2 1


 −→ D∗

2 (23)

iv. Y1 ≥ u1 ∧ Y2 ≥ u2 ∧ Y3 < u3 ∧ no Doublemax




1 3 2
2∗ 1 3
3 2∗ 1


 −→

{
D∗

2

D∗
3




1 1 3
2∗ 3 2
3 2∗ 1


 −→ C∗

23




1 3 1
3 1 2
2∗ 2∗ 3


 −→ D∗

3

(24)

v. Y1 ≥ u1 ∧ Y2 ≥ u2 ∧ Y3 ≥ u3 ∧ no Doublemax




1 3 2∗

2∗ 1 3
3 2∗ 1


 −→





D∗
1

D∗
2

D∗
3




1 1 3
2∗ 3 2∗

3 2∗ 1


 −→ C∗

23 (25)

11



5 Division of the Cake

In this section, we derive the overall equilibrium of the game. For that purpose, we

have to compare the expected payoffs for the different players. Accordingly, we denote

the expected payoff of Player i by πi (i = 1, 2, 3).

5.1 Overall Equilibrium

The solution of the game is given by the following theorem.8

Theorem 1

There exist two overall equilibria of the game

D1 = (0, 1, 0)
D2 = (1, 0, 0)
D3 = (1

2
, 0, 1

2
)

or
D1 = (0, 1, 0)
D2 = (1, 0, 0)
D3 = (0, 1

2
, 1

2
)

(26)

where D3 = (1
2
, 0, 1

2
) is a single-proposal equilibrium supported by Players 1 and 3, and

D3 = (0, 1
2
, 1

2
) is a single-proposal equilibrium supported by Players 2 and 3. As Player

3 is indifferent between D3 = (1
2
, 0, 1

2
) and D3 = (0, 1

2
, 1

2
), he will make either proposal

with a probability of 1
2

(Tie-Break Rule 3). For the payoffs, this implies

π1 =
1

4
π2 =

1

4
π3 =

1

2

The proof of the theorem follows directly from Corollary 1 and Propositions 5 and 6

in subsections 5.3, 5.4, and 5.5.

This theorem can be motivated as follows: If Player 1 makes any proposal D1 6= (0, 1, 0),

Player 2 will counter it with a proposal D2 such that π1 is less than 1
4
. But by proposing

D1 = (0, 1, 0), Player 1 makes Player 2 so unattractive that any counter-proposal

D2 6= (1, 0, 0) will give Player 2 a payoff π2 of less than 1
4
. This implies that ultimately,

the cake is divided half-by-half between Players 1 and 3 or Players 2 and 3.

5.2 Strategy of the Proof

We prove Theorem 1 by backward induction. This is illustrated in the following steps:

Step 1: We determine the best response of Player 3 given any D1 and D2 and cal-

culate the minimum payoff π3, given specific relations between D1 and D2.

8The solution has been conjectured in Gersbach and Wehrspohn (2001).
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Step 2: Given D1 6= (0, 1, 0), we determine a proposal D2 giving Player 2 a payoff of

π2 such that, together with the minimum payoff of π3 of Player 3 from step

1, the resource constraint implies π1 < 1
4

for Player 1.

Step 3: Given D1 = (0, 1, 0), we calculate the payoff π2 if Player 2 makes any pro-

posal D2 6= (1, 0, 0) and compare this with his payoff π2 when proposing

D2 = (1, 0, 0).

5.3 Strategy of Player 3

Given D1, D2, Player 3’s ambition is to maximize his share of the cake by making an

appropriate proposal D3.

Given D1 and D2, Player 3 will generally consider four possible equilibrium outcomes

when designing his proposal D3.

I: D3 is a single-proposal equilibrium.

II: D1 or D2 is a single-proposal equilibrium.

III: A correlated equilibrium arises.

IV: The cake is divided by drawing lots.

We now give examples of cases where the different designing principles (I-IV) are the

best reactions of Player 3. The detailed rationalization of the best reaction of Player

3 will be given in the proof.

I :
D1 = (0.7, 0.3, 0.0)
D2 = (0.3, 0.5, 0.2)

}
=⇒ D3 = (0.0, 0.4, 0.6) =⇒ D∗

3

II9 :
D1 = (0.1, 0.3, 0.6)
D2 = (0.5, 0.5, 0.0)

}
=⇒ D3 = (1.0, 0.0, 0.0) =⇒ D∗

1

III :
D1 = (0.0, 0.9, 0.1)
D2 = (0.4, 0.1, 0.5)

}
=⇒ D3 = (0.2, 0.0, 0.8) =⇒ C∗

23

IV :
D1 = (0.1, 0.1, 0.8)
D2 = (0.6, 0.4, 0.0)

}
=⇒ D3 = (0.0, 0.7 + ε, 0.3− ε) =⇒ L∗

with ε > 0 and infinitesimally small.

9In this case, we have a continuum of best proposals D3 = (a31, a32, 1−a31−a32) with a31 ∈ (0.9, 1]
and a32 ∈ [0, 1− a31].
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The kind of equilibrium outcome (I–IV) Player 3 prefers depends strongly on the

relations between the proposals D1 and D2, characterized by the submatrix a of the

proposal matrix A, which is defined by

A =




a13a
a23

a31 a32 a33


 =⇒ a =

(
a11 a12

a21 a22

)
(27)

and the corresponding rank matrix ρ, which is calculated from a in a similar way as R

from A:

ρ = φ[a] =

(
ρ11 ρ12

ρ21 ρ22

)

where φ is defined in a similar way to Φ (see (6)) as

φ : ρij =
2∑

k=1

Θ(aij − akj) (28)

The relevance of a and ρ will be shown in the proofs of the following propositions and

corollaries.

Proposition 1

Given D1 and D2 and that ρ is symmetric =⇒ determining the best reaction of Player

3 implies π3 ≥ 3
8
.

Corollary 1

Given D1 = (0, 1, 0) and D2 = (1, 0, 0) =⇒ Player 3’s best proposal is D3 = (0, 1
2
, 1

2
) or

D3 = (1
2
, 0, 1

2
), which implies π1 = π2 = 1

4
and π3 = 1

2
.

Proposition 2

Given D1, D2, a 6=
(

0 0
1
2

1
2

)
∨

(
1
2

1
2

0 0

)
and that ρ is non-symmetric =⇒ determining

the best reaction of Player 3 implies π3 > 1
4
.

Corollary 2

Given a =

(
0 0
1
2

1
2

)
∨

(
1
2

1
2

0 0

)
=⇒ Player 3’s best proposal is D3 = (1

2
+ε, 1

4
, 1

4
−ε)

or D3 = (1
4
, 1

2
+ ε, 1

4
− ε), which implies π1 = π2 = 7

16
+ ε

4
and π3 = 1

8
− ε

2
.

(The proofs are given in the appendix).
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5.4 Strategy of Player 2

In this section, we analyze possible reactions by Player 2, given D1 and the reaction of

Player 3 derived in section 5.3.

For that purpose, we divide the proposal set of D1 given by

P = {(a11, a12)|(a11, a12) ∈ [0, 1]× [0, 1− a11]} (29)

into four subsets:

A =
[

1
2
, 1

]× [0, 1− a11] \
(

1
2
, 1

2

)

B =
[
0, 1

2

]× [0, 1− a11] \ (0, 1)

C =
[
0, 1

2

)× [
0, 1

2

)

D∗ = (0, 1)

(30)

Proposition 3

∀ D1 ∈ A ∪ B ∃ a proposal10 Ds
2 of Player 2, such that ρ is symmetric and π2 > 3

8
.

Corollary 3

If for D1 ∈ A ∪ B ∃ a proposal11 Dns
2 of Player 2, such that ρ is non-symmetric and

π2(D
ns
2 ) ≥ π2(D

s
2) =⇒ π2(D

ns
2 ) ≥ 1

2
or π1(D

ns
2 ) < 1

4
.

Proposition 4

∀ D1 ∈ C ∃ a proposal Dns
2 of Player 2, such that ρ is non-symmetric and π2 ≥ 1

2
or

the best proposal Dns
2 with ρ non-symmetric for Player 2 implies π1 = 0.

Corollary 4

If for D1 ∈ C ∃ a proposal Ds
2 of Player 2, such that ρ is symmetric and π2(D

s
2) ≥

π2(D
ns
2 ) =⇒ π2(D

s
2) > 3

8
.

Proposition 5

Given D1 = (0, 1, 0), the best reaction of Player 2 is D2 = (1, 0, 0).

(The proofs are given in the appendix).

10Ds
2 is a proposal made by Player 2 such that a is symmetric.

11Dns
2 is a proposal made by Player 2 such that a is non-symmetric.

15



5.5 Strategy of Player 1

Since Player 1 anticipates the reactions of Players 2 and 3, we obtain the following

proposition:

Proposition 6

The best proposal of Player 1 is D1 = (0, 1, 0).

Proof of Proposition 6

(i) Suppose D1 6= (0, 1, 0) and D2 with ρ symmetric is the best reaction of Player 2

=⇒ π3 ≥ 3
8

(Proposition 1) and π2 > 3
8

(Proposition 3 and Corollary 3)

=⇒ together with the resource constraint, we obtain π1+
> 3

8
π2 +

≥ 3
8

π3= 1 =⇒ π1 < 1
4
.

(ii) Suppose D1 6= (0, 1, 0) and D2 with ρ non-symmetric is the best reaction of

Player 2

=⇒ π3 > 1
4

Proposition12 2) and π2 ≥ 1
2
∨ π1 < 1

4
(Corollary 3 and Proposition 4)

=⇒ together with the resource constraint, we obtain π1+
≥ 1

2
π2 +

> 1
4

π3= 1 =⇒ π1 < 1
4
,

or we have directly π1 < 1
4
.

=⇒ (i) and (ii), together with Corollary 1 and Proposition 5, imply that D1 = (0, 1, 0)

is the best proposal for Player 1.

6 Discussion and Conclusion

We have examined a common collective choice process to study the allocation of re-

sources among a group of people. The analysis reveals that the first two agents want to

make each other as unattractive as possible with regard to the third agent’s proposal.

To do so, they offer each other the whole cake, and the third player can ensure that he

obtains one half of the cake.

This outcome exhibits a powerful last-mover advantage, whereas the other players

are forced to make strategic proposals involving zero resources for themselves. They

expect 1
4

of the cake. Additionally, it seems surprising that the first player can totally

12Note that neither D2 = ( 1
2 , 1

2 , 0) is the best reaction of Player 2 given that D1 = (0, 0, 1), nor is
D2 = (0, 0, 1) the best reaction of Player 2 given that D1 = ( 1

2 , 1
2 , 0).
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outweigh the second-mover advantage of the second player. The way in which these

characteristics extend to group decisions with a larger number of individuals is an

important avenue to future research. Of course, there is a variety of game-theoretic

considerations and alternative refinement concepts that can be examined. How robust

our main findings are with regard to such extensions remains to be explored. A further

useful extension of our framework would be to consider the role of risk preferences. A

large literature has generated the finding that it is disadvantageous to be relatively risk

averse in bargaining settings.13 Harrington (1989 and 1990) has, however, shown that

in bargaining games in which acceptance of a proposed allocation only requires the

approval of a majority, it is advantageous for a player to be relatively risk averse. How

risk aversion in our model affects the utility of each member would be be an interesting

research project.

13At least since Zeuthen (1930), risk preferences have been thought to be an important determinant
of the outcome of bargaining. The role of risk preferences in a bargaining setting has been examined
using both an axiomatic framework [see Roth (1979), Kihlstrom, Roth and Schmeidler (1981), Nielsen
(1984)] and a non-cooperative game framework [Roth (1985), Binmore, Rubinstein and Wolinksy
(1986) and Harrington (1986)]. These studies have confirmed that the more risk averse an agent is,
the lower his share. Notable exceptions to this finding are described by Roth and Rothblum (1982)
and Osborne (1985).
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7 Appendix

We have already mentioned that the specific relations between D1 and D2 are relevant
for the construction of the best reaction D3 given by ρ and a. Now we need a more
detailed specification of the relations between the entries of a. Therefore we define

µj = 1
2
(a1j + a2j)

µ = max{µ1 , µ2}
µ = min{µ1 , µ2}
xj = max{a1j , a2j}
yj = min{a1j , a2j}
x = min{x1 , x2}

7.1 Proof of Propositions 1 and 2 and Corollaries 1 and 2

Before we start, note that the best reaction D3 is not always unique (i.e. x1 = x2∧y1 =
y2, or see footnote 9). But as we only want to determine the minimum share of the
cake for Player 3, it is sufficient to give only one best reaction.

