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Abstract

A 7compass rose” pattern sometimes appears when stock returns are plotted against
themselves with a one-day lag, since stock prices move in discrete steps. In this paper,
we perform a Monte Carlo study on simulated stock price series rounded in different ways
to mirror the behavior of stocks on the Stockholm Stock Exchange. We find AR-GARCH
parameter estimates to be affected by the discreteness imposed by rounding. Based on the
compass rose and the discreteness, we investigate, theoretically and empirically, different
possibilities of improving predictions of stock returns. The distributions of the BDS test
as well as Savit and Green’s dependability index are also influenced by the compass rose
pattern. However, throughout the paper, we must impose unrealistically heavy rounding of

the stock prices to find significant effects on our estimates, forecasts, and statistical tests.

JEL codes: C15, C22, G19

Keywords: GARCH, discrete prices, forecasts, correlation intergral statistics

“The authors are grateful to Professor Tobias Rydén for most helpful comments on how dependences occur in

rounded series.



1 Introduction

Typically stock prices, as well as numerous other financial time series, move in small-integer
multiples of a minimum "tick size”. This discrete nature of stock prices restricts stock returns
to take on a limited number of values only, a restriction which is one of the necessary conditions
for creating the so-called ”compass rose” pattern, a geometrical pattern in a scatter plot of
returns versus lagged returns. Crack and Ledoit (1996) were the first to discover this pattern
in daily return plots, finding compass rose patterns in all stocks they investigated on NYSE.
Crack and Ledoit describe the compass rose pattern as ”subjective” and impossible to use for
predictive purposes. Contrary to the beliefs of Crack and Ledoit, Chen (1997) demonstrates
some evidence of how the compass rose of a stock can be used to improve stock return forecasts.
Crack and Ledoit also suggest that the discrete nature of stock prices might affect GARCH
estimates as well as statistical tests. So far, no studies of discrete prices and GARCH estimates
have been made but Kramer and Runde (1997) show how the compass rose seriously distorts
the null distribution of the BDS test (Brock et al. (1996)). The BDS test is a widely used
statistical portmanteau test detecting deviations from IID in general and the existence of chaos
in particular. Based on their own findings, Kramer and Runde suggest that this test should be
used with caution whenever discrete data is used. However, we believe their return series to be
highly unrealistic and less suitable for drawing conclusions.

There is more to the compass rose than meets the eye and in this chapter, we use Monte
Carlo simulations to test whether the existence of a compass rose and the associated discreteness
affect estimates, forecasts, and correlation integral based statistical tests. Possible effects on
parameter estimates are investigated as is the use of the compass rose to enhance forecasts in
a GARCH framework (as suggested by Chen) which is tested and further developed in a more
theoretical framework. We also test how the BDS test and the associated Savit and Green (1991)
dependability index are influenced by the discreteness of stock prices. When researchers look for
evidence of chaos in the stock market, they often study stock indexes and not individual stocks.
However, as shown by Atchinson and White (1996), an aggregation of chaotic processes may
very well be non-chaotic. This turns the focus to the study of individual stocks and therefore,
it is important to clarify whether correlation integral based tests can be used when examining
stock returns with a discrete nature and compass rose patterns.

Section 2 describes the compass rose. In section 3, we investigate how rounding affects
AR-GARCH parameter estimates. Section 4 deals with our compass rose enhanced forecasts of
stock returns. Section 5 shows how correlation integral based statistical tests can be affected by

discrete prices and the compass rose. Concluding remarks are found in section 6.



2 The Compass Rose

A compass rose pattern sometimes appears when returns from a financial time series are plotted
against lagged returns. The pattern is characterized by several evenly spaced lines radiating
from the origin of the graph; the thickest lines pointing in the major directions of a compass.
Crack and Ledoit (1996) were the first to recognize and explain this phenomenon, induced by
discreteness in stock price data. They found that the compass rose appears clearly if the stock

in question satisfies three conditions:
1. Daily stock price changes are small relative to the price level.
2. Daily stock price changes occur in discrete jumps of a small number of ticks.

3. The stock price varies over a relatively wide range.

The derivation of these three conditions is straightforward and the details can be found in
Crack and Ledoit (1996)!. The patterns in Figures la-d show when the compass rose appears.
In Figure la, we plot the daily log-returns (1977-1984) from a stock, ”Atlas Copco A Fria”,
listed on the Stockholm Stock Exchange.? The compass rose pattern can be seen clearly. In
Figures 1b-d, we plot simulated returns based on simulated prices from an AR-GARCH model
(see section 3) fitted to the same Atlas Copco stock. In Figure 1b, it can be seen how the
original simulated returns show no pattern. This is radically changed in Figure 1c, where we
have rounded the simulated prices to mirror the behavior on the Stockholm Stock Exchange?.
This pattern is very similar to the one in Figure la. It is important to notice, however, that
the discreteness induced by the official tick size alone is not the cause of the striking patterns
in Figure la and Figure 1c. In Figure 1d, we plot the same rounded returns as in Figure 1c but
randomly permuted (scrambled). The compass rose pattern disappears, which indicates that
something must be added to the discreteness to create the pattern. The remaining cross-shaped
pattern is merely a consequence of the large number of zero returns that remain in the scrambled

series.

1Szpiro (1998) shows how a more rigorous treatment of the compass rose makes the assumption that asset

prices change by only small amounts relative to the price level superfluous.

2Crack and Ledoit derive their three conditions on basis of the assumption of percentage returns. In this
paper, we use the more widely used log-returns and we see how the compass rose is not a consequence of the use

of percentage returns.

30n the Stockholm Stock Exchange, the prices are allowed to take only certain discrete values. The level of
discreteness depends on the price level; below 5 SEK the smallest price jump is 0.01 SEK, between 5 SEK and 10
SEK the jump is 0.05 SEK, between 10 and 50 SEK it is 0.1 SEK, between 50 SEK and 500 SEK it is 0.5 SEK,
and above 500 SEK it is 1 SEK.
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Figure 1: The compass rose pattern in: (a) Atlas Copco, (b) simulated returns, (c) stock ex-
change rounded simulated returns, and (d) scrambled stock exchange rounded simulated returns.