7.1.1 Proof of Proposition 1

There are three different possibilities for ρ to be symmetric:

ρ1 =

(
2 1
1 2

)
ρ1′ =

(
1 2
2 1

)
ρ2 =

(
2 2
2 2

)
(31)

For ρ2 we have D1 = D2, and the best proposal D3 is given by

1. If D1 = (0, 0, 1) ⇒ D3 = (0, 0, 1)

2. If D1 6= (0, 0, 1) ⇒ D3 = (x+ε, 0, 1−x−ε) if x1 = x and D3 = (0, x+ε, 1−x−ε)
if x2 = x.

For ρ1 or ρ1′ it is sufficient to analyze ρ1 only, as the same arguments follow for ρ1′ by
exchanging the columns in matrix a.

For ρ1 A is given by

A =




x1 y2 a13

y1 x2 a23

a31 a32 a33


 with

a13 = 1− x1 − y2

a23 = 1− x2 − y1

a33 = 1− a31 − a32

(32)
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To calculate the best reaction of Player 3, the following properties of A are relevant:

(i) xi > a3i ≥ µi =⇒ Φ(xi) = 3, Φ(yi) = 1, Φ(a3i) = 2∗

(ii) xi > yi > a3i > 2yi − xi =⇒ Φ(xi) = 3, Φ(yi) = 2, Φ(a3i) = 1

(iii) xi > yi > a3i and a3i ≤ 2yi − xi=⇒ Φ(xi) = 3, Φ(yi) = 2∗, Φ(a3i) = 1

(iv) xi = a3i > yi =⇒ Φ(xi) = 3, Φ(yi) = 1, Φ(a3i) = 3

With these properties we distinguish six different kinds of proposals D3 discussed in
detail below:

D
µ

3 Dµ
3 Dµi

3 Dx
3 DCor

3 DL
3

D
µ

3 : Player 3 offers Player 1 or 2 µ and keeps the rest for himself, such that D3 is a
unique equilibrium and he receives a payoff π3 = 1− µ. For example




x1 y2 a13

y1 x2 a23

µ 0 1− µ


 −→




3 2 2
1 3 1
2∗ 1 3


 ;

D1 = (0.7 0.1 0.2)
D2 = (0.1 0.8 0.1)

D
µ

3 = (0.4 0.0 0.6)
(33)

Dµ
3 : Player 3 offers Player 1 or 2 µ and keeps the rest for himself, such that D3 is a

unique equilibrium and he receives a payoff π3 = 1− µ. For example




x1 y2 a13

y1 x2 a23

0 µ 1− µ


 −→




3 1 1
2 3 2
1 2∗ 3


 ;

D1 = (0.6 0.4 0.0)
D2 = (0.2 0.6 0.2)

Dµ
3 = (0.0 0.5 0.5)

(34)

Dµi
3 : Player 3 offers Player i a3i = µi, Player j a3j = 2yj − xj + ε and keeps the

rest for himself, such that D3 is a unique equilibrium and he receives a payoff
π3 = 1− (µi + 2yj − xj + ε) (i, j = 1, 2 i 6= j and 2yj − xj ≥ 0). For example




x1 y2 a13

y1 x2 a23

µ1 2y2 − x2 + ε 1− (µ1 + 2y2 − x2 + ε)


 −→




3 2 2
1 3 1
2∗ 1 3


 (35)

D1 = (0.58 0.38 0.04 )
D2 = (0.32 0.68 0.00 )
Dµ1

3 = (0.45 0.08 + ε 0.47− ε )

Dx
3 : Player 3 offers Player 1 or 2 x and keeps the rest for himself, such that D3 is a

unique equilibrium and he receives a payoff π3 = 1− x. For example




x1 y2 a13

y1 x2 a23

x 0 1− x


 −→




3 2∗ 1
2 3 2
3 1 3


 ;

D1 = (0.52 0.40 0.08)
D2 = (0.30 0.54 0.16)
Dx

3 = (0.52 0.00 0.48)
(36)
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DCor
3 : Player 3 offers Player i a3i = µi, Player j a3j = 0

and keeps the rest for himself, such that D3 is part of the correlated equilibrium
and he receives a payoff π3 = 1

2
(1− µi + ai3). For example




x1 y2 a13

y1 x2 a23

µ1 0 1− µ1


 −→




3 2 2∗

1 3 1
2∗ 1 3


 ;

D1 = (0.57 0.07 0.46)
D2 = (0.37 0.66 0.00)
Dcor

3 = (0.47 0.00 0.53)
(37)

DT
3 : (a) Player 3 proposes D3 = (0, 0, 1) if 2yi < xi (i = 1, 2), such that the proposal

is selected by drawing lots and he receives a payoff π3 = 1− 1
3
(x1+x2+y1+y2).

For example




x1 y2 a13

y1 x2 a23

0 0 1


 −→




3 2 1
2 3 2
1 1 3


 ;

D1 = (0.61 0.09 0.30)
D2 = (0.29 0.71 0.00)
DT

3 = (0.00 0.00 1.00)
(38)

(b) Player 3 offers Player i a3i = 2yi − xi + ε if 2yi ≥ xi and Player j a3j = 0
if 2yj < xj (i 6= j) and keeps the rest for himself, such that the proposal is
selected by drawing lots and he receives a payoff π3 = 1− 1

3
(3yi +xj +yj +ε).

For example




x1 y2 a13

y1 x2 a23

0 2y2 − x2 + ε2 1− (2y2 − x2 + ε2)


 −→




3 2 1
2 3 2
1 1 3


 (39)

D1 = (0.58 0.30 0.12 )
D2 = (0.05 0.55 0.40 )
DT

3 = (0.00 0.05 + ε 0.95− ε )

Note that constructing D3 in such a way that D1 or D2 are unique equilibria or D1 and
D2 form a correlated equilibrium can never be better than Dx

3 , since 1− x ≥ ai3 (i =
1, 2) and offering Dx

3 is always possible for Player 3 if ρ symmetric. This ensures that
Refinement 4 can always be satisfied and Player 3’s best reaction is an element of
{Dµ

3 , Dµ
3 , Dµi

3 , Dx
3 , D

Cor
3 , DT

3 }
In the following we calculate for every proposal D

µ

3 , Dµ
3 , Dµi

3 , Dx
3 , DCor

3 and DL
3 the

feasible set in which it is the best reaction of Player 3. Also, we minimize the payoff π3

giving the best reaction and the feasible set. In the course of these calculations we will
often draw upon the argument of contradiction. Accordingly, we introduce the sign

¢¢¡¡¢
¢® to indicate a conclusion that contradicts the assumptions. Since every feasible set
is bounded by linear inequalities we can calculate min{π3} given the best reaction of
Player 3 by a simplex algorithm.14

14This minimization is done by Maple. Since the constraints are linear, there exists a finite algorithm
for calculating the extrema. These are located in the corners of the 4-dimensional hyper-polyeder.
The number of constraints does not exceed 30. Thus the problem has less than

(
30
4

) ≈ 105 corners,
which can be checked in a few seconds using a 2GHz processor.
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1. D
µ

3

Constraints on D
µ

3 being the best proposal for Player 3 (w.l.o.g µ1 = µ):

1. µ1 ≤ µ2

2. 2y2 < x2

3. ai3 ≤ aj3

4. 1− µ1 + ai3 > 2aj3

}
i, j = 1, 2 i 6= j

• Drawing lots versus D
µ

3 :

umax
3 = 1

3

( a13︷ ︸︸ ︷
1− x1 − y2 +

a23︷ ︸︸ ︷
1− x2 − y1 +

amax
33︷︸︸︷
1

)
µ1≤µ2

≤ 1− 2
3
(x1 + y1) < 1− 1

2
(x1 + y1) = 1− µ = a33(D

µ

3 )

(40)

• Correlated equilibrium versus D
µ

3 :

1− µ > 1
2
(1− µ + ai3), i = 1, 2.

• Simplex minimization for Player 3:

πmin
3 (D

µ

3 ) = 1
2

(41)

•

General example:




0.6 0.3 0.1
0.2 0.8 0.0
0.4 0.0 0.6




Minium payoff example:




7
10

3
10 0

3
10

7
10 0

1
2 0 1

2




2. Dµ
3

Constraints on Dµ
3 being the best proposal for Player 3 (w.l.o.g µ2 = µ):

1. 2y2 ≥ x2

2. 2y1 < x1

3. µ2 ≤ x
4. ai3 ≤ aj3

5. 1− µ2 + ai3 > 2aj3

}
i, j = 1, 2 i 6= j

6. µ1 + 2y2 − x2 ≥ µ2

• Drawing lots versus Dµ
3 :

umax
3 = 1

3

( a13︷ ︸︸ ︷
1− x1 − y2 +

a23︷ ︸︸ ︷
1− x2 − y1 +

amax
33︷ ︸︸ ︷

1− (2y2 − x2)
)

= 1− 1
3
(x1 + y1)− y2

(42)
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We have

x1 + y1

µ2≤x

≥ 1
2
(x2 + y2)

2y2≥x2≥ 3
2
(x2 − y2)

=⇒ 1− 1

3
(x1 + y1)− y2

︸ ︷︷ ︸
umax
3

≤ 1− 1

2
(x2 + y2)

︸ ︷︷ ︸
a33(D

µ
3 )

(43)

• Correlated equilibrium versus Dµ
3 :

Suppose π3(Correlated equilibrium) > a33(D
µ
3 ) =⇒

πmax
3 (Correlated equilibrium)︷ ︸︸ ︷

1

2
(1− µ1 + 1− x1 − y2) >

a33(Dµ
3 )︷ ︸︸ ︷

1− µ2 =⇒ 1

2
(y1 − x1)

︸ ︷︷ ︸
<0

> 2− x2︸ ︷︷ ︸
>0

¢¢¡¡¢
¢®

(44)

• Simplex minimization for Player 3:

πmin
3 (Dµ

3 ) =
3

7
(45)

•

General example:




0.6 0.34 0.06
0.2 0.50 0.30
0.0 0.42 0.58




Minium payoff example:




4
7−ε 3

7+ε 0

2
7+ε 5

7−ε 0

0 4
7

3
7




3. Dµi
3

Constraints on Dµi
3 being the best proposal for Player 3 (w.l.o.g. we consider

only the constraints for Dµ1

3 ):

(i)
1. 2y2 ≥ x2

2. 2y1 < x1

3. µ1 + 2y2 − x2 < x
4. µ1 + 2y2 − x2 < µ2

5. ai3 ≤ aj3

6. 1− (µ1 + 2y2 − x2 + ε) + ai3 > 2aj3

}
i, j = 1, 2 i 6= j

• Drawing lots versus Dµ1

3 :

(a) µ2 < x see argumentation for Dµ
3 .

(b) µ2 ≥ x =⇒ x = x1 and with µ1 + 2y2 − x2 < x1 =⇒
x1 + y1 < 2x1 + 2x2 − 4y2 < 4(x2 − y2) < 6(x2 − y2) =⇒
umax

3 = 1− 1
3
(x1 + y1)− y2 < 1− µ1 − (2y2 − x2) = a33(D

µ1

3 )
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• Correlated equilibrium versus Dµi
3

For constraint set (i) we have µ2 > µ1 + 2y2 − x2

• Simplex minimization for Player 3:

πmin
3 (Dµi

3 (i)) >
3

7
(46)

•

General example:




0.55 0.4 0.15
0.27 0.7 0.03
0.41 0.1 + ε 0.49− ε




Minium payoff example:




4
7

3
7 0

2
7−2ε 7

10 2ε

3
7−ε 1

7
3
7+ε




(ii)
1. 2y1 ≥ x1

2. 2y2 ≥ x2

3. µ1 + 2y2 − x2 < x
4. µ1 + 2y2 − x2 ≤ µ2 + 2y1 − x1

• Drawing lots versus Dµ1

3 :

umax
3 = 1

3

( a13︷ ︸︸ ︷
1− x1 − y2 +

a23︷ ︸︸ ︷
1− x2 − y1 +

amax
33︷ ︸︸ ︷

1− 2y1 + x1 − ε− 2y2 + x2 − ε′
)

= 1− (y1 + y2)− 1
3
(ε + ε′)

(47)
and

y1 + y2

2y1≥x1
2y2≥x2≥ x =⇒

1− (y1 + y2)− 1

3
(ε + ε‘)

︸ ︷︷ ︸
umax
3

< 1− x
µ1+2y2−x2<x

≤ 1− (µ1 + 2y2 − x2 + ε)︸ ︷︷ ︸
a33(D

µ1
3 )

(ε ≤ x− (µ1 + 2y2 − x2)
(48)

• Correlated equilibrium versus Dµi
3

µ2 + 2y1 − x1 ≥ µ1 + 2y2 − x2

• Simplex minimization for Player 3:

πmin
3 (Dµi

3 (ii)) >
3

8
(49)

• Examples

23



General example:




0.55 0.4 0.05
0.27 0.7 0.03
0.41 0.1 + ε 0.49− ε




Minium payoff example:




5
8+2ε 3

8−4ε 2ε

3
7

5
8 0

4
8+ε 1

8−8ε+ε′ 3
8+7ε−ε′


 (ε′ < ε)

4. Dx
3

Constraints on Dx
3 being the best proposal for Player 3:

(i)
1. 2y2 ≥ x2

2. 2y1 < x1

3. µ2 ≥ x
4. µ1 + 2y2 − x2 > x

• Drawing lots versus Dx
3 :

umax
3 =

1

3
(a13 + a23 + 1− (µ1 + 2y2 − x2 + ε)︸ ︷︷ ︸

a33(D
x
3 )

)

a13≤1−x

a23≤1−x

≤ a33(D
x
3)

• Correlated equilibrium versus Dx
3 :

For a correlated equilibrium we need µ1 = µ. Otherwise it could not be

better than Dx
3 , since 1− µ1 is part of the correlated payoff of Player 3 and

1− µ1 ≤ 1− x.

Additionally we need the following rank matrix:



x1 y2 1− x1 − y2

y1 x2 1− y1 − x2

µ1 0 1− µ1


 −→




3 2∗ 2∗

1 3 1
2∗ 1 3


 (50)

This implies the following three conditions for the existence of a correlated
equilibrium:

(a) µ1 < µ2

(b) a23 < a13

(c) 1− µ1 + a23 < 2a13

Two cases are possible x1 = x ∨ x2 = x

(a) Suppose x1 = x =⇒
1− µ1 + a23 < 2a13 ⇐⇒ 3x1 + 4y2 < 3y1 + 2x2 and

2y1 < x1 ⇐⇒ 3x1 + 4y2 > 6y1 + 4y2

2y2≥x2≥ 6y1 + 2x2 ≥ 3y1 + 2x2 ¢¢¡¡¢
¢®

(51)
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(b) Suppose x2 = x =⇒ ρ is no longer symmetric.

• Simplex minimization for Player 3:

πmin
3 (Dx

3(i)) >
3

7
(52)

• Examples

General example:




0.55 0.45 0.00
0.27 0.72 0.01
0.55 0.00 0.45




Minium payoff example:




4
7−ε 3

7+ε 0

2
7−11ε 5

7−3ε 14ε

4
7−ε 0 3

7+ε




(ii)
1. 2y2 ≥ x2

2. 2y1 < x1

3. µ2 ≤ x
4. µ1 + 2y2 − x2 ≥ µ2

5.15 a13 ≤ a23

6. 1− µ2 + a13 ≤ 2a23

7. 1
2
(1− µ2 + a23) ≤ 1− x

• Drawing lots versus Dx
3 :

If (x1 = x) constraint (4.) fails and if (x2 = x) the additionally required
constraint 1

3
(1− (2y2 − x2) + a13 + a23) > 1− x fails.

• Correlated equilibrium versus Dx
3 :

See constraint (7.)

• Simplex minimization for Player 3:

πmin
3 (Dx

3(ii)) =
3

7
(53)

• Examples

General example:




0.55 0.45 0.00
0.07 0.56 0.37
0.55 0.00 0.45




Minium payoff example:




4
7

3
7 0

1
14

4
7

5
14

4
7 0 3

7




15Note that a13 > a23 is not possible. Suppose a13 > a23 =⇒ condition (6.) converts to 1−µ2+a23 ≤
2a13 =⇒ 4x1 − 2y1 + 3y2 ≤ 3x2

µ2≤µ1+2y2−x2≤ x1 + y1 + 3y2 =⇒ 3x1 ≤ 2y1 ¢¢¡¡¢
¢®
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(iii)
1. 2y2 ≥ x2

2. 2y1 < x1

3. µ1 + 2y2 − x2 ≤ x
4. µ1 + 2y2 − x2 ≤ µ2

5.16 a13 ≤ a23

6. 1− (µ1 + 2y2 − x2) + a13 ≤ 2a23

7. 1
2
(1− µ2 + a23) ≤ 1− x

8. 1− (2y2 − x2) + a13 > 2a23

9. 1
3
(1− (2y2 − x2) + a13 + a23) ≤ 1− x

• Drawing lots versus Dx
3 :

The same argumentation holds as for constraint set (i) of Dµi
3 .

• Correlated equilibrium versus Dx
3 :

The same argumentation holds as for constraint sets (i) and (ii) of Dx
3

• Simplex minimization for Player 3:

πmin
3 (Dx

3(iii)) =
3

8
(54)

• Examples

General example:




0.6 0.38 0.02
0.1 0.61 0.29
0.6 0.00 0.40




Minium payoff example:




5
8

3
8 0

1
8

5
8

2
8

5
8 0 3

8




(iv)
1. 2y2 ≥ x2

2. 2y1 ≥ x1

3. µ1 + 2y2 − x2 ≥ x
4. µ2 + 2y1 − x1 ≥ x

• Drawing lots versus Dx
3 :

umax
3 ≤ 1− x follows directly from constraints (3.) and (4.).

• Correlated equilibrium versus Dx
3 :

πmax
3 (Correlated equilibrium) ≤ 1− x follows directly from constraints (3.)

and (4.).

16Note that a23 < a13 is not possible. Suppose a23 < a13 =⇒ condition 6. converts to 1 − (µ1 +

2y2 − x2) + a23 ≤ 2a13 =⇒ x1 < y1 ¢¢¡¡¢
¢® .
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• Simplex minimization for Player 3:

πmin
3 (Dx

3(iv)) =
3

8
(55)

• Examples

General example:




0.60 0.40 0.0
0.35 0.65 0.0
0.60 0.00 0.4




Minium payoff example:




5
8

3
8 0

3
8

5
8 0

5
8 0 3

8




5. Constraints on DCor
3 being the best proposal for Player 3:

(i)
1. 2y2 ≥ x2

2. 2y1 < x1

3. µ2 ≤ x
4. µ1 + 2y2 − x2 ≥ µ2

5.17 a13 ≤ a23

6. 1− µ2 + a13 ≤ 2a23

7. 1
2
(1− µ2 + a23) < 1− x

8. 1− (2y2 − x2) + a13 > 2a23

9. 1
3
(1− (2y2 − x2) + a13 + a23) ≤ 1

2
(1− µ2 + a23)

• Drawing lots versus Dcor
3 : See constraint (9.).

• Simplex minimization for Player 3:

πmin
3 (Dcor

3 (i)) >
3

8
(56)

• Examples

General example:




0.58 0.42 0.00
0.06 0.58 0.36
0.00 0.50 0.50




Minium payoff example:




5
8−ε 3

8+ε 0

1
8−5ε 5

8−ε 1
4+6ε

0 1
2

1
2




17See footnote 15.
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(ii)
1. 2y2 ≥ x2

2. 2y1 < x1

3. µ1 + 2y2 − x2 < x
4. µ1 + 2y2 − x2 < µ2

5.18 a13 ≤ a23

6. 1− (µ1 + 2y2 − x2) + a13 ≤ 2a23

7. 1
2
(1− µ2 + a23) > 1− x

8. 1− (2y2 − x2) + a13 > 2a23

9. 1
3
(1− (2y2 − x2) + a13 + a23) ≤ 1

2
(1− µ2 + a23)

• Drawing lots versus Dcor
3 : See constraint (9.).

• Simplex minimization for Player 3:

πmin
3 (Dcor

3 (i)) >
3

8
(57)

• Examples:

General example:




0.61 0.39 0.00
0.04 0.65 0.31
0.00 0.52 0.48




Minium payoff example:




5
8+ε 3

8−ε 0

1
8−7ε 5

8+ε 1
4+6ε

0 1
2

1
2




6. DT
3

Constraints on DT
3 being the best proposal for Player 3:

1. 2y2 ≥ x2

2. 2y1 < x1

3. µ1 + 2y2 − x2 ≤ x
4. µ1 + 2y2 − x2 ≤ µ2

5.19 a13 ≤ a23

6. 1− (µ1 + 2y2 − x2) + a13 ≤ 2a23

7. 1
2
(1− µ2 + a23) < 1

3
(1− (2y2 − x2) + a13 + a23)

8. 1− (2y2 − x2) + a13 > 2a23

9. 1
3
(1− (2y2 − x2) + a13 + a23) > 1− x

• Drawing lots versus Dcor
3 : See constraint (9.).

18See footnote 16.
19See footnote 16.
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• Simplex minimization for Player 3:

πmin
3 (DL

3 ) >
3

8
(58)

• Examples

General example:




0.64 0.36 0.00
0.08 0.64 0.28
0.00 0.08 + ε 0.92− ε


 (ε < 0.01)

Minium payoff example:




5
8+ε 3

8−ε 0

1
8−3ε 5

8+ε 1
4+2ε

0 1
8−3ε+ε′ 7

8+3ε−ε′


 (ε > 3ε′)

Since the minimum payoff of Dx
3 is given by πmin

3 (Dx
3) = 3

8
and the constraints for

Dcor
3 and DL

3 directly imply that π3(D
cor
3 ) > 1 − x and π3(D

L
3 ) > 1 − x, we obtain

πmin
3 (Dcor

3 ) > 3
8

and πmin
3 (DL

3 ) > 3
8
.

Altogether we obtain

min
α∈{Dµ

3 ,Dµ
3 ,D

µi
3 ,D

x
3 ,DCor

3 ,DL
3 }
{π3(α)} = min

ρ symmetric
{π3} =

3

8
(59)

7.1.2 Proof of Corollary 1

Given a =

(
0 1
1 0

)
the constraints on D

µ

3 hold when µ1 = µ2 = µ = 1
2
, which implies

that D3 = (1
2
, 0, 1

2
) or D3 = (0, 1

2
, 1

2
) are the best reactions for Player 3 resulting in the

payoffs π1 = π2 = 1
4

and π3 = 1
2

By direct comparisons between the six possible proposals (D
µ

3 , Dµ
3 , Dµi

3 , Dx
3 , DCor

3 ,
DL

3 ) for Player 3, we also obtain the following corollary, which will be used later:

Corollary 5
Given symmetric ρ =⇒ π2 > x iff Dcor

3 or DL
3 is the best reaction for Player 3.