All time series are of the length 2000.

3 Parameter Estimation

Crack and Ledoit (1996) hypothesize that Autoregressive Conditional Heteroscedasticity (ARCH)
models (Engle (1982)) might be influenced by the compass rose. Chen (1997) uses information
contained in the compass rose to improve forecasts from an ARMA-GARCH model. He does
not study the effect of the discreteness on his parameter estimates, though, which is exactly
what we try to investigate with Monte Carlo simulations in this section.

In order to study the effects of the discreteness, return series differing in nothing but their
level of discreteness must be found. Since this is not easily achieved with empirical data, we

have chosen to simulate series which we then round in order to get discrete time series*. The

4When we use the word discrete, we mean discrete in state space, not in time space. All statistical tools used

are based on common discrete-time models.



simulated series used in this section all come from the same AR-GARCH model:

Ty = gt oqT_ +Qoly_o & (1)

2 b0+ 1} 1 + do0F 1,

Oy

where 7, is the stock log-return, o7 is the conditional variance of ¢,, and where the parameter
vector 0 = {ayg, ay, g, g, b1, o} = {5.2-107%,0.12, —0.053,2.2-1072,0.11,0.83} comes from an
AR-GARCH estimation of the ”Atlas Copco A fria” stock on the Stockholm Stock Exchange
over the period 1977-1990°. Atlas Copco is one of the largest companies on the exchange and
the stock is liquid and representative for the time period. Moreover, it also shows a distinct
compass rose pattern. Our choice of simulated series is different from the treatment in Kramer
and Runde (1997). Their simulated stock price series come from IID normally distributed returns
with means and variances chosen without resemblance to stocks in the real world. Therefore,
any relationships between the level of rounding and the potential effects detected are not useful.

Using the model in (1), we simulate 1000 return series, each being 2000 observations long.
The return series are exponentiated and 1000 price series are computed, all with the starting
value of 50. These ”original” price series are not discrete and do not show any compass rose
pattern. To get price series with varying degrees of discreteness, we round the original price
series; either Integer Rounding to the nearest integer or Stock Exchange Rounding to mirror
the stocks on the Stockholm Stock Exchange, as described in section 2. After calculating log-
returns from these series we have three x 1000 return series originating from non-rounded prices,
realistically discretized prices, and heavily rounded prices.

Our purpose is to study how the parameter estimates from the threex1000 return series
change with the three different degrees of discreteness. The model we apply to these series is
exactly the AR-GARCH model in (1) and therefore, we expect the estimated parameter vectors,
9 for the original series, 55 for the stock exchange rounded series, and 51 for the integer rounded
series, to come rather close to §. However, it is important to note that the AR-GARCH model
we use is misspecified when applied to the rounded series, since ¢, cannot be continuous if 7, is
discretely distributed around the conditional mean.

In Table 1, we present some statistics such as the mean, the 95% confidence interval, the
minimum, and the maximum, of the threex1000 AR-GARCH estimates. The AR-GARCH
parameters were jointly estimated by Maximum Likelihood methods (the BHHH algorithm)®.

From Table 1, we see that the small sample distributions of some of the parameters in /9\, &50 and

5Totally, 3489 daily observations.

SEstimating the AR parameters prior to the GARCH parameters, did not considerably affect the estimates

and these results are therefore not presented.



Table 1: Parameter estimates and likelihood values. 5, /Q\S, and 51 denote the parameter vector
estimates of the original, the stock exchange rounded, and the integer rounded series, respec-

tively. The empirical a-percentile is denoted I,. Small numbers are 95% confidence intervals.

b, - 10° 0, s &, - 10* a, a, In I,

mean 2.314 0.110 0.826 5.342 0.118 -0.054 3.502
(2.273,2.355)  (0.109,0.111)  (0.824,0.828)  (5.103,5.582)  (0.117,0.120)  (-0.056,-0.053) (3.500,3.505)

Iy 05 1.258 0.075 0.757 -2.395 0.073 -0.103 3.419

0 I,g. 3815 0.147 0.882 12.819 0.165 -0.010 3.579
min. 0.910 0.056 0.709 -8.080 0.037 -0.135 3.367
max. 5.471 0.175 0.908 16.914 0.191 0.014 3.624
mean (2.32'53’27212) (0.100'61,9.Zos) (o.sozgggso) (5.153'13,’57.%12) (0.10(571,9.%10) (-0.(_)53(,)-%%50) (3.13).1%2.:?196)

Iy 05 1.267 0.073 0.757 -2.385 0.062 -0.098 3.414

Os Ipgms 3928 0.144 0.885 12.791 0.155 -0.008 3.568
min. 0.908 0.053 0.689 -8.246 0.033 -0.130 3.364
max. 5.495 0.179 0.908 16.881 0.178 0.023 3.607
mean 2.539 0.091 0.846 5.546 0.048 -0.042 3.433
(2.484,2.595)  (0.090,0.093)  (0.844,0.848)  (5.289,5.802)  (0.044,0.051)  (-0.044,-0.042) (3,429,3.437)

Ipop 1181 0.042 0.769 -3.261 -0.092 -0.092 3.267

0, I,gm 4589 0.135 0.918 13.296 0.128 0.001 3.537
min. 0.621 0.047 0.681 -9.071 -0.215 -0.122 3.040
max. 10.022 0.162 0.959 17.885 0.152 0.027 3.571

(}52, are biased, since the true parameters, ¢, and ¢,, are outside the 95% confidence intervals of
the means of &50 and (}52. The distribution of the parameter estimates in /H\S and 51 change with
the level of discreteness. The confidence intervals are wider and the means of the estimates differ
compared to 5, which is most obvious for a;. It is important to emphasize that a combination
of two effects is observed. First, in infinite samples, we know that 0 will converge to #, but since
we have rounded the series, we do not know to what 55 and /9\1 will converge asymptotically.
Second, as mentioned above, the continuous-state AR-GARCH framework is not the proper one
to use in modeling discrete return series. Hence, we cannot separate the effect of the rounding on
the asymptotics from the effect of the misspecified AR-GARCH model; we can only investigate
the compound effect of discreteness on parameter estimation”.