7.1.3 Proof of Proposition 2

There are six possibilities for ρ to be non-symmetric:

ρns
1 =

(
1 1
2 2

)
ρns

1′ =

(
2 2
1 1

)

ρns
3 =

(
1 2
2 2

)
ρns

3′ =

(
2 1
2 2

)
ρns

3′′ =

(
2 2
2 1

)
ρns

3′′′ =

(
2 2
1 2

) (60)
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In the following we only discuss ρns
1 , as the other cases arise by interchanging rows and

observing that for ρns
3

... nothing changes qualitatively. For ρns
1 A is given by

A =




y1 y2 a13

x1 x2 a23

a31 a32 a33




a13 = 1− y1 − y2

a23 = 1− x1 − x2

a33 = 1− a31 − a32

; (61)

First we observe that Player 3 has to offer at least Player i more than xi to gain more
than π3 = 1 − x1 − x2, because otherwise D2 contains two maximum shares and is a
single-proposal equilibrium.20

As in the proof of Proposition 1, we look for the best offer D3 and see that the following
properties of a are relevant:

• 1 ≥ a3i > 2xi − yi =⇒ Φ(xi) = 2, Φ(yi) = 1, Φ(a3i) = 3

• yi > a3i > 2yi − xi =⇒ Φ(xi) = 3, Φ(yi) = 2, Φ(a3i) = 1

With these properties we can distinguish four different kinds of proposals D3 discussed
in detail below:

Dxε

3 Do
3 D3

3 DLε

3

1. Dxε

3

Player 3 offers Player 1 or 2 x + ε and keeps the rest for himself, such that D3 is
a single-proposal equilibrium and he receives a payoff π3 = 1− x− ε (i.e):




y1 y2 a13

x1 x2 a23

x + ε 0 1− x− ε


 −→




1 2 1
2∗ 3 2
3 1 3


 ; (62)

D1 = (0.2 0.4 0.4 )
D2 = (0.4 0.6 0.0 )

Dxε

3 = (0.4 + ε 0.0 0.6− ε )

2. Do
3

Player 3 offers Player i a3i = 2xi− yi + ε and keeps the rest for himself, such that
D1 is a single-proposal equilibrium and he receives a payoff π3 = 1− y1 − y2, i.e.




y1 y2 a13

x1 x2 a23

2x1 − y1 + ε 0 1− (2x1 − y1 + ε)


 −→




1 2∗ 3
2 3 2
3 1 1


 (63)

D1 = (0.1 0.25 0.65 )
D2 = (0.5 0.40 0.10 )
Do

3 = (0.9 + ε 0.00 0.1− ε )

20If Player 3 only offers Player 1 x1, D2 is still the only proposal with two maxima, or D2 and D3

are both voting equilibria but are not correlated.
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3. D3
3

Player 3 offers Player i 2xi − yi + ε (i ∈ {1, 2}) and keeps the rest for himself,
such that D3 is a single-proposal equilibrium and he receives a payoff π3 = 1 −
(2xi − yi + ε), i.e.




y1 y2 a13

x1 x2 a23

2x1 − y1 + ε 0 1− (2x1 − y1 + ε)


 −→




1 2 3
2 3 1
3 1 2∗


 (64)

D1 = (0.1 0.25 0.65 )
D2 = (0.3 0.60 0.10 )
D3

3 = (0.5 + ε 0.00 0.5− ε )

4. DT ε

3

Player 3 offers Player i a3i = 2xi− yi + ε and keeps the rest for himself, such that
the proposal is chosen by drawing lots and he receives a payoff π3 = 1

3
(1− (2x1−

y1 + ε) + a13 + a23), i.e.:




y1 y2 a13

x1 x2 a23

2x1 − y1 + ε 0 1− (2x1 − y1 + ε)


 −→




1 2 3
2 3 1
3 1 2


 (65)

D1 = (0.1 0.1 0.8 )
D2 = (0.4 0.6 0.0 )
DT ε

3 = (0.7 + ε 0.0 0.3− ε )

1. Dxε

3

Constraints on Dxε

3 being the best proposal for Player 3:

1. y1 + y2 > x

Since Player 3 needs to offer at least Player i a3i = x + ε to prevent D2 from
being a single-proposal equilibrium and 1 − x + ε > ai3 i = 1, 2, Dxε

3 is better
than all other proposals.

• Simplex minimization for Player 3:

πmin
3 (Dxε

3 ) > 1
2

(66)

•

General example:




0.2 0.4 0.4
0.4 0.6 0.0

0.4 + ε 0.0 0.6− ε




Minium payoff example:




1
4−3ε 1

4+ε 1
2+2ε

1
2−4ε 1

2+4ε 0

1
2−4ε+ε′ 0 1

2+4ε−ε′


 ε′ < ε
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2. Do
3

Constraints on Do
3 being the best proposal for Player 3:

1. y1 + y2 ≤ x
2. 2yi ≥ xi

3. 2xj − yj < 1

}
i, j = 1, 2 i 6= j

Note that r23 = 2∗ is not possible, as we have

2xj > yj + ε ⇐⇒ 1− (2xj − yj + ε)︸ ︷︷ ︸
a33(Do

3)

+ 1− (y1 + y2)︸ ︷︷ ︸
a13

> 2(1− (x1 + x2))︸ ︷︷ ︸
23

and if a33(D
o
3) = 1−(2x1−y1+ε) > a23, Player 3 can rise aj3 so that 1−a3j = a23.

Since π3 = 1− y1− y2 is only ε worse than the payoff of Dxε

3 , Do
3 is the best offer.

• Simplex minimization for Player 3:

πmin
3 (Do

3) = 1
2

(67)

•

General example:




0.1 0.25 0.65
0.5 0.40 0.10

0.9 + ε 0.0 0.1− ε




Minium payoff example: 


1
4

1
4

1
2

1
2

1
2 0

0 3
4+ε 1

4−ε




3. D3
3

Constraints for D3
3 being the best proposal for Player 3:

(i)
1. y1 + y2 ≤ x
2. 2y1 < x1

3. 2y2 < x2

4. 2xi − yi < 1
5. 1− (2xi − yi + ε) ≥ 1

2
(a13 + a23)

21

}
(i = 1 ∨ i = 2)

• Drawing lots versus D3
3:

With drawing lots, Player 3 cannot gain more than π3 = 1
2
(a13 + a23)− ε′ ≤

π3(D
3
3(i)) because of constraint (5.).

21If 2xi − yi < 1 and 1 − (2xi − yi + ε) ≥ 1
2 (a13 + a23) holds simultaneously for i = 1, 2, Player 3

chooses mini=1,2{2xi − yi}.
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• Simplex minimization for Player 3:

πmin
3 (D3

3(i)) > 1
4

(68)

•

General example:




0.1 0.25 0.65
0.3 0.60 0.10

0.5 + ε 0.0 0.5− ε




Minium payoff example: 


1
4

1
4−ε 1

2+ε

1
2+ε 1

2−ε 0

0 3
4−ε+ε′ 1

4+ε−ε′




(ii)
1. y1 + y2 ≤ x
2. 2yi < xi

3. 2yj ≥ xj

4. 2xj − yj < 1
5. 2xi − yi ≥ 1
6. 1− (2xj − yj + ε) ≥ 1

2
(a13 + a23)





i, j = 1, 2 i 6= j

• Drawing lots versus D3
3:

With drawing lots, Player 3 cannot gain more than π3 = 1
2
(a13 + a23)− ε′ ≤

π3(D
3
3(ii)) because of constraint (6.).

• Simplex minimization for Player 3:

πmin
3 (D3

3(ii)) > 1
3

(69)

•

General example:




0.00 0.40 0.60
0.55 0.45 0.00
0.00 0.5 + ε 0.5− ε




Minium payoff example: 


0 1
3+ε 2

3−ε

1
2

1
2 0

0 2
3−ε+ε′ 1

3+ε−ε′




4. DT ε

3

Constraints on DT ε

3 being the best proposal for Player 3:
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(i)
1. y1 + y2 ≤ x
2. 2y1 < x1

3. 2y2 < x2

4. 2xi − yi < 1
5. 1− (2xi − yi + ε) < 1

2
(a13 + a23)

6. 1− (2xj − yj + ε) < 1
2
(a13 + a23)

}
i, j = 1, 2 i 6= j

7. 1− (2xj − yj) ≤ 1− (2xi − yi)

• Since all other kinds of proposal are excluded, DLε

3 is the best proposal.

• Simplex minimization for Player 3:

πmin
3 (DT ε

3 (i)) > 1
4

(70)

•

General example:




0.1 0.10 0.80
0.4 0.6 0.00

0.7 + ε 0.0 0.3− ε




Minium payoff example: 


1
4−ε 1

4−ε 1
2+2ε

1
2

1
2 0

0 3
4−ε+ε′ 1

4+ε−ε′




(ii)
1. y1 + y2 ≤ x
2. 2yi < xi

3. 2yj ≥ xj

4. 2xj − yj < 1
5. 2xi − yi ≥ 1
6. 1− (2xj − yj + ε) < 1

2
(a13 + a23)





i, j = 1, 2 i 6= j

• Since all other kinds of proposal are excluded, DLε

3 is the best proposal.

• Simplex minimization for Player 3:

πmin
3 (DT ε

3 (ii)) ≥ 1
3
− ε (71)

•

General example:




0.00 0.30 0.80
0.51 0.49 0.00
0.00 0.68 + ε 0.32− ε




Minium payoff example: 


0 1
3

2
3

1
2

1
2 0

0 2
3+ε 1

3−ε



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Calculating the feasible set of (Dxε

3 ∪Do
3 ∪D3

3 ∪DT ε

3 ), we find that

1. y1 + y2 ≤ x
2. 2y1 < x2

3. 2y2 < x2

4. 2x1 − y1 ≥ 1
5. 2x2 − y2 ≥ 1

is missing. The only combination of (D1 , D2) to fulfill this condition is given by

A =




0 0 1
1
2

1
2

0
a31 a32 a33




Note that this is also submatrix a, excluded in Proposition 2.

Altogether we obtain for a 6=
(

0 0
1
2

1
2

)
∧ a 6=

(
1
2

1
2

0 0

)

min
α∈{Dxε

3 ,Do
3 ,D3

3 ,DTε
3 }
{π3(α)} = min

ρ non-symmetric
{π3} >

1

4
(72)

7.1.4 Proof of Corollary 2

W.l.o.g we assume a =

(
0 0
1
2

1
2

)
=⇒ Player 3 must offer Player i at least a3i = µi

and Player j at least a3j = xj + ε (i, j = 1, 2 i 6= j) to prevent D2 from being a single-
proposal equilibrium with π3 = 0. =⇒ D3 = (1

4
, 1

2
+ ε, 1

4
− ε) or D3 = (1

2
+ ε, 1

4
, 1

4
− ε)

with the correlated equilibrium C23 is the best reaction for Player 3, resulting in the
payoffs π1 = π2 = 7

16
+ ε

4
and π3 = 1

8
− ε

2
(given D1 and D2, this is also the worst

situation for Player 3).

7.2 Proof of Propositions 3, 4, and 5, and of Corollaries 3
and 4

We prove these propositions and corollaries by constructing D2 in such a way that we
satisfy different constraint sets in the proofs of Propositions 1 and 2. But since we have
only shown Propositions 1 and 2 for representative matrices a, we sometimes have to
interchange indices in the constraint sets to adapt them for the following proofs.
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7.2.1 Proof of Proposition 3

1. Suppose that D1 ∈ A =⇒ Player 2’s payoff will be at least π2 > 3
8

and ρ =(
2 1
1 2

)
, if he proposes D2 = (1

2
, 1

2
, 0), D2 = (a12, a11 − ε, a13 + ε), or D2 =

(1
2
− ε, 1

2
− ε, 2ε).

A1) Suppose D2 = (1
2
, 1

2
, 0) and D3 = (0, 1

2
, 1

2
) is the best reaction for Player 3 and a

single-proposal equilibrium =⇒ This requires the following rank matrix:

A =




a11 a12 a13

1
2

1
2 0

0 1
2

1
2


 −→




3 1 2
2∗ 3 1
1 3 3


 ;

D1 = (0.6 0.1 0.3)

DA1
2 = (0.5 0.5 0.0)

D3 = (0.0 0.5 0.5)
(73)

This can be satisfied if constraint set (i) of Dx
3 holds. The feasible set SA1 is then

determined by22

1. 2a21 ≥ a11 =⇒ a11 ≤ 1
2. 2a12 < a22 =⇒ a12 < 1

4

3. µ1 > x =⇒ a11 > 1
2

4. µ2 + 2y1 − x1 ≥ x =⇒ a12 ≥ 2a11 − 3
2

After comparison of the inequalities, only 3. and 4. remain.

=⇒ SA1 =
{(

1
2
, 3

4

]× [
0, 1

4

] ∪ [
3
4
, 5

6

]× [
2a11 − 3

2
, 1− a11

]}
(74)

(See Figure 1)

Minimum payoff for Player 2:

πmin
2 (A1) =

1

2
(75)

A2) See A1, but now with constraint set (iv) of Dx
3 .

A =




a11 a12 a13

1
2

1
2 0

0 1
2

1
2


 −→




3 1 2
2∗ 3 1
1 3 3


 ;

D1 = (0.55 0.4 0.05)

DA2
2 = (0.50 0.5 0.00)

D3 = (0.00 0.5 0.50)
(76)

This requires

1. 2a21 ≥ a11 =⇒ a11 ≤ 1
2. 2a12 ≥ a22 =⇒ a12 ≥ 1

4

3. µ2 + 2a21 − a11 ≥ x =⇒ a12 ≥ 2a11 − 3
2

4. µ1 + 2a12 − a22 ≥ x =⇒ a12 ≥ 3
8
− 1

4
a11

5. a11 > x =⇒ a11 ≥ 1
2

22The bold numbers will denote those constraints which are binding.
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After comparison of the inequalities, only 2. and 5. remain.

=⇒ SA2 =
{(

1
2
, 3

4

]× [
1
4
, 1− a11

]}
(77)

(See Figure 1)

Minimum payoff for Player 2:

πmin
2 (A2) =

1

2
(78)

A3) Suppose D2 = (a12, a11 − ε, a13 + ε) and D3 = (0, µ2, 1− µ2) is a single-proposal
equilibrium =⇒ This requires the following rank matrix:

A =




a11 a12 a13

a12 a11 − ε a13 + ε
0 µ2 1− µ2


 −→




3 1 1
2 3 2
1 2∗ 3


 ; (79)

D1 = (0.90 0.05 0.05)

DA3
2 = (0.05 0.9− ε 0.05 + ε)

D3 = (0.00 0.45− ε
2

0.55 + ε
2
)

This can be satisfied if the constraint set of D
µ

3 holds (note that µ2 = µ). The
feasible set SA3 is then determined by

1. 2a21 < a11 =⇒ a11 > 3
4

2. a23 ≥ a13 =⇒ ε > 0
3. 1− µ2 + a13 > 2a23 =⇒ a12 ≥ ε′ − a11

4. µ2 > 3
8

=⇒ a12 > 3
4
− a11

After comparison of the inequalities, constraints 1. and 4. remain.

=⇒ SA3 =
{(

3
4
, 1

]× [0, 1− a11]
}

(80)

(See Figure 1)

Minimum payoff for Player 2:

πmin
2 (A3) >

3

8
(81)

A4) To obtain complete cover for A there remains the line given by a11 = 1
2
. Suppose

D2 = (1
2
− ε, 1

2
− ε, 2ε) (ε < 1

2
− a12) and D3 = (0, 1

2
− ε, 1

2
+ ε) is the best reaction

for Player 3 and a single-proposal equilibrium =⇒ This requires the following
rank matrix:

A =




1
2 a12 a13

1
2−ε 1

2−ε 2ε

0 1
2−ε 1

2+ε


 −→




3 1 2
2∗ 3 1
1 3 3


 (82)
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D1 = (0.5 0.4 0.1)

DA4
2 = (0.5− ε 0.5− ε 2ε)

D3 = (0.00 0.5− ε 0.5 + ε)

Taking a11 = 1
2
, a21 = a22 = 1

2
− ε, we see that either of the constraints on A1 or

A2 hold and thus we obtain

=⇒ SA4 =
{[

1
2
, 1

2

]× [
0, 1

2

]}
(83)

(See Figure 1)

Minimum payoff for Player 2:

πmin
2 (A4) =

1

2
− ε (84)

2. Suppose D1 ∈ B =⇒ Player 2’s payoff will be at least π2 > 3
8

and ρ =

(
1 2
2 1

)
,

if he proposes D2 = (a12 + ε, 1− (a12 + ε), 0),
D2 = (3

4
−a11 +3ε, 3

4
−a12 +2ε, a11 +a12− 1

2
− 5ε), D2 = (a12 + ε, 1− (a12 + ε), 0),

D2 = (a12 + 1
4
− 2ε, 3

4
− a12 + 2ε, 0), D2 = (5

8
+ 4ε, 3

8
− 4ε, 0),

D2 = (a12 + 4ε, 1− (a12 + 4ε), 0) or D2 = (1, 0, 0).

B1) Suppose D2 = (a12 + ε, 1 − (a12 + ε), 0) and D3 = (0, a12, 1 − a12) is the best
reaction for Player 3 and a single-proposal equilibrium =⇒ This requires the
following rank matrix:

A =




a11 a12 a13

a12 + ε 1− (a12 + ε) 0
0 a12 1− a12


 −→




2 3 2
3 1 1
1 3 3


 (85)

D1 = (0.1 0.55 0.35)

DB1
2 = (0.55 + ε 0.45− ε 0)

D3 = (0.00 0.55 0.45)

This can be satisfied if the constraint set (ii) of Dx
3 holds (by construction we

have x = a12). The feasible set SB1 is then determined by

1. 2a22 ≥ a12 =⇒ a12 < 2
3

2. 2a11 < a21 =⇒ a12 ≥ 2a11

3. µ2 < x =⇒ a12 ≥ 1
2

4. µ1 + 2a22 − a12 ≥ µ2 =⇒ a12 < 3
5

+ a11

5

5. a23 < a13 =⇒ a12 < 1− a11

6. 1− µ2 + a23 ≤ 2a13 =⇒ a12 < 3
4
− a11

7. 1
2
(1− µ2 + a13) ≤ 1− x =⇒ a12 < 1

2
+ a11

After comparison of the inequalities, only 3., 6., and 7. remain.

=⇒ SB1 =
{[

0, 1
8

]× [
1
2
, 1

2
+ a11

) ∪ [
1
8
, 1

4

]× [
1
2
, 3

4
− a11

)}
(86)
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(See Figure 2 )

Minimum payoff for Player 2:

πmin
2 (B1) =

1

2
(87)

B2) Suppose D2 = (3
4
−a11+3ε, 3

4
−a12+2ε, a11+a12− 1

2
−5ε) and D3 = (0, µ2, 1−µ2) is

the best reaction for Player 3 and a single-proposal equilibrium =⇒ This requires
the following rank matrix:

A =




a11 a12 a13
3
4
− a11 + 3ε 3

4
− a12 + 2ε 1− a21 − a22

0 µ2 1− µ2


 −→




2 3 2
3 1 1
1 2∗ 3




(88)

D1 = (0.2 0.55 0.25)

DB2
2 = (0.55 + 3ε 0.2 + 2ε 0)

D3 = (0.00 0.375 + ε 0.625− ε)

This can be satisfied if the constraints of D
µ

3 hold. The feasible set SB2 is then
determined by

1. µ2 < µ1 =⇒ ε > 0
2. 2a11 < a21 =⇒ a11 ≤ 1

4

3. a23 ≤ a13 =⇒ a12 ≤ 3
4
− a11

4. 1− µ2 + a23 > 2a13 =⇒ a12 > 5
8
− a11

After comparison of the inequalities, only 3. and 4. remain.

=⇒ SB2 =
{[

0, 1
8

]× (
5
8
− a11,

3
4
− a11

] ∪ (
1
8
, 1

4

]× [
1
2
, 3

4
− a11

]}
(89)

(See Figure 2)

Minimum payoff for Player 2:

πmin
2 (B2) >

3

8
(90)

B3) Suppose D2 = (a12 + ε, 1 − (a12 + ε), 0) and D3 = (0, a12, 1 − a12) is the best
reaction for Player 3 and a single-proposal equilibrium =⇒ This requires the
following rank matrix:

A =




a11 a12 a13

a12 + ε 1− (a12 + ε) 0
0 a12 1− a12


 −→




2 3 2
3 1 1
1 3 3


 (91)

D1 = (0.35 0.55 0.10)

DB2
2 = (0.55 + ε 0.45− ε 0.00)

D3 = (0.00 0.55 0.45)
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This can be satisfied if the constraint set (iv) of Dx
3 holds. The feasible set SB3

is then determined by

1. 2a22 ≥ a12 =⇒ a12 < 2
3

2. 2a11 ≥ a21 =⇒ a12 < 2a11

3. µ1 + 2a22 − a12 ≥ a12 =⇒ a12 < 1
7
a11 + 4

7

4. µ2 + 2a11 − a21 ≥ a12 =⇒ a12 < 1
4

+ a11

After comparison of the inequalities only 4. remains.

=⇒ SB3 =
{[

1
4
, 3

8

]× [
1
2
, 1

4
+ a11

) ∪ (
3
8
, 1

2

]× [
1
2
, 1− a11

]}
(92)

(See Figure 2)

Minimum payoff for Player 2:

πmin
2 (B3) =

1

2
(93)

B4) Suppose D2 = (a12 − 1
4
− 2ε, 3

4
− a12 + 2ε, 0) and D3 = (0, µ2, 1 − µ2) is the

best reaction for Player 3 and a single-proposal equilibrium =⇒ This requires
the following rank matrix:

A =




a11 a12 a13

a12 + 1
4
− 2ε 3

4
− a12 + 2ε 0

0 µ2 1− µ2


 −→




2 3 2
3 1 1
1 2∗ 3


 (94)

D1 = (0.2 0.7 0.1)

DB2
2 = (0.95− 2ε 0.05− 2ε 0.0)

D3 = (0.00 0.375 + ε 0.625− ε)

This can be satisfied if the constraints of D
µ

3 hold (a22 has to be non-negative).
The feasible set SB4 is then determined by

1. µ2 < µ1 =⇒ a12 > 1
2
− a11

2. 2a11 < a21 =⇒ a12 > 2a11 − 1
4

3. a23 ≤ a13 =⇒ a12 ≤ 1− a11

4. 1− µ2 + a23 > 2a13 =⇒ a12 > 11
16
− a11

5. a22 ≥ 0 =⇒ a12 ≤ 3
4

After comparison of the inequalities, only 2., 4. and 5. remain.

=⇒ SB4 =
{[

0, 3
16

]× (
11
16
− a11,

3
4

] ∪ (
3
16

, 1
4

]× [
1
2
, 3

4

]∪
(

1
4
, 3

8

]× [
1
2
, 1− a11

] ∪ [
3
8
, 5

12

]× (
2a11 − 1

4
, 1− a11

]} (95)

(See Figure 2)

Minimum payoff for Player 2:

πmin
2 (B4) >

3

8
(96)
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B5) Suppose D2 = (5
8

+ 4ε, 3
8
− 4ε, 0) and D3 = (0, µ2, 1 − µ2) is the best reaction

for Player 3 and implies the correlated equilibrium C13 =⇒ This requires the
following rank matrix:

A =




a11 a12 a13
5
8

+ 4ε 3
8
− 4ε 0

0 µ2 1− µ2


 −→




2 3 2∗

3 1 1
1 2∗ 3


 (97)

D1 = (0.05 0.61 0.34)

DB2
2 = (0.625− 4ε 0.375− 4ε 0.0)

D3 = (0.00 0.4925− 2ε 0.5075 + 2ε)

This can be satisfied if the constraint set (ii) of Dcor
3 holds (a12 = x). The feasible

set SB5 is then determined by the following and the payoff is greater than 3
8

1. 2a22 ≥ a12 =⇒ a12 < 3
4

2. 2a11 < a21 =⇒ a11 ≤ 5
16

3. µ1 + 2a22 − a12 ≤ a12 =⇒ a12 ≥ 17
32

+ 1
4
a11

4. µ1 + 2a22 − a12 ≤ µ2 =⇒ a12 ≥ 7
12

+ 1
3
a11

5. a23 ≤ a13 =⇒ a12 ≤ 1− a11

6. 1− (µ1 + 2a22 − a12) + a23 ≤ 2a13 =⇒ a12 < 11
16
− 1

2
a11

7. 1
2
(1− µ2 + a13) ≤ 1− a12 =⇒ a12 ≥ 3

8
+ 2a11

8. 1− (2a22 − a12) + a23 > 2a13 =⇒ a12 ≥ 7
12
− 2

3
a11

9. 1
3
(1− (2a22 − a12) + a23 + a13) < 1

2
(1− µ2 + a13) =⇒ a12 < 47

72
− 2

9
a11

10. a12 < a21 =⇒ a12 ≤ 5
8

After comparison of the inequalities only 4. and 10. are remaining.