To say something about how the distributions of /0\, /9\5, and 5] differ, we analyze the deviation

vectors, 55 =0 /9\5 and 51 =0— /9\1. Comparing individual estimates from the stock exchange

" An extension of the GARCH framework to handle cases where the return series are discrete is given in Amilon
(1999).



Table 2: Parameter estimate and likelihood value differences. 53 =0 53 and 51 =0 - 51,
where @\, 55, and /9\1 denote the parameter vector estimates of the original, the stock exchange

rounded, and the integer rounded series, respectively. The empirical a-percentile is denoted I,,.

Small numbers are 95% conﬁclence intervgxls.

¢, - 10° b, by a, - 10* & a, InL

mean  -0.056 0.003 -0.002 -0.029 0.010 -0.003 0.009
(-0.065,-0.048)  (0.002,0.003) (-0.003,-0.002) (-0.042,-0.016) (0.010,0.010) (-0.003,-0.002) (0.009,0.009)

05 Iy  -0.360 -0.005 -0.017 -0.460 -0.000 -0.012 0.001

I o7 0.223 0.011 0.012 0.411 0.023 0.005 0.020

mean  -0.225 0.018 -0.019 -0.203 0.070 -0.012 0.069
(-0.261,-0.188) (0.017,0.019) (-0.021,-0.018) (-0.249,-0.157) (0.068,0.074) (-0.013,-0.011)  (0.066,0.073)

0, Iy  -1.538 -0.003 -0.089 -1.621 0.015 -0.041 0.014

I s 0.878 0.062 0.018 1.464 0.210 0.012 0.225

rounded and integer rounded series with the original non-rounded series, we get twox1000 de-
viation vectors. In Table 2, we look at the distributions of these deviations. The confidence
intervals are much wider for 51 compared to 55. The absolute values of the mean deviations
increase with the level of discreteness, and the sign of the mean deviations differ between param-
eters, but do not change with the level of rounding. According to the 95% confidence intervals
of the mean deviations, all means of 55 and 51 are quite small but significantly different from
Z€ero.

In Table 1, further evidence of the effect of discrete prices on model estimation is given by the
log-likelihood value statistics from the Monte Carlo simulations. The log-likelihood values are
lower for discrete time series, in particular for heavily rounded series with a mean log-likelihood
value clearly below the original series. Looking at the distribution of the log-likelihood deviations
in Table 2, it becomes even clearer that the rounded series have significantly lower log-likelihood
values. In fact, for the integer rounded series, the likelihood values from the original series
are never smaller than the corresponding likelihood values from the rounded series. Since we
have rounded the series, we would expect the log-likelihood values to change. In this case, they
are almost always smaller, which is a consequence of the rounded series no longer fulfilling the

assumptions underlying the model in (1).

4 Enhanced Forecasts

Another way of assessing the importance of discrete stock prices is to study whether the compass
rose can be used to enhance forecasts. Crack and Ledoit (1996) argue that the compass rose

contains no information that can be used for predictive purposes. Chen (1997) on the other hand



tries to contradict this empirically by incorporating the compass rose pattern in his ARMA-
GARCH return forecasts (not modifying his estimates, though) and in this way improving his
forecasts®. In summary, Chen argues that there are feasible regions (the rays radiating from the
origin) and unfeasible regions (the white spaces between the rays) in the compass rose. Chen’s
enhanced procedure simply tries to force his ARMA-GARCH forecasts to lie within the feasible
regions. When a forecast is being made, Chen goes through the constantly updated historical
compass rose pattern created from all historical return pairs (r;,7;,,) and replaces the original
forecasted return pair (74,4ay, "forecast) Py the pair from the feasible region closest to the actual
forecasted pair in an Euclidean sense. Here, we call such enhanced forecasts rose-enhanced
forecasts.

In addition to Chen’s method, we suggest an alternative enhancement considering the fact
that prices move in discrete jumps and can only take on certain values. Instead of looking at the
historical return pattern, we suggest that more emphasize should be put on the feasibility of the
forecasted returns, implied by the feasibility of the forecasted prices. Since, at a certain point in
time, only a limited number of discrete prices are feasible forecasts for tomorrow’s stock price,
we replace our actual forecasted price by one rounded to the nearest possible price’. From this
forecasted price, we then calculate an associated forecasted return, called tick-enhanced forecast,
that can be compared to the original forecast and the rose-enhanced forecast as well as the
realized out-of-sample return. This is in contrast to Chen’s method, which adjusts the forecasts
to belong to the set of realized returns, although these are not attainable at all price levels.

Since we do not incorporate the discreteness in our parameter estimates, it can be shown how
the enhancements will affect the performance. Suppose that we have estimated our AR-GARCH
parameters from a discretized time series. When forecasting, tomorrow’s return, r,, is assumed
to be a continuous stochastic variable symmetrically distributed around the conditional mean
return, m,, which is described by the AR parameters. Since r, is actually discrete, so is m,.
Suppose further that the possible states at time t are iz, = 0,7 1,7 2, ..., where, for simplicity,
we let . =1 10, Let p; denote the conditional probability that state j occurs. Because of the
symmetry of ry, it follows that if j < m; < j+1/2, then p; > p; 1 > pj_q1 > .. > pjyin >
pj—n, where we limit the possible states to 2N + 1, where IV states are larger than j, and N

states are smaller than j. We can let N — oo, or we can truncate the distribution by letting

8Chen’s results are based on out-of-sample predictions of six stocks during a certain period of time, by using
the mean absolute error and the root mean squared error as performance measures. No statistical significance of

his results are presented.

9The possible prices depend on the level of discreteness; either we allow only integer prices or also the rounded

prices mirroring the Stockholm Stock Exchange prices.

10Since we are using log-returns calculated from discrete prices, this is only approximately correct.



0.5

Figure 2: The conditional density function of r, around m,, and its discrete counterparts pg, p4q,

and pyo.