=⇒ SB5 =
{[

0, 1
8

]× (
7
12

+ 1
3
a11,

5
8

)}
(98)

(See Figure 2)

Minimum payoff for Player 2:

πmin
2 (B5) ≥ 51

96
− ε (99)

B6) Suppose D2 = (a12 + 4ε, 1 − (a12 + 4ε), 0) and D3 = (0, µ2, 1 − µ2) is the best
reaction for Player 3 and implies the correlated equilibrium C13 =⇒ This requires
the following rank matrix:

A =




a11 a12 a13

a12 + 4ε 1− (a12 + 4ε) 0
0 µ2 1− µ2


 −→




2 3 2∗

3 1 1
1 2∗ 3


 (100)

D1 = (0.01 0.52 0.47)

DB2
2 = (0.52 + 4ε 0.48− 4ε 0.0)

D3 = (0.00 0.5− 2ε 0.5 + 2ε)
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This can be satisfied if the constraint set (i) of Dcor
3 holds (by construction we

have x = a12). The feasible set SB6 is then determined by

1. 2a22 ≥ a12 =⇒ a12 < 2
3

2. 2a11 < a21 =⇒ a12 ≥ 2a11

3. µ2 < x =⇒ a12 ≥ 1
2

4. µ1 + 2a22 − a12 ≥ µ2 =⇒ a12 < 3
5

+ a11

5

5. a23 < a13 =⇒ a12 < 1− a11

6. 1− µ2 + a23 ≤ 2a13 =⇒ a12 < 3
4
− a11

7. 1
2
(1− µ2 + a13) > 1− x =⇒ a12 > 1

2
+ a11

After comparison of the inequalities, only 4. and 7. remain.

=⇒ SB6 =
{[

0, 1
8

]× [
1
2

+ a11,
3
5

+ 1
5
a11

)}
(101)

(See Figure 2)

Minimum payoff for Player 2:

πmin
2 (B6) ≥ 1

2
− ε (102)

B7) Suppose D2 = (1, 0, 0) and D3 = (0, µ2, 1 − µ2) is the best reaction fir Player 3
and a single-proposal equilibrium =⇒ This requires the following rank matrix:

A =




a11 a12 a13

1 0 0
0 µ2 1− µ2


 −→




2 3 2
3 1 1
1 2∗ 3


 (103)

D1 = (0.01 0.86 0.03)

DB2
2 = (1.00 0.00 0.00)

D3 = (0.00 0.43 0.57)

This can be satisfied if the constraints of D
µ

3 hold. The feasible set SB7 is then
determined by

1. µ2 < µ1 =⇒ a12 < 1 + a11

2. 2a11 < a21 =⇒ a11 < 1
2

3. a23 ≤ a13 =⇒ a12 ≤ 1− a11

4. 1− µ2 + a23 > 2a13 =⇒ a12 > 2
3
− 4

3
a11

5. µ2 > 3
8

=⇒ a12 > 3
4

After comparison of the inequalities only 5. remains.

=⇒ SB7 =
{[

0, 1
4

]× (
3
4
, 1− a11

]}
(104)

(See Figure 2)

Minimum payoff for Player 2:

πmin
2 (B7) >

3

8
(105)
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Thus we have shown that ∀ D1 ∈ A ∪ B ∃ a proposal Ds
2 of Player 2, such that ρ is

symmetric and π2 > 3
8
.

7.2.2 Proof of Corollary 3

1. Suppose D1 ∈ A1 ∪ A2 ∪ B1 ∪ B3 ∪ B5 and D2 is such that ρ is non-symmetric
and the best reaction for Player 2, then π2 ≥ 1

2
, because if D2 is such that ρ is

symmetric Player 2 obtains at least π2 = 1
2

(see proof of Proposition 3). Further,
we have π3 > 1

4
from the proof of Proposition 2. Together with the resource

constraint we obtain 1 = π1 + π2 + π3 > 1
4

+ 1
2

+ 1
4

= 1 ¢¢¡¡¢
¢®

2. Suppose D1 ∈ (A ∪ B)\ {A1 ∪ A2 ∪ B1 ∪ B3 ∪ B5} and D2 is such that ρ is non-
symmetric and π1 ≥ 1

4
.

First note that π1 ≥ 1
4

is only possible if the constraints for Do
3 or DLε

3 hold,

because otherwise Proposition 2 implies π1 = 0 and π2 ≥ 3
8
, since the minimum

payoff with D2 such that ρ is symmetric is π2 = 3
8
.

(a) Suppose D2 is such that the constraints of Do
3 hold =⇒ a =

(
x1 x2

y1 y2

)

=⇒ a21 + a22 ≤ x and a21 = π1 ≥ 1
4
, a22 = π2 ≥ 3

8
=⇒ 5

8
≤ x ≤ 1

2
¢¢¡¡¢
¢®

(b) Suppose D2 is such that the constraints of DLε

3 hold =⇒ a =

(
x1 x2

y1 y2

)

and D3 = (0, 2a12−a22 +ε, 1−(2a12−a22 +ε)) is the best reaction for Player
3 and π1 = 1

3
(a11 + a21) with π2 = 1

3
(2a12 − a22 + ε + a12 + a22) = a12 + ε

3
.

i. Suppose D2 ∈ A\(A1 ∪ A2 ∪ A4) =⇒ a12 ≤ 1
4

=⇒
π2 = 1

4
+ ε

3
< 3

8
(ε < 3

8
) ¢¢¡¡¢

¢®

ii. Suppose D2 ∈ A4 =⇒ π1 = 1
6

¢¢¡¡¢
¢®

iii. Suppose D2 ∈ B\(B1∪B3∪B5) =⇒ a11 ≤ 3
8

and 2a21 < a11 (constraints

of DLε

3 ) =⇒ π1 < 1
3
(3

8
+ 3

16
) = 3

16
¢¢¡¡¢
¢®

(c) Suppose D2 is such that the constraints of DLε

3 hold =⇒ a =

(
x1 x2

y1 y2

)

and D3 = (2a11 − a21 + ε, 0, 1− (2a11 − a21 + ε)) with π2 = 1
3
(a12 + a22)

i. Suppose D2 ∈ A\(A1 ∪ A2 ∪ A4) =⇒ a12 ≤ 1
6

and π2 ≤ 1
9

since a22 ≤ a12. ¢¢¡¡¢
¢®

ii. Suppose D2 ∈ A4 =⇒ π2 ≤ 1
3

< π2(A4) = 1
2
− ε ¢¢¡¡¢

¢®
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iii. Suppose D2 ∈ B\(B1 ∪ B3 ∪ B5) =⇒ a12 ≤ 3
4

and π2 < 3
8

since 2a22 < a12.

7.2.3 Proof of Proposition 4 and Corollary 4

Suppose D1 ∈ C

C1) a11 + a12 ≤ 1
2

and D2 = (1 − a22, a22, 0) with 1 − (2a22 − a12 + ε) = 1
2
(1 − a11 −

a12) =⇒ a22 = 1
4
(1+3a12+a11−2ε) and D3 = (0, 2a22−a12+ε′, 1−(2a22−a12+ε′))

is the best reaction for Player 3 and a single-proposal equilibrium. This requires
the following rank matrix:

A =




a11 a12 a13

1− a22 a22 0
0 2a22 − a12 + ε′ 1− (2a22 − a12 + ε′)


 −→




2 1 3
3 2 1
1 3 2∗




(106)

D1 = (0.10 0.10 0.8)

DC1
2 = (0.65 + ε

2
0.35− ε

2
0.0

D3 = (0.00 0.6 + ε + ε′ 0.4− (ε + ε′))

This can be satisfied if the constraint set (i) of D3
3 hold with a22 = x. The feasible

set SC1 is then determined by

1. a11 + a12 ≤ a22 =⇒ a12 < 1− 3a11

2. 2a11 < a21 =⇒ a12 ≤ 1− 3a11

3. 2a12 < a22 =⇒ a12 < 1
5

+ 1
5
a11

4. 2a22 − a12 < 1 =⇒ a12 ≤ 1− a11

5. 1− (2a22 − a12 + ε′) > 1
2
(a13 + a23) =⇒ ε′ < ε

6. a22 ≤ a21 =⇒ a12 ≤ 1
3
− 1

3
a11

7. 2a21 − a11 > 2a22 − a12 =⇒ a12 ≤ 1
2
− a11

After comparison of the inequalities, only 1. and 3. remain.

=⇒ SC1 =
{(

0, 1
4

]× [
0, 1

5
+ 1

5
a11

) ∪ [
1
4
, 1

3

)× [0, 1− 3a11)
}

(107)

(See Figure 3)

Minimum payoff for Player 2:

πmin
2 (C1) >

1

2
(108)
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C2) D2 = (1−a22, a22, 0) with 2a21−a11 = 1 =⇒ a21 = 1
2
(1+a11) and a22 = 1

2
(1−a11).

D3 = (0, 2a22 − a12 + ε, 1− (2a22 − a12 + ε)) is the best reaction for Player 3 and
a single-proposal equilibrium. This requires the following rank matrix:

A =




a11 a12 a13

1− a22 a22 0
0 2a22 − a12 + ε 1− (2a22 − a12 + ε)


 −→




2 1 3
3 2 1
1 3 2∗




(109)

D1 = (0.08 0.30 0.62)

DC2
2 = (0.54 0.46 0.00

D3 = (0.00 0.62 + ε 0.38− ε)

This can be satisfied if the constraint set (ii) of D3
3 holds with a22 = x. The

feasible set SC2 is then determined by

1. a11 + a12 ≤ a22 =⇒ a12 ≤ 1
2
− 3

2
a11

2. 2a11 < a21 =⇒ a11 < 1
3

3. 2a12 ≥ a22 =⇒ a12 ≥ 1
4
− 1

4
a11

4. 2a22 − a12 < 1 =⇒ a12 > −a11

5. 2a21 − a11 ≥ 1 =⇒ 1 ≥ 1
6. 1− (2a22 − a12 + ε) ≥ 1

2
(a13 + a23) =⇒ a12 > 1

3
− a11

7. a22 ≤ a21 =⇒ a11 ≥ 0
8. 2a22 − a12 ≥ 1

2
=⇒ a12 ≤ 1

2
− a11

After comparison of the inequalities, only 1., 3. and 6. remain.

=⇒ SC2 =
{[

0, 1
9

]× (
1
3
− a11,

1
2
− 3

2
a11

] ∪ (
1
9
, 1

5

]× [
1
4
− 1

4
a11,

1
2
− 3

2
a11

]}
(110)

(See Figure 3)

Minimum payoff for Player 2:

πmin
2 (C2) >

1

2
(111)

C3) D2 = (1 − a22, a22, 0) with 2a22 − a12 = 1
2

=⇒ a21 = 1
4
(3 − 2a12) and a22 =

1
4
(1 + 2a12). D3 = (0, 2a22 − a12 + ε, 1 − (2a22 − a12 + ε)) is the best reaction

for Player 3 and a single-proposal equilibrium. This requires the following rank
matrix:

A =




a11 a12 a13

1− a22 a22 0
0 1

2
+ ε 1

2
+ ε)


 −→




2 1 3
3 2 1
1 3 2∗


 (112)

D1 = (0.02 0.24 0.74)

DC3
2 = (0.63 0.37 0.0

D3 = (0.00 0.5 + ε 0.5− ε)
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This can be satisfied if the constraint set (ii) of D3
3 holds with a22 = x. The

feasible set SC3 is then determined by

1. a11 + a12 ≤ a22 =⇒ a12 ≤ 1
2
− 2a11

2. 2a11 < a21 =⇒ a12 < 3
2
− 4a11

3. 2a12 ≥ a22 =⇒ a12 ≥ 1
6

4. 2a22 − a12 < 1 =⇒ 1
2

< 1
5. 2a21 − a11 ≥ 1 =⇒ a12 ≤ 1

2
− a11

6. 1− (2a22 − a12 + ε) ≥ 1
2
(a13 + a23) =⇒ a12 > −a11

7. a22 ≤ a21 =⇒ a12 ≤ 1
2

After comparison of the inequalities, only 1. and 3. remain.

=⇒ SC3 =
{[

0, 1
6

]× [
1
6
, 1

2
− 2a11

]}
(113)

(See Figure 3)

Minimum payoff for Player 2:

πmin
2 (C3) >

1

2
(114)

C4) D2 = (1−a22, a22, 0) with 2a22−a12 +ε = 2a21−a11 =⇒ a21 = 1
4
(2+a11−a21 +ε)

and a21 = 1
4
(2 − a11 + a21 − ε). D3 = (0, 2a22 − a12 + ε′, 1 − (2a22 − a12 + ε′))

is the reaction for Player 3 and a single-proposal equilibrium. This requires the
following rank matrix:

A =




a11 a12 a13

1− a22 a22 0
0 2a22 − a12 + ε′ 1− (2a22 − a12 + ε′)


 −→




2 1 3
3 2 1
1 3 2




(115)

D1 = (0.06 0.10 0.84)

DC4
2 = (0.49 + ε 0.51− ε 0.0

D3 = (0.00 0.92− ε
2

+ ε′ 0.08 + ε
2
− ε′)

This can be satisfied if the constraint set (i) of DTε
3 holds with a21 = x. The

feasible set SC4 is then determined by

1. a11 + a12 ≤ a21 =⇒ a12 ≤ 2
5
− 3

5
a11

2. 2a11 < a21 =⇒ a12 ≤ 2− 7a11

3. 2a12 < a22 =⇒ a12 < 2
7
− 1

7
a11

4. 2a22 − a12 < 1 =⇒ a12 ≥ −a11

5. 1− (2a22 − a12 + ε′) < 1
2
(a13 + a23) =⇒ a12 < 1

2
− a11

6. a21 ≤ a22 =⇒ a12 > a11

7. 2a21 − a11 > 2a22 − a12 =⇒ ε > 0

After comparison of the inequalities, only 3. and 6. remain.
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=⇒ SC4 =
{[

0, 1
4

]× (
a11,

2
7
− 1

7
a11

)}
(116)

(See Figure 3)

Minimum payoff for Player 2:

πmin
2 (C4) >

1

2
− ε (117)

C5) In the remaining part SC5 =
{C \ ⋃4

k=1 SCk

}
(see Figure 3), we show that, given

(a11, a12) ∈ SC5 the share of Player 1 is π1 = 0 if Player 2’s best proposal implies ρ
to be non-symmetric or the share of Player 2 is π2 > 3

8
if Player 2’s best proposal

implies ρ to be symmetric.

In order to prove this, we divide SC5 into three subsets:

S1
C5 =

{
(a11, a12) | a11 + a12 > 1

2
, a11 < 1

2
, a12 < 1

2

}
S2
C5 =

{
(a11, a12) | a11 + a12 ≤ 1

2
, a12 ≥ 2

7
− 1

7
a11 , a12 > 1

2
− 3

2
a11

}
S3
C5 =

{
(a11, a12) | a11 + a12 ≤ 1

2
, a12 ≥ 1− 3a11 , a11 ≥ 0

} (118)

(a) Given (a11, a12) ∈ S1
C5 =⇒ with D2 = (1

2
+ ε, 1

2
− ε, 0), the inequalities of Dxε

3

hold and D3 = (0, 1
2
− ε+ ε′, 1

2
+ ε− ε′) is the best proposal for Player 3 with

D3 being a proposal equilibrium including π1 = 0 and π2 = 1
2
− ε + ε′.

i. Suppose Player 2 constructs his proposal D2 in such a way that ρ is
non-symmetric and π1 > 0, then the inequalities of DLε

3 or Do
3 must

hold (a11 = y1, a12 = y2). But y1 + y2 ≤ x cannot hold since x ≤ 1
2
.

ii. Suppose Player 2 constructs his proposal D2 in such a way that ρ is
symmetric and π2 ≤ 3

8
, then this cannot be his best proposal as propos-

ing D2 = (1
2

+ ε, 1
2
− ε, 0) with non-symmetric ρ and ε < 1

8
ensures him

a share of π2 > 3
8
.

(b) Given (a11, a12) ∈ S2
C5∪S3

C5 =⇒ with D2 = (1−(a11+a12−ε), a11+a12−ε, 0)

the inequalities of Dxε

3 hold and D3 = (0, a11 + a12 − ε + ε′, 1− (a11 + a12 −
ε+ε′) is the best proposal for Player 3 with D3 being a proposal equilibrium
including π1 = 0 and π2 = a12 + a11 − ε + ε′.

i. Suppose Player 2 constructs his proposal D2 in such a way that ρ is non-
symmetric, π1 > 0, and the inequalities of Do

3 hold, with π2 = a12. This
cannot be the best reaction for Player 2 as D2 = (1−(a11+a12−ε), a11+
a12−ε, 0) with ε < a11 ensures him a share of π2 = a11+a12−ε+ε′ > a12.

ii. Suppose Player 2 constructs his proposal D2 in such a way that ρ is
non-symmetric, π1 > 0 and the inequalities of DLε

3 hold with D3 =
(2a21−a11+ε, 0, 1−(2a21−a22+ε)) is the best proposal for Player 3 (a11 =
y1 , a12 = y2) =⇒ This cannot be the best reaction for Player 2 because
his share π2 = 1

3
(x2 + y2) must exceed his share π2 = y1 + y2 + ε − ε′

generated by D2 = (0, 1
2
− ε + ε′, 1

2
+ ε− ε′). But

1
3
(x2 + y2) ≥ y1 + y2

y2≥1−3y1≥ 1
2
− 3

2
y1

=⇒ x2 = 1
x1≤1−x2=⇒ x1 = 0 = x ¢¢¡¡¢

¢®
(119)

since a12 ≥ 1
4

and a11 + a12 ≤ x
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iii. Suppose Player 2 constructs his proposal D2 in such a way that ρ is
symmetric and π2 ≤ 3

8
=⇒

• a11 + a12 ≤ 3
8

and

• D3 ∈ {Dcor
3 , DL

3 } must hold.

Otherwise Player 2 can obtain a share of π2 = a11 + a12 − ε + ε′ >
3
8
≥ a11 > a12 by choosing ε < a11 + a12 − 3

8
and proposing D2 =

(1−(a11+a12−ε), a11+a12−ε, 0) with non-symmetric ρ. This also implies
D3 ∈ {Dcor

3 , DL
3 } following from Corollary 5, because if (a11, a12) ∈

{(S2
C5 ∪S3

C5)∩ [0, 3
8
]× [0, 3

8
−a11]} = {[ 5

16
, 1

3
]× [1−3a11,

3
8
−a11]∪ [1

3
, 3

8
]×

[0, 3
8
−a11]} and given symmetric ρ, we have x ≤ a11 ≤ 3

8
∨ x ≤ a12 ≤ 1

16
.

α. Suppose Player 2 constructs his proposal D2 in such a way that ρ is
symmetric and D3 = Dcor

3 is the best proposal for Player 3 leading
to a correlated equilibrium C23 =⇒
This cannot be the best reaction for Player 2 because his share
π2(D

cor
3 ) = 1

2
(µ2 + x2) = 1

2
(1

2
(a22 + a12) + a22) = 3

4
a22 + 1

4
a12 must

exceed π2(D
xε

3 ) = a11 + a12 − ε + ε′, which implies

3
4
a22 + 1

4
a12 ≥ a11 + a12 =⇒ a22 ≥ 4

3
a11 + a12

a11≥ 5
16

a12≥0

≥ 5
12

(120)

, But this is a contradiction of

R̂(Dcor
3 ) =




3 1 1
2 3 2∗

1 2∗ 3


 (121)

which implies

a23

a11+a12≤ 3
8≥ 5

8
=⇒ a22 ≤ 3

8
(122)

β. Suppose Player 2 constructs his proposal D2 in such a way that ρ is
symmetric and D3 = Dcor

3 is the best proposal for Player 3 leading
to a correlated equilibrium C13 =⇒
This cannot be the best reaction for Player 2 since his share is given
by π2 = 1

2
(a12 + a32) ≤ a12 because Φ(a32) ≤ 2.

γ. Suppose Player 2 constructs his proposal D2 in such a way that ρ
is symmetric and D3 = DL

3 is the best proposal for Player 3 leading
to a selection of the proposal by drawing lots =⇒
This cannot be the best reaction for Player 2 because if a32 = 2a12−
a22 + ε we have π2(D

L
3 ) = 1

3
(a12 + a22 + a32) = a12 + ε

3
< π2(D

xε

3 )

and if a32 = 0, π2(D
L
3 ) > π2(D

xε

3 ) would imply

1
3
(a12 + a22) ≥ a11 + a12 =⇒ a22 ≥ 3a11 + 2a12

a11≥0
a12≥ 1−3a11

a12≤ 3
8
−a11

=⇒ a22 ≥ 1
(123)
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But then we have a23 = 0, a13 ≥ 5
8
, and a33 ≤ 1, which cannot lead

to a decision by drawing lots with Φ(a33) = 3.

iv. Suppose (a11, a12) ∈ S2
C5 and Player 2 constructs his proposal D2 in such

a way that ρ is non-symmetric, π1 > 0, and the inequalities of DLε

3 (i)
hold with D3 = (0, 2a22−a12+ε, 1−(2a22−a12+ε)) is the best proposal
for Player 3 (a11 = y1 , a12 = y2) =⇒

3y2

2y2<x2

< 2x2 − y2

2x2−y2<2x1−y1

< 2x1 − y1
x1≤1−x2≤ 2(1− x2)− y1

2y2<x2

< 2− 4y2 − y1

=⇒ y2 <
2

7
−1

7
y1 ¢¢¡¡¢

¢®

(124)
since a12 ≥ 2

7
− 1

7
a11 must hold in S2

C5 .

v. Suppose (a11, a12) ∈ S2
C5 and Player 2 constructs his proposal D2 in such

a way that ρ is non-symmetric, π1 > 0, and the inequalities of DLε

3 (ii)
hold with D3 = (0, 2a22−a12+ε, 1−(2a22−a12+ε)) is the best proposal
for Player 3 (a11 = y1 , a12 = y2) =⇒

1 ≤ 2x1 − y1

x1≤1−x2≤ 2− 2x2 − y1
x2≥x

≤ 2− 2x− y1

y1+y2≤x

≤ 2− 3y1 − 2y2

=⇒ y2 ≤ 1

2
− 3

2
y1 ¢¢¡¡¢

¢®

(125)
since a12 ≤ 1

2
− 3

2
a11 must hold in S2

C5 .

vi. Suppose (a11, a12) ∈ S3
C5 and Player 2 constructs his proposal D2 in such

a way that ρ is non-symmetric, π1 > 0, and the inequalities of DLε

3 hold
with D3 = (0, 2a22 − a12 + ε, 1 − (2a22 − a12 + ε)) is the best proposal
for Player 3 (a11 = y1 , a12 = y2) =⇒

y1 + y2 ≤ x
x2≥x
< x2

x2≤1−x1≤ 1− x1

2y1<x1

< 1− 2y1

=⇒ y2 < 1− 3y1 ¢¢¡¡¢
¢®

(126)
since a12 ≥ 1− 3a11 must hold in S3

C5 .

Thus we have proved Proposition 4 and Corollary 4.

7.2.4 Proof of Proposition 5

In the following, we only give binding constraints.

If a =

(
0 1
1 0

)
=⇒ π2 = 1

4
is already shown in Corollary 1.