PjaN = Doy Pjr(n+p)- In the same way, if j —1/2 <my < j, then p; > p; | >pj g > ... >
Pj—N > Pjrn- We disregard the low probability events of m; = j, and m; = §+1/2, although
they can be treated in a similar manner. Figure 2 illustrates the notation for j = 0, N = 2, and
mt == 0.25.

Now, if our forecast is f, the Mean Squared Error will become:

J+N
MSE= S p(f — i) = BI(f — i) = VIf — i) + (BLf — d)> = Vi + ( - Bl
i=j—N

which is minimized for f = FE[i] which, in turn, should be close to m,. Thus, the original

forecasted return will always have the lowest MSE, although this forecast is not feasible. Let us



consider the Mean Absolute Error on the interval k < f < k4 1:

J+N J+N
MAE = Z pilf—il= sz —1 +sz 1—f) =
i=j—N k+1
k J+N J+N
Z sz +szl_zpz
j—N k+1 k+1

If Zf_ D < Ziﬁ[ p;, the MAE is minimized when f is chosen as large as possible on the
interval and consequently, if Z;’Z NP > ngflv p;, then f should be as small as possible. What
happens when we move from one interval to the next? If we let f; = k —e€ and f, = k + ¢, with

€ being small, it is easily shown that

k—1 j+N
MAE, — MAE; =2¢(> p; — > _pi)- (3)
j—N k+1

In the case of p; > p; 1 >p;_1 > ... > pin > Pj_n, (3) is negative if k < j, and positive if
k > j. The MAE is therefore minimized when k = j, and according to (2), f should be chosen
as small as possible, that is f = j. Similarly, when p; > p; | >p; 1 > ... >p; y >N, (3) I8
negative for k < j, and positive otherwise. The minimizing state is then & = j — 1, and (2) is,
once more, minimized for f = j. In a MAE sense, choosing the most probable feasible outcome
is favored compared to the expected forecast. Thus, our enhanced forecast will outperform the
original one, using the MAE as a performance measure.

Let us examine our theoretical results empirically in the following way: AR-GARCH return
forecasts are nothing but the returns forecasted from the mean process in (1). Using the two x
1000 different parameter sets 55 and /9\1, estimated in section 3, we forecast returns by using
the different forecasting methods. As a test sample, we use two x 1000 different return series
simulated from (1), each 1000 observations long, and rounded in the two different ways!!. For
each of the two x 1000 parameter sets, Root Mean Squared Errors (RMSE) as well as Mean
Absolute Errors (MAE) are calculated over the test sample for the different forecasting methods
and different roundings. In our setting, the RMSE and the MAE are:

HEach of the two x 1000 parameter sets (estimated by using the observations in the estimation period) is tested
on exactly one of the two x 1000 (out-of-sample) test series. The model parameters in each set are kept constant

over the entire test period.

10
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1 1000
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where r; is the actual return at day ¢, #; is the forecasted return at day ¢, and the number of
days in the test period is equal to 1000.

In Table 3, we present the means and the 95% confidence intervals of the ratios of the
enhanced and the original forecast errors. Starting with the MAE statistic, we can see how the
mean ratios are generally close to one but that our tick-enhanced method clearly outperforms
the original non-enhanced method; the mean of the ratio is significantly smaller than one at the
5% level for both the exchange rounded and the integer rounded series. Even for the RMSE
statistics, the mean ratios are close to one, but otherwise the results are somewhat reversed
and the original method seems to outperform the tick-enhanced one; for the exchange rounded
series, the mean ratio is significantly larger than one at the 5% level, while for the integer
rounded series the mean ratio is not significantly different from one at the 5% level. The results
are qualitatively the same for the rose-enhanced forecasts; a mean ratio significantly smaller
than one for the MAE, and a mean ratio significantly larger than one for the RMSE. These
results confirm our theoretical conclusions about the choice of evaluation measure; the MAE
measure indicates gains from using our enhanced method while the RMSE seems to favor the
original method. It is also worth noticing how the relative performance of the enhanced methods
improves when we round more heavily; throughout Table 3, we see that the heavier we round, the
smaller are the error ratios. Finally, if the tick-enhanced method were to be directly compared
with the rose-enhanced method, significant results indicating a dominance of our tick-enhanced
method over Chen’s rose-enhanced method would most probably be found; in three cases out of
four, the mean ratios are smaller for the tick-enhanced method.

The results depend, a priori, on the choice of performance measure, so which should be
chosen? If constraining one’s forecasts to belong to the set of possible outcomes is believed to
be reasonable, then the forecasts should be adjusted to be feasible, as we have done, and an
evaluation measure favoring a feasible forecast, such as the MAE, should be chosen. It is obvious
that the continuous AR-GARCH framework is not the proper one to apply to discrete return
series, but we see no theoretical or empirical justification why Chen’s adjustments should result
in better forecasts. However, the discreteness of the returns should already be incorporated in

the parameter estimates to fully improve forecasts, an issue treated in Amilon (1999).

11



Table 3: Mean estimates and 95% confidence intervals of the out-of-sample forecast error ratios.
Each statistic is computed from a test sample of the length 1000. Small numbers are 95%

confidence intervals of the mean estimates.
Exchange Rounding Integer Rounding

B |5 ] 0.9951 0.9738
original (0.9949,0.9953) (0.9728,0.9748)

Iy oo 0.9876 0.9319

logrs 1.0014 0.9955
MAE, ;inal (0.9%92%93994) (0.983?1,80.9848)

I, oo 0.9945 0.9537

10_97}§MSE 1.0036 1.0000

B { . M(:k'—enhun(:(’d:| 1. )
RMSE,.;qina1 (1.0053,01505058) (0.988%,91905001)

Iy o0 0.9956 0.9738

Iy ors 1.0171 1.0151

~TRMSE

E { l'o.s'(’—(’nh(ln,(:(’d:| 1 1 1 12
RMSE, ;inal (1.00229130034) (1.0009,01.0017)

Ty o9 0.9946 0.9781

Iy ors 1.0127 1.0144

5 Correlation Integral Statistics

In this section, we will examine how the distribution of some correlation integral based statistics,
defined below, are influenced by the fact that prices only move in discrete ticks. We are primarily
concerned with two issues: Do the null distributions of the test statistics change, when applied
to return series originating from discrete prices? How are the powers of these test statistics

affected when trying to detect explicit time series dependences in such return series?

5.1 The BDS Test and Savit and Green’s Dependability Index

Grassberger and Procaccia (1983) introduced a quantity called the correlation integral, in order
to identify structures and dependences in data series. In the case of time series analysis, the

correlation integral is computed by first forming m-histories from the time series considered:
X (t) = (T(t)vr(t - 1)7 "'7T(t —m+ 1)) = (xl(t)v‘rQ(t)a ERES) xm(t))

If the distance between the kth components of two m-histories, x (t) and x (s), is defined as

le(t,s) = |y, (1) — 2 () |,

then the correlation integral at embedding dimension m and tolerance € can be expressed as
1

k=1,2,....m,

n(ll < €, 7lm < 6)7 (4)

12



where N,

pair
all components within € apart.
The BDS test is based on the observation that for an IID sample,

is the total number of pairs, and n(l; <, ...,I,, < €) is the number of pairs with

Cp () = [Cy ()™

The identity should be understood in a statistical sense. Brock et al. (1996) derived a normal-
ization factor, V,,(€), in order to make a correct statistical quantification of the departure from
IID. More specifically, they showed that the BDS statistic

Cr (€) =[G ()]

Win(€) = e : (5)
converges in distribution to N(0,1), as the time series become infinitely long, for € > 0, and
m > 1, under the null hypothesis of IID. With the possibility of bootstrapping small sample
distributions as in Efron (1979), the asymptotic properties are nowadays of less importance.
The BDS test has proved to be quite successful in finding departures from IID in a number of
Monte Carlo studies (see, for example, Brock et al. (1991)), but the test gives no hints of at
what time lags there are dependences in the data, information that is most useful in time series
modeling and analysis.

Savit and Green (1991) filled this gap by introducing a dependability index computed from

the correlation integrals in different embedding dimensions. As seen from (4), C,,

(€) is nothing
but the joint probability of two m-histories being no more than e apart in all their Cartesian
components, that is C,,(¢) = Pr(l; <,...,l,, < €). This holds under the assumption of time-
invariance or stationarity, so that we can compare pairs from different parts of the time series.
It is also possible to form the conditional probabilities of two observations being close, given
that their m-histories are close:

Pr(l; <e,..,l,<¢)  C,le)

Pr(l; <e€lly <e,...,0, <e€)= Pr(ly <e ..l <€) C,_(e)

since Pr(ly <e,...,1, <¢e)=Pr(l; <e,.., 1,1 <€) by construction. In the same way,

Cm—l(e)
Pr(ly <e€|lly <€, .0l 1 <€) = =——.
(1— |2— 1 ) Cm,Q(E)

If r(t) does not depend on r(t —m + 1), then

Pr(ly; <e€lly <e€,...,0, <e)=Pr(ly <e|lly<e .. l, 1 <€),

that is, C,,(€)/C,,_1(€) = C,,_1(€)/C,,_5(€). It is now possible to define a dependability index:

0
C (e)cme (6)

m

6m—1(e) =1- (6)
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for m > 1 (C, = 1), which is zero (in a statistical sense), if there is no dependence of r(t) on
the lag t —m + 1. In contrast to the BDS test, the delta indexes provide information on at what
time lags there are dependences causing the rejection of IID. An asymptotic distribution for the
¢’s under the null hypothesis of IID is not available, but can easily be estimated by a bootstrap

procedure.

5.2 Rounding of IID Series

In order to investigate the ability of the correlation integral based statistics to pick up the
micromarket dependences caused by the rounding of prices we do the following Monte Carlo
simulation: First, we generate 1000 return series of the length of 2000 from N(u,o), with
the same unconditional moments as implied by the AR-GARCH coefficients in section 3, that
is 1 = 5.57-107%, and o = 0.019. After exponentiating to prices, rounding and calculating
log-returns as described in section 3, we have three x 1000 return series originating from non-
rounded prices, realistically discretized prices, and heavily rounded prices. An integer rounding
of prices around and below 50 must be regarded as unrealistic, at least for modern financial
data. Henceforth, we denote these series R, RS, and RI.

In Table 4, we report some distributional statistics of the W’s and the §’s, such as the
mean, standard deviation, skewness, kurtosis, minimum, maximum, and the 2.5% and 97.5%
percentiles. The embedding dimensions are m = 2, 3,4, and 5, corresponding to time lags 1 to
4, and the tolerance parameter € equal to the standard deviation of each time series, as is often
suggested.!?

For R, the distribution of the BDS statistics is close to N (0, 1), as expected for sample sizes
of this magnitude. The §’s also seem to be normally distributed around zero, indicating no
dependences on past lags. In the case of RS, the picture is very much the same. Both the BDS
statistics and the deltas are normally distributed, but the distribution appears to be shifted
somewhat upward, which is especially notable for W;, and 6,. The percentiles and the mean
for Wy are -1.74, 2.35, and 0.16 as compared to -1.87, 2.10, and -0.03 for the R statistics. For
realistically discretized data, the rounding mechanism is picked up by the correlation integral
statistics, but the changes in the distributions are not very severe. This is certainly not true
when examining RI. Neither the W’s nor the ¢’s are normally distributed, and the means as well
as the critical values are heavily shifted upward for all m, although most heavily when m = 2.

The ¢’s are all large, indicating dependences, but our simulated series have no explicit time

dependences. How is this possible? The reason is that the rounded series are not time-invariant,

2Throughout this paper, we report our results for € = o only. We have also examined the cases of ¢ =
0.250,0.50,1.50, and 2.0, with similar findings.
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Table 4: Distributional properties of the BDS statistics W,,(¢), and Savit and Green’s depend-
ability index 6,,_;(¢) for the R, RS, and RI series, for m = 2,3,4, and 5, and with € = o, the
standard deviation of each time series. The a-percentile is denoted by I,. Note that the entries

corresponding to the §’s are multiplied by 100, except for the entries corresponding to skewness
and kurtosis.