1. Suppose a =

(
0 1
0 a22

)
=⇒ D3 = (ε, 0, 1 − ε) is the best reaction for Player 3

with D3 being a single-proposal equilibrium =⇒ π2 = 0
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The solution set is given by

S1 = {[0, 0]× [0, 1]} (127)

(See Figure 4)

2. Suppose a =

(
0 1

a21 a22

)
and

1. a22 < 1
2

2. 1− µ1 > 2a23 =⇒ a22 > 1
2
− 3

4
a21

(128)

then the constraints of D
µ

3 hold and D
µ

3 = (µ1, 0, 1− µ1) is the best reaction for
Player 3 with D

µ

3 being a single-proposal equilibrium. =⇒ π2 = 0

The solution set is given by

S2 = { [
0, 1

2

]× (
1
2
− 3

4
a21,

1
2

)∪(
1
2
, 2

3

]× (
1
2
− 3

4
a21, 1− a21

]∪(
2
3
, 1

)× [0, 1− a21]
} (129)

(See Figure 4)

3. Suppose a =

(
0 1

a21 a22

)
and

1. a22 < 1
2

2. 1− µ1 ≤ 2a23 =⇒ a22 ≤ 1
2
− 3

4
a21

3. 1
2
(1− µ1 + a23) ≤ 1− a21 =⇒ a22 ≥ 1

2
a21

(130)

then the constraints (ii) of Dx
3 hold and Dx

3 = (x, 0, 1−x) is the best reaction for
Player 3 with Dx

3 being a single-proposal equilibrium. =⇒ π2 = 0

The solution set is given by

S3 =
{(

0, 2
5

]× [
1
2
a21,

1
2
− 3

4
a21

]}
(131)

(See Figure 4)

4. Suppose a =

(
0 1

a21 a22

)
and

1. 1− µ1 ≤ 2a23 =⇒ a22 ≤ 1
2
− 3

4
a21

2. 1
2
(1− µ1 + a23) > 1− a21 =⇒ a22 < 1

2
a21

(132)

then the constraints (a) of Dcor
3 hold and Dcor

3 = (µ1, 0, 1−µ1) is the best reaction
for Player 3 with C23 being a correlated equilibrium. =⇒ π2 = 1

2
a22 < 1

10

The solution set is given by

S4 =
{(

0, 2
5

]× [
0, 1

2
a21

) ∪ (
2
5
, 2

3

]× [
0, 1

2
− 3

4
a21

)}
(133)

(See Figure 4)
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5. Suppose a =

(
0 1

a21 a22

)
and

1. a22 ≥ 1
2

2. µ1 + 2a22 − 1 < a21 =⇒ a22 < 1
2

+ 1
4
a21

3. 1− µ1 − (2a22 − 1) > 2a23 =⇒ a21 > 0
(134)

then the constraints (i) of Dµi
3 hold and Dµi

3 = (µ1, 2a22−1+ε, 1−(µ1+2a22−1+ε))
is the best reaction for Player 3 with Dµi

3 being a single-proposal equilibrium. =⇒
π2 = 2a22 − 1 + ε < 1

5
+ ε

The solution set is given by

S5 =
{(

0, 2
5

]× [
1
2
, 1

2
+ 1

4
a21

) ∪ (
2
5
, 1

2

]× [
1
2
, 1− a21

]}
(135)

(See Figure 4)

6. Suppose a =

(
0 1

a21 a22

)
and

1. a21 > 0
2. µ1 + 2a22 − 1 ≥ a21 =⇒ a22 ≥ 1

2
+ 1

4
a21

(136)

then the constraints (i) of Dx
3 hold and Dx

3 = (x, 0, 1− x) is the best reaction for
Player 3 with Dx

3 being a single proposal equilibrium. =⇒ π2 = 0

The solution set is given by

S6 =
{(

0, 2
5

]× [
1
2

+ 1
4
a21, 1− a21

]}
(137)

(See Figure 4)

Altogether we have shown that D2 = (1, 0, 0) is the best reaction for Player 2 given
D1 = (0, 1, 0)
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Ökonomische Theorie der Politik, 3rd edition, Tübingen.
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55



a12

a11

Feasible set S1

a12

a11

Feasible set S2

a12

a11

Feasible set S3

a12

a11

Feasible set S4

a12

a11

Feasible set S5

a12

a11

Feasible sets S6

a12

a11

Feasible set S1–S6

Figure 4: Feasible set S.

56



CESifo Working Paper Series 
(for full list see Twww.cesifo-group.de)T 
 

___________________________________________________________________________ 
 
1812 Robert S. Chirinko and Hisham Foad, Noise vs. News in Equity Returns, September 

2006 
 
1813 Oliver Huelsewig, Eric Mayer and Timo Wollmershaeuser, Bank Behavior and the Cost 

Channel of Monetary Transmission, September 2006 
 
1814 Michael S. Michael, Are Migration Policies that Induce Skilled (Unskilled) Migration 

Beneficial (Harmful) for the Host Country?, September 2006 
 
1815 Eytan Sheshinski, Optimum Commodity Taxation in Pooling Equilibria, October 2006 
 
1816 Gottfried Haber and Reinhard Neck, Sustainability of Austrian Public Debt: A Political 

Economy Perspective, October 2006 
 
1817 Thiess Buettner, Michael Overesch, Ulrich Schreiber and Georg Wamser, The Impact of 

Thin-Capitalization Rules on Multinationals’ Financing and Investment Decisions, 
October 2006 

 
1818 Eric O’N. Fisher and Sharon L. May, Relativity in Trade Theory: Towards a Solution to 

the Mystery of Missing Trade, October 2006 
 
1819 Junichi Minagawa and Thorsten Upmann, Labor Supply and the Demand for Child 

Care: An Intertemporal Approach, October 2006 
 
1820 Jan K. Brueckner and Raquel Girvin, Airport Noise Regulation, Airline Service Quality, 

and Social Welfare, October 2006 
 
1821 Sijbren Cnossen, Alcohol Taxation and Regulation in the European Union, October 

2006 
 
1822 Frederick van der Ploeg, Sustainable Social Spending in a Greying Economy with 

Stagnant Public Services: Baumol’s Cost Disease Revisited, October 2006 
 
1823 Steven Brakman, Harry Garretsen and Charles van Marrewijk, Cross-Border Mergers & 

Acquisitions: The Facts as a Guide for International Economics, October 2006 
 
1824 J. Atsu Amegashie, A Psychological Game with Interdependent Preference Types, 

October 2006 
 
1825 Kurt R. Brekke, Ingrid Koenigbauer and Odd Rune Straume, Reference Pricing of 

Pharmaceuticals, October 2006 
 
1826 Sean Holly, M. Hashem Pesaran and Takashi Yamagata, A Spatio-Temporal Model of 

House Prices in the US, October 2006 
 



 
1827 Margarita Katsimi and Thomas Moutos, Inequality and the US Import Demand 

Function, October 2006 
 
1828 Eytan Sheshinski, Longevity and Aggregate Savings, October 2006 
 
1829 Momi Dahan and Udi Nisan, Low Take-up Rates: The Role of Information, October 

2006 
 
1830 Dieter Urban, Multilateral Investment Agreement in a Political Equilibrium, October 

2006 
 
1831 Jan Bouckaert and Hans Degryse, Opt In Versus Opt Out: A Free-Entry Analysis of 

Privacy Policies, October 2006 
 
1832 Wolfram F. Richter, Taxing Human Capital Efficiently: The Double Dividend of 

Taxing Non-qualified Labour more Heavily than Qualified Labour, October 2006 
 
1833 Alberto Chong and Mark Gradstein, Who’s Afraid of Foreign Aid? The Donors’ 

Perspective, October 2006 
 
1834 Dirk Schindler, Optimal Income Taxation with a Risky Asset – The Triple Income Tax, 

October 2006 
 
1835 Andy Snell and Jonathan P. Thomas, Labour Contracts, Equal Treatment and Wage-

Unemployment Dynamics, October 2006 
 
1836 Peter Backé and Cezary Wójcik, Catching-up and Credit Booms in Central and Eastern 

European EU Member States and Acceding Countries: An Interpretation within the 
New Neoclassical Synthesis Framework, October 2006 

 
1837 Lars P. Feld, Justina A.V. Fischer and Gebhard Kirchgaessner, The Effect of Direct 

Democracy on Income Redistribution: Evidence for Switzerland, October 2006 
 
1838 Michael Rauscher, Voluntary Emission Reductions, Social Rewards, and Environmental 

Policy, November 2006 
 
1839 Vincent Vicard, Trade, Conflicts, and Political Integration: the Regional Interplays, 

November 2006 
 
1840 Erkki Koskela and Mikko Puhakka, Stability and Dynamics in an Overlapping 

Generations Economy under Flexible Wage Negotiation and Capital Accumulation, 
November 2006 

 
1841 Thiess Buettner, Michael Overesch, Ulrich Schreiber and Georg Wamser, Taxation and 

Capital Structure Choice – Evidence from a Panel of German Multinationals, November 
2006 

 
1842 Guglielmo Maria Caporale and Alexandros Kontonikas, The Euro and Inflation 

Uncertainty in the European Monetary Union, November 2006 
 



 
1843 Jan K. Brueckner and Ann G. Largey, Social Interaction and Urban Sprawl, November 

2006 
 
1844 Eytan Sheshinski, Differentiated Annuities in a Pooling Equilibrium, November 2006 
 
1845 Marc Suhrcke and Dieter Urban, Are Cardiovascular Diseases Bad for Economic 

Growth?, November 2006 
 
1846 Sam Bucovetsky and Andreas Haufler, Preferential Tax Regimes with Asymmetric 

Countries, November 2006 
 
1847 Luca Anderlini, Leonardo Felli and Andrew Postlewaite, Should Courts always Enforce 

what Contracting Parties Write?, November 2006 
 
1848 Katharina Sailer, Searching the eBay Marketplace, November 2006 
 
1849 Paul De Grauwe and Pablo Rovira Kaltwasser, A Behavioral Finance Model of the 

Exchange Rate with Many Forecasting Rules, November 2006 
 
1850 Doina Maria Radulescu and Michael Stimmelmayr, ACE vs. CBIT: Which is Better for 

Investment and Welfare?, November 2006 
 
1851 Guglielmo Maria Caporale and Mario Cerrato, Black Market and Official Exchange 

Rates: Long-Run Equilibrium and Short-Run Dynamics, November 2006 
 
1852 Luca Anderlini, Leonardo Felli and Andrew Postlewaite, Active Courts and Menu 

Contracts, November 2006 
 
1853 Andreas Haufler, Alexander Klemm and Guttorm Schjelderup, Economic Integration 

and Redistributive Taxation: A Simple Model with Ambiguous Results, November 
2006 

 
1854 S. Brock Blomberg, Thomas DeLeire and Gregory D. Hess, The (After) Life-Cycle 

Theory of Religious Contributions, November 2006 
 
1855 Albert Solé-Ollé and Pilar Sorribas-Navarro, The Effects of Partisan Alignment on the 

Allocation of Intergovernmental Transfers. Differences-in-Differences Estimates for 
Spain, November 2006 

 
1856 Biswa N. Bhattacharyay, Understanding the Latest Wave and Future Shape of Regional 

Trade and Cooperation Agreements in Asia, November 2006 
 
1857 Matz Dahlberg, Eva Mörk, Jørn Rattsø and Hanna Ågren, Using a Discontinuous Grant 

to Identify the Effect of Grants on Local Taxes and Spending, November 2006 
 
1858 Ernesto Crivelli and Klaas Staal, Size and Soft Budget Constraints, November 2006 
 
1859 Jens Brøchner, Jesper Jensen, Patrik Svensson and Peter Birch Sørensen, The Dilemmas 

of Tax Coordination in the Enlarged European Union, November 2006 
 



 
1860 Marcel Gérard, Reforming the Taxation of Multijurisdictional Enterprises in Europe, 

“Coopetition” in a Bottom-up Federation, November 2006 
 
1861 Frank Blasch and Alfons J. Weichenrieder, When Taxation Changes the Course of the 

Year – Fiscal Year Adjustments and the German Tax Reform 2000/2001, November 
2006 

 
1862 Hans Jarle Kind, Tore Nilssen and Lars Sørgard, Competition for Viewers and 

Advertisers in a TV Oligopoly, November 2006 
 
1863 Bart Cockx, Stéphane Robin and Christian Goebel, Income Support Policies for Part-

Time Workers: A Stepping-Stone to Regular Jobs? An Application to Young Long-
Term Unemployed Women in Belgium, December 2006 

 
1864 Sascha O. Becker and Marc-Andreas Muendler, The Effect of FDI on Job Separation, 

December 2006 
 
1865 Christos Kotsogiannis and Robert Schwager, Fiscal Equalization and Yardstick 

Competition, December 2006 
 
1866 Mikael Carlsson, Stefan Eriksson and Nils Gottfries, Testing Theories of Job Creation: 

Does Supply Create Its Own Demand?, December 2006 
 
1867 Jacques H. Drèze, Charles Figuières and Jean Hindriks, Voluntary Matching Grants Can 

Forestall Social Dumping, December 2006 
 
1868 Thomas Eichner and Marco Runkel, Corporate Income Taxation of Multinationals and 

Unemployment, December 2006 
 
1869 Balázs Égert, Central Bank Interventions, Communication and Interest Rate Policy in 

Emerging European Economies, December 2006 
 
1870 John Geweke, Joel Horowitz and M. Hashem Pesaran, Econometrics: A Bird’s Eye 

View, December 2006 
 
1871 Hans Jarle Kind, Marko Koethenbuerger and Guttorm Schjelderup, Taxation in Two-

Sided Markets, December 2006 
 
1872 Hans Gersbach and Bernhard Pachl, Cake Division by Majority Decision, December 

2006 