W, W W, W 6, 5, b3 b4
mean -0.04 -0.02 -0.02 -0.03 -0.02 0.01 -0.02 -0.03
std.dev. 099 099 1.01 1.01 046 049 053 0.54
skewness 0.10 013 023 029 007 018 012 0.08
R kurtosis 311 297 310 327 312 3.08 297 295
minimum -3.57 -3.01 -297 -2.82 -1.70 -1.51 -148 -1.56
maximum 3.34 3.55 414 460 1.51 1.67 1.89 1.93

Iy 005 -1.88 -1.88 -1.92 -1.87 -0.89 -0.90 -1.02 -1.06
I s 207 197 205 210 092 1.04 1.06 0.98
mean 007 013 015 016 003 006 003 0.01
std.dev. 1.00 1.00 1.02 104 046 050 053 0.56

skewness 0.08 0.11 0.22 030 0.06 0.17 0.16 0.06
RS  kurtosis 3.12 294 295 307 310 290 290 3.16
minimum -3.20 -2.76 -2.57 -2.38 -143 -1.52 -1.51 -1.60
maximum 3.32 3.46 4.04 441 1.48 1.63 1.82 2.30

Iy 005 188 -1.74 -1.84 -1.74 -085 -0.85 -0.96 -1.10
Iy ors 212 208 232 235 099 1.08 1.09 111

mean 242 3.06 348 3.84 147 114 091 081
std.dev. 243 298 342 385 169 135 1.16 1.04
skewness 096 1.3 127 142 141 142 139 117

RI  kurtosis 346 381 426 4.80 447 501 569 5.10

minimum  -2.01  -2.01 -1.97 -1.76 -1.00 -1.23 -142 -1.51
maximum 11.08 13.80 17.14 19.99 847 7.35 7.1 543
Iy 025 091 -0.69 -0.60 -0.58 -045 -0.56 -0.74 -0.82
Iy o7 824 1048 1223 1442 583 484 396 3.65
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which is assumed in the derivation of the correlation integral statistics. At a given price, a stock
will only jump a certain amount of ticks, giving rise to a finite number of return realizations. As
the stock price evolves, the number of probable realizations will change, increasing if the stock
goes up and decreasing otherwise (if the tick size is the same for all prices). In addition, the non-
stationarity in returns is linked to the price level, which creates new complicated dependences.
Their appearance is best illustrated by an example.

Let 7,7y € N(0,0) denote the returns at times ¢ = 1 and ¢ = 2, let ¢ = 0.019, and let
the starting price be Py = 100. The prices at t = 1 and ¢ = 2 are then P, = 100exp(r;)
and P, = 100exp(r; + ry), the rounded prices P, = [100 exp(ry)] and P, = [100exp(r; + r5)],
where [-] denotes integer rounding, and the resulting rounded returns are 7#; = In (]51 / PO) and
Ty = In (P,/P}) . Suppose we want to calculate the probabilities of 7, = 0, and 7, = In (101/100) .
The probability that 7; = 0 is equal to:

2

100 — 1 100 + 4
=Pr|1 2] < 1 2 .
r(“( 100 >—r1<n( 100 ))

The joint probability that 7, = 0 and 75 = In (101/100) is given by:

_ 1 1
Pr (7, = 0) = Pr (P, = 100) = Pr <100—§§P1<100+—> =

101 _ _
Pr <F1 = 0,7, =In <1_80>> = Pr (P, = 100, P, = 101) =

100 — & 100 + 1 101 — 1 101 + 2
=Pr|l 2] < 1 211 2| < \ 21 (7
r(“( 100 >—T1<n( 100 )n( 100 ) ="t g0 (7)

However, the probability that 7, = In (101/100) is given by the following:

_ 101 P, 101 _ _ 101
P =ln({— ) |=Pr|==—|= Pr(P=kPy=k—|. 8
r<r2 n<100>> r<P1 100> Ek: r< L= 50 100> ®
Since we use integer rounding, the probabilities in the sum are zero unless & = 100, 200, ..., co.
Besides, the probability that P, > 200 is almost zero, so (8) reduces to

L z p, — 101 101
e )
k=100

If the rounded returns 7, 7, were independent, then
_ _ 101 _ _ 101
Pr <7“1 =0,79=1In <m>> =Pr(r; =0) x Pr <r2 =In <m>> ,
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Table 5: BDS test statistics and autocorrelations in returns and squared returns for lags 1-4,

for series no. 347 in R, RS, and RI, denoted r, rs, and ri.
AC in returns AC in squared returns

W, W, w, W ac, ac,, acgy ac, ac, ac, acg ac,
r 0.18 033 0.64 069 002 -0.01 0.02 -0.03 -0.01 0.01 0.03 0.01
rs 037 056 0.79 085 0.01 -0.01 0.02 -0.04 -0.01 0.02 0.03 0.02
ri 3.59 3.59 4.08 4.47 -0.04 -0.00 0.01 -0.02 -0.02 -0.01 0.01 o0.01

which is obviously not satisfied here. It is these kind of dependences, which could be more or
less pronounced in different time series, that are detected by the correlation integral statistics'3.
The rounded returns are no longer IID. In Table 5, we show the BDS test statistics, and the
autocorrelation in returns and squared returns, for a typical series in R, RS, and RI. We see
that the BDS test strongly rejects integer rounded IID returns, a finding not discovered by just
examining the autocorrelations, as is the common approach in econometric analysis.

To summarize, the rounding of prices has two effects. It makes the rounded return series
time-variant, and it introduces complicated dependences in the series. The BDS test correctly
rejects the rounded returns as IID variables, but the lag-dependences identified by the ¢’s may

be spurious, since the rounded series are nonstationary.

5.3 Rounding of AR-GARCH Series

We turn to exploring the power of our test statistics when applied to our simulated AR-GARCH
return series from section 3, denoted G, GS, and GI. We have established that the correlation
integral statistics are distorted by the nonstationarities and dependences introduced by price
rounding. Here, we are interested in the ability of detecting explicit time series dependences.
In Table 6, we report the minimum, the maximum, and the 95% confidence interval of the
test statistics, together with the frequencies of rejecting the null hypothesis of rounded IID
observations, at the 5% significance level, when it is false. In the power tests, we are using the
critical values from the simulations of R, RS, and RI in Table 4.

Somewhat surprisingly, no sign of upward shifts is distinguishable in the confidence intervals

13The probability in (7) can be calculated by numerically integrating

1 1
1004172 10141\ 101-4\
1 1n 19941/2 T? o In ( 100 Ty ® In { —552 Ty g
— exp | ——= _— | - _ T
V2T 7 =ln _Lwolgé p P 202 o o 1

With the numbers chosen here, Pr (7, = 0) ~ 0.2076 and Pr (Fl =0,7y=1In (%)) =Pr (F2 =1In (%)) ~ 0.0703.
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Table 6: Distributional properties of the BDS statistics W,,,(¢), and Savit and Green’s depend-
ability index 6,, ;(¢) for the G, GS, and GI series, for m = 2,3,4, and 5, and with ¢ = o, the
standard deviation of each time series. The a-percentile is denoted by I,. Note that the entries

corresponding to the ¢’s are multiplied by 100, except for the power y5’s.
W2 W3 W4 W5 61 62 63 64
minimum 2.99 3.28 4.23 4.69 1.39 0.16 0.25 0.06
maximum 14.54 16.41 18.30 20.54 7.10 4.81 4.19 3.76
G Iy 408 528 619 685 193 118 094 053
I o7s 10.81 1323 14.96 16.74 522 407 3.33  2.96
power, . 1.000 1.000 1.000 1.000 1.000 0985 0.961 0.904

minimum 293 348 417 486 134 026 037 -0.12
maximum 14.14 1598 17.30 1924 692 460 4.09 3.75
GS Iy o0 380 509 599 680 1.8 114 090 0.52
Iy ors 1048 12.84 14.99 1648 510 4.02 3.35  3.00
power, o, 1.000 1.000 1.000 1.000 1.000 0.977 0.948 0.851

minimum 2.18 3.25 4.06 4.31 1.16 0.05 0.37 -0.74
maximum 13.70 18.16 22.28 26.37 9.81 9.66 8.46 7.62
GI I, g0 364 502 609 699 195 121 111  0.69
1) 05 10.63 13.62 16.30 18.67 7.19 6.07 5.31 4.64
powery o~  0.228 0.233 0.233 0.192 0.076 0.093 0.089 0.071

of the BDS statistics when we increase the level of discreteness. The ¢’s, on the other hand, show
more of the previous positive shifts, at least for the integer rounded GI. Because of the upward
shifts present in RS and RI, in combination with the tendency of downward shifts in GS and GI,
the power of the test statistics deteriorates, due to the rounding effects. The empirical rejection
frequencies of the BDS statistics are 100% for both G and GS. The §’s clearly also identify
dependences at all time lags, as should be the case for GARCH series. The ability of detecting
lagged dependences weakens as m increases, and also when comparing G and GS. This should
not be confused with any superiority of the BDS test over Savit and Green’s dependability
index. The former is a true portmanteau test, answering the question if a time series is IID
or not. The latter, on the other hand, determines whether including additional lags raises the
conditional probability of two observations being close, given that their m-histories are close.
Deciding whether a time series is IID or not just by examining a certain lag, rather than using
information at all lags, is quite a different task. The BDS test and the dependability indexes
therefore give different, but complementary, information usable in time series analysis.

When examining GI, the power of the test statistics falls dramatically to around 23% for
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the W’s and to 8% for the 6’s. Trying to determine whether an integer rounded time series
(at the price levels examined here) has any explicit time series dependences based on the null
distributions of the test statistics would most likely lead to the wrong conclusion. It is somewhat
surprising that the power of W, and ¢, are so different, since the numerator of W, in (5) is equal
to Cy48,. Obviously, this is related to the influence of the denominator of the BDS test statistic!?.

Let us examine the standardized residuals from the maximum likelihood estimations of the
AR-GARCH series, denoted S, SS, and SI. As shown in Brock et al. (1996), the asymptotic
properties of the BDS test are the same, whether the test is applied to IID series or residuals
from linear (and some nonlinear) stochastic models. This nuisance parameter free property
of the BDS test is not valid for GARCH residuals, which is clearly visible in Table 7. The
test statistics are still normally distributed, but with smaller variances, resulting in narrower
confidence intervals (see Hsieh (1989)).

The distributional properties of S and SS are again very similar, confirming that realistic
rounding of prices does not change the null distribution of the correlation integral based statistics
to a very large extent. Once again, these similarities are lost when examining SI. We have upward
shifts in the distributions, giving rise to totally different confidence intervals for both the W’s
and the ¢’s. Furthermore, there is no longer only a scaling factor of the standard deviation
separating the distributions of RI and SI, as is the case between the distributions of R and S. If
one wishes to investigate the standardized residuals from a heavily rounded return series, there
seem to be no shortcuts. A proper Monte Carlo simulation, similar to ours, must be performed
in order to extract the critical values to compare with the test statistics of the residuals of one’s

GARCH model. Even so, the power of such a test would most probably be quite low.

6 Summary and Conclusions

Throughout this chapter, we try to shed some light on the consequences of the trade induced
compass rose pattern in stock returns. We examine how AR-GARCH parameter estimates
change with the level of rounding in stock prices, and find that the distribution of the estimates
differ, in particular for the AR(1) parameter. The differences arise from two effects. First, when
rounding the series, we may change the dynamics of the processes, and second, the rounded series
no longer fullfil the assumptions underlying the continuous-state AR-GARCH model. Obviously,
the higher the level of discreteness, the more pronounced will either of the two effects be.

Further, we show theoretically that incorporating discretization in return forecasts (not in

4When investigating the power of C,6,, compared to the integer rounded null distribution of the same quantity,
the power raises to 12.1%, but is still far from 22.8%.
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Table 7: Distributional properties of the BDS statistics W,,(¢), and Savit and Green’s depend-
ability index 6,,_;(€) for the S, SS, and SI series, for m = 2,3,4, and 5, and with € = o, the
standard deviation of each time series. The a-percentile is denoted by I,. Note that the entries
corresponding to the §’s are multiplied by 100, except for the entries corresponding to skewness

and kurtosis.

w, W, W, W, & 6 & &
mean 0.02 -0.08 -0.09 -0.10 -0.01 -0.01 -0.01 -0.02
stddev. 087 0.75 0.68 063 040 045 049 0.55
skewness  0.17 0.16 0.15 020 013 012 015 001

S kurtosis 275 288 298 3.07 271 279 3.00 283
minimum ~ -245 -2.07 -2.02 -1.82 -1.15 -1.30 -1.75 -1.78
maximum 322 287 218 207 131 129 156 1.63

Iy 0o -1.61 146 -1.37 -1.30 -0.75 -0.93 -0.93 -1.08
Iy ors 168 140 133 1.23 077 086 1.00 1.05
mean -0.01 -0.07 -0.09 -0.10 -0.01 -0.07 -0.02 -0.04
stddev.  0.88 077 069 064 041 045 050 0.54

skewness 0.10 0.18 022 025 0.06 0.04 011 0.09
SS  kurtosis 283 3.02 316 319 279 273 3.04 287
minimum -2.31 -2.00 -2.22 -1.84 -1.14 -1.35 -1.67 -1.49
maximum 3.38 3.31 2.72 249 141 117 155 1.77

Iy 005 171 <148 -1.37 -1.32 -0.79  -0.92 -0.95 -1.09
Iy ors 169 143 131 120 079 082 1.02 1.02
mean 110 153 186 212 063 072 070 057
std.dev. 163 195 223 248 099 108 103 0.99

skewness 049 082 097 109 084 118 130 1.27
SI  kurtosis  3.33 344 3.62 387 472 453 508 574
minimum  -4.21 -250 -2.21 -200 -3.77 -1.37 -1.36 -1.37
maximum ~ 6.89 832 10.61 1271 431 523 495 568
Iy 005 -1.65 -1.46 -1.17 -1.02 -080 -0.76 -0.69 -0.89

I ors 485 624 725 829 311 343 344 3.05
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estimation), as outlined in section 4, improves the performance in an MAE sense, while the
opposite holds using the RMSE as an evaluation measure. Simulations reveal that the out-of-
sample performance is better, significantly at the 5% level, when using the MAE measure, and
we argue for the use of this measure if wishing to favor feasible forecasts.

We also investigate how the distributions of some correlation integral statistics change when
applied to rounded return series, and residuals from such series. Our findings suggest that the
effects on the distributions are small, provided the return series come from realistic roundings
of prices, such as those present at the Stockholm Stock Exchange. Only when we investigate
heavy rounding, most likely uncommon in modern financial markets, do the null distribution
of the test statistics change remarkably. This is contrary to the findings of Kramer and Runde
(1997), who discovered large changes in the null distribution of the BDS test already at low
roundings (tick size of 0.1), due to their highly unrealistic simulated stock prices. In section 5,
we explain why these changes occur. The rounding of prices makes the corresponding return
series time-variant, and introduces dependences in the series. The rounded IID returns are no
longer IID. The distributions of the correlation integral statistics therefore change, because of
the dependences and the nonstationarities in the rounded data.

The main conclusion is that the effects of discrete prices are small, at least for a discretization
comparable to the one present at the Stockholm Stock Exchange. Investigating series with higher
tick size to price ratios, such as those present in low-priced stocks, the use of statistical models
and tests based on state-continuity can be questioned.

Our results are based on time series of the length 2000. It may be the case that the rounding
effects are more severe when examining shorter time series. Caution should also be taken when
less traded stocks are examined. The ”effective” tick size chosen by market participants can

then be larger than the official tick size.

References

Amilon, H. (1999), ”GARCH Estimation and Discrete Stock Prices”, Working paper, Lund

University.

Atchison, M., and White, M. (1996), " Disappearing Evidence of Chaos in Security Returns: A

Simulation”, Quarterly Journal of Business and Economics, 35(2), 21-37.

Brock, W., Dechert, W., Scheinkmann, J., and LeBaron, B. (1996), ” A Test for Independence

Based on the Correlation Dimension”, Econometric Reviews, 15(3), 197-235.

Brock, W., Hsieh, D., and LeBaron, B. (1991), Nonlinear Dynamics, Chaos and Instability:

21



Theory and Evidence, M.I.T. Press, Cambridge.

Chen, A.-S. (1997), ”"The Square Compass Rose: The Evidence from Taiwan”, Journal of
Multinational Financial Management, 7, 127-144.

Crack, T., and Ledoit, O. (1996), "Robust Structure Without Predictability: The ”Compass
Rose” Pattern of the Stock Market”, Journal of Finance, June, 751-762.

Efron, B. (1979), ”"Bootstrap Methods: Another Look at the Jackknife”, Annals of Statistics,
7, 1-26.

Engle, R. (1982), ” Autoregressive Conditional Heteroskedasticity with Estimates of the Vari-
ance of U.K. Inflations”, Econometrica, 50, 987-1007.

Grassberger, P., and Proccacia, 1. (1983), ”Measuring the Strangeness of Strange Attractors”,
Physica D, 9, 189-208.

Hsieh, D. (1989), ” Testing for Nonlinear Dependence in Daily Foreign Exchange Rates”, Jour-
nal of Business, vol. 62, no. 3, 339-368.

Kramer, W., and Runde, R. (1997), ”Chaos and the Compass Rose”, Economics Letters, 54,
113-118.

Savit, R. and Green, M. (1991), ” Time Series and Dependent Variables”, Physica D, 50, 95-116.

Szpiro, G. (1998), " Tick Size, the Compass Rose and Market Nanostructure”, Journal of Bank-
ing and Finance, 22, 1559-1569.

22



